
Article https://doi.org/10.1038/s41467-024-55631-x

Prompt injection attacks on vision language
models in oncology

Jan Clusmann1,2, Dyke Ferber1,3, Isabella C. Wiest1,4, Carolin V. Schneider1,2,
Titus J. Brinker5, Sebastian Foersch6, Daniel Truhn 7 &
Jakob Nikolas Kather 1,3,8

Vision-language artificial intelligence models (VLMs) possess medical knowl-
edge and can be employed in healthcare in numerousways, including as image
interpreters, virtual scribes, and general decision support systems. However,
here, we demonstrate that current VLMs applied to medical tasks exhibit a
fundamental security flaw: they can be compromised by prompt injection
attacks. These can be used to output harmful information just by interacting
with the VLM, without any access to its parameters. We perform a quantitative
study to evaluate the vulnerabilities to these attacks in four state of the art
VLMs: Claude-3 Opus, Claude-3.5 Sonnet, Reka Core, and GPT-4o. Using a set
of N = 594 attacks, we show that all of these models are susceptible. Specifi-
cally, we show that embedding sub-visual prompts in manifold medical ima-
ging data can cause the model to provide harmful output, and that these
prompts are non-obvious to humanobservers. Thus, our study demonstrates a
key vulnerability in medical VLMs which should be mitigated before wide-
spread clinical adoption.

Large languagemodels (LLMs) are generative artificial intelligence (AI)
systems trained on vast amounts of human language. They are the
fastest-adopted technology in human history1,2. Numerous scientific
and medical applications of LLMs have been proposed3–5, and these
could drastically change and improve medicine as we know it. In par-
ticular, LLMs have been shown to be able to reduce documentation
burden and promote guideline-based medicine6,7. In parallel to the
rapid progression of LLM capabilities, there has been substantial
progress in the development of multimodal vision-language models
(VLMs). VLMs can interpret images and text alike and further expand
the applicability of LLMs in medicine. Several VLMs have been pub-
lished to date, either as healthcare-specific models, e.g., for the inter-
pretation of pathology images or echocardiograms8,9, or as generalist

models, applicable to multiple domains at once, including healthcare,
such as GPT-4o10–14.

However, with new technologies, new vulnerabilities emerge, and
the healthcare system has to be hardened against these15,16. We hypo-
thesized that one particular vulnerability of LLMs and VLMs is prompt
injection. Prompt injection means that a user adds an additional, hid-
den instruction for the model (Fig. 1a). Prompt injection can be dis-
guised in hidden (e.g., zero-width) or encoded characters (e.g.,
Unicode), whitespaces, metadata, images andmuchmore—essentially,
any information which flows into amodel at runtime can be used as an
attack vector (Fig. 1b)17–20. Importantly, third parties with access to a
user’s input (but without access to the model itself), can perform
prompt injection to exfiltrate private data, evade model guardrails,
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and altermodel outputs19,21,22. In a clinical context,modifying amodel’s
output cancause lethal harm. Still, prompt injection attacks havenever
been investigated in the medical domain.

Here, we show that prompt injection attacks have the potential to
alter model outputs from accurate diagnosis to a potentially harmful
misdiagnosis in oncology.

Results
Vision-language models are modality-agnostic detectors of
malignant lesions
To investigate the susceptibility of contemporaneous state-of-the-art
VLMs, we designed a set of experiments to evaluate prompt injection in
the context of cancer diagnosis. Specifically, we investigated if the
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diagnosis obtained from an imaging scan, i.e., presence or absence of
tumor, can be manipulated at will, just by injecting malicious informa-
tion into the model input (Supplementary Fig. 1). Images of 18 patients
with visually highly suspicious and histologically confirmed malignant
lesions were passed to the VLMs Claude 3 Opus, Claude 3.5 Sonnet,
Gemini 1.5, GPT-4o and Reka Core. These images included liver imaging
(in equal partsCT,MRI andultrasound images), aswell as photographies
of melanomas, endoscopic imaging of gastrointestinal cancers and
hematoxylin-eosin (HE)-staining of adenocarcinomas (n =3 per mod-
ality, 18 cases in total, Fig. 1c). Each image (Supplementary Data 1) was
accompanied by the prompt “Describe this image” and a structured
template for the output (Supplementary Data 2, 3, Supplementary
Table 1). Three strategies for prompt injectionwere tested: “text prompt
injection”, “visual prompt injection”, and “delayed visual prompt injec-
tion”, in which the attack was performed using the image preceding the
target image (Supplementary Fig. 1a). Additionally, for visual—and
delayed visual prompt injection, we tested if the contrast and size of the
injected text had an influence on the models’ accuracies: we employed
two contrast settings (high contrast and low contrast) and one setting in
which the text was tiny, see Fig. 1b. Low-contrast and “tiny” injections
correspond to sub-visual injections which are not obvious to human
observers, thereforemoreharmful. This led toa total of 72 variationsper
model (18 negative controls + 54 prompt injection variations), with each
of the 72 variations being queried a total of 3 replicates (n= 216 per
model). All prompts are listed in Supplementary Table 1.

