nature communications

Article

Predicting metabolite response to dietary
intervention using deep learning

https://doi.org/10.1038/s41467-025-56165-6

Tong Wang ®', Hannah D. Holscher ®%3, Sergei Maslov®#, Frank B. Hu® %,
Scott T. Weiss' & Yang-Yu Liu®"?

Received: 28 April 2023

Accepted: 10 January 2025

Published online: 18 January 2025 3 3 ; : - . :
Due to highly personalized biological and lifestyle characteristics, different

individuals may have different metabolite responses to specific foods and
nutrients. In particular, the gut microbiota, a collection of trillions of micro-
organisms living in the gastrointestinal tract, is highly personalized and plays a
key role in the metabolite responses to foods and nutrients. Accurately pre-
dicting metabolite responses to dietary interventions based on individuals’ gut
microbial compositions holds great promise for precision nutrition. Existing
prediction methods are typically limited to traditional machine learning
models. Deep learning methods dedicated to such tasks are still lacking. Here
we develop a method McMLP (Metabolite response predictor using coupled
Multilayer Perceptrons) to fill in this gap. We provide clear evidence that
MCcMLP outperforms existing methods on both synthetic data generated by
the microbial consumer-resource model and real data obtained from six
dietary intervention studies. Furthermore, we perform sensitivity analysis of
MCcMLP to infer the tripartite food-microbe-metabolite interactions, which are
then validated using the ground-truth (or literature evidence) for synthetic (or
real) data, respectively. The presented tool has the potential to inform the
design of microbiota-based personalized dietary strategies to achieve preci-
sion nutrition.

M Check for updates

Precision nutrition aims to provide personalized dietary recommen-
dations based on an individual’s unique biological and lifestyle char-
acteristics such as genetics, gut microbiota, metabolomic profiles,
and anthropometric data. In addition to the design and imple-
mentation of large-scale clinical studies, one of the critical compo-
nents for achieving precision nutrition is the development of
predictive models that incorporate diverse individual data types to
achieve an accurate prediction of metabolomic profiles following
dietary changes'. However, existing models are limited to traditional
machine learning methods such as Random Forest (RF)** and
Gradient-Boosting Regressor (GBR)®. Deep learning techniques have

not been leveraged to predict metabolite responses for precision
nutrition.

Among the biological characteristics relevant for precision nutri-
tion, the gut microbiota is an important factor that explains a large
fraction of individual metabolite responses among populations*”.
Indeed, the human gut microbiota produces many metabolites through
the microbial metabolism of nondigested food components such as
dietary fibers, which are prevalent in grains, vegetables and fruits®.
Therefore, microbiota-derived metabolites are important mediators of
host health?™. For example, short-chain fatty acids (SCFAs) are meta-
bolites produced by intestinal microbes through anaerobic
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fermentation of indigestible polysaccharides such as dietary fiber and
resistant starch’'®, SCFA concentrations have been linked to regulation
of immune cell function*”, gut-brain communication®, and cardio-
vascular diseases”'®. Among the SCFAs, butyrate has been shown to be
negatively correlated with pro-inflammatory cytokines”?°. Hence, a
high level of butyrate from the gut microbiota is believed to be bene-
ficial due to its anti-inflammatory effects”® .. Boosting the levels of
health-beneficial metabolites by modulating the gut microbiota appears
to be a promising approach to improve host health**,

One possible way to modulate the gut microbiota is through
dietary interventions®. Gut microbial composition is affected by the
diet®* %, As a result, microbiota-targeted dietary interventions have
been proposed to modulate the gut microbiota to increase the pro-
duction of metabolites beneficial to the host”*. Recently, there has
been a growing trend to exploit the tripartite relationship between
food/nutrition, gut microbiota, and microbiota-derived metabolites to
provide better dietary advice for each individual’>?*2, Indeed, accu-
rate prediction of personalized metabolite responses to foods and
nutrients based on the gut microbiota holds great promise for preci-
sion nutrition®,

Many dietary intervention studies have attempted to investigate
the relationship between diet and microbial metabolism of the gut
microbiota®%*>**, However, most of these studies only analyzed cor-
relations between dietary treatments, microbes, or metabolites. A few
studies have used different analytic approaches to predict post-
prandial responses of metabolite markers such as blood glucose** and
immune markers***. However, the personalized prediction of how
important markers such as SCFAs and bile acids respond to long-term
dietary interventions is under-investigated (Fig. 1).

