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Training data diversity enhances the
basecalling of novel RNA modification-
induced nanopore sequencing readouts

Ziyuan Wang 1,6, Ziyang Liu 1,2,6, Yinshan Fang 3,6, Hao Helen Zhang2,4,
Xiaoxiao Sun2,5, Ning Hao 2,4 , Jianwen Que 3 & Hongxu Ding 1,2

Accurately basecalling sequence backbones in the presence of nucleotide
modifications remains a substantial challenge in nanopore sequencing bioin-
formatics. It has been extensively demonstrated that state-of-the-art base-
callers are less compatible with modification-induced sequencing signals. A
precise basecalling, on the other hand, serves as the prerequisite for virtually
all the downstream analyses. Here, we report that basecallers exposed to
diverse training modifications gain the generalizability to analyze novel
modifications. With synthesized oligos as the model system, we precisely
basecall various out-of-sample RNA modifications. From the representation
learning perspective, we attribute this generalizability to basecaller repre-
sentation space expanded by diverse training modifications. Taken together,
we conclude increasing the training data diversity as a paradigm for building
modification-tolerant nanopore sequencing basecallers.

During nanopore sequencing, biomolecules with various chemical
structures translocate through protein pores further produce squig-
gling electric signals1. While such a rationale promises the routine
detection of nucleotide chemical modifications, these modifications
bring substantial challenges for accurately basecalling underlying
sequence backbones. State-of-the-art basecallers, such as Guppy,
Bonito, and Dorado delivered by the Oxford Nanopore Technologies,
were built upondeep neural networks2. Extensive studies have reported
that such basecallers are susceptible tomodifications, which commonly
exist in native DNA/RNA molecules. Most importantly, modification-
induced basecalling artifacts are systematic, which cannot be resolved
by simply increasing the sequencing depth as what we in general do for
random errors. Indeed, these non-random errors can serve as infor-
mative signatures for determining well-studied modifications3–8. The
large number of uncharacterized modifications further aggravate this
problem: it is widely-believed that a majority of biologically-relevant
nucleotidemodifications remain undiscovered9,10; among the >50DNA11

and >170 RNA12 modifications that have been discovered in vivo, most

of them have yet to be nanopore sequenced. Unlike the well-studied
modifications, without prior biological knowledge, we are agnostic
about the types and locations of basecalling errors produced by
uncharacterizedmodifications. Taken together, these systematic and in
most cases “cryptic” artifacts significantly undermine the basecalling
accuracy.

The precise basecalling, on the other hand, serves as the pre-
requisite for virtually all the downstream bioinformatic analyses,
including genome assembly and structural variation characterization,
transcriptomic alternative splicing and expression quantification as
well as DNA/RNA modification detection13. To better accomplish such
biological applications, basecallers that are agnostic of modifications,
especially the previously-uncharacterized ones, are therefore in
pressing need. Here, we present a paradigm for basecalling previously-
unseen modifications, by combining diverse existing modifications as
training data. Specifically, the latest deep learning basecallers in gen-
eral consist of encoder and decoder neural networks. The encoder
network will condense sequencing signals into a highly-informative
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representation space. Diverse training modifications can expand such
a space, to a degree that out-of-sample modifications can also be
properly encoded. By thismeans, previously-unseenmodifications will
be precisely basecalled by the decoder network, as shown in Fig. 1.

Results
An oligo-based model system for investigating nanopore
sequencing basecalling
Generic basecallers, which in theory could handle any biological and
artificial nucleotide sequences, are extremely compute-intensive and
data-demanding to train. We therefore leverage control oligos as the
model system to develop and evaluate basecallers. In line with pre-
vious studies3,6,14, our model system contains 4 oligo backbones,
which together covered all 1024 RNA 5mers with a median occur-
rence of 10. These diverse sequence contexts were adopted in order
to ensure the soundness of our basecalling analyses. To explore
the basecalling of modification-induced nanopore sequencing read-
outs, besides unmodified (UM) oligos, 8 additional modified deriva-
tives including N1-methyladenosine (m1A), N6-methyladenosine
(m6A), N4-acetylcytidine (ac4C), 5-methylcytosine (m5C), 5‐hydro-
xymethylcytosine (hm5C), 5-methyluridine (m5U), pseudouridine
(Psi) as well as N1-methylpseudouridine (m1Psi), were collected for
our analyses (see METHODS).