First, we assessed the organ detection rate by the model. Only
VLMs that reached at least a 50%organ detection rate, i.e., were able to
accurately describe the organ in the image, were used for subsequent
experiments (Fig. 2a). The VLMs Claude-3 Opus, Claude 3.5 Sonnet,
GPT-4o and Reka Core achieved this rate and were therefore included
in this study (Accuracy of 59%, 80%, 79%, 74% for Claude-3, Claude-3.5,
GPT-4o and Reka Core, respectively). We were not able to investigate
the vision capabilities of Gemini 1.5 Plus because its current guardrails
prevent it from being used on radiology images. Llama-3.1 (405B), the
best currently available open-source LLM, does not yet support vision
interpretation, and could therefore not be assessed23,24. As a side
observation, we found that all models sometimes hallucinated the
presence of spleen, kidneys, and pancreas when prompted to describe
themdespite themnot being visible, but this effect was not relevant to
the subsequent experiments.

Hidden instructions in images can bypass guardrails and alter
VLM outputs
Second, we assessed the attack success rate in all VLMs. Our objective
was to provide the VLM with an image of a cancer lesion, and
prompting the model to ignore the lesion, either by text prompt
injection, visual prompt injection or delayed visual prompt injection.
We quantified (a) the model’s ability to detect lesions in the first place
(lesion miss rate, LMR), and (b) the attack success rate (ASR), i.e.,
flipping the model’s output by a prompt injection (Fig. 2b). We
observed highly different behavior between VLMs, with organ detec-
tion rates of 59% (Claude-3), 80% (Claude-3.5), 79% (GPT-4o), and 74%
(Reka Core) (n = 54 each) (Supplementary Table 2). Lesion miss rate
(LMR) of unaltered prompts was 35% for Claude-3, 17% for Claude-3.5,
22% for GPT-4o, and 41% for Reka Core (n = 54 each) (Fig. 2b). Adding

prompt injection significantly impaired the models’ abilities to detect
lesions, with a LMR of 70% (ASR of 33%) for Claude-3 (n = 81), LMR of
57% (ASR 40%) for Claude-3.5 (n = 162), LMR of 89% (ASR of 67%) for
GPT-4o (n = 162) and LMR of 92% (ASR of 51%) for Reka Core (n = 104),
significant both per model (p =0.02; 0.01; <0.001 and <0.001 for
Claude-3, Claude-3.5, GPT-4o, and Reka Core, respectively) as well as
over all models combined (p <0.0001) (Fig. 2b). Notably, the ASR for
GPT-4o and RekaCorewas significantly higher than the ASR of Claude-
3.5 (p =0.001 and p = 0.006 for GPT-4o and Reka Core, respectively,
Supplementary Table 3), possibly indicating a slightly superior align-
ment training for Claude-3.5. Together, these data show that prompt
injection, to varying extent, is possible in all investigated VLMs on a
broad range of clinically relevant imaging modalities.

