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Current estimates of wetland contributions to the global methane budget carry
high uncertainty, particularly in accurately predicting emissions from high
methane-emitting wetlands. Microorganisms drive methane cycling, but little
is known about their conservation across wetlands. To address this, we inte-
grate 16S rRNA amplicon datasets, metagenomes, metatranscriptomes, and
annual methane flux data across 9 wetlands, creating the Multi-Omics for
Understanding Climate Change (MUCC) v2.0.0 database. This resource is used
to link microbiome composition to function and methane emissions, focusing
on methane-cycling microbes and the networks driving carbon decomposition.
We identify eight methane-cycling genera shared across wetlands and show
wetland-specific metabolic interactions in marshes, revealing low connections
between methanogens and methanotrophs in high-emitting wetlands. Metha-
noregula emerged as a hub methanogen across networks and is a strong pre-
dictor of methane flux. In these wetlands it also displays the functional
potential for methylotrophic methanogenesis, highlighting the importance of
this pathway in these ecosystems. Collectively, our findings illuminate trends
between microbial decomposition networks and methane flux while providing
an extensive publicly available database to advance future wetland research.

Methane (CH,) is a potent greenhouse gas (GHG) contributing to current
atmospheric warming'. Despite accounting for less than 8% of the land
coverage, natural wetlands represent the largest natural source of CHy
and contribute between 20 and 50% of natural global CH, emissions®™.
Forecasting CH, flux from wetlands remains challenging due to complex
interactions between environmental variables such as temperature, soil

moisture, and vegetation type, as well as the spatial and temporal
variability of CH, emissions from wetlands®>*°. Furthermore, the wide
array of wetland ecosystems, encompassing peatlands, marshes,
swamps, and floodplains, adds complexity to the accurate quantification
of CH, emissions at a global scale, as each wetland potentially harbors
distinct CH4 production processes and emission rates.
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In the saturated soil conditions typical of wetlands, CH, genera-
tion occurs through an interactive microbial decomposition network
that hydrolyzes and ferments plant polymeric material into smaller
molecular weight compounds (Supplemental Fig. 1). These com-
pounds serve as substrates for methanogenic archaea, which canoni-
cally utilize three distinct metabolic pathways defined by their
substrate preference - hydrogenotrophic, acetoclastic, and methylo-
trophic - for CH4 production’. Microbially derived soil CH, can sub-
sequently be emitted to the atmosphere or undergo further microbial
oxidation by aerobic or anaerobic methanotrophic bacteria®. While
this decomposition framework is well-theorized’'°, the extent to which
these microbial members, functional guilds, and overall trophic
structure are conserved across different wetlands and their relation-
ships to CH4 emissions remain unclear.

To bridge this knowledge gap, genome-resolved metagenomics
has begun to unveil the identity and metabolic capabilities of microbial
communities in wetland soils. This information has uncovered new
methanogen and methanotroph genera™, pinpointed relevant func-
tional pathways" ", and provided insights into their spatial and tem-
poral relevance”. Moreover, metagenomic data from five distinct
wetlands®'** was leveraged to construct microbial carbon decom-
position networks, highlighting the microbial guilds and their con-
stituent members involved in CH, cycling within these specific sites.
While these studies laid valuable groundwork, it is imperative to
complement site-specific knowledge with broader-scale analyses for a
more comprehensive understanding of wetland microbiomes.

To address this broader sampling need, 16S rRNA gene amplicon
sequencing characterizes bacterial and archaeal taxonomy and dis-
tribution across wetlands, albeit without providing functional content.
This high throughput method allows for more extensive microbial
sampling across wetland gradients, capturing microbial dynamics
across wetland land coverage types, depth, and seasons”**?, Inte-
grating knowledge from both marker gene analyses and metage-
nomics presents an opportunity to achieve comprehensive sampling
of microbial conserved features, such as functional potential and
network architecture across sites. Linking amplicon sequences to
genomes from sampled wetland lineages would enable functional
prediction, revealing the blueprints of complex wetland microbiomes
at scale and transcending individual wetland boundaries.

We adopted this integrated approach to enable genomic func-
tional predictions for marker gene-identified taxa, to uncover features
of soil wetland communities and their association with CH,4 flux across
an array of freshwater wetlands. We first analyzed paired amplicon and
CH, flux data obtained from over a thousand samples collected across
nine wetlands from the USA and Sweden (5 marshes, 1 swamp, 1 fen,
and 2 bogs), representing a spectrum of CH, flux rates as well as eco-
logical and climatic conditions. From this analysis, conserved wetland-
wide microbial indicators were linked to a curated genomic catalog
encompassing thousands of new and existing metagenome-assembled
genomes (MAGs) from wetland soils. This cross-site endeavor revealed
a core set of conserved wetland microorganisms, allowing us to eluci-
date the functional decomposition networks supporting their activity,
and delve into the physiological drivers of specific methanogenic taxa
associated with high CH4-emitting wetlands. This study offers a com-
prehensive, multisite perspective on the microorganisms and processes
dictating CH, dynamics in wetlands, thereby furnishing actionable
insights for advancing scientific understanding and facilitating their
translation and integration into climate-scale models.

Results and discussion

Models that rely on abiotic factors have increased uncertainty in
high methane-emitting wetlands

Estimates of wetland contributions to the global methane (CH,4) bud-
get often rely on ecosystem-scale models, which do not represent soil
microbial metabolism, but instead use abiotic variables (such as air

temperature, soil temperature and water content, water table depth/
elevation, soil type, and vegetation properties)” to approximate
environmental states conducive for soil carbon decomposition,
methanogenesis, and methanotrophy®. A robust meta-analysis from
42 freshwater wetlands showed that air temperature partially
accounted for mean annual CH, fluxes, explaining 51% of the variance
across sites, and was the best individual variable tested® (Supple-
mental Fig. 2). Moreover, a recent analysis using multiple Al models
that combined a wide array of environmental”, hydrological, and
ecological input variables to model methane fluxes showed that even
the best site-specific model had errors of 20-150 nmolm2s™ in the
majority of the 23 sites studied?®®. This large discrepancy between CH,4
flux predictions and observations for many wetlands hints at a
potential role for microbial contributions in explaining these
variations®, a feature we seek to examine in more detail in this study.

To understand unifying microbial features across wetlands and
how microbial and geochemical properties relate to CH, flux, we
conducted a meta-analysis using data from both published and
unpublished wetland soil samples. Although differences between
sample sizes and discrete depths existed between sites, all wetlands
were sampled multiple times allowing for good microbial community
representation that could be compared to CH, flux and other envir-
onmental variables. To qualify for inclusion in our study, sites had to
have amplicon sequencing data from at least 12 samples obtained from
a minimum of 2 sampling depths and have CH, flux measurements.
From the original 42 wetlands® in the noted earlier study, we identified
16S rRNA gene amplicon microbial data for three of the sites (Ameri-
Flux, site-ID US-OWC (OWC), AmeriFlux site-ID US-Twt (TWI), Ameri-
Flux site-ID US-LA2 (LA2)), of which the amplicon data from LA2 is
newly released in this study while OWC and TWI utilize previously
published data'®*°. We also expanded the dataset to include CH, flux,
16S rRNA gene amplicon, and temperature data from an additional 6
freshwater wetland sites (Jean Lafitte National Historical Park and
Preserve (JLA), Prairie Potholes Region Permanent Wetland P7 (PPR
P7), Prairie Potholes Region Permanent Wetland P8 (PPR P8), Stordalen
Mire Fen (STM-fen), Stordalen Mire Bog (STM-bog), and Spruce and
Peatland Responses Under Changing Environments (SPRUCE)). The
incorporation of these additional sites reduced the predictive power of
mean annual air temperature to explain 37% of the variability across
sites (Fig. 1a). Notably, the addition of sites with the highest CH, fluxes
(PPR P8, PPR P7) (Fig. 1a, b) reveals the limitations of mean annual air
temperature in linear models as a predictor of CH,4 flux in high-
emitting wetlands, such as Old Woman Creek (OWC) and those within
the Prairie Pothole Regional complex (PPR).

