Table 2 Composition of states in RaF in terms of Ra+ valence electron configurations

From: Electron correlation and relativistic effects in the excited states of radium monofluoride

State

Composition

X2Σ1/2

90%7s

A2Π1/2

60%7p1/2 + 20%6d3/2 + 10%7p3/2

B2Δ3/2

40%6d3/2 + 30%6d5/2 + 20%7p3/2

B2Δ5/2

90%6d5/2 + 10%7d5/2

A2Π3/2

50%7p3/2 + 40%6d3/2

C2Σ1/2

50%7p3/2 + 30%6d5/2 + 10%7d5/2

D2Π1/2

40%6d3/2 + 20%7p1/2 + 20%6d5/2 + 10%7p1/2 + 10%8p1/2

D2Π3/2

50%6d5/2 + 30%7p3/2 + 10%8p3/2 + 10%6d3/2 + 10%7d5/2

E2Σ1/2

70%8s + 10%8p1/2 + 10%9s

F2Σ1/2

30%8p1/2 + 20%8p3/2 + 10%7p3/2 + 10%6d3/2 + 10%6d5/2 + 10%8s

G2Π1/2

30%8p3/2 + 30%7d3/2 + 20%8p1/2 + 10%7p1/2

G2Π3/2

50%8p3/2 + 20%7d5/2 + 10%7p3/2 + 10 %7d3/2

H2Σ1/2

40%7d5/2 + 10%7p3/2 + 10%8p3/2 + 10%7d3/2

I2Δ3/2

60%7p3/2 + 20%7d5/2

I2Δ5/2

70%7d5/2 + 10%6d5/2

  1. The composition is calculated as the mean value of the projectors onto the one-electron atomic orbitals of the Ra+ cation over the FS-RCCSD wave function of RaF (see Methods). Only contributions with a relative impact of ≥10% are shown, and contributions are rounded.