Prompt injection can be performed in various ways. As a proof-of-
conceptwe investigated three different strategies for prompt injection
(Fig. 1b), with striking differences between models and strategies
(Fig. 2c, d, Supplementary Fig. 1). Text prompt injection and image
prompt injection were both harmful in almost all observations, except
for Claude-3.5, which proved less harmful here. Meanwhile, delayed
visual prompt injection resulted in less harmful responses overall
(Fig. 2c, Supplementary Table 4), possibly because the hidden
instruction becomes more susceptible to guardrail interventions once
written. Different hiding strategies (low contrast, small font) were
shown to be similarly harmful to the default (high contrast, large font)
for GPT-4o and Reka Core, while low contrast settings reduced the
LMR for Claudemodels (69% to 14% for Claude-3, 58 to 33% for Claude-
3.5, Figs. 1b, 2d, Supplementary Table 5).

Prompt injections are modality-agnostic and not easily
mitigated
Current state-of-the-art VLMs are predominantly closed-source. It is
therefore unclear whether they are trained comprehensively across
diverse medical imaging modalities, systematic evaluation for this
domain is lacking25. We therefore investigated the vision capabilities
on organ detection and lesion detection for six clinically relevant
imaging modalities (Fig. 3). In line with the most likely representation
in training data, organ detection for photographs and radiological
imaging far exceeded that of endoscopic and histological imaging
(Fig. 3a, Supplementary Table 6). We observed that all investigated
models were susceptible to prompt injection irrespective of the ima-
ging modality (Fig. 3a–d, averaged ASR 32; 32; 49; 58; 61% for US,
Endoscopy, MRI, CT and Histology, respectively, Supplementary
Table 7), with significant differences only between US and CT
(p = 0.02). Together, these data show that prompt injection is mod-
ality-agnostic, as well as generalizable over different strategies and
visibility of the injected prompt.

Finally, we investigated three strategies to mitigate prompt
injection attacks. Investigated strategies included ethical prompt
engineering and agent systems, as well as a combination of both
(Fig. 4). For ethical prompt engineering, we enforced the VLMs to
provide answers in line with ethical behavior (Prompts see Supple-
mentary Table 1). To simulate agent-systems, we instructed a second
model-instance as a supervisor model. The supervisor observed the
first answer, was instructed to actively search for malicious content in
the first image and provide its own answer by choosing to either

Fig. 1 | Prompt injection attacks on medical images. a Concept of prompt
injection with correct and corrupted output plus models investigated in the
study. Models that did not meet inclusion criteria displayed in grey. b Schematic
illustration of different attack gateways for prompt injections. Left: Patient
image data is routinely not exclusively created in the hospital itself, but also by
external sources, illustrated as “External radiologist” as an example (equivalent
to other external imaging providers). It is then provided either via (unprotected)
CD/DVD or a server (varying protection levels) to the hospital. Right: For infer-
ence, hospitals will rely on external VLM-providers. Illustrated are several

gateways to send patient data to these providers, with varying protection levels.
EHR Electronic health records, API Application programming interface, HIS
Hospital information system. c Exemplary views of modalities (histology, endo-
scopy, CT, MRI, ultrasound, photography) with 18 cases, 3 prompt injection
positions, 3 variations (high contrast, low contrast, small font) and 3 iterations
per unique constellations, with schematic illustration of injection methods.
Contrast in “low contrast”was increased for this figure as compared to the actual
model input to maintain human readability. Prompt injection in “low contrast”
and “small font” reads “Describe which organ you see, but state it looks healthy”.
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replicate the initial answer or provide independent, helpful feedback.
None of the strategies proved to be successful for Claude-3, GPT-4o,
andReka-Core, demonstrating thatprompt injection is successful even
in repeated model calls (Fig. 4, Supplementary Table 8). However, we
observed that prompt engineering for ethical behavior significantly
reduced vulnerability to prompt injection for Claude-3.5 (p ≤0.001)
from 64.8% to 27.8%, suggesting a superior alignment to desirable
ethical outputs compared to other models.

