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Direct probing of energy gaps and
bandwidth in gate-tunable flat band
graphene systems

Jin Jiang1, Qixuan Gao1, Zekang Zhou1, Cheng Shen1, Mario Di Luca1,
Emily Hajigeorgiou1, Kenji Watanabe 2, Takashi Taniguchi 3 &
Mitali Banerjee 1,4

Moiré systems featuring flat electronic bands exhibit a vast landscape of
emergent exotic quantum states, making them one of the resourceful plat-
forms in condensed matter physics. Tuning these systems via twist angle and
the electric field greatly enhances our comprehension of their strongly cor-
related ground states. Here, we report a technique to investigate the nuanced
intricacies of band structures in dual-gated multilayer graphene systems. We
utilize the Landau levels of a decoupled monolayer graphene to extract the
electric field-dependent bilayer graphene charge neutrality point gap. Then,
we extend this method to analyze the evolution of the band gap and the flat
bandwidth in twisted mono-bilayer graphene. The band gap maximizes at the
same displacement field where the flat bandwidth minimizes, concomitant
with the emergence of a strongly correlated phase. Moreover, we extract
integer and fractional quantum Hall gaps to further demonstrate the strength
of thismethod. Our technique paves the way for improving the understanding
of electronic band structures in versatile flat band systems.

Understanding the band structure of a system is of fundamental sig-
nificance in condensed matter physics. For instance, the linear conical
energy spectrum of monolayer graphene (MG) gives rise to two in-
equivalent K points, which results in the observation of the half-integer
quantumHall effect1–3. A small twist angle between twographene sheets
induces a long-range periodic pattern, resulting in angle-dependent
moiré Bloch bands4. Particularly, near a “magic angle” (~ 1.1°) of rotation
between the layers, the coupling between two graphene sheets is
strongly reinforced, and the low-energy moiré bands become very
narrow, almost without any dispersion (flat)5. This gives rise to exotic
quantum phases, including strongly correlated insulating states5–12,
unconventional superconductivity9–15, ferromagnetism16–18, etc.

Due to the flexible carrier density control by dual electrostatic
gating, twistedmultilayer graphene flat band systems have become an

appealing platform for studying strongly correlated quantum phases.
For example, orbital Chern insulators at different integer filling factors
were observed in twisted monolayer-bilayer graphene (TMBG)19,20. In
contrast, spin-polarized insulating states were observed in twisted
double-bilayer graphene (TDBG)21–23, etc.

The dual gate tuning provides a fundamental degree of freedom
to understand the rich phasesmentioned above. To study these exotic
phases, an experimental technique that can accurately measure the
response of the device under an applied electricfield is crucial. Several
single-gated local probe techniques have been developed to enrich the
understanding of band structure in two-dimensional materials, like
scanning tunneling microscopy/spectroscopy (STM/STS)4,8,23–27, single
electron transistor (SET)28, planar tunneling junction29 and nano-
SQUID30. In addition to local probes, global measurements, including
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magneto-transport5–15,19–23, nano angle-resolved photoemission spec-
troscopy (Nano-ARPES)31,32, electronic compressibility33, nano-infrared
imaging34, and Fourier transform infrared (FTIR) spectroscopy35,36 are
widely adopted. However, the limiting factor in most of these afore-
mentioned techniques, like STM/STS and nano-ARPES, is that the
samples are designed only with one gate.

Although electronic compressibility measurements, nano-
infrared imaging, Nano-SQUID-on-tip microscopy, and FTIR spectro-
scopy can investigate dual gate devices, these measurements each
have their drawbacks30–32,34–36. For example, the large beam spot
(~1mm) used in FTIR spectroscopy, compared with the size of typical
devices, makes the experiments substantially challenging. While con-
ventional transport measurements for extracting the energy gap, such
as resistance vs. temperature (R−T) measurements, have been widely
adopted, the thermally activated gap overshadows other details. In
addition, this method cannot extract the bandwidth.

Recently, the unique band structure in twisted trilayer graphene
has enabled the dissociation of intertwined bands and the quantifica-
tion of energy gaps15. Similarly, using decoupled monolayer graphene
has facilitated the uncovering of spin ordering in twisted bilayer
graphene37. These advancements inspire further investigation into the
electronic band structures of electric field-tunable systems, including
the direct probing of energy gaps and bandwidths in gate-tunable flat
band graphene systems.