Unmodified sequences are inadequate to train the modification
basecaller
We first examined whether a basecaller trained using only unmodified
nucleotide sequences can properly handle their modified counter-
parts. We therefore trained a basecaller using UM oligos, then exe-
cuted it on UM, m1A, m6A, ac4C, m5C, hm5C, m5U, Psi, and m1Psi
test oligos. We quantified the basecalling accuracy “functionally”
with downstream alignment CIGAR (see METHODS). As the positive
control, UM oligos were accurately basecalled with a 99.80% average
match rate, which confirmed the high-quality basecaller training.
We also noticed that m5C, hm5C, and m5U oligos were acceptably
basecalled (99.48%, 98.57%, and 99.18% average match rate, respec-
tively), which suggested the UM-trained basecaller could be general-
ized to a limited number of modifications. The remaining test groups,
in particular ac4C, Psi, and m1Psi, drastically decreased basecalling
confidence and produced considerably more basecalling errors
(Fig. 2A). For instance, we found an average 2.23%, 6.45%, and 8.42%
increase in deletion, which was the most common basecalling error in
our analysis, for ac4C, Psi, and m1Psi compared to UM respectively.
Taken together, such results demonstrated that basecallers trained
with only unmodified sequences are less generalizable to analyze
modification-induced nanopore readouts.

Diverse training modifications improve the basecalling of novel
modifications
We next asked whether combining diverse knownmodifications in the
training dataset could facilitate the basecalling of novel modifications.
We therefore investigated ac4C, Psi, and m1Psi, which were identified
as “least analyzable”modificationswith theUM-basecaller. Specifically,
we trained corresponding basecallers with all other modifications
except for the ones to be analyzed (the “AllMod” groups). Meanwhile,
we trained basecallers using only candidate modifications (the “One-
Mod” groups) as positive controls. We also used the above UM-
basecaller (the “UnMod” groups) to evaluate the baseline basecalling
performance (seeMETHODS). As shown in Fig. 2B, “AllMod” generated
comparable mappability with “OneMod” positive controls for all the
threemodification types, with absolute differences <0.8%. As shown in
Fig. 2C, “AllMod” increased basecalling accuracy compared to
“UnMod”: we noticed an average increase of 2.60%, 7.30%, and 10.40%
in CIGAR matches for ac4C, Psi, and m1Psi, respectively. Most impor-
tantly, “AllMod” basecalling accuracy reached the same level as
“OneMod” positive controls: we noticed a negligible <0.40% absolute
difference for all the three oligo types. Finally, as shown in Fig. 2D, the
“AllMod” training will polish, rather than biasing basecalling, by gen-
erating consistent mapped lengths compared to the “OneMod”
ground-truth. In summary, our results demonstrated that increasing
training modification diversity will enhance the basecalling perfor-
mance of out-of-sample novel modifications. We further confirmed
such a conclusion with the latest Bonito and Dorado basecalling sys-
tems, as shown in Fig. S1.