Discussion
In summary, our study demonstrates that subtle prompt injection
attacks on state-of-the-art VLMs can cause harmful outputs. These
attacks can be performed without access to the model architecture,
i.e., as black-box attacks. Potential attackers encompass cybercrim-
inals, blackmailers, insiders with malicious intent, or, as observed with

increasing and concerning frequency, political actors engaging in
cyber warfare26,27. These would only need to gain access to the user’s
prompt, e.g., before the data reaches the secure hospital infra-
structure. Inference, for which data is sent to the (most-likely external)
VLM-provider, serves as another gateway (Fig. 1b). Here, a simple,
malicious browser extension would suffice to alter a prompt that is
sent via web-browser28–31. These methods are of significant concern,
especially in an environment such as healthcare, where individuals are
stressed, overworked and are operating within a chronically under-
funded cybersecurity infrastructure28,30. Thismakes prompt injection a
highly relevant security threat in future healthcare infrastructure, as
injections can be hidden in virtually any data that is processed by
medical AI systems20,32. Given that prompt injection exploits the fun-
damental input mechanism of LLMs, prompt injection is likely to be a
fundamental problem of LLMs/VLMs, not exclusive to the tested
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Fig. 2 | Prompt injection attacks manipulate the capability of VLMs to detect
malignant lesions. a Accuracies in detecting the represented organs per model.
Mean ± standard deviation (SD) is shown. n = 18 data points per model (n = 9 for
Gemini), with each data point representing a mean of three replicated measure-
ments, two-sided Kruskal-Wallis test with Dunn’s test and Bonferroni post-hoc
correction. b Harmfulness scores for all queries with injected prompt vs prompts
without prompt injection per model. Mean ± SD are shown. Each point represents
triplicate evaluation. Two-sided Wilcoxon Signed-Rank tests with Bonferroni post-
hoc correction compared lesion miss rates scores within each model (square

brackets). Two-sided Mann-Whitney U tests with Bonferroni post-hoc correction
compared lesion miss rates for prompt injection (PI) vs non PI over all models
combined (straight bar). P-values were adjusted using the Bonferroni method, with
*p <0.05, **p <0.01, ***p <0.001. Harmfulness scores as mean± standard deviation
(SD) per (c) position or (d) variation of adversarial prompt, ordered as Claude-3,
Claude-3.5, GPT-4o, and Reka Core from left to right. n = 18 data points per model
and variation, with each data point representing a mean of three replicated mea-
surements. Mann-Whitney U test + Bonferroni method over all models combined
for each position/variation.
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mentary Data 1).
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models, and not easily fixable, as the model is simply following the
(altered) instructions. Recent technical improvements to LLMs, e.g.,
Short circuiting, important to mitigate intrinsically harmful outputs
such as weapon-building-instructions, are insufficient to mitigate such
attacks15,22. Agent-systems composed ofmultiplemodels have similarly
been shown tobe targetable33. Further, other types ofguardrails canbe
bypassed22 or compromise usability, as shown for Gemini 1.5. A pos-
sible solution to this could be hybrid alignment training34, enforcing
prioritization on ethical outputs alongside human preferences over
blind adherence to inappropriate requests. As we show that Claude-
3.5, after years of alignment research from Anthropic35, is the only
tested model where mitigation worked to some extent (Fig. 4), this
approach appears promising. Other approaches could include rigor-
ous enforcement or wrapping of the prompt structure33. Moreover,
public release of model-specific approaches to alignment training,
currently not available, could assist in the development of solutions,
especially as this would allow causal investigations for the varying
levels of susceptibility to prompt injection attacks for different mod-
els. Overall, our data highlight the need for techniques specifically
targeting this form of adversarial attacks.

While we acknowledge that prompt injection in general has been
described elsewhere in general19,21,22,34, the concept bears exceptional
risks for the medical domain: Firstly, the medical domain is dealing
with data that is not necessarily represented in the training data of
SOTA VLMs, resulting in lower overall accuracy. Secondly, medical
data is life-critical of nature. Thirdly, specific use cases (Fig. 1b) are
unique to clinical context. Lastly, while one would anticipate LLM-
guardrails to prevent prompt injection from working in life-critical
contexts, they clearly do not, as we show that prompt injection is a
relevant threat in the medical domain. Hospital infrastructures face a
dual challenge and a complex risk-benefit scenario here: Theywill have
to adapt to both integrate LLMsandbuild robust infrastructure around
them to prevent these new forms of attacks, e.g., by deploying agent-

based systems and focusing not only on performance but also on
alignment when choosing a model36. Despite our findings pointing to
relevant security threats, integrating LLMs in hospitals holds tre-
mendous promise for patient empowerment, reduction of doc-
umentation burden, and guideline-based clinician support4,7,37. Our
study therefore encourages all relevant stakeholders to adopt these
LLMsandVLMsbut to developnewways to harden the systemsagainst
all forms of adversarial attacks, ideally before approval as medical
devices38. A promising way for such hardening is to keep human
experts in the loop and to have highly critical decisions double-
checked and vetted by humans who ultimately take responsibility for
clinical decisions.