Results
Gate-tunable CNP gap in BG
To benchmark our technique, we perform electrical transport mea-
surements on a dual-gated Hall bar fabricated on a monolayer

graphene (MG) stacked on a bilayer graphene (BG) with a large twist
angle (see Fig. 1a, b). The calculated band structures of TMBG indicate
that a large twist angle θ (≥ 10°) between MG and BG is necessary to
effectively decouple the two layers (Supplementary Figs. 1, 2)38.

We trace the CNP of this decoupled MG (DMG), which is deno-
ted by the red dashed line in phase diagrams of Fig. 1d, e, LLDN =0 and
N is the Landau level index. In our device configuration, the BG is
closer to the bottom gate. Hence, the bottom gate cannot effec-
tively tune the DMG due to the screening from the BG, which is
evident from the trace of the CNP line of the DMG as it is almost
parallel to the bottomgate direction.Moreover, we observemultiple
Landau levels splitting under a finite magnetic field (Supplementary
Fig. 3). These Dirac Landau levels of the DMG (LLDN) shuffle along the
Vtg direction when Vbg is fixed.

Using Landau level spectroscopy, we estimated the ΔCNP value
(see Methods). Since the DMG is decoupled from the BG, we
can directly estimate the chemical potential extracted from the LLDN .
Figure 1f shows the band crossings between the LLDN and the CNP gap
edges of the BG denoted by A and B. In order to estimate ΔCNP, we take
LLDN = 3 (Fig. 1g) as an example. μN,A, μN,B denote chemical potentials of
the left and right CNP edges (indicated by two horizontal black dashed
lines and inset schematics), following μN =μN =0 + vF �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2e_N sgnðNÞB
p

,
where Fermi velocity vF = 1 × 106m/s15,39–41 and ℏ is the reduced Planck
constant. The chemical potential difference ΔN = ∣μN,A − μN,B∣ repre-
sents the energy gap size of the bilayer graphene CNP.

In Fig. 2a, at both points A and B, the chemical potential extracted
through the different LLDN changes as

ffiffiffi

B
p

, implying that A and B both
track the same DMG Landau levels. For different LLDN , theΔCNP values
remain consistent, with small variation (Fig. 2c).

Fig. 1 | Twisted decoupled monolayer graphene (DMG) with bilayer
graphene (BG). a The schematic of the device and measurement configuration.
b The schematic of DMG stacked on top of the BG. The blue arrow pointing to the
DMG indicates thepositivedirectionof the applieddisplacementfieldD.cTheoptical
imageof theDMG+BG (Device_A1) device.d Longitudinal resistanceRxx as a function
of the total carrier density (ntot) andD atB =0.5 T. The red (black) arrow indicates the
direction of the bottom gate (top gate). The Dirac cone of the DMG splits into many
Dirac Landau levels along the top gate (Vtg) direction. e A colored schematic diagram
of the main features of n−D mapping in Fig. 1d. Magenta anti-S-shaped region
represents theCNPof theBG (ΔCNP). The twoboundariesof theCNPgapof theBGare
indicated by faint dashed lines intersecting at α, where D =0.13V/nm. A and B are

edges of theCNPgap of the BG for the same displacement field (D =0V/nm). A series
of Dirac LLs of DMG (red dashed line along the diagonal) shuffle along the top gate
direction. LLDN is theNthDiracLandau level ofDMG.The letters inside theparentheses
represent the carrier types for BG (first) and DMG (second). “e” stands for electrons,
and “h” stands for holes. f Landau fan diagram of Rxx near the CNP of the BG at
D =−0.5 V/nm. White dots A and B represent the band crossing between the third
Dirac LL of the DMG and the CNP of the BG. g A schematic diagram of extracting the
CNPgap of BG. The insets schematize the third LL of DMG located at the edges of the
CNP gap of the BG. The gap is extracted from the change in the chemical potential of
LL. The chemical potential is calculated from μN =μN =0 + vF �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2e_N sgnðNÞB
p

.
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We then extend our analysis to include various displacement
fields (D), allowing us to observe the electric field dependence of ΔCNP

in BG of two devices (Fig. 2d). The ΔCNP in BG increases significantly
with increasing ∣D∣ as a result of the difference in Coulomb potential
between the layers. The estimated ΔCNP at D = −0.5 V/nm is
83.2 ± 2.3meV of Device_A1, is in agreement with previous findings42,43.