We collated and analyzed microbial data from 1112 samples (10% is
newly released in this study) from 9 wetlands to demonstrate how
incorporating knowledge of CH4-cycling microorganisms can con-
tribute to improved predictive understanding of these ecosystems
(Supplementary Data 1 & 2). Included data was derived from 5 marshes:
OWC, PPR P7, PPR P8, LA2, and TWI; 1 swamp: JLA; 2 bogs: SPRUCE and
STM-bog and 1 fen: STM-fen. To account for inter-study variability in
depth fractions, we binned these samples into three categories: shal-
low (0-9 ¢cm), mid (10-19 cm), and deep (20-39 cm) (Fig. 1c).

Additionally, we supplemented these data with genomic infor-
mation creating a cross-wetland genomic catalog, Multi-omics for
Understanding Climate Change (MUCC) v2.0.0 database. Here we
expanded the original MUCC v1.0.0 genomic catalog, which was
composed of 42 metagenome and 133 metatranscriptome samples
obtained from a single, high CH, emitting marsh (OWC) (Fig. 1a)'°. The
2507 medium and high-quality MAGs recovered from this wetland
sampling were combined with 1529 additional MAGS from previously
published palsa, bog, and fen metagenomes from a permafrost
thaw gradient at Stordalen Mire (STM, Fig. 1a)°. Additionally, we added
50 publicly available MAGs derived from the PPR complex® and 43
publicly available MAGs from TWI°. Finally, we included 20 new

Nature Communications | (2025)16:944


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56133-0

a @ ks b

R?=0.37

100 @rr7

LA2

Average CH, Flux (gCm2yr')

¢| A Bog
V QUTRYN O Fen
& A sruce [m] O Marsh
V Swamp
1 < Wet tundra
-10 5 0 5 10 15 20

Mean Annual Temperature(C)

C
Intersection !
e 10 TM | [ [T
w Marsh
o Swamp oo (19)
= Bog 0-0-0-0-00-0-0-0-00-0. (112)
Fen oee|24)
February =3 (49)
March oo (61)
E May (242)
=z June (110)
o July oo (91)
= August — (366)
September —— Fms)
| | October o000 (31)
T [Shallow (0-9 cm) (409)
£ [ Mid (10-19 cm) (367)
wi [Deep (20-39 cm) (311)
o (40+ cm) —oo (31)

Set size

Fig. 1| 9 freshwater wetlands were examined to determine linkages between
microbial communities and predictions of methane flux. a Figure modified from
Delwiche et al. > shows the mean annual methane (CH,) flux from wetlands
included in FLUXNET-CH,. The deviation of the predictions from observations
indicates this abiotic variable incompletely represented CH, flux, especially for the
highest emitting wetlands. Colored points represent sites discussed in this study.
Methane fluxes vary across an extremely large range, spanning many (3-5) orders
of magnitude. For that reason, many statistical analyses of methane flux that
compare multiple sites, some with high emissions and some with low emissions,
use, and graph methane fluxes at a logarithmic scale. b Wetlands differ by type, size,

SPRUCE
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geography, and climatic factors. In this study, we investigated 5 marsh sites (OWC,
PPRP7, PPR P8, LA2, and TWI), 1swamp (JLA), 1 fen (STM-fen), and 2 bogs (STM-bog
and SPRUCE). 7 of the sites were found across the United States and 2 were in
northern Sweden. Aerial images of each site were acquired from Google Earth.

c Upset plot indicates the total number of 16S rRNA samples (n = 1112 samples) and
their distribution across relevant categories including wetland type, sampling
month, and sampling depth. Intersection size represents the number of samples
found across each combination of wetland type, month, and sample depth scenario
and set size represents the total number of samples found within each variable.
Source data are provided as a Source Data file.

metagenomes from the PPR complex, LA2, and JLA (349 Gbp of new
sequencing), resulting in 617 MAGs released as new data as part of this
study. In total, MUCC 2.0.0 contains 3634 high and medium-quality,
dereplicated (99% genome identity) MAGs derived from six wetland
complexes totaling 8.9 Tb of sequence data (Supplementary Data S3).
MUCC v2.0.0 compiles previous wetland genomic datasets and
expands genome representation across wetland soils spanning diverse
geographies, ultimately increasing database read recruitment and
reducing the computational requirements for translating reads to
functional content. This wetland-specific genomic resource database
was used to connect microbial community profiles with functional
potential.

High CH,-emitting wetlands share microbial community com-
position and structure

Analyses across wetland sites revealed that wetland type, not geo-
graphical location, corresponded to microbial community composi-
tion and diversity. As might be expected by ecological wetland
differences, bog samples derived from Sweden (STM) and Minnesota
(SPRUCE), were more alike one another than bog and fen samples
collected within the same wetland complex (STM). Wetlands cate-
gorized as marshes or swamps had higher bacterial and archaeal alpha
diversity, higher pH, and higher CH4 flux than bog and fen sites
(Supplementary Fig. 3). Additionally, wetland type had a significant
impact on community composition, and separation of communities
was linked to pH (Fig. 2a & Supplementary Fig. 4, PERMANOVA,
p <0.001). Notably, communities in bogs with the lowest pH and CH,
flux were most distinct from marsh/swamp communities with the

highest pH and CH, flux. Fens, with intermediate characteristics of
bogs and marshes/swamps such as pH, vegetation, and nutrient levels,
hosted microbial communities that were similarly intermediate of the
bog and marsh communities™.

CH, flux was loosely correlated with temperature across wetland
types but this trend was absent at the level of individual wetland types.
In marshes and swamps - the highest CH, emitting wetland types - no
correlation to temperature was observed (R*=0.17, p=0.16) (Supple-
mentary Fig. 5A), suggesting that other factors may be important for
predicting CH,4 flux>?°. We next assessed the relationships between
CH, flux and CHy4-cycling microbial community members including
methanogens and methanotrophs across sites. Bog and marsh sites
hosted different methanogen communities (Supplementary Fig. 6),
with bog sites characterized by the dominance of a few methanogens
and low relative abundances of acetoclastic methanogens***, For
example, Methanothrix, an obligate acetoclastic methanogen was sig-
nificantly more enriched in fen, marsh, and swamp samples than in bog
samples. Overall, marsh and swamp sites contained a higher diversity
and evenness of methanogen taxa and functional types compared to
bog and fen sites. Collectively, the functional potential to utilize more
diverse methanogenic substrates in high CH, emitting marsh sites
could contribute to higher CH, fluxes.

To fully understand microbial contributions to the methane cycle,
we also assessed the distribution of methanotroph communities
across wetland types. Across all sites, aerobic low-affinity methano-
trophs were dominant, while the anaerobic methanotrophs assigned
to the genus Methanoperedens were found only in the three highest
methane-emitting sites (OWC, PP7, PP8) (Supplementary Fig. 6). We
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across wetlands. To illuminate the metabolic features of these core taxa in

high methane-emitting wetlands, we utilized the Multi-Omics for Understanding
Climate Change (MUCC) v 2.0.0 database, with 140 MAGs assigned to our core
taxa. Genome counts per genus are shown in the bar chart (black). MAGs

were identified as methanogens if they encoded any genes of the Methyl
Coenzyme Reductase (mcrABG) and/or Heterodisulfide reductase (hdrABCDE)
complexes and as methanotrophs if they contain a gene that encodes a
methane monooxygenase (Supplementary Data S4). Source data are provided
as a Source Data file.

found that the diversity of methanogens (R*>=0.5, p=0.034), but not
methanotrophs (R*=0.22, p = 0.2), was significantly correlated to CH,
flux. Additionally, the ratio of methanogen to methanotroph relative
abundances was correlated to flux (R?=0.45, p=0.047) (Supplemen-
tary Fig. 5B), but the relative abundance of methanogens and metha-
notrophs alone was not. This suggests that the coupling of
methanogens and methanotrophs acts as a control over CH, flux in
wetland environments, highlighting how the balance between these
microbial groups likely influences net methane emissions.