Evaluating the out-of-sample basecalling generalizability for
training modification combinations
We further asked, are all the training modifications required for
accurate out-of-sample basecalling? To formally answer such a
question, an evaluation metric for training modification combina-
tions is required. Inspired by our discovery that basecallers trained
with only unmodified oligos basecalled certain modifications (m5C,
hm5C, m5U) with acceptable accuracy (Fig. 2A), as well as signals of
such modifications were less deviated from their canonical coun-
terpart (Fig. S2, see METHODS), we hypothesized that the optimal
training combinations can completely cover signals of the out-of-
sample modification. We therefore defined the “signal cover score”,
with the following five steps: (1) correspond signal segments (events)
with basecalled sequences; (2) assemble all the events mapped to the
same sequence position, calculate their signal mean values, then use
10% and 90% quantiles (to avoid outliers) as the “effective signal
range”; (3) quantify the training effective signal range, by taking the
union of all the training modifications; (4) measure the cover

Fig. 1 | Overviewof thebasecaller training strategy.Basecallers in general consist
of encoder and decoder neural networks: encoders first condense nanopore
sequencing readouts as highly-informative representations; decoders further
transform the produced representations as nucleotide sequences. Diverse training
modifications will expand the representation space, thus making basecallers

generalizable to novel modifications. UnMod and Mod denote unmodified and
modified training data categories, respectively. Novel denotes the out-of-sample
modification in the test data. Encoder++ and Decoder++ comprise the basecaller
trained with diverse modifications, as opposed to the basecaller trained with only
the UnMod data.
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fraction, as the test effective signal range that can be covered by the
training counterpart; (5) calculate the final signal cover score, by
taking the summation of all the cover fractions along the candidate
sequence (Fig. 3A).

Based on such a signal cover score, for ac4C, Psi, and m1Psi test
groups, we evaluated all the possible training modification combina-
tions. As shown in Fig. 3B, we observed that combinations of more
modifications in general produced higher signal cover scores, which
echoes with our observation that diverse training data improves the
basecalling of out-of-sample modifications. In particular, we noticed
that the inclusion of Psi andm1Psi in trainingmodifications significantly
improved signal cover scores of m1Psi and Psi test data, respectively.
These findings echo with our results that Psi and m1Psi reads can be
acceptably handled by basecallers training using only m1Psi and Psi
reads, respectively (Figs. S4A and S5A). We further systematically con-
firmed that signal cover scores can be adopted to evaluate training
modification combinations. Without losing generality, we prioritized
the analyses of 4-combo combinations, and highlighted ones with the
highest (Max) and lowest (Min) scores. We found that “Max” generated

comparable mappability and basecalling accuracy with “OneMod”
positive controls (basecallers trained with only candidate modifica-
tions), andout-performed “Min”, particularly in Psi andm1Psi groups, as
shown in Fig. 3C, D. We finally confirmed that “Max” could generate
consistent mapped lengths with “OneMod” ground-truth, as shown in
Fig. 3E. Therefore, we concluded the signal cover score as themetric for
prioritizing training modification combinations.

Precise basecalling requires high-quality data representations
We then related the basecaller accuracy with the quality of its encoder
representation space. Representation learning condenses neural net-
work inputs into a highly-informative representation space to achieve
downstream tasks15. During basecalling, nanopore sequencing signals
will be encoded in the representation space then decoded as nucleo-
tide sequences. To explore how data representations affect the base-
calling accuracy, we analyzed ac4C test oligos. In particular, we trained
the “All” basecaller by combining all the oligo categories (except for
ac4C), as well as 8 single-category (without ac4C) basecallers (see
METHODS).

Fig. 2 | Basecallers trained with diverse known modifications gain the cap-
ability to basecall novel modifications. A Performance of the basecaller trained
only by the unmodified data on all the read groups. Basecalling performance was
assessed with the per-read CIGAR alignment fraction, including match (M), mis-
match (X), deletion (D) and insertion (I). UM and acronyms stand for unmodified
and modified RNA oligo categories, respectively. Ecdf denotes the empirical
cumulative distribution function. Performance of basecallers trained by combining