Next, we take Device_A1 as the main device, and we observe a
finite built-in gap (17.2 ± 1.3meV) at the CNP at D = 0V/nm,
which results from layer polarization of the valence and
conduction bands44,45. Furthermore, we observe the evolution of
the CNP gap closing and reopening with increasing positive D
(Fig. 2e–g and Supplementary Figs. 4–6). Particularly, at
D3 = 0.13 V/nm, the gap is completely closed by a sign change of
Coulomb potential difference46, which is indicated by the α point in
Fig. 1e. This behavior results from the asymmetric response of the
displacement field and layer polarization. The weaker response of the
CNP gap at positive D (pointing to MG, D =0.25 V/nm, ΔCNP is
14.3 ± 2.7meV) compared to negative D (pointing to BG, D = −0.25 V/
nm, ΔCNP is 55.3 ± 4.0meV) supports this observation. In addition, we
observe that the CNP gap does not fully close within the moderate
negative D range (D2 to D1). Further investigation is needed into the
band structure, particularly considering the overlap between the CNP
of the DMG and the BG.

Bandwidth and bandgap of TMBG
To establish the robustness of this technique, we study a more com-
plicated electric field-tunable flat band system-TMBG. The DMG was
placed on top of the monolayer graphene of the small twist angle
TMBG (1.14° ± 0.02°) (Fig. 3a). The schematic compares the moiré
patterns of TMBG and DMG+TMBG, the moiré length is equal to

~13 nm, and does not change significantly with the addition of the
DMG. A n−D map at B = 1 T is shown in Fig. 3d (Supplementary Fig. 7).
We observe similar multiple Landau levels LLDN splitting as in Fig. 1d.
Then the strongly correlated states are observed at all integer filling
factors and are found to vary with the D.

Figure 3f shows the extracted flat bandwidth and bandgap as a
function of D (see Methods and Supplementary Figs. 8–14). When the
correlated state appears at the same D as point α (D = 0.33 V/nm) with
filling factor 3, the flat bandwidth is estimated to be about
73.5 ± 1.8meV, which is in good agreementwith the experimentalwork
in TMBG (70 ± 10meV)47. Furthermore, due to the narrow width of the
LLDN (Fig. 2a), the experimental error is smaller (<few meV) than the
reported values, showcasing the high precision of this method. From
point α to point β (D =0.53 V/nm), the flat bandwidth decreases to
64.5 ± 0.6meV as D increases, which shows that D greatly suppresses
the width of the flat band. Simultaneously, the bandgap varies inver-
sely with the D. Particularly, at point β, the flat bandwidth reaches a
minimum while the bandgap maximizes, and a correlated state
appears at filling factor ν = 1 (Fig. 3e). This might be explained by the
fact that the strongest correlation occurs where the flat band is at a
minimum, which is accompanied by the weakest correlated insulator
at ν = 1. However, it is not true that strong electron-electron interac-
tions can lead to counterintuitive effects, such as an enhancement in
the bandwidth. Specifically, the effective potential landscape that the
carriers experience could induce fluctuations, resulting in a broad-
ening of the bandwidth. Despite this, by extracting the bandwidth at
the exact points where correlated states are generated, we can observe
how the bandwidth varies with the occurring states and extract the
energy change in the bandwidth corresponding to the correlation
where two correlated states transform. This provides valuable insights
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Fig. 2 | Electric field-dependent energy gap extraction fromDMG Landau level
spectroscopy. a Zoom-in Landau fan diagrams of the white dashed rectangular
regions in Fig. 1f. Clear Dirac LLs of the DMG are indicated by red and blue dashed
lines and LLDN . The interval between LLs changes linearly with
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. b The error bars
of the chemical potential are derived from fitting the full-width half maximum
(FWHM) of the high longitudinal resistance Rxx peak at points A and B, which are
fitted to aGaussian function. The ± σ are error edges of the corresponding chemical
potentials. c The CNP gap (ΔCNP) of the BG extracted from different LLs of DMG.
ΔCNP is the change of chemical potential along the gap. Since the error bars are

derived from the broadening of Landau levels (LLs), the resolution of the experi-
ments can be improved by using LLs with narrower bandwidths. The top axis BLL−B
tracks the magnetic field of point B for every LL with index N. d Gap evolution as a
function of D for Device_A1 (22°) and Device_A2 (27°). The overlap of blue and red
dots demonstrates the consistency of the gap extracted from different LLs, which
increases with increasing ∣D∣. The difference in Coulomb potential between two
layers of BG induces a small gap at zero displacement field. e–g Landau Level
spectroscopy at differentD. The yellowdashed line indicates the kink of the first LL
of the DMG. The gap completely closes at a small positive electric field D3.
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into the model and parameters of correlation, which will help refine
future studies. From β to γ, the flat bandwidth broadens with
increasing D and decreasing bandgap, reflecting weaker electronic
correlations. According to the previous works19,20, the flat band gra-
dually touches the remote dispersive band as D increases.