Microbial community features (e.g., Shannon diversity) and
environmental variables were compared to annual CH, flux for the 9
wetlands in this study (Supplemental Fig. 7). The microbial features
consistently performed better than the environmental variables tested
except for pH, which had the highest correlation to CH, flux. Given that
pH is known to be a major driver of microbial community structure®
and correlated with wetland type (Supplemental Fig. 4), we expected
pH and CH; flux to be correlated. CH, flux from wetlands has strong

seasonal trends with higher flux frequently being found in the late
summer and early fall*. However, many environmental factors (soil
moisture, redox, pH) are dynamic, changing rapidly over short time-
scales, and are thus not readily summarized at an annual scale. Simi-
larly, microbial communities integrate abiotic environmental variables
over biologically relevant timescales (moisture, redox, pH), and may
therefore be better indicators of the mean conditions allowing for
better predictions across coarse time scales.

Identification of a widespread, core group of CH, cycling
organisms

Given that marshes and swamps have high CH, fluxes that are not well
explained by methanogen and methanotroph diversity or tempera-
ture, we focused on understanding trends in microbial dynamics
across 5 marsh and swamp sites (JLA, LA2, OWC, PPR P7, and PPR P8).
Additionally, these sites had a more consistent sampling methodology
(i.e., similar sampling/sequencing protocols processed by the same
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team (see “Methods” section)). We first assessed occupancy patterns
across sites using 16S rRNA gene data to identify if there were core
methanogens and methanotrophs for these marsh samples, identify-
ing five methanogen genera and three methanotroph genera in at least
one sample from each site* (Fig. 2b). Despite wetland differences in
site, depth, and time of year sampling (Fig. 1), five core methanogen
genera were found in a majority of samples: Methanothrix (79.7%), Fen
33 (order Methanomassiliicoccales) (72.6%), Methanobacterium B
(50.9%), Methanolinea (55.5%), and Methanoregula (93.9%). Interest-
ingly, each methanogenic pathway (hydrogenotrophic, acetoclastic,
methylotrophic methanogenesis) was represented within the core
community, indicating that all three pathways are consistently
important and likely utilized for wetland CH, production in high-
emitting marsh and swamp ecosystems (Fig. 2b). Three methano-
trophs were identified as core but were found in a lower percentage of
samples: Methylomonas (60.3%), Methylobacter (39.8%), and
KS41(family Methylomonadaceae) (85.4%). However, because the core
methanotrophs require oxygen for methane oxidation, these metha-
notrophs may not be as detectable in the deeper anoxic samples
sampled here. Constraining our analyses to only the top 10 centimeters
of sediment where oxygen might be more available, we found Methy-
lomonas present in 75.1%, Methylobacter in 57.1%, and KS41 in 95.2% of
samples. Core microbiomes have become increasingly viewed as
important because of their assumed role as critical to a given ecosys-
tem’s functioning®*° and in our study we found that the core members
dominated the methane-cycling community. Collectively, these dis-
coveries underscore the pivotal role of select organisms in actively
shaping the methane cycle within freshwater marsh ecosystems. These
insights carry implications for forthcoming research activities, high-
lighting these organisms as candidates for more thorough physiolo-
gical validation and study, as well as focus organisms for scaling to
modeling endeavors.

MUCC database enables deeper insight into trophic patterns
from co-occurrence networks

For each of the 5 marsh sites, we performed network analysis based on
co-occurrence patterns to help unravel possible microbial interactions
within these complex, methanogen-oriented communities. We hypo-
thesized that methanogen network structure in wetland communities
would act as a predictor of CH, flux. To test this hypothesis, we built
16S rRNA gene-positive co-occurrence networks at each site using both
the community-wide amplicon data and only the methanogen com-
munity data (Supplementary Fig. 8).

Although the network structure of the entire community did not
relate to CH, flux (Fig. 3k), a more constrained network comprising the
significant co-occurrences that included a methanogen member did
uncover important trends (Fig. 31). These networks revealed a negative
correlation between the number of methanogen-related network
nodes and CH, flux, indicating a relationship between less complex
methanogen networks and higher annual CH4 emissions. Furthermore,
the number of methanotrophs associated with methanogens in these
networks was greater in the lower methane-emitting sites (JLA, LA2),
indicating that lower CH, fluxes are associated with communities
where methanotrophs and methanogens co-occur. In contrast, while
high CH4-emitting sites (OWC, PPR7, PPR8) host methanotrophs and
methanogens, they were generally linked by fewer connections
(Fig. 3m). Methanotrophs can act as a filter, oxidizing anywhere from
20% to 60% of the CHy before it is released into the atmosphere®**
and these results indicate that their absence in wetland samples where
methanogens are present could contribute to greater CH, fluxes.

To determine potential microbial interactions that underpin CH,
production across these sites, we developed metabolic profiles for
methanogen-connected taxa in our 16S rRNA gene networks. Utilizing
the MUCC v2.0.0 database, we linked microbes present in the net-
works with MAG representatives and assigned them functional

categories: obligate fermenter, homoacetogen, demethylating, or
none of these three criteria (Figs. 3a-e, 4 & Supplementary Data 4). We
selected these criteria, as they are thought to cross-feed methanogens
(Fig. 1b) and are traits that can be inferred from genomes clearly.
Methanogen networks were composed of 699 unique co-associated
genera, of which 131 genera had a genome representative in the MUCC
database (Fig. 4). Summarizing these genome representatives within
the methanogen networks, 12 were categorized as methanogens, 7 as
methanotrophs, 23 as obligate fermenters, 8 as homoacetogens, 1 as
both obligate fermenter and homoacetogen, and 75 demethylating
(methyl-x), and 4 did not meet these criteria (Rules for assignment are
found in Supplementary Data 4). Additionally, 6 methanogens and 10
methanotrophs identified based on 16S rRNA gene taxonomy alone
(no matches to MUCC, but metabolism is defined in literature) were
included in the networks (Fig. 4, Supplementary Fig. 8).

Specifically, obligate fermenters have the potential to produce
acetate, formate, and H, which we hypothesized would directly pro-
mote methanogen activity*>** and thus be positively associated with
our methanogen networks. As we expected, obligate fermenters were
highly connected to hydrogenotrophic and acetoclastic methanogens,
likely supporting cross-feeding. In total, obligate fermenters had 99
significant interactions with methanogens of which 73% were with
hydrogenotrophic or acetoclastic methanogens (Fig. 3f-j). Addition-
ally, obligate fermenters were found to highly co-occur with certain
methylotrophic methanogens such as Methanofastidiosum, which
requires H, to reduce methylated thiol to form methane. Compared to
hydrogenotrophic methanogenesis, this form of methanogenesis is
more thermodynamically favorable under low H, conditions and has
been proposed to support Hy-producing syntrophs and fermenters by
preventing the accumulation of H,"% In summary, anoxic carbon
exchanges between obligate fermenters and methanogens appear vital
to carbon cycling in wetlands.