all the oligo groups except for ac4C, Psi or m1Psi was quantified. Specifically, the
mappability (B) and per-read CIGARmatch fraction (C) were used as quantification
metrics. AllMod, the basecaller trained by all the modifications except for the one
to be basecalled; OneMod, the basecaller trained with only the modification to be
basecalled; UnMod, the basecaller trained by only unmodified reads. D Mapped
length distributions of “AllMod” and “OneMod”.
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Fig. 3 | Prioritizing training combinations for precise out-of-sample modifica-
tion basecalling using signal cover scores. A The definition of “signal cover
score”. Q10 and Q90 mark the 10% and 90% signal quantiles, respectively. N
and P denote the total number of training modification classes and sequence
positions, respectively. B Signal cover scores for all the possible training
modification combinations in descending order, for ac4C, Psi, and m1Psi test
groups. Bars denote the inclusion of training modifications, and corre-
sponding colors represent numbers of modifications, for a certain

combination. Specifically, 4-combo combinations with the highest (Max) and
lowest (Min) signal cover scores were marked. The performance of Max and
Min basecallers was next quantified. Specifically, the mappability (C) and per-
read CIGAR match fraction (D) were used as quantification metrics. AllMod,
the basecaller trained by all the modifications except for the one to be
basecalled; UnMod, the basecaller trained by only unmodified reads.
E Mapped length distributions of “AllMod” and “Max”.
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We observed that compared to the individually-trained base-
callers, “All” can significantly promote the CIGARmatch fraction. Such
precise basecalling was consistently observed in different regions
among all the four oligos. We further observed that although artifacts

made by individually-trained basecallers were in general prevalent,
certain regions were more likely to be accurately analyzed. For
example, “m1A” decently analyzed the region 800 to 820 of the first
oligo, which was highlighted with the red box (Fig. 4A). We next

Fig. 4 |Diverse trainingdata expands the representation space thusmaking the
basecaller generalizable to novel modifications. A Performance of individually
and jointly-trained basecallers on ac4C reads was visualized with the genome
viewer graph, which shows per-nucleotide CIGAR fractions. All, the jointly-trained
basecaller by all the oligo types except for ac4C; other acronyms denote
individually-trained basecallers. For individually (B) and jointly-trained (C)

basecallers, read fragments mapped to the boxed region were first converted as
representation vectors with different basecaller encoders, then visualized by a
UMAP plot. Train denotes reads used for training the corresponding basecaller.
D Spatial distributions of different oligo types in the UMAP space as shown in (C).
Black-to-green and red palette denotes ac4C and training reads, respectively.
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investigated such region-specific elevatedbasecalling performance, by
interrogating the encoder representation space. Without losing gen-
erality, we prioritized the above boxed region, by projecting corre-
sponding nanopore signals into the representation space (see
METHODS). Within the representation space, we quantified the read-
level similarity and found that, in the more accurate “UM”, “m1A”,
“m6A”, and “hm5C” basecallers, ac4C test reads were more similar to
their corresponding training reads. On the contrary, test-train simi-
larity was significantly reduced among error-prone “m5C”, “m5U”,
“Psi”, and “m1Psi” basecallers. Most importantly, the highest test-train
similarity was produced by the most precise “All” basecaller (Fig. S3A).
We further visualized such a representation space similarity pattern
between test and training reads with UMAP, as shown in Fig. 4B. In
representation learning, test data points can be properly encoded, if
and only if they fall in the manifold produced by training data points.
We thereforehighlight the importance of a high-quality representation
space in precisebasecalling.We further confirmed this conclusionwith
Psi (Figs. S3B and S4A–C) and m1Psi (Figs. S3C and S5A–C) test oligos.

Training data diversity yields a generalizable basecaller
representation space
We further explained, from a representation learning perspective, that
diverse training oligos will expand the representation space, to a
degree that out-of-sample novel modifications could also be properly
encoded. Specifically, we revisited the “All” representation space, and
assessed the spatial distribution of ac4C, as well as different types of
training oligos (Fig. 4D). We presented the spatial density of ac4C and
training data points using the black-to-green and black-to-red palette,
respectively. We first confirmed that the majority of ac4C points were
covered with the training manifold, by finding negligible stand-alone
green area. We further found that the entire training manifold was
required to thoroughly encode ac4C data, by finding most repre-
sentation space to be yellowish. We also found that training groups
occupied different sub-space, which together completed the training
manifold. Taken together, these results suggested that diverse training
modifications will complement each other, thereby generalizing the
representation space to out-of-sample modifications. We further
confirmed such a conclusion with Psi (Fig. S4D) and m1Psi (Fig. S5D)
test oligos.