Our aim is to predict the post-dietary intervention (or “endpoint”)
metabolite concentrations in fecal or blood samples based on the pre-
dietary intervention (or “baseline”) microbial composition, metabo-
lome data, and the dietary intervention strategy. This is conceptually
different from existing studies on the inference of metabolomic pro-
files from microbial compositions measured at the same time*™%,
Herein, we leveraged data from randomized, controlled dietary inter-
vention studies”?%***** and developed a deep-learning method:
Metabolite response predictor using coupled Multilayer Perceptrons
(McMLP) to predict endpoint metabolite concentrations based on
baseline microbial compositions. We first generated synthetic data
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Fig. 1] A typical dietary intervention study design. Before the dietary interven-
tion, the baseline gut microbial compositions and metabolomic profiles (of either
fecal samples or blood samples) are measured. During the dietary intervention, one
or a few dietary resources are introduced (represented here by avocado) in addi-
tion to the baseline diet. The task we intend to solve is to predict personalized

metabolite responses after dietary intervention based on the baseline gut microbial
compositions, baseline metabolomic profiles, and the dietary intervention strategy.

based on a microbial consumer-resource model that simulates the
dietary intervention process and found that McMLP outperforms
existing methods (RF and GBR), especially when the training sample
size is small. We then applied all methods to real data from six dietary
intervention studies”*******, finding that the predictive power of
MCcMLP is higher than existing methods. Finally, based on the well-
trained McMLP, we performed the sensitivity analysis to infer the tri-
partite food-microbe-metabolite relationship, supported by some lit-
erature evidence.

Results

Overview of McMLP

We hypothesized that in order to accurately predict post-dietary
intervention metabolomic profiles, we first need to capture how the
microbiome composition changes from the baseline to the endpoint.
This is because metabolomic profiles reflect the microbial metabolism
of acommunity”** To test our hypothesis, we proposed McMLP, which
consists of two steps: (step-1) use the baseline microbiota and meta-
bolome data (i.e., concentrations of targeted metabolites) and the
dietary intervention strategy to predict the endpoint microbial com-
position; and (step-2) use the predicted endpoint microbial composi-
tion, the baseline metabolome data, and the dietary intervention
strategy to predict the endpoint metabolomic profile (Fig. 2a; Sup-
plementary Fig. 1a). For each step, we used a multilayer perceptron
(MLP) with Rectified Linear Unit (ReLu) as the activation function to
perform the prediction. We emphasize that, in principle, one can just
use one MLP to directly predict endpoint metabolomic profiles based
on baseline microbiota/metabolome data and the dietary intervention
strategy (Supplementary Fig. 1b). Later, we confirmed that this one-
step strategy has worse predictive power than our two-step strategy.

From a practical standpoint, our goal is to predict an individual’s
metabolite response (i.e., the change in concentrations of the targeted
metabolite) to a potential dietary intervention to facilitate precision
nutrition. To achieve this goal, we feed the baseline microbiota and
metabolome profiles of this individual and the potential dietary
intervention strategy to a well-trained McMLP to predict the endpoint
metabolome profile. Note that in this application (or test) stage,
because the dietary intervention is a thought experiment, no real
endpoint data is available. The first MLP in McMLP will predict the
endpoint microbiota profile, which will be fed into the second MLP to
predict the endpoint metabolome profile.

During the training stage of McMLP, we need to collect not only
baseline microbiota and metabolome profiles of different individuals,
but also perform dietary interventions to collect actual endpoint
microbiota and metabolome profiles. We emphasize that the actual
endpoint microbiota data will only be used to train the first MLP
(Fig. 2b). It shall not be used to train the second MLP. This is because
we need to keep the consistency between the training and test stages.
After all, during the application stage, it is the predicted endpoint
microbiome profile that will be fed into the second MLP, and the actual
endpoint microbiome profile does not exist at all.