Syntrophy denotes a symbiotic interaction among diverse
microorganisms, wherein the exchange of metabolic byproducts
mutually supports each organism’s metabolism. This phenomenon is
particularly prominent in methanogenic environments, where metha-
nogens play a crucial role in regulating product concentrations,
thereby rendering otherwise endergonic processes thermo-
dynamically favorable***. In our study, we investigated obligate fer-
menters to uncover evidence of secondary fermentative syntrophs,
identifying two prevalent syntrophic genera across methanogen net-
works: Smithella, present in four marshes except PPR8, and Syn-
trophorhabdus, found across all five marsh networks. Previous
research has demonstrated the capacity for acetate and hydrogen
production by Syntrophorhabdus*¢, aligning with our genome-based
characterization of these 7 MAGs in MUCC. Notably, in our networks,
Syntrophorhabdus exhibited multiple (8) connections to hydro-
genotrophs and acetoclasts, further emphasizing its role in microbial
metabolic exchanges. These genomic metabolic insights highlight the
intricate connections harbored within these co-association networks,
exchanges essential for maintaining metabolic efficiency in methano-
genic environments.

Homoacetogens also interact with methanogens, as these micro-
organisms grow on H,/CO,/CO and produce acetate as the main
metabolic product. We hypothesized that these organisms could
cross-feed acetoclastic methanogens” and could compete with
hydrogenotrophic methanogens for substrates*’. The 9 homoaceto-
gen MAGs identified in the methanogen networks comprised 15 nodes
and were closely related across sites, belonging to two main phyla,
Desulfobacterota and Chloroflexota despite many other acetogens
across other phyla existing in the MUCC database. We observed 32
associations between these acetogens and methanogens, with 50% to
hydrogenotrophic, 28% to acetoclastic, and 22% to methylotrophic
methanogens. Additionally, 6 of the 8 acetoclastic methanogens had at
least one connection to an acetogen, supporting our hypothesis that

Nature Communications | (2025)16:944


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56133-0

. Hydrogenotrophic Acetoclastic

100% .II
: III|II|
50%

Methylotrophic

I|II 1005

Proportion of Connections

)w I I I
o0

. Methanotroph . Fermenter

Acetogen . methylx . none

100% . I
: I I|I
50%
)5% I I
o0

Modularity

OO OL A S &
STESTLS & 5L NS
Lo« ¢ S X N
$EEE T $ g
T &9 IS SY
9 S $ $

S S S S
> & >
2

® E

2 g g & 3 o

D K "

2 8 8 § 38 % 3

o Z L =] > o O

Flux [

Methanogen #
Methanotroph #
Connection #

Residual

Nodes |47

-0.8 -0.65 0.9

Modularity JUKZEER:r4

Whole Network

Fig. 3 | Methanogen co-occurrence patterns are related to methane flux.

a-e Co-occurrence network analysis revealed the network structure of
methanogen-associated taxa across wetlands (n =12 samples per site). Networks
depicting site-specific co-occurrence analysis uncovered the network of micro-
organisms coordinated to methanogens across each site, with nodes representing
microbial taxa. Larger nodes represent methanogens, while small nodes represent
bacterial taxa. Nodes are colored by the inferred metabolic potential of 16S rRNA-
linked MAGs within MUCC. White stars indicate the Methanoregula node in each
network. Source data are provided as a Source Data file. f~j The Proportion of
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connections between groups in each network is given in the bar charts and
shows conserved patterns in network connections across sites. Missing bars indi-
cate no connections. Correlation between network statistics and CH, flux mea-
surements derived from the Ameriflux network was measured for k whole
community networks and I methanogen networks. Only the number of nodes in
the methanogen network was correlated with methane flux. m Additionally, a
negative correlation between annual CH, residual and CH, flux (from Fig. 1) to
the number of methanogens, methanotrophs, and connections between the two
were observed.

acetogens were cross-feeding methanogens. While our finding does
not preclude competition between hydrogenotrophs and other
acetogens, these identified positive associations may reflect sufficient
hydrogen production within the soil profile to support the co-
existence of both guilds or the separation of guilds across microsites.

Finally, demethylating microorganisms, whether bacteria or
archaea, are capable of removing methyl groups from oxygen, sulfur,
and nitrogen (O, S, N) containing compounds. Unlike methylotrophic
methanogens, these taxa do not produce methane directly; however,
they may engage in cross-feeding or competition dynamics with
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methylotrophic methanogens. Depending on the enzymatic systems
they encode, these microorganisms can lead to several outcomes: (i)
production of trimethylamine (TMA), a substrate for certain metha-
nogens; (ii) formation of quaternary amines (QA), which can be utilized
by select methylotrophic methanogens; or (iii) direct utilization of
methylated O, N, or S compounds, which may (iiia) compete with
methylotrophic methanogens or (iiib) generate acetate and hydrogen
to support hydrogenotrophic or acetoclastic methanogens. The
methyl-metabolism category exhibited substantial connectivity with
methanogens, comprising nearly half of the connections across sites.
Notably, 68% of these connections (comprised mostly of type iii
demethylating microorganisms) were linked to acetoclastic and
hydrogenotrophic methanogens rather than methylotrophs, suggest-
ing that demethylating metabolisms in soils could indirectly bolster
non-methylotrophic methane production. These findings underscore
the complexity of microbial interactions beyond methane production
and oxidation, thereby contributing to a more comprehensive
understanding of microbial cross-feeding and its broader implications
for methane emissions.

Methanoregula is critical for CH4 production in wetlands

Two core methanogens (Fig. 2), Methanothrix and Methanoregula,
were the only methanogens found in networks across every site
indicating global importance in the wetland CH,4 cycle. Methanothrix
is an obligate acetoclastic methanogen already shown to be globally
distributed and an important contributor to CH, emissions in
wetlands™. Methanoregula has been found in wetlands and other
habitats around the world, and like at many of our sites, is a

prominent member of methanogenic networks and consistently a
dominant methanogen*®*°. We found that its dominance (proportion
of methanogens that are Methanoregula) was related to CH, flux,
such that the percent of methanogens that are Methanoregula sig-
nificantly correlated to CH, flux and the residual values that were not
well predicted from the temperature- CH, flux correlation in Fig. 1
(Fig. 5a). Additionally, we tested how well temperature, Methanor-
egula dominance, and the two combined explained methane flux.
When looking at the 9 study sites, CH4 flux was not predicted by
temperature alone (R*=0.15, p=0.30,), and was predicted by
Methanoregula dominance (R? = 0.54, p = 0.02), but that temperature
combined with Methanoregula dominance was the best predictor
(R?=0.84, p=0.02). This is one example of how incorporating bio-
logical insights with already existing abiotic data could improve the
predictive power of climate models.

To understand potential physiological drivers that link Metha-
noregula and predications of CH,4 flux, we conducted a genomic ana-
lysis of 107 dereplicated MUCC-derived and publicly available (i.e.,
GTDB, JGI) MAGs. Methanoregula encoded diverse metabolic strate-
gies, the capacity for fixing nitrogen (nitrogenase), viral defense
(CRISPR-Cas), and mechanisms to respond to fluctuating redox con-
ditions (reactive oxygen species) (Fig. 5b). Methanoregula is classically
designated hydrogenotrophic®®, which we broadly confirmed here
(Fig. 5b). We also report that some Methanoregula genomes encode
genes for methylotrophic methanogenesis, specifically for the deme-
thylation of methylated sulfides™ and methoxylated” compounds that
are prevalent in wetlands'®”. Although hydrogenotrophic methano-
genesis is generally recognized as the dominant CH4-generating
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analysis shows the largely conserved encoding of genes for key physiological fea-
tures, as well as limited novel metabolic potential (e.g., methylotrophic genes)
which may directly or indirectly support high methane fluxes from Methanoregula
in wetlands. ¢ Mean transcription of top five most active methanogenic genera at
three depths (0-5cm, 10-15 cm, 20-30 cm) in the mud site type across the

2018 sampling season predictive of CH, fluxes (n =43 metatranscriptomes).

pathway in wetlands, recent studies have indicated that methylo-
trophic methanogenesis contributes more to CH, flux than previously
realized”**>*?, Therefore, the apparent significance of Methanoregula
in contributing to CH, emissions across diverse wetlands and within
wetland gradients could partly be explained by a broader than pre-
viously understood ecological niche.