Training data diversity enhances the basecalling of densely-
modified tRNA reads
Finally, we demonstrated the practical usefulness of our basecaller
training paradigm by analyzing a yeast native tRNA nanopore
sequencing dataset16. Specifically, we aimed to precisely basecall the
most densely-modified Leu-TAA tRNAs, which contains 15 known

modification sites.We further trainedpositive andnegative-models, by
combining the 33 sparsely-modified and 6 non-modified tRNA species,
respectively (seeMETHODS). Ourworkflowwas summarized in Fig. 5A.
We quantified the basecalling performance with mappability. We
found that, compared to the negative-model which could only repre-
sent canonical sequences, the positive-model trained using diverse
modifications achieved a ~ 15% increase in mappability (Fig. 5B).
Therefore, we highlighted our paradigm to be a generalwayof training
modification-tolerant basecallers.

Discussion
Promoting the basecalling accuracy, especially for native DNA/RNA
sequencing signals, remains a central challenge in nanopore
sequencing bioinformatics. This is because the latest basecallers are
less tolerant to modifications, which commonly exist among native
DNA and RNA molecules and will deviate nanopore sequencing sig-
nals. Specifically, we observed that shifted signals primarily cause
mis-basecalls, while changes in dwell time mainly affect basecalled
sequence lengths. For instance, for Psi and m1Psi, significantly
deviated signals (quantified by mean and standard deviation) and
dwell time (Fig. S2) coincided with excessive mismatches and dele-
tions/insertions, respectively (Fig. 2A). As for ac4C, the presence of
which particularly alters dwell time (Fig. S2), we noticed insertions as
the major type of basecalling artifacts (Fig. 2A). To properly address
this limitation, basecallers that are agnostic to nucleotide modifica-
tions are in urgent need.

Here, we presented a paradigm for training such modification-
tolerant basecallers: we demonstrated that previously-unseen mod-
ifications could be precisely basecalled by including diverse existing
modifications in training data. We anticipated such a paradigm
increasing the basecalling accuracy of native DNA/RNA nanopore
sequencing readouts, further shedding light on diverse biological
usecases, e.g., de novo genome assembly by generating highly-
accurate DNA contigs17, mRNA vaccine quality analyses by rigorously
assessing sequence, length, integrity and purity18, and DNA/RNA
modification detection by delivering precise backbones to scrutinize
modification status of each nucleotides19.

To fully leverage such a paradigm, we emphasized the quality and
generalizability of the basecaller representation space. In particular, a
high-quality representation space could extract all essential information
for a precise basecalling; a generalizable representation space could
tolerate sequencing signal variations for the novel modification base-
calling. To optimize the basecaller representation space, as the potential
future direction, we will leverage self-supervised learning techniques20

for training foundation model encoders21. During the self-supervised
learning process, the encoder neural network first transforms inputs

A

Non-Modified

(6 tRNA Species)

Negative-Model

Positive-Model

Sparsely-Modified

(33 tRNA Species)

Densely-Modified

(Leu-TAA)

Not Aligned Aligned

Positive-Model 716
(7.22%)

9,202
(92.78%)

Negative-Model 2,154
(21.72%)

7,764
(78.28%)