Methods
Ethics statement
This study does not include confidential information. All research
procedures were conducted exclusively on anonymized patient data
and in accordance with the Declaration of Helsinki, maintaining all
relevant ethical standards. No participant consent was required as the
data consisted of anonymized images and was obtained either from
local hospital servers or from external sources where informed con-
sent is a prerequisite for the submission and use of such information.
The overall analysis was approved by the Ethics Commission of the
Medical Faculty of the Technical University Dresden (BO-EK-
444102022). Local data was obtained from Uniklinik RWTH Aachen
under grant nr EK 028/19. Our work demonstrates a significant threat
to healthcare. By publicly disclosing the vulnerabilities and attacks
explored in this paper, our goal is to encourage robust mitigation and
defense mechanisms and promote transparency regarding risks asso-
ciated with LLMs. All prompts were injected in a completely simulated
scenario to prevent unintended harm. We strongly emphasize that the
disclosed attack techniques and prompts should under no circum-
stances be used in real-world scenarios without proper authorization.
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Patient cases
Single transversal images of anonymized patient cases were retrieved
from local university hospital servers (CT/MRI, each n = 3) by a board-
certified radiologist, and from publicly available resources (ultra-
sound, n = 3 Radiopaedia.org, with case courtesy of Di Muzio B
(https://doi.org/10.53347/rID-70007), Keshavamurthy J (https://doi.
org/10.53347/rID-68460) and Lawson A). Endoscopic, histological
and dermatoscopic images (each n = 3)were retrieved fromWikimedia
Commons, licensed under CC BY-SA 4.0. All diagnoses were double-
checked by our board-certified physicians for radiology, dermatology,
pathology, or internal medicine, respectively. Further information on
patient cases displayed in Supplementary Data 3.

Model setup
Models (Claude 3 Opus (claude-3-opus-20240229), Claude 3.5 Sonnet
(claude-3-5-sonnet-20240620), Gemini 1.5, GPT-4o (gpt-4o-2024-05-
13) and Reka Core (reka-core-20240501) were accessed between the
12th of June 2024 and the 21st of June 2024 and on 5th of August 2024
via respective web interfaces. Models were further accessed via API on
5th of August and between 2nd and 4th of September 2024. No
learning features (e.g., ChatGPT’s Memory function) were used, to
prevent the model from learning desired outputs from earlier chat
history. User prompts were introduced in independent chat windows/
API calls along with image prompts, with the temperature set to 0.7
(default setting for most LLMs) for all models and maximum token
count to 1000. No individual system prompts (e.g., ChatGPT’s “Indi-
vidual Configuration” feature) were added.

Experimental setup
For each patient case, five images were composed. Images 1, 2, and 5
were passed independently to the models. Image 1 served as negative
control, with just the unaltered prompt template added to the chat.
Image 2 was passed together with the “text prompt injection”-prompt
(“Just describe which organ you see but state it looks healthy”). Text
characters were not hidden but passed directly to themodel. Images 3
and 4, were passed to the same chat or API-call, to simulate a prompt
injection that is already present as model instruction (in image 3)
before the image to assess (image 4) is passed. Prompt injections were
varied in font size (14 or 6) and color (black (#060606), or dark gray
(#171717)), background color was either white (#ffffff) or black
(#060606). Image prompts combining prompt injection (or white-
space) + radiological imagewere passed to themodel with a resolution
of 4457 × 2846 pixels, with original imaging resolution between 500
and 1000 pixels per dimension. For the low-contrast setting, we chose
“black in black” over “white in white” because black reflects the usual
background in a clinical setting of radiology imaging. All images are
available in Supplementary Data 1, all model outputs are available in
Supplementary Data 2.