To investigate the role of Methanoregula within a high CH, emit-
ting wetland, we mined a previously undefined role for Methanoregula
from 39 paired metatranscriptome and metabolome datasets across
spatial and temporal gradients from a single mudflat at OWC™ (Sup-
plementary Fig. 9A). At this mud-type site, a Methanoregula MAG
(OWC-0053) was one of the transcriptionally most active methanogens
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throughout the entire soil column across 3 months of peak CH, pro-
duction (Fig. 5c). This genome was also one of the 9 genomes that
predicted 78% of soil porewater CH, concentration (Supplementary
Fig. 9B). In summary, our comprehensive analysis reveals Methanor-
egula’s substantial contribution to CH, dynamics within a high-
emission wetland, highlighting its prominent role as a key player in
CH,4 production across spatial and temporal scales.

These findings help in part explain the significant correlation
between Methanoregula abundance and CH, flux across wetlands, and
its role in marsh CH, networks. Our results suggest that Methanoregula
may possess a broader physiological capacity to produce CH,4 through
both hydrogenotrophic and methylotrophic methanogenesis and
adapt to various abiotic and biotic constraints present in marsh soils.
By shedding light on the functional significance of Methanoregula, a
core taxon across wetlands, our study contributes to advancing our
understanding of wetland CH, emissions. Our findings use a cross-site
analysis to identify core lineages, like Methanoregula, warranting fur-
ther physiological exploration, as the metabolic assumptions may be
constrained by prior strict substrate and redox capabilities. Ultimately
our results show promise for biological knowledge to enhance pre-
dictive models of wetland emissions, ultimately facilitating more
effective management and mitigation strategies.

In conclusion, microbial processes related to CH, flux have been
well-characterized at a handful of individual sites. However, site-
specific knowledge of wetland microbiomes suffers from limited
generalizability, as wetland ecosystems vary widely. Therefore,
insights gained from studying microbiomes in one wetland may not
necessarily apply to others, restricting the broader understanding of
wetland microbial communities and their roles in ecosystem pro-
cesses. Here, we build on existing single-site studies by building a
multisite wetlands database and synthesizing decomposer and CH,-
cycling networks and their relation to CH, flux data across multiple
wetland ecosystems. Using data from several previously published and
unpublished studies, we were able to link 16S rRNA gene data to
genomes from the MUCC database and develop metabolic profiles for
methanogen-connected taxa. Despite inconsistent sampling strategies
and sequencing methods, we were still able to detect multisite trends
across all wetland types and when focused exclusively on the higher
CH, emitting marsh and swamp wetlands. We found microbial cross-
feeding has broad implications for CH, emissions across wetland
environments. Additionally, the highest CH4-emitting wetlands had the
fewest methanogen network connections, suggesting streamlined
microbial metabolic circuits may contribute to enhanced CH, pro-
duction across wetland soils. Finally, we revealed that Methanoregula is
a key contributor to CH, flux in wetland environments, potentially due
in part to previously unknown microbial metabolic versatility. This
study shows that broad microbial trends across wetlands can be better
predictors of CH,4 flux than environmental variables alone. However,
due to the opportunistic nature of this study, trends in temporal,
seasonal, and small-scale spatial variability across and within wetlands
were not fully explored despite their importance in known variation of
CH, flux. While this work cannot directly inform climate models, it
demonstrates that microbial community features can explain variation
in CH4 flux across diverse wetlands. Future work spanning more wet-
lands across broader geographic regions and wetland types with
conserved sampling strategies that account for seasonal dynamics will
enable a better understanding of the microbial drivers of CH, flux in
freshwater wetlands across time and space, helping to create better
prediction models. The MUCC database will benefit these future stu-
dies, reducing the need to generate new multi-omic datasets for
understanding microbial activity underlying CH, production in these
environments. Ultimately, MUCC is a powerful microbiome tool
enabling us to decode microbial organismal and metabolic patterns
across multiple environments, with the goal of improving predictive
modeling frameworks.

Methods

Multi-Omics for Understanding Climate Change (MUCC) v2.0.0
Database

Data was compiled from 9 different wetlands (5 marshes, 1 swamp, 1
fen, and 2 bogs), including both previously published and unpublished
datasets. Published data were sourced from AmeriFlux, site-ID US-
OWC (OWC), AmeriFlux site-ID US-Twt (TWI), and Spruce and Peatland
Responses Under Changing Environments (SPRUCE); both published
and unpublished data was compiled from Prairie Potholes Region
Permanent Wetland P7 (PPR P7), Prairie Potholes Region Permanent
Wetland P8 (PPR P8), and Stordalen Mire (STM-fen and STM-bog); and
unpublished data were collected from Jean Lafitte National Historical
Park and Preserve (JLA) and AmeriFlux site US-LA2 (LA2). The Multi-
Omics for Understanding Climate Change (MUCC) v2.0.0 database
combines 997 16S rRNA, 284 metagenomic, and 133 metatran-
scriptomic datasets from PPR7, PPR8, STM-bog, STM-fen, OWC, TWI,
and SPRUCE, along with 115 newly analyzed 16S rRNA and 20 meta-
genomic samples from PPR P7, PPR P8, JLA, and LA2. Because samples
are a mixture of previously published and new samples from several
different research groups, extraction methods, sequencing primers,
and sequencing facilities are not uniform across all sites. All methods
for DNA extraction and amplicon sequencing information for all sites
can be found in Supplementary Data 7. While methodological differ-
ences can result in biases, trends observed across sites with different
extraction protocols and sequencing primers transcend potential
methodological biases. Similar conclusions were validated in Delgado-
Baquerizo et al. **. Additionally, in this study, we used eddy-covariance
(EC) towers or chamber measurements depending on what was avail-
able at each site. However, our team has quantitatively compared
chamber and EC-flux measurements in the same sites and found that
the two methods are generally comparable, though chamber mea-
surements have a higher degree of uncertainty®*.

Accession numbers for all samples can be found in Supplementary
Data 1, while sample IDs and GTDBk v207 taxonomy for 16S rRNA data
are in Supplementary Data 2, and the details of 4745 medium and high-
quality Metagenome-Assembled Genomes (MAGs) are listed in Sup-
plementary Data 3. The MAGs and 16S rRNA data from MUCC v2.0.0
are available on Zenodo (https://doi.org/10.5281/zenodo.14532347)
and NCBI (PRJNA1007388).

Old Woman Creek (OWC). OWC National Estuarine Research Reserve
(41° 22'N 82°30'W) is a 573-acre freshwater marsh located on the
southern shore of Lake Erie in Ohio. It is composed of a permanently
flooded channel surrounded by marsh, occasional mud flats (which are
inundated most of the time), and an upland forested habitat'. In brief,
sediment cores were collected from sites representing distinct eco-
hydrological patch types (cattail plant, mud, and open water) in tri-
plicate in May, June, July, August, and September of 2018 using a
modified Mooring System soil corer’. Cores, sampled to a depth of
35 cm, were sub-sectioned into six depths using a hydraulic extruder:
0-5cm, 5-10cm, 10-15cm, 15-20cm, 20-25cm, and 25-30cm.
Microbiome data from 626 samples included bacterial and archaeal
16S rRNA amplicon sequence data, metagenomes, and
metatranscriptomes'®*®, Meteorological and eddy-covariance flux data
for the site are available through AmeriFlux, site-ID US-OWC>. Gap-
filled and averaged data used in this analysis were obtained from
FLUXNET-CH4%.