B

Fig. 5 | Diverse sparsely-modified training tRNAs enable the precise basecalling of the densely-modified Leu-TAA. A Overview of the analysis. B The mappability of
Leu-TAA tRNA reads. A total of 9918 Leu-TAA reads were analyzed.
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into a representation space. The decoder neural network then recon-
structs inputs from the encoded representation space. The recreation of
inputs suggests the negligible information loss in the representation
space. By this means, all the information harbored inside nanopore
sequencing signals could be extracted by the encoder, further providing
a solid foundation for the precise basecalling. Foundation models are
trained by a broad range and excessive amount of data, therefore can be
applied across diverse usecases. This paradigm echoes with our dis-
covery, that diverse training oligos will expand, further generalize the
representation space for basecalling various out-of-sample modifica-
tions. Altogether, we expect the foundation model encoder trained via
self-supervised learning to be able to produce the high-quality and
generalizable representation space, therefore enhancing the perfor-
mance of modification-tolerant basecalling.

Methods
RNA oligo synthesis
RNA oligo sequences (“curlcakes”) were reported in ref. 3, and were
cloned into engineered pUC57 in vitro transcription (IVT) plasmids. We
then incorporated modified nucleotides into curlcakes with IVT. We
produced unmodified and m6A RNA oligos for resequencing because
existing datasets3 were sequenced over 5 years ago and may be out-
dated. We also included m1A, which was not surveyed by previous
studies3,6,14, in our modification collection. Specifically, curlcake-
containing pUC57 plasmids were digested using EcoRV (New England
Biolabs, R0195L) and BamHI (New England Biolabs, R0136L) restriction
enzymes for at least two hours at 37 °C, and further analyzed with
agarose gel electrophoresis. The digested DNA was purified by the PCR
purification kit (QIAGEN, 28104), as the template for IVT. NanoDrop
Spectrophotometers (ThermoFisher Scientific)was used tomeasure the
concentration of extracted linear DNA prior to IVT. AmpliscribeTM T7-
FlashTM Transcription Kit (BioSearch Technologies, ASF3507) was used
to generate IVT RNAs as per manufacturer’s instructions. The four
canonical (ATP, CTP, GTP, and CTP, included in the AmpliscribeTM T7-
FlashTM Transcription Kit) ribonucleoside triphosphates were supple-
mented during IVT for producing unmodified RNA oligos. Meanwhile,
modified ribonucleoside triphosphates including N1-Methyl-ATP (m1A,
TriLink Biotechnologies, N-1042) and N6-Methyl-ATP (m6A, TriLink
Biotechnologies, N-1013) were supplemented in place of their unmodi-
fied counterparts for producingmodified RNA oligos. DNAse I (included
in the AmpliscribeTM T7-FlashTM Transcription Kit) was added to the
IVT reaction system after incubation for 4 h at 42 °C to eliminate the
residual templateDNA. Yielded IVTRNAswere purifiedusing theRNeasy
Mini Kit (QIAGEN, 74104) following manufacturer’s instructions. Vacci-
nia capping enzyme (New England Biolabs, M2080S) was used for the 5′
capping of purified IVT RNAs, with an incubation for 30min at 37 °C.
Following purification with RNAClean XP Beads (Beckman Coulter,
A63987), the capped IVTRNAswere subjected to polyadenylation tailing
(New England Biolabs, M0276L). Concentration of capped and polyA-
tailed IVT RNAs was determined by Qubit Fluorometer (Thermo Fisher
Scientific).

Nanopore sequencing
RNA nanopore sequencing libraries were built using the ONT Direct
RNA Sequencing Kit (Oxford Nanopore Technologies, SQK-RNA002)
following protocol version DRS_9080_v2_revQ_14Aug2019 as per
manufacturer’s instructions. Briefly, for each RNA curlcake category,
2μg of capped and polyA-tailed IVT RNA was subjected to adapter
ligation using the T4 DNA Ligase (New England Biolabs, M0202M),
followed by reverse transcription using the SuperScript III Reverse
Transcriptase (Thermo Fisher Scientific, 18080044). After purification
using RNAClean XP Beads (Beckman Coulter, A63987), yielded
RNA:DNA hybrids were ligated to RNA adapters using the T4 DNA
Ligase (New England Biolabs, M0202M). The concentration of the
yielded RNA library was determined using the Qubit Fluorometer

(Thermo Fisher Scientific). The RNA library was mixed with the RNA
Running Buffer prior to sequencing on a primed Flongle flowcell. The
flowcell version is R9.4.1, and the sequencer is MinION with a Flongle
adapter.