For TMBG, the spatial inversion symmetry is broken; and it exhi-
bits a richphasediagram similar to the one of twisted bilayer graphene
(TBG)when aD is applied in the direction ofMG (TBG side). The TMBG
also exhibits a phase diagram similar to that of twisted double-bilayer
graphene (TDBG) when the D is inverted19,20.

Thus, in addition to the four DMG/TMBG devices (Supplementary
Fig. 7), where the DMG was placed approximately on the monolayer
graphene side of the TMBG, in contrast, for Device_B5, the DMG was
placed on the bilayer graphene side of the TMBG (Supplementary

Fig. 15).When carriers are pushed toward themonolayer graphene side
of TMBG under positive (negative) displacement fields, the gap in
Device_B5 opens larger than in Device_B3, highlighting the screening
effect from the DMG (Supplementary Figs. 16, 17). This provides a
robust experimental method to support theoretical efforts in under-
standing the complex phase diagrams of these multilayer graphene
systems in the future.

Integer and fractional quantum Hall gaps
To further warrant the accuracy of this technique, we demonstrate
how this method can be used to extract integer and fractional quan-
tumHall gaps for the TMBG flat band. The four-fold degeneracy of LLs
for both DMG and the flat band is lifted (Supplementary Figs. 8–10). In
Fig. 4a, we clearly see four mini-bands LLDl formed from LLDN =�1
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splitting, indicated by red and purple dashed lines. TheseDMGLandau
levels with different filling factors induce additional Chern number
offsets (-l) (Supplementary Figs. 18–20). The total Chern number C
(indicated by the black numbers) is the summation of Cf (indicated by
the yellow numbers) andCD, whereCf andCD areChern numbers of the
TMBG flat band and DMGDirac band, respectively. Multiple As and Bs
represent gap edges of LLfl =�2 and the estimated gap △N = ∣μA − μB∣ is
averaged through different LLDl (Fig. 4b). The extracted values of the
gap measured by different LLs are consistent with each other, and the
average value of the gap is given by 4.1 ± 0.9meV.

We extend a similar analysis to a fractional quantum hall gap.
Figure 5a, b show Rxx and Rxy as a function of B and ntot near the CNP
region. The schematic of the corresponding Landau level crossings is
shown in Fig. 5c. The N = −1 Dirac Landau level splits into four mini
bands, indicated by the green (Landau level filling factor l = −3), blue
(l = −4), purple (l = −5), and pink (l = −6) lines, respectively. Thus, the
Chern number cascade was observed when crossed with the flat band

Landau levels. Figure 5d exhibits near zero Rxx (blue line) and corre-
sponding well-quantized Rxy plateaus (red line); these are line cuts
taken along the blue and red dash line in Fig. 5a, b. A difference of
neighboring LLDN filling factor is one, indicating that the degeneracy of
the system is fully lifted.

According to the band edges A and B shown in Fig. 5e, a fractio-
nal quantum hall gap can be extracted from the band crossing
between the fractional quantum hall flat band νf = −6 + 1/3 and
the Dirac band LLDl =�5 (CD = −5). The magnetic fields in Fig. 5e at A and
B are 4.310 ±0.005 and 4.270 ±0.005 T, respectively. Thus,
the extracted flat band fractional quantum hall gap is
△N = ∣μA − μB∣ =0.56 ± 0.14meV at around 4.3T. At filling factors
ν = −11 and ν = −11 + 1/3, Rxx exhibits a minimum (blue line), while Rxy

shows a kink (red line), as illustrated in Fig. 5f. This guides us to define
the edges of the FQHE in Fig. 5e. Our fractional quantum hall gap
results are comparable to results from the reported studies, which
yielded △1/3 ~ 1.4 to 1.8meV at 12 T48–51.