Instead of fine-tuning hyperparameters such as the number of
layers N, and the hidden layer dimension N, for MLP, we over-
parameterized MLP by using a large and fixed number of layers N, and
hidden layer dimension N, (N;=6 and N,=2048). The over-
parameterized machine learning methods, especially deep learning
models, yield better performance due to their high capacity (i.e., more
model parameters). In fact, the high-capacity models can be even
simpler due to smoother function approximation and thus less likely to
overfit*.

To illustrate the prediction task, we used a hypothetical example
comprising N,(=5) microbial species, Ny(=3) dietary resources being
intervened, N, (= 6) metabolites, and 7 samples (Fig. 2b, c). We will use
both the baseline data and the dietary intervention strategy as inputs
for McMLP (Fig. 2a). We used the Centered Log-Ratio (CLR)-
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(endpoint data):

Fig. 2 | The workflow of McMLP (Metabolite response predictor using coupled
multilayer perceptrons). We aim to predict endpoint metabolomic profiles (i.e.,
metabolomic profiles after the dietary interventions) based on the baseline
microbial compositions (i.e., microbial compositions before the dietary interven-
tion), dietary intervention strategy, and baseline metabolomic profiles. Here we
used a hypothetical example with n =35 training samples and 2 samples in the test
set. For each sample, we considered Ny microbial species, N4 dietary resources, and
N,, metabolites. Across three panels, microbial species and their relative abun-
dances are colored blue, dietary resources and their intervention doses are colored
green, and metabolites and their concentrations are colored red. Icons associated
with baseline/endpoint data are bounded by solid black/dashed lines respectively.
a The model architecture of McMLP. McMLP comprises two coupled MLPs (mul-
tilayer perceptrons). The first MLP at the top (step 1) predicts the endpoint
microbial compositions based on the baseline data and the dietary intervention
strategy. The predicted endpoint microbial compositions from the first MLP are
then provided as input to the second MLP at the bottom (step 2). The second MLP
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combines the predicted endpoint microbial compositions, the dietary intervention
strategy, and the baseline metabolomic profiles to finally predict the endpoint
metabolomic profiles. The value of dietary intervention strategy is either binary to
denote the presence/absence of each dietary resource or numeric to be propor-
tional to the intervention dose. Details of both MLPs can be found in Supplemen-
tary Fig. 1 and “Methods”. b McMLP takes two types of baseline data (baseline
microbial compositions and baseline metabolomic profiles) and the dietary inter-
vention strategy as input variables and is trained to predict corresponding end-
point metabolomic profiles. During training, the endpoint microbial composition is
needed to train the first MLP. By contrast, the second MLP directly takes the pre-
dicted endpoint microbial composition instead of the actual endpoint microbial
composition. ¢ The well-trained McMLP can generate predictions for metabolomic
profiles for the test set. During testing, no endpoint microbial composition is
needed because the second MLP directly takes the predicted endpoint microbial
composition from the first MLP as the input.

transformed microbial relative abundances as the microbial compo-
sition and loglO transformed metabolite concentrations as the meta-
bolomic profile. We did not impose the constraint that the predicted
relative abundances from the first MLP add up to one. The value of
dietary intervention strategy is either binary to denote the presence/
absence of each dietary resource or numeric to be proportional to the
intervention dose. 5 samples are used as the training set (Fig. 2b) and
the remaining 2 samples form the test set (Fig. 2c). To evaluate the
regression performance, we employed three metrics based on the
Spearman correlation coefficient (SCC) p between the predicted and
true values of the concentration of one metabolite across all samples:
(1) p: the mean SCC, (2) f . 5: the fraction of metabolites with p greater
than 0.5, and (3) ps: the mean SCC of the top-5 best-predicted
metabolites.