Creating ground-truth sequence labels for RNA oligos
We used iterative basecalling to generate ground-truth sequence labels
for RNA oligos. During iterative basecalling, we randomly sampled
~20,000 reads for eachmodification type (unmodified,m1A,m6A, ac4C,
m5C, hm5C, m5U, Psi, m1Psi) and combined them together as a single
training dataset. We used Guppy (version 6.0.6 +8a98bbc), Taiyaki
(version 5.3.0) and Samtools (version 1.16) to perform iterative base-
calling. Specifically, we used the Guppy basecalling configuration
“rna_r9.4.1_70bps_hac.cfg” for the initial iteration, and themodel trained
from the previous iteration for the subsequent iteration. The “--dis-
able_qscore_filtering” flag was set to keep “low-quality reads” that are
usually artifacts caused by modifications. Samtools functions merge,
sort and index with default flags were used to process alignment results
generated by Guppy. Taiyaki was used to train basecalling models that
are compatible with Guppy. For training data preparation, get_refs_-
from_sam.py with flag “--reverse”, generate_per_read_params.py with
default flags, prepare_mapped_reads.py with the Taiyaki “mLstm_flip-
flop_model_r941_DNA” checkpoint file, and merge_mappedsignalfiles.py
with defaultflagswere used. For trainingGuppymodels, train_flipflop.py
with flags “--size 256 --stride 10 --winlen 31” and the model template
“mLstm_cat_mod_flipflop.py” were used. For preparing Guppy models,
dump_json.py with default flags on the final model checkpoint were
used. We performed a total of 4 iterations to guarantee the labeling
accuracy, and the comparison between original Guppy and iteratively-
optimized basecallers was shown in Fig. S6.

Guppy basecaller training and basecalling analysis for curlcakes
We trained a total of 18 Guppy basecalling models, including 9 with
single modification categories (unmodified, m1A, m6A, ac4C, m5C,
hm5C, m5U, Psi, m1Psi), 3 “leave-out” models (trained with all mod-
ifications except for ac4C, Psi or m1Psi), as well as 3 “Max” and 3 “Min”
models (described in Fig. 3B). Training data for individualmodification
types were prepared from the last iteration of the above-described
iterative basecalling process. For “leave-out” models, individual train-
ing datasets were combined using the Taiyaki merge_mappedsignalfi-
les.py function, as above-described. Basecaller models were next
trained using the Taiyaki train_flipflop.py and dump_json.py functions,
as described in the above section.

Guppy basecalling was performed on independent test datasets:
we randomly sampled ~20,000 reads for eachmodification type, same
as the construction of training datasets. We used flags specified in the
configuration file “rna_r9.4.1_70bps_hac.cfg”, except for providing our
own models for the Guppy basecalling analysis. Basecalling accuracy
was “functionally” evaluated using per-read alignment results, includ-
ing mappability (the ratio between aligned reads regardless of their
SAM flags, as opposed to all the reads), and fractions of CIGAR M
(match), X (mismatch), D (deletion) and I (insertion). Specifically, for
“leave-out” analyses, we also examined alignment consistency (align-
ment start and end positions) as opposed to “self” models (model
trained with the left-out modification). Alignment analyses were per-
formed with the built-in minimap2 aligner of Guppy, with all the
alignment setups set as default.