Prairie Pothole Region (PPR). Cottonwood Lake Study Area (47° 05'N:
99° 06'W), located northwest of Jamestown, North Dakota, is a pro-
tected area owned by U. S. Fish and Wildlife Service and is a long-term
research site (>30 years) for the U.S. Geological Survey (USGS). The 92-
ha site consists of 17 distinct wetlands with permanent-to-temporary
inundation. Samples were collected from open waters of two semi-
permanent wetlands: P8 (47° 0555.8’N 99°06’14.1"W) and 2 sub-
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locations within P7 - Location 1 (47°05'43.7’N 99°06’00.8"W) and
Location 2 (47°05'46.7"N 99°05'57.9”W). P7 and P8 are depressional
wetlands with open waters (<1 m depth) in their centers and emergent
vegetation (Typha) along their boundaries. Cores were collected in
triplicate at each location in March, May, and September of 2015 using
a modified Mooring System soil corer. Cores, sampled to a depth of
30 cm, were sub-sectioned using hydraulic extrusion in 3-cm incre-
ments. MUCC v 2.0.0 included 214 16S rRNA sequencing samples and
18 previously published metagenomes® combined with 18 new meta-
genomes from PPR.

Annual CH, flux data was averaged from 2011 to 2016°°. Methane
fluxes were measured using the static chamber method®” every two
weeks during the growing season (defined as soil temperature >5 °C).
During each sampling event, chambers were floated in open waters of
P7 and P8 for 30 min after which headspace gas samples were col-
lected through a rubber septum and stored in evacuated 10-ml serum
vials. Sample gases were analyzed for methane concentrations on a gas
chromatograph equipped with electron capture and flame ionization
detectors (SRI Model 8610, California) located at the USGS Northern
Prairie Wildlife Research Center. Methane flux rates were calculated
using the linear change in CH, concentration during the deployment,
chamber dimensions and temperature, and the Ideal Gas Law. Biweekly
flux rates were scaled to annual cumulative CH,4 flux by summing the
mean flux rates between consecutive sampling events and multiplying
by the time between events.

Louisiana Wetlands (JLA and LA2). Two distinct sites were sampled in
Louisiana in October 2021. Jean Lafitte National Historical Park and
Preserve (JLA) (29°48'06.6“N, 90°06'37.0“W) and AmeriFlux site-ID US-
LA2% (LA2) (29°51'31.4” N, 90°17’11.3” W) on the Salvador Wildlife
Management Area are located in coastal Louisiana. The JLA wetland is a
Cypress-Tupelo swamp with distinct hollow and hummock features,
and the LA2 wetland is a fresh flotant marsh vegetated by a mix of
Typha sp. and Sagittaria sp. In JLA, triplicate soil cores were collected
using a Russian Peat Corer, and 0-10 cm and 30-40 cm intervals were
sampled at two distinct ecosites within the swamp. In LA2, triplicate
slurry samples from O to 10 cm and 20 to 30 cm were collected using a
sipper at two distinct locations within the marsh. In all ecosites, sam-
ples were collected in three 5 x 5 m plots.

Samples were kept on dry ice after processing. DNA was extracted
using Zymo Research Quick-DNA™ Fecal/Soil Microbe Microprep Kit,
following the manufacturer’s protocol. Amplicon libraries were pre-
pared using a single-step PCR to amplify the V4 region of the 16S rRNA
gene with the primers 515F/806R** following the Earth Microbiome
Project (EMP) PCR protocol. Pooled DNA products were sequenced on
the Illumina MiSeq Platform using 251bp paired-end sequencing
chemistry at the Microbial Community Sequencing Lab (University of
Colorado Boulder).

Gap-filled and averaged flux data for LA2 that were used here,
were downloaded from FLUXNET-CH4?°, while JLA flux was measured
in four field campaigns in June, August, October, and December of
2021. Measurements were conducted using a trace gas analyzer (LICOR
7810) coupled to a custom-made chamber in triplicate 2-min deploy-
ments in three hollow and three hummock locations. The concentra-
tion time series of each chamber was used to calculate diffusive and
ebullitive fluxes separately®. Briefly, an empirical bubbling threshold
was set using the maximum observed change in methane concentra-
tions over ~1's time-steps in the chambers that exhibited a monotonic
increase, which is characteristic of diffusive-dominated measure-
ments. Changes in concentration over the threshold were deemed as
ebullitive events. We identified these in each chamber time series and
isolated them. Then, the corresponding changes in concentration were
added to produce the ebullitive flux during the chamber measure-
ment. The other segments of the dataset, with a monotonic increase or
decrease, were fitted on a one-dimensional diffusion model to

calculate the diffusive fluxes. In this study, we used the sum of the
diffusive and ebullitive fluxes, accounting for the fluxes at the surface
of the soil-water column.

Twitchell. AmeriFlux, site-ID US-Twt on Twitchell Island (TWI)
(121.65°W, 38.11°N) is a marsh located in the Sacramento-San Joaquin
River Delta, CA. TWI is a USGS wetland restoration site, which was
created by flooding two agricultural plots in 1997¢. All data used from
the TWI site were previously published in He et al. *°. In brief, samples
were collected in February and August of 2011 at three distinct sites
within the wetland. Cores were sampled to a depth of 25 cm and sec-
tioned into two 12 cm subsections. Meteorological and flux data for the
site are available through AmeriFlux, site-ID US-Twt®>. The TWI
experimental wetlands are categorized as freshwater marshes. Flux
data was downloaded from FLUXNET-CH4%°.

SPRUCE. The SPRUCE experiment (47°30.4760'N; 93°27.1620'W),
located in a forested temperate peat bog (S1 bog) of the US Depart-
ment Agriculture (USDA) Forest Service’s Marcell Experimental Forest,
is located northeast of Grand Rapids, Minnesota. The S1 bog is a per-
ched ombrotrophic bog that is acidic (pH 3.5-4.0), oligotrophic, and
contains a hummock/hollow microtopography where the water table
typically fluctuates within the top 30 cm of peat during a typical year.
Vegetation at the S1 bog is dominated by peat mosses (Sphagnum
spp.), shrubs, black spruce, eastern tamarack, some graminoids, and
forbs®~2, All data used was published in Wilson et al. . In brief, 200 cm
soil core samples were collected and sectioned at 11 intervals (0-10,
10-20, 20-30, 30-40, 40-50, 50-75, 75-100, 100-125, 125-150,
150-175, and 175-200 cm) at each experimental plot. Only data from
samples collected from +0 and ambient treatments and samples in the
top 40 cm of the soil core were retained for the analyses conducted in
this paper.

Stordalen Mire (Stm). Stordalen Mire (0°34'25.7”N; 37°34’30.1"E)
located near Abisko, Sweden is an Arctic permafrost peatland that
covers three main habitats across a discontinuous thaw gradient: palsa,
bog, and fen. Palsa overlays intact permafrost and is well-drained and
dominated by woody and ericaceous shrubs. Bog overlays partially
thawed permafrost, with a perched water table and Sphagnum moss
dominance. Fen is fully thawed, inundated, and sedge-dominated. The
Mire was surveyed in May 2015 at a range of distributed palsas
(18 sites), bogs (20 sites), and fens (8 sites); only bog and fen 16S rRNA
gene amplicon data are used in this study. A serrated knife was used to
cut vertically into the peat, and microbial samples were collected to fill
2 ml Eppendorf tubes from each depth: shallow (median of 2 cm, range
1-3 cm); middle (median of 12 cm, range 10-12 cm); and deep (median
of 20 cm, range 18-20 cm). Sample tubes were stored on ice in the field
and transferred to —80 °C within 10 h of collection. DNA was extracted
with the PowerSoil 96-Well Soil DNA Isolation kit (MO BIO cat# 12955-
4) following the manufacturer’s protocol. 16S rRNA gene amplicon
sequencing was performed by Argonne National Laboratory using the
Earth Microbiome Project barcoded 515F-806R primer set and proto-
col and on an Illumina MiSeq sequencer. MAGs from 214 previously
published metagenomes were also used (Supplemental Data 1)°.
Methane flux data for Stordalen bogs and fens were annual averages
from 2012 to 2018 of autochamber measurements (static, closed sys-
tems) that include three replicate measurements per cover type®.