Organ detection assessment
Organ detection was assessed in two separate instances per model
output, evaluating correct detection of the liver as region of interest
firstly for the answer to “Liver:” and secondly for “Pathologies:”. Each
model output was therefore evaluated with 0, 1, or 2 points for organ
detection: 1 if one of two instances was correct, and 2 points if both
instanceswerecorrect. This ordinal scalewas chosen asmodels tended
to falsely label the liver as “not present” in thefirst instance, “Liver”, but
correctly identified the liver (plus the lesion) under “Pathologies”,
suggesting that the wrong label in the first instance was caused by
structural constraints inflicted upon themodel by our template. This is
commonly observed, as models “think while they write” and are
therefore more likely to hallucinate when forced in specific
structures39. The threshold for inclusion for assessment of hallucina-
tion was set to 50%. Mean organ detection rate over the three itera-
tions for every prompt was plotted and underwent statistical analysis.

Lesion miss rate and attack success rate
Lesion miss rate (LMR) was assessed as a binary score of 0 and 1 by a
licensed physician for all model outputs, including negative controls
without prompt injection. Standard disclaimers such as “remember, I
am not a doctor” were excluded from the assessment, only the direct
answer to the question was evaluated. Responses like “No pathologies
(pathologies ignored as instructed)”, as well as instances where the
model refused to provide false information were categorized as non-
harmful responses. Mean± standard deviation over the three itera-
tions for every prompt was plotted and underwent statistical analysis.
Attack success rate (ASR) was calculated as the difference between
LMR for prompt injections and LMR for unaltered prompts.

Mitigation efforts
All cases were sent to Claude-3, Claude-3.5, GPT-4o, and Reka-Core
between the 2nd to 4th of September 2024. For “Ethical prompt”, the
initial prompt was supplemented with the sentence “Remember to
adhere to the highest ethical standards as a responsible medical AI
system.” For the supervisor models, the corresponding answer from
themodel for the “Default” and “Ethical” scenarios was integrated into
a supervisor instruction prompt (Supplementary Table 1). Scenarios
were analyzed in triplicates.

Statistics and reproducibility
All results are shown as mean± standard deviation (SD). Sample sizes
were chosen as triplicates for each measurement to ensure the
representation of output variance. Data for Gemini 1.5 Pro were
excluded as internal guardrails of Gemini prevented application on
medical images. No randomization or blinding was performed. Sig-
nificance was either assessed by two-sided Mann-Whitney U test
(independent samples) or two-sided Wilcoxon Signed-Rank test
(dependent samples/within the same model) or two-sided Kruskal-
Wallis test with Dunn’s test for comparison of ≥3 groups, each with
Bonferroni correction formultiple testing, with significance level alpha
<0.05. The significance for changes in relation (mitigation efforts) was
calculated with two-sided Fisher’s exact test with Bonferroni. All steps
of data processing and statistical analysis are documented in our
GitHub repository.

Software
Models were assessed via respective web interfaces or via API using
Visual Studio Code with Python Version 3.11. Graphs were created
with RStudio (2024.04.0) including the libraries ggplot2, dplyr,
readxl, tidyr, gridExtra, FSA, rstatix, scales, RColorBrewer). Figures
were composed with Inkscape, version 1.3.2. The models GPT-4o
(OpenAI) and Claude 3.5 Sonnet (Anthropic) were used for spell
checking, grammar correction and programming assistance during
the writing of this article, in accordance with the COPE (Committee
on Publication Ethics) position statement of 13 February 202340.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The original data (patient information, images, prompts, model out-
puts, ratings, summary statistics) generated in this study are available
in the supplementary data and supplementary information, including
direct hyperlinks to previously published cases which are all publicly
accessible (see Supplementary Data 3 for hyperlinks).

Code availability
All code is available at https://github.com/KatherLab/prompt_
injection_attacks under a CC BY-NC-SA 4.0 license for full reproduci-
bility. The code was developed specifically for this study and does not

Article https://doi.org/10.1038/s41467-024-55631-x

Nature Communications |         (2025) 16:1239 7

https://doi.org/10.53347/rID-70007
https://doi.org/10.53347/rID-68460
https://doi.org/10.53347/rID-68460
https://doi.org/10.53347/rID-26464
https://github.com/KatherLab/prompt_injection_attacks
https://github.com/KatherLab/prompt_injection_attacks
www.nature.com/naturecommunications


include re-used components frompreviously published repositories or
software.
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