McMLP generates superior performance over existing methods
on synthetic data

To validate the predictive power of McMLP, we applied it to synthetic
data generated from the Microbial Consumer-Resource Model
(MiCRM) which considers microbial interactions through both nutri-
ent competition and metabolic cross-feeding**. We adapted MiCRM to
simulate the dietary intervention. For simplicity, we considered 20
food resources, 20 microbes, and 20 metabolites in the modeling.
Also, we assumed that food resources can only be consumed while
metabolites can be either consumed or produced. Prior to the dietary
intervention, one food resource (referred to as “food resource #1”) was
not introduced, while the remaining 19 food resources were supplied.
Dietary intervention was simulated by adding food resource #1 at a
specific “dose” to microbial communities composed of surviving spe-
cies before the dietary intervention and calculating the new ecological
steady state. Here, the “dose” is defined as the ratio between the
amount of the introduced food resource during the dietary interven-
tion and the average amount of other food resources introduced
before the dietary intervention. We split the synthetic data (with

250 samples) with 80/20 ratio fifty times to generate fifty train-test
pairs that can be used to reflect the variation in predictive perfor-
mance. Details on model simulation and synthetic data generation can
be found in the Supplementary Information.

We compared the performance of McMLP with two classical
methods (GBR: Gradient-Boosting Regressor®; RF: Random Forest*) in
the prediction task defined in Fig. 2. For each method, we considered
two sets of input variables: (1) without baseline metabolomic profiles
(denoted as “w/o b” hereafter) and (2) with baseline metabolomic
profiles (denoted as “w/ b” hereafter).

We first used the three metrics (9, f 55, P5) to benchmark the
predictive performance of the different methods on synthetic data
with 50 training samples and an intervention dose of 3. We found that
MCcMLP generated the best performance (Fig. 3al-a3), especially when
baseline metabolomic profiles were included in the input. When we
predict without baseline metabolomic profiles, McMLP is significantly
better than RF and GBR (p value<0.05 for 5/6 comparison cases,
Wilcoxon signed-rank test applied; McMLP yields the highest p of
0.391+0.008, the highestf . 5 of 0.197 + 0.018, and the highest ps of
0.536 + 0.007; the standard error is used to measure the variation in
performance metrics across 50 train-test splits). Including baseline
metabolomic profiles in the input significantly improves the perfor-
mance of all methods, with McMLP still being the best (which yields the
highest p of 0.595+0.005, the highest f .o s of 0.815+0.014, and
highest ps of 0.715+0.006). We also tried to introduce 5 food
resources during the dietary intervention (instead of 1 previously; see
Supplemental Information for details) and found that the performance
of McMLP is still superior to other methods when the dietary inter-
vention strategy is more complex (Supplementary Fig. 2).

We further examined the effect of training sample size on model
performance. While maintaining the same 50-sample test set used
previously, we found that all performance metrics for all methods
improved as the training sample size increased (Fig. 3b1-b3). More
importantly, we found that the performance of McMLP is better than
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Fig. 3 | McMLP provides better predictive power than previously developed
computational methods for predicting endpoint metabolomic profiles on
synthetic data generated from microbial consumer-resource models. Three
computational methods are compared: Random Forest (RF), Gradient Boosting
Regressor (GBR), and McMLP. For each method, we either included (“w/b” label) or
did not include (“w/o b” label) baseline metabolomic profiles as input variables.
Each method with a particular combination of input data is colored the same way in
all panels. Standard errors are computed based on fifty random train-test splits and
shown in all panels (as solid black vertical lines or transparent areas around their
means). To compare different methods, we adopted three metrics: the mean
Spearman Correlation Coefficient (SCC) p, the fraction of metabolites with SCCs
greater than 0.5 (denoted as f . 5), and the mean SCC of the top-5 predicted
metabolites ps. Error bars denote the standard error (n=50). al-a3, For the

Training sample sizes

200 1 2 3 4 5
Intervention doses

100 150
RF (w/o b)

GBR (w/o b)
McMLP (w/o b)