Bonito and dorado basecaller training and basecalling analysis
for curlcakes
We trained a total of 9 Bonito basecalling models, including 9 with
single modification categories (unmodified, m1A, m6A, ac4C, m5C,
hm5C, m5U, Psi, m1Psi), 3 “leave-out” models (trained with all mod-
ifications except for ac4C, Psi or m1Psi). Training data for individual
modification types was prepared from the last iteration of the above-
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described iterative basecalling process. Basecaller models were next
trained with the “bonito train” command using the same model
architecture as the “rna002_70bps_hac@v3” model. We used the
“bonito basecaller” command to basecall test datasets. We used the
“bonito export” command to transform the Bonito model to Dorado
model and used the “dorado basecaller” command to basecall the
same test datasets as in the Guppy analyses were used. Bonito ver-
sion 0.8.1 and Dorado version 0.7.0 + 71cc744 were used in these
analyses.

Representation space analysis
Representation space analyses were performed on all possible pairs
of basecallers, e.g., above-mentioned single and “leave-out” models
and test oligo types, e.g., ac4C, Psi and m1Psi. For a specific pair, e.g.,
the ac4C “leave-out” model and ac4C test data as shown in Fig. 2, we
first extracted test sequencing signal chunks that could be approxi-
mately corresponded to region curlcake_1_5mers_1:800–820 by the
basecaller. Specifically, we scanned consecutive signal chunks of
2000 data points, and collected ones whose first basecalled
nucleotides aligned inside curlcake_1_5mers_1:795–800. We subse-
quently flowed such chunks through the basecaller encoder neural
network, in order to produce a latent feature-by-single chunk matrix
in the representation space. With such a matrix, we then performed
Principal Component Analysis, and took the first 50 PCs for the
final Uniform Manifold Approximation and Projection (UMAP)
visualization22.

Nanopore sequencing signal analysis
We first basecalled nanopore sequencing reads using Bonito (version
0.8.1) to producemove-tables, which track signal chunks corresponding
to individual nucleotides (stored as mv tags in the generated bam files).
We next executed the Remora (version 3.2.0) pipeline “Reference
Region Metric Extraction” (https://github.com/nanoporetech/remora/
blob/master/notebooks/metrics_api.ipynb) to extract the per-nucleotide
signal features (mean, standard deviation and dwell time). Throughout
the analysis, all the Bonito and Remora parameters were set as default.

Yeast tRNA analysis
Yeast tRNA reads were first iteratively basecalled and aligned as
described in ref. 19. Readswere next grouped by alignment results and
further used for model training. The positive and negative-models
were trained by the Guppyworkflow. Detailed training procedures and
parameters were the same as those described in ref. 19.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ac4C, m5U, and m1Psi RNA oligo nanopore sequencing datasets
were downloaded from ENA under the accession number PRJEB67632.
The m5C RNA oligo nanopore sequencing dataset was downloaded
from NCBI under the BioProject PRJNA563591. The hm5C RNA oligo
nanopore sequencing dataset was downloaded from NCBI under the
BioProject PRJNA548268. The Psi RNA oligo nanopore sequencing
dataset was downloaded from NCBI under the BioProject
PRJNA549001. Resequenced unmodified, and m6A, as well as newly
generated m1A nanopore sequencing datasets are available at NCBI
under the BioProject PRJNA1050579. Sequence backbones for RNA
oligos were provided in the Supplementary Note 1 of ref. 3. The yeast
native tRNA nanopore sequencing data was downloaded from ENA
under accession number PRJEB55684. Corresponding reference
sequences and modification annotations were downloaded from
https://github.com/novoalab/Nano-tRNAseq/tree/main/ref. Source
data is provided at https://doi.org/10.25422/azu.data.27976647.

Code availability
Theworkflow is publicly available and has been deposited in GitHub at
https://github.com/wangziyuan66/NanoRL, under MIT License. The
specific version of the code associatedwith this publication is archived
in Zenodo and is accessible via https://doi.org/10.5281/zenodo.
1427831823. Users are permitted to reuse, modify, and distribute the
code in accordance with the terms of the license. Anymodifications to
the code should appropriately credit the original authors as outlined
by the license terms.
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