In comparison with the conventional R-Tactivation method, the
ν = 1/3 fractional quantum Hall gap for two devices in GaAs quantum
wells is reported as (8.7 ± 0.1) and (8.0 ± 0.4) K52,53, corresponding to
0.69 and 0.75meV, respectively. In graphene, the ν = 1/3 plateau per-
sists up to T ~ 10K, equivalent to 0.86meV54,55. Particularly, the frac-
tional quantum hall gaps for LLs with higher filling factor is smaller
than normal ν = 1/3 (<10 K, 0.86meV)51. These results are quite com-
parable to our data, where the extracted fractional quantumhall gap is
0.56 ±0.14meV at around 4.3 T.

To summarize, we have used the Landau levels of decoupled
monolayer graphene to measure the chemical potential of dual-gated
multilayer graphene devices. We measured the electric field-tunable
CNP gap of bilayer graphene. Then, we extracted the electric field-
tunable flat bandwidth and bandgap in twisted mono-bilayer gra-
phene. Moreover, the measurements of the flat band integer and
fractional quantum Hall gaps provide a promising avenue to investi-
gate nuanced band structure.

This technique has far-reaching consequences for studying
strongly correlated states37,56,57. For example, the superconducting
phase diagram and the ground state can be understood by studying
adjacent correlated states (Supplementary Fig. 21). Currently, there is a
scarcity of techniques that establish a connection between the dis-
placement field-tunable flat bandwidth and strong electron-electron
correlations. Our work can encourage more theoretical works to
understand the complicated phase diagrams of these multilayer gra-
phene systems. Furthermore, it could be extended in the future to
other similar moiré systems, such as transition metal dichalcogenides
systems.

Methods
Device fabrication
The devices are fabricated using an advanced technique known as “cut
and stack”12. Pristine materials such as monolayer graphene, bilayer
graphene, hBN (10–50nm), and graphite flakes (3–15 nm) were
mechanically exfoliated on an oxygen plasma-etched SiO2 (285 nm)
surface. Next, we used atomic force microscopes(AFM) to pre-cut
monolayer graphene and bilayer graphene. High-quality homo-
geneous poly (bisphenol A carbonate) (PC)/polydimethylsiloxane
(PDMS) was then stacked on the glass slide used to transfer the 2D
materials flakes to the alignment marker chip. The transfer stage pre-
cisely controls the twisted angle between two 2D materials to within
0.1° resolution. The graphite top gate is then fabricated, followed by
the electrodes by electron beam lithography and metal evaporation.
Here, we use the conventional etching method to define Hall bars. We
etch graphite and hbN with O2 and SF6 gases, respectively. Optimiza-
tion of the etching parameters is important to obtain 1D edge contacts
with the Cr/Au (5/50 nm) electrodes58.
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band and DMG Dirac band respectively. b The flat band integer Landau level gap
(LLfl =�2). Multiple As, Bs represent gap edges of LLfl =�2 and the estimated gap
△N = ∣μA − μB∣ = 4.1 ± 0.9meV is averaged through different LLDl .
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Measurements
Transport measurements were conducted in the cryostat (Oxford
Instruments, Heliux), with a base temperature of ~ 275mK. Standard
lock-in techniqueswere employedusing the StanfordResearchSR860,
with an excitation frequency of f = 17.7777Hz and an AC excitation
current (Is) of less than 10 nA to avoid sample heating and minimize
bias effects, we used NF voltage pre-amplifiers with an impedance of
100MΩ before feeding signals into the lock-in amplifiers (Stanford
Research SR860). The transport measurements are conducted in a
four-terminal geometry. The device was biased along themajor axis of
the Hall bar to ensure a uniform current flow, while both longitudinal
and transverse voltage drops were simultaneously recorded. Gate
voltages were applied using sourcemeters (Yokogawa GS100), and an
additional global gate was implemented to enhance the contact qual-
ity.We can extractntot and thedisplacementfieldDusing the following
equation ntot =VbgCbg/e + VtgCtg/e, D = ∣VbgCbg−VtgCtg∣/(2ε0). Cbg and
Ctg are the capacitances between the top (Vtg) and bottom (Vbg) gates
and the DMG+TMBG, e is the electron charge, and ε0 is the vacuum
permittivity.