—— RF (w/b)
—— GBR (W/b)
McMLP (w/ b)

synthetic data with an intervention dose of 3 and 50 training samples, McCMLP
provides the best performance for all three metrics regardless of whether the
baseline metabolomic profiles are included or not. bl-b3, When the intervention
dose is 3, the predictive performance of all methods gets better and closer to each
other as the training sample size increases. Including baseline metabolomic profiles
also helps to improve the prediction. c1-c3, When 200 training samples are used,
the performance gap between including and not including baseline metabolomic
profiles shrinks as the intervention dose increases. All statistical analyses were
performed using the two-sided Wilcoxon signed-rank test. P values obtained from
the test are divided into four groups: (1) p>0.05(n.s.), (2) 0.01<p < 0.05(*), (3)
10~3<p<0.01(**), and (4) 10~*<p <10~3(***). Source data of raw data points and p
values are provided as a Source Data file.

RF and GBR at small training sample sizes (20 or 50) and is close to RF
and GBR at large training sample sizes (>50). This demonstrates the
superior performance of McMLP with a limited number of samples,
contrary to the traditional notion that deep learning methods tend to
overfit at small sample sizes®.

We also examined the effect of intervention dose on model per-
formance. By varying the concentration of the intervened food
resource in MiCRM, we generated synthetic data with different inter-
vention doses and subsequently trained all ML methods on them with
200 training samples. We found that the performance gap between
methods using and not using baseline metabolomic profiles narrows as
the intervention dose increases (Fig. 3cl-c3). We believe this is
because a larger intervention dose significantly changes the endpoint
metabolomic profile away from its baseline level, rendering the base-
line metabolomic profile less useful.

Different from the above-mentioned benchmarking method
where training data overlapped across train-test splits, we explored the
impact of non-overlapping training data on our benchmarking results.
To explore this, we created one independent synthetic dataset for each
training and utilized the same, separate dataset as the test set (with 100
samples) for the performance evaluation across all repeats. Based on
this new benchmarking protocol, we have benchmarked the perfor-
mance of all algorithms and once again revealed the amazing pre-
dictive performance of McMLP (Supplementary Fig. 3).

MCcMLP accurately predicts metabolite responses on real human
gut microbiota data

After validating McMLP using synthetic data, we analyzed real data from
six dietary intervention studies to see if its performance on real data was
consistently better than existing methods. The first dataset we collected

Nature Communications | (2025)16:815


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56165-6

g @& = % R * D
Nl
Avocado (SCFAs) Avocado (Bile acids Grains Walnut Almond Broccoli F|bers+Fermented
= b1 Feny  PURYS = @ o= = o 2= prrann P Frrgy PR
04 k iz ; s k : 5. F—
1 ll
sl | I T TRITTIEN
- - r I I
00 = : = | R
a2, ne | (P2 ast | |2 _a e | |2 el B e | |22 B |92 a3
o 0.4 . .
=] b
502 | | '
0. . U . I
b II ) . II TR II y n - |
0.0+ / I—.—
10433 a2 | b3 a5 Rl RN e [ {982 S el R
Lo} . N 0
Q05
. . . * X \ | I
o.o—4u— . u—
RF (w/o b) GBR (w/o b) McMLP (w/ob) EEEE RF (w/b) HEE GBR (W b) McMLP (w/ b)

Fig. 4 | MCMLP is superior to previous methods in terms of predicting endpoint
metabolomic profiles on real data from six dietary intervention studies. Three
computational methods are compared: Random Forest (RF), Gradient Boosting
Regressor (GBR), and McMLP. For each method, we either included (“w/ b” label) or
did not include (“w/o b” label) baseline metabolomic profiles as input variables.
Each method with a particular combination of input data is colored the same in all
panels. Standard errors are computed based on fifty random train-test splits and
shown in all panels (solid black vertical lines). To compare different methods, we
adopted three metrics: the mean Spearman Correlation Coefficient (SCC) p, the
fraction of metabolites with SCCs greater than 0.5 (denoted asf . 5), and the mean
SCC of the top-5 predicted metabolites ps. Error bars denote the standard error
(n=50). al-a3, Comparison of the performance in predicting SCFAs on the data