16S rRNA gene sequencing and analysis

All raw amplicon sequence data were processed using the QIIME2
(v2021.2) pipeline®. Data from OWC, PPR PS8, PPR P7, LA2, JLA, STM-
fen, STM-bog, and SPRUCE sites were independently processed
through QIIME2 to account for sequencing run biases. Datasets were
uniformly trimmed to the same length (195 bp), paired-end reads were
merged, and ASVs were assigned using the naive Bayes sklearn
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classifier trained with GTDB database version 207, prior to merging at
the ASV level across datasets. Because TWI was sequenced using a
different primer set, sites were merged at the genus level. Due to a
wide range in sequencing depth across sites, all samples were rarefied
to 5000 reads resulting in a final dataset of 1112 samples (Fig. 1c).
43 samples were not retained because they fell below the minimum
read depth. Across the 9 wetlands included in this study, core depth
and interval sections varied. The compiled studies had different depth
thresholds used to categorize shallow, middle, and deep sediments. To
standardize depth measurements, we created 3 categories that
encompassed the categories across studies: shallow included samples
in the 0-9 cm horizon, middle included samples collected from 10 to
19 cm, and deep for samples collected from 20 to 40 cm.

Genome assembly and binning
Previously published metagenomic samples were combined with
newly analyzed samples in this release of MUCC. 20 newly analyzed
samples contributed 617 MAGs (Supplementary Data 1 & 3). MAGs
were recovered from:

(1) 2021 LA2 Field Sample (n=1)

(2) 2021JLA Field Sample (n=1)

(3) 2022 PPR Field Sediment Samples (n=7)

(4) 2022 PPR Field Water Samples (n=2)

(5) 2022 PPR Lab Enrichment Samples (n=9)

LA and JLA metagenomes were processed separately from the PPR
metagenomes. Raw metagenomic reads were trimmed using Sickle
(pe)*® and assemblies were generated using Megahit (v1.2.9)*” with
parameters --k-min 31 --k max 121 --k-step 10. Subsampled assemblies
using 25% of sequencing reads were generated using IDBA-UD v 1.1.3%
with default parameters. Reads were mapped to contigs greater than
2500 bp using BBMap (v 38.89)°° and were subsequently binned using
MetaBAT27°. Only medium and high-quality bins based on adapted
MIMARKS standards (completeness >=50% and contamination <10%)
were retained”’. PPR bins from these assemblies were combined with
bins from metagenomic assemblies derived from the earlier sampling
of PPR*, were combined with the bins from LA2 and JLA, and with
publicly available bins from OWC', STM?, and TWI. This bin pool was
dereplicated using dRep (v 3.0.0)”* at 99% identity. MAG completeness
and contamination were estimated using CheckM”® and taxonomy was
assigned using GTDB-tk v2.3.0 with GDTB database release 207°.

Community analysis

To determine the extent to which microbial community structure
varied with both wetland type (marsh, swamp, fen, bog) and sample
depth (shallow, mid, deep), we conducted a permutational analysis of
variance (PERMANOVA) using Bray-Curtis distances. Results were
visualized using non-metric multidimensional scaling (NMDS). PER-
MANOVA and NMDS were conducted using the vegan package’ and
visualized using ggplot2” in R Studio (version 4.0.2)”. We also corre-
lated environmental parameters including pH, mean annual tempera-
ture, mean annual precipitation, latitude, longitude, and CH, flux with
microbial community structure using the R-function “enufit” (as
visualized in Supplementary Fig. 2). Alpha diversity of the entire
microbial community, of methanotrophs and methanogens, of the
methanogens only, and of the methanotrophs only was calculated
using the Shannon diversity index. Differences in alpha diversity based
on wetland type were calculated using a Kruskal-Wallis H test. Post hoc
analysis was performed using the Pairwise Wilcox test with a
Benjamini-Hochberg procedure for p-value correction using the
function “pairwise.wilcox.test” in R. Marshes and swamps were
grouped together because they have similar characteristics to each
other such as pH while bog and fen were grouped because they are
both types of peatland characterized by low pH and occur in similar
climates’. Shannon diversity was correlated with individual

environmental parameters using linear regression and corrplot in R.
Linear models were used to assess if the mean annual temperature
(MAT) and/or relative abundance of Methanoregula was predictive of
methane flux across wetlands using the “Im” function in R. MAT and
Methanoregula relative abundance were also individually tested using
a regression model conducted using the R package ggpubr’.

To determine if certain methanogens and methanotrophs were
widespread (found across all sites) or restricted to specific wetland
types (i.e., marsh), we conducted a core community analysis. This
analysis was conducted across all samples both regardless of sample
depth, and within the depth categorization to understand if core
members are more likely to be present in different depth zones.
Because of the wide range of sampling schemes across sites, a microbe
was determined to be a core member if it was present across all sites or
all sites within a categorization (marsh/swamp or bog/fen). Core ana-
lysis was preformed using ‘summarise and ‘filter functions in
Tidyverse’. The percentage that each core member was of the
methanogen or methanotroph community was then calculated by
dividing the 16S rRNA gene counts of each core member by the total
count number of all methanogens or methanotrophs in each sample
allowing us to determine if core community members were the
dominant methanogen and methanotroph genera in each wetland.

Co-occurrence networks

To understand if co-occurrence patterns are related to methane flux,
we created co-occurrence networks based on the entire community
and significant co-occurrence patterns with methanogens from JLA,
LA2, OWC, PPR P7, and PPR P8. We focused on these five marsh sites
because we were interested in patterns within the highest methane-
producing communities and because these all used the same amplicon
primers. Because networks are sensitive to the number of input sam-
ples, each individual site’s network was composed of 12 different
community samples that were randomly sampled using the Sample n’
function in dplyr’® where each of the 3 sampling depths was repre-
sented by 4 samples. In order to minimize seasonal variation in
methane-cycling communities, all samples in the networks came from
samples collected at the same time of year (September or October)
when CH, flux is historically highest?®. The number of total samples
represented in the networks from each site is as follows: LA2: 100%;
JLA: 63%; OWC: 2%; P7: 9%; and PPR P8: 14%.

Network analyses were carried out in R using the packages
igraph®, Hmisc®, and Matrix®. To determine co-occurrence patterns
in the microbial communities, we used rarefied genus tables. Genera
with less than 10 read counts were removed from the analysis. We used
Spearman correlations to determine if genera were significantly cor-
related with a p-value cutoff of <0.05 and rho of >0.5. Gephi (0.10.1)**
was used to visualize networks and calculate network parameters
including the number of edges, nodes, average degrees, average path
length, and modularity. Network parameters were correlated to
methane flux using corrplot and linear regressions in R. Given our
interest in the metabolic interactions of microbial taxa with metha-
nogens, we focused downstream analyses on positive interactions.

To uncover the metabolic interaction patterns of the methano-
gens, co-occurrence networks were compared to MAGs in the MUCC
database that had been assigned taxonomy using GTDB-Tk (v2.3.0
r207)®. Every MAG that appeared in the methanogen networks
(determined if MAG and 16S ID matched at the genus level) was
compiled and annotated using DRAM (v1.4.4)**. MAGs were further
physiologically curated using DRAM curations and manual analyses,
and subsequently put into one of the following categories: Methano-
gen, methanotroph, fermenter, acetogen, methyl-x, or other (Supple-
mentary Data 5). Methanogens, methanotrophs, and fermenters were
defined using the rules set published in Oliverio et al. *°. Additional
methanogens and methanotrophs were assigned if a MAG was not
present for that genus but has been recognized in the literature.
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Acetogens were assigned if they had at least 6 out of 10 steps of the
Wood-Ljungdahl pathway. Methyl-x were assigned based on the pre-
sence of known substrate-specific methylotrophic genes including
both aerobic and anaerobic metabolisms. All rules are outlined in
Supplementary Data 4. If multiple MAGs existed for each genus, over
50% of the MAGs had to follow the rules laid out above for it to be
classified within a given category.