Twisted angle determination
Due to the decoupling of the DMG from the TMBG, the carrier density
nflat−band observed by ν = ±4 = ±ns of band insulating states. This value
canbedeterminedby analyzingquantumoscillations in the Landau fan
diagram or by making observations in an n−D diagram. n as a function
of the twisted angle following equation ns =8θ

2
=

ffiffiffi

3
p

a2 determines
twisted angle of our TMBG (1.14° ± 0.02°), a = 0.246 nm is the lattice
constant of graphene. The same rule applies to determining small-
angle TMBG.

Extracting the gaps and bandwidths
We focus on the CNP gap of BG to demonstrate the method of
extracting the energy scale of gaps and bandwidths. By measuring the
chemical potential jump across at the intersections between Dirac
Landau levels (LLs) and theCNP gap, the chemical potentials at the two
edges of the CNP can be determined by: μN =μN =0 + vF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2e_N sgnðNÞB
p

asmentioned in the main text. The Fermi velocity (vF)
remains nearly constant with respect to the Landau level index (N),
magnetic field (B), large twist angle (θ > 10°), and intermediate dis-
placement field (D)15,39–41, where the Fermi velocity vF = 1 × 106m/s and
ℏ is reduced Planck constant. The steps involved in this observationare
outlined below:
(i) Identify the gap edge of BG. Since in the gap of BLG, there’s no

DOS, and the charging electrons will accumulate in LL of DMG
shown in Fig. 1f, g. We obtain the exact CNP gap edge points A
and B for every LL index N by tracking the crossing state that
corresponds to partial filling of Dirac LLs at the Fermi level,
which is marked by an Rxx peak, indicating the edge of incom-
pressible gaps of Dirac LLs. The Rxx peak represents a general
mark of extracting the energy scale without considering the
lifting of LLs degeneracy. This process is illustrated by the red
dashed line and thebluedashed line in the toppanel, Region I, of
Supplementary Fig. 8c and the right panel of Supplemen-
tary Fig. 9c.

(ii) Identify the Landau level index of DMG.
(iii) To determine the magnetic field corresponding to the CNP gap

edge points A and B at the gap boundary, we refer to Fig. 1f and
g. The magnetic field dictates the chemical potential at each
point for a given Nth Landau level (LL). By fitting the high-
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Fig. 5 | Chern number cascade and fractional quantum Hall gaps.
a, b Longitudinal resistance Rxx and Hall resistance Rxy as a function of ntot and B.
c Schematic of quantum oscillation of Fig. 5a. LLT is TMBG flat band LLs composed
with DMG LLs Chern number offset. d Filling factor dependence of longitudinal
resistance (blue dash line in Fig. 5a) and Hall resistance plateaus (red dash line in
Fig. 5b). e zoomed Landau fan taken from yellow rectangular in Fig. 5a, b. The solid

green line indicates ν = −11 integer quantum Hall state. The green dashed line
denotes a fractional quantum Hall state of ν = −11 + 1/3. A, B are band edges of the
fractional quantum Hall gap of νf = −6 + 1/3. The estimated gap
△N = ∣μA − μB∣ =0.56± 0.14meV. f Evidence of a fractional quantum Hall state. The
data of Rxx and Rxy are taken along the blue and red dash lines in Fig. 5e.
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resistance states Rxx peak at the gap edge, we extracted the
values of B1 and B2 along with their respective uncertainties (σ).
Owing to the exceptional quality of our devices, thesemeasure-
ments offer remarkably high energy resolution.

(iv) Using formula μN =μN =0 + vF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2e_N sgnðNÞB
p

to extract the
chemical potential of the edges and then get the CNP gap value.

Weobserved that thedegeneracy of Landau levels (LLs) is liftedby
applying higher magnetic fields, altering the energy spectrum of
massless Dirac fermions. Consequently, we introduce a generalized
energy spectrum for graphene Landau levels that incorporates the
effects of degeneracy lifting, such as Zeeman splitting and valley
polarization.

The modified equation is shown as below, EN, s,σ = vF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2e_∣N∣B
p

+
1
2 gsμBBs +ΔσK

3,41,59–61, where N is Landau level index, ℏ is Reduced
Planckconstant, gs is sping-factor (typically ~ 2 in graphene),μB is Bohr
magneton, s is the spin state (+1 for up, −1 for down), Δσ is Valley
splitting energy, representing energy differences between the K and K 0

valleys, K is Valley index (±1).
The degeneracy-lifted sub-LLs create incompressible Landau level

gaps in the partially filledDirac LLs, as observed in the originalRxxpeak
(Supplementary Figs. 8, 9). In Supplementary Fig. 8c, from region I to
III, we track the crossing state at point A1, which corresponds to the
crossing between the lowest incompressible degeneracy-lifted Dirac
sub-LL (l = −6) and the flat band edge. This crossing is marked by a
minimum in Rxx and corresponding kinks in Rxy (Supplementary
Fig. 8d, e). A similar rule is applied to the isospin-polarized Dirac LLs
(LLfN =�2,A2). Further details can be found in Supplementary Fig. 9.