from the avocado intervention study®. bl-b3, Comparison of performance in pre-
dicting bile acids on the data from the avocado intervention study®. c1-c3, Com-
parison of predictive performance on the data from the grain intervention study®.
di1-d3, Comparison of predictive performance on the data from the walnut inter-
vention study?’. el-e3, Comparison of predictive performance on the data from the
almond intervention study*. f1-f3, Comparison of predictive performance on the
data from the broccoli intervention study*’. gl-g3, Comparison of predictive per-
formance on the data from the high-fiber food or fermented food intervention
study®. All statistical analyses were performed using the two-sided Wilcoxon
signed-rank test. P values obtained from the test are divided into four groups: (1)
p>0.05 (n.s.), (2) 0.01<p < 0.05 (*), (3) 103<p < 0.01 (*), and (4) 10~ *<p <1073 (***).
Source data of raw data points and p values are provided as a Source Data file.

was from a study investigating how avocado consumption alters gut
microbial compositions and concentrations of fecal metabolites such as
SCFAs and bile acids®. In this study all participants were divided into
two groups based on the food components of the meals provided: (1)
avocado group: 175 g (men) or 140 g (women) of avocado was provided
as part of a meal once a day for 12 weeks and (2) control group: no
avocado was included in their control meal®. Baseline (i.e., before the
dietary intervention) and endpoint (i.e., during week 12 of the inter-
vention) microbial compositions and concentrations of SCFAs and bile
acids were quantified. The dataset is unique due to its relatively large
sample size (66 for both avocado and control groups)® compared to
other dietary intervention studies”~>**,

Because the amount of avocado consumed by participants in the
avocado group was very similar and participants in the control group
barely consumed avocado, for simplicity, we encoded the participant’s
dietary intervention in McMLP and other methods as a binary variable
in the input (green icons/symbols representing diets in Fig. 2) whose
value equals 1 or O if the participant is in the avocado or control group,
respectively. Note that in this study the concentrations of fecal SCFAs
and bile acids were obtained from two separate targeted metabolomic
assays. Hence, we separated the concentration prediction of SCFAs
and bile acids to compare the predictability of the two metabolite
classes. We found that for the concentration prediction of both SCFAs
and bile acids, McMLP with the baseline metabolomic profiles con-
sistently produces the best performance (Fig. 4al-a3, b1-b3). Interest-
ingly, the inclusion of baseline metabolomic profiles in the input of
McMLP helps more with the prediction of bile acid concentrations
than with the prediction of SCFA concentrations (p increases from
0.182 to 0.346 for bile acids when metabolomic profiles are included; p
increases from 0.260 to 0.262 for SCFAs when metabolomic profiles
are included). A potential explanation is that the correlation of SCFA
concentrations between baseline and endpoint samples is weaker than
that of bile acids (Supplementary Fig. 4).

We checked the predictive performance of the one-step strategy
that uses the same number of layers and nodes as one step in McMLP
(N, =6 and N}, =2048 in Supplementary Fig. 1b), finding that it is not as
good as that of McMLP (Supplementary Fig. 5). It is worth noting that
augmenting the one-step approach with additional data types through
the two-step McMLP does not automatically guarantee enhanced
predictive performance. The utility of the additional data hinges on its
relevance and the model’s capacity to utilize it efficiently. Despite
these potential uncertainties, we believe the enhanced performance of
McMLP could be attributed to its two-step approach. This method
allows for an initial capture of the endpoint microbial composition,
presumably better associated with the endpoint metabolite con-
centrations. This may also explain why McMLP outperforms RF** and
GBR’®, which employ a one-step approach and do not leverage the
endpoint microbial compositions during method training. We also
compared McMLP with the state-of-art method of predicting meta-
bolomic profiles from microbial compositions measured at the same
time --- mNODE®, finding that it has a worse performance than McMLP
(Supplementary Fig. 6). The worse performance of mNODE is likely
due to the fact that it is not dedicated to predicting metabolomic
profiles at different time points. More technical reasons can be found
in the Supplementary Information.