Additionally, we conducted network analysis with a less con-
servative cutoff of p < 0.06 to understand if networks were dramatically
different if we loosened the parameters. No new methanogen or
methanotroph genera were added as nodes to any of the networks, thus
the overall network structure remained unchanged. Additionally, while
there were some new taxa added to each network, all connections were
from taxa that had been seen in at least one network previously showing
that the physiological relationships we found were robust and not
altered under different parameters. Networks provided in the main text
used the traditional cutoff value of p < 0.05, but the less stringent net-
works and the added connections are provided in Fig. S10 and Supple-
mentary Data 9.

Phylogenomic and physiological analysis of Methanoregula

MAGs in the MUCC database were taxonomically assigned using
GTDB-Tk (v2.1.1 r207)% and Methanoregula MAGs (n = 37) were parsed
by genus from the full database. Further, publicly available Metha-
noregula MAGs were retrieved from GTDB (n=21) and JGI (n=91).
These 149 MAGs were dereplicated at 99% using dRep”” in 107 repre-
sentative MAGs. All MAGs were annotated using DRAM (v1.4.4)%,

Phylogenomic analysis of the 107 dereplicated Methanoregula
MAGs was performed using GTDB-Tk v2.1.1 r207% run using the de
novo workflow. The alignment was based on 53 concatenated archaeal
marker genes, and a GTDB-derived genome from the phylum Undi-
narchaeota (GCA_002495465.1) was used as an outgroup to root the
tree. The generated tree was read and visually modified, including the
representation of physiological potential, in R using the ggtree
package®. Newick tree is available at https://doi.org/10.5281/zenodo.
14532347.

Methanoregula MAGs were screened for physiological potential
for methanogenesis (mcrABG), hydrogenotrophy (genes encoding the
Wood-Ljungdahl pathway), nitrogen fixation (nitrogenase), and
CRISPR-Cas-associated proteins using DRAM. Meanwhile, to search for
possession of genes encoding reactive oxygen species (ROS) detox-
ification enzymes, MAGs were searched via BLAST-P using a FASTA
reference file (https://doi.org/10.5281/zenodo.14532347) of Uniprot
and KEGG-derived reference sequences of ROS detox enzymes
methanogens are known to encode®. The BLAST-P output was limited
to include only hits with both a bitscore of 2100 and =30% identity to
the target sequence. Last, to curate methylotrophic potential, we
carried out the strategy used by Ellenbogen et al. . MAGs were sear-
ched via BLAST-P using a FASTA reference file® of known methylo-
trophic genes, namely those encoding substrate-specific corrinoid-
dependent three-component methyltransferase systems comprised of
a substrate:corrinoid methyltransferase, a corrinoid-binding protein, a
methylcorrinoid:carbon-carrier methyltransferase, and a reductive
activase. The BLAST-P output was limited to only include hits with a
bitscore >60, and only genes from MAGs found to possess genes for
directly substrate-interacting substrate:corrinoid methyltransferases
were retained. Genes meeting these criteria were phylogenetically
analyzed using ProtPipeliner to build RaxML trees (https://doi.org/10.
5281/zenodo.14532347) relative to reference genes including those
used in the BLAST-P search, plus other homologous sequences derived
from UniProt from physiologically characterized methylotrophic
methanogens and acetogens (Supplementary Data 2 tab FASTA r-
eference_for_genes_trees). Newick trees are available at https://doi.
org/10.5281/zenodo.14532347. Trees were visually inspected in iTOLY,
and tree placement - plus gene synteny, as methylotrophic genes are

often co-encoded®* - was used to confirm or refine the specific

identification of genes.

Metatranscriptomic analyses

Metatransciptome analyses were performed using a previously pub-
lished normalized read count table'’. In brief, raw metatranscriptomic
reads were quality trimmed, mapped to MUCC v 1.0.0, per gene read
counts were estimated, and resulting read counts were normalized to
gene length and TMM normalized using log2 normalization®®. Mean
geTMM values for all genes were summed for each MAG, to generate a
total expression metric for each MAG activity within the 2018 OWC
metatranscriptomes. Only metatranscriptome data from mud-type
sites are included in these analyses. These MAG totals were further
summed to the level of genus, and the methanogen data were parsed
out of the full data set by taxonomy. It was manually determined which
5 methanogenic genera were most active in the D1 (0-5cm), D3
(10-15cm), and D6 (20-30 cm) samples independent of time. The
genus-summed mean total transcription of these 5 methanogenic
genera over time was plotted in R using ggplot”. To represent the
activity of individual MAGs over time and depth, the mean MAG-level
summed geTMM scores were plotted as a heatmap using ggplot in R.

Variable Importance in Projection (VIP) scores for Old Woman
Creek (OWC)

Variable Importance in Projection scores (VIP) are used to estimate a
variable's contribution to PLS regression, with predictors assigned
high scores considered important for the PLS prediction of the tested
response variable. Here, VIP were calculated as per Chong et al. ' in R
to correlate methanogen MAG activity - or genome expression- and
methane production rates as the response variable in OWC. The pro-
duction rates we used were calculated as described in Angle et al. In
brief, data of chamber fluxes and peeper pore water concentrations for
the 2015 growing season was combined with a diffusion model™. The
model discretizes Fick’s 2nd law in the vertical dimension and uses an
implicit backward Euler method to account for diffusive transport
within a 56-cm soil column. It also includes an empirical methane
production/oxidation term calculated from the difference between
concentrations measured each month. The fluxes are used as the top
boundary condition. Raw VIP scores for MAG genome activity can be
found in Supplementary Data 8. For MAG activity, the aforementioned
summed average MAG activity table (see above) was used. Significant
VIP scores (>2) were plotted using ggplot in R.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data presented here in the MUCC v2.0.0 database is available
across multiple platforms. The metagenomic reads, bacterial and
archaeal MAGs, 16S rRNA gene sequencing reads, and metatran-
scriptomic reads utilized in this manuscript have been deposited in the
National. Center for Biotechnology Information (NCBI) under BioPro-
jects PRINA330672, PRINA1007388, PRINA216952, PRJNA638786 and
PRJNA216952. Supplementary Data 1 and 7 provide the specific Bio-
Project IDs and BioSample numbers. The mean annual temperature
and annual flux data for all sites, rarefied 16S rRNA sequencing data,
subset 16S rRNA sequencing data used in network construction, and
normalized metatranscriptomics activity data is available in the Source
Data files. Additionally, all MAGs, processed 16S rRNA reads table, and
metatranscriptomic normalized abundance table are available on
Zenodo DOI 10.5281/zenodo.14532347. DRAM v1.4.4 annotations for
all MAGs and the newick trees for phylogenomic and phylogenetic
analyses are also available on Zenodo (https://doi.org/10.5281/zenodo.
14532347). Flux data are available through AmeriFlux for site-ID US-
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OWC>, AmeriFlux site-ID US-LA2°®, and AmeriFlux, site-ID US-Twt®%
Additional flux data is site specific and is given in previous publications
for PPR*, SPRUCE?, and STM®. Source data are provided with
this paper.

Code availability

Scripts involved in microbial data analysis, curation, and visualization
are available at Github and Zenodo (https://github.com/ebechtold/
Metabolic-interactions-underpinning-high-methane-fluxes-across-
terrestrial-freshwater-wetlands/tree/main, https://doi.org/10.5281/
zenodo.14532347).
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