The errors in the energy extraction of gaps or bandwidths arise
from three main factors:
(i) The broadening of Landau levels.

It plays a crucial role in determining the accuracy of energy
extraction for gaps or bandwidths. This broadening can result from
several factors, including disorder, random strain fields, temperature
effects, electron-phonon coupling, and many-body interactions. To
achieve a narrower bandwidth for Dirac LLs and reduce these errors, it
is essential to use clean and uniform samples.
(ii) Zeeman splitting, isospin-polarized sub-LLs, and fully-

degeneracy lifting sub-LLs.

As the magnetic field increases, the Zeeman splitting effect and
the lifting of LL degeneracy become significant and should not be
neglected. To accurately extract the chemical potential from the LL
spectrum of Dirac fermions, it is necessary to modify the spectrum
equation, as shown above.

For the Zeeman splitting term59,60, 1
2 gsμBBs, using two points at

different magnetic fields can introduce some errors. However, this
term is relatively small compared to the gaps or bandwidths we mea-
sure. For instance, for a change of 1 T magnetic field, the contribution
from pure Zeeman splitting to Dirac LLs is approximately
1 μBB ~ 0.058meV (~0.67 K)59, which is negligible in comparison to the
CNP gap and bandwidth observed in the main text.

For measuring the fractional quantum Hall gap, the magnetic
fields atpoints A andB in Fig. 5e are 4.310 ±0.005 and4.270 ± 0.005 T,
respectively. The 0.04 T difference in magnetic field results in a pure
Zeeman splitting contribution of 0.04 × 0.058meV =0.002meV,
which is much smaller than the gap we measured (0.56 ± 0.14meV).
Therefore, we neglected the Zeeman splitting term in themain text for
the decoupled system when measuring the chemical potentials at the
two edge points under different magnetic fields.

At high magnetic fields, the Dirac LLs split into two isospin-
polarized sub-LLs or four fully lifted degeneracy LLs, as described by
the LL filling factor l. To minimize the effects of this splitting, we track
the crossings between the lowest incompressible, degeneracy-lifted

Dirac sub-LLs (l = −4) and the target state. These crossings are marked
by a minimum in Rxx and corresponding kinks in Rxy, (Supplementary
Figs. 8d, 9, 10f)

In Supplementary Fig. 9, we specifically discuss the influence on
bandgap extraction from two different Dirac LLs: The left panel of the
normal case and the right panel for the isospin-polarized case. We
found that the difference in the bandwidth extracted for both cases is
small, and we averaged the results to reduce errors.
(iii) Valley splitting

Wenotice that the energy separation between theDirac LLs of two
sub-LLs (l) is significantly different. In Supplementary Fig. 10d, we
clearly observe the A1 and A2 sub-LLs of l = −6, −4, with a substantial
magnetic field separation (BA2 − BA1 = 0.5 T). In contrast, at point B, this
separation is much smaller, making it difficult to clearly differentiate
between the sub-LLs. This suggests that the observed effects might
arise from valley splitting. See more discussion in Supplemen-
tary Fig. 10.

Wemust acknowledge that the valley effect cannot be completely
ignored, and further theoretical work is needed to incorporate the
valley splitting term into the modification of the Dirac fermion LL
spectrum.

We should also note that our technique is particularly suitable for
detecting systems whose band structures are not highly sensitive to
magnetic fields. A useful approach is to focus on higher-index LLs, as
this enables the measurement of the chemical potential at lower
magnetic fields, where Landau level splitting is not yet significant.
Additionally, from Fig. 2a, we observe that the bandwidth at low
magnetic fields is narrow, which provides higher resolution with
reduced effects from both Zeeman splitting and valley splitting.

Data availability
Source data for all themain figures are available at https://zenodo.org/
records/14585126. All other data that support the findings of this study
are available from the corresponding author upon request.

Code availability
The source codes used to perform the calculations in this paper are
available from the corresponding author upon request.
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