We extended the method comparison to five additional datasets
from independent dietary studies investigating how microbiota com-
positions and fecal metabolite concentrations were influenced by
adding grains®, walnuts”, almonds*°, broccoli*, and high-fiber or
fermented foods* (the number of fecal microbes and metabolites as
well as the types of metabolites are summarized in Table 1; see
Methods section for details of the studies). Each participant’s dietary
intake was similarly encoded as either a binary variable or a vector
whose value is proportional to the consumed amount of the added
dietary component, depending on the complexity of the dietary
intervention. Further details of the data processing and model

Nature Communications | (2025)16:815


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56165-6

Table 1| Summary of key features of dietary intervention studies used in our method comparison. ASVs: Amplicon Sequence Variants

Types of fecal metabolites

# of fecal metabolites
27

# of ASVs
278

# of intervention periods or groups

# of participants

132
68
18
18
18

hin

SCFAs, BCFAs, and bile acids

Avocado?®

Amino acids, carboxylic acids, lipids, bile acids, and monosaccharides

43

650
419
na

Grains®

Amino acids, carboxylic acids, lipids, bile acids, and monosaccharides

Py

Walnut?’

Amino acids, carboxylic acids, lipids, and bile acids

43

Almond*°

Amino acids, carboxylic acids, lipids, and bile acids

SCFAs and BCFAs

35

855

Broccoli™

503

Fibers or fermented foods®*

Avocado (SCFAs) Avocado (Bile acids)
31 *% *% b1 n.s. *%
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Fig. 5| Including the covariates in metadata (age, BMI, and gender) in the input
of McMLP improves it in terms of predicting endpoint metabolomic profiles on
real data from the avocado intervention study. All results are derived from
McMLP. We either included (“w/ b” label) or did not include (“w/o b” label) baseline
metabolomic profiles as input variables. Each method with a particular combina-
tion of input data is colored the same in all panels. Standard errors are computed
based on fifty random train-test splits and shown in all panels (solid black vertical
lines). To compare different methods, we adopted three metrics: the mean
Spearman Correlation Coefficient (SCC) p, the fraction of metabolites with SCCs
greater than 0.5 (denoted as f . 5), and the mean SCC of the top-5 predicted
metabolites ps. Error bars denote the standard error (n =50). al-a3, Comparison of
the performance in predicting SCFAs on the data from the avocado intervention
study”®. bl-b3, Comparison of performance in predicting bile acids on the data from
the avocado intervention study?. All statistical analyses were performed using the
two-sided Wilcoxon signed-rank test. P values obtained from the test are divided
into four groups: (1) p>0.05 (n.s.), (2) 0.01<p<0.05 (*), (3) 10’3<p <0.01 (*), and
(4)10~*<p <1073 (**). Source data of raw data points and p values are provided as a
Source Data file.

architecture setup can be found in the Supplementary Information. As
shown in Fig. 4, McMLP consistently produces the best performance
across all datasets (p value <0.05 for 47/84 comparison cases, Wil-
coxon signed-rank test applied). The relatively poor performance of all
methods on the data from the study that investigated fibers and fer-
mented foods* is likely due to the fact that a variety of foods within the
fiber and fermented foods categories were consumed by the partici-
pants at will, while other studies were complete feeding trials*.

We noticed that the predictive performance of McMLP on real
data is worse than that in synthetic data. We believe the observed
discrepancy in predictive performance between the synthetic and real
data may be due to the influence of human host, such as host
metabolism*® and health status*’. While p appears to be low (~-0.2 to
0.4), the top-5 best-predicted metabolites for each dataset have great
predictability, likely due to their strong association with the gut
microbiome (Supplementary Fig. 7). We also compared the predictive
performance of McMLP with that of a simple MLP with one hidden
layer with everything else the same as in McMLP, finding that McMLP
generates better performance (Supplementary Fig. 8).

We also explored whether incorporating covariates in the meta-
data can help further improve the predictive performance of McMLP.
We only obtained the covariates for the avocado intervention study.
For the avocado dataset, we have three covariates: gender, BMI, and
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age. We included these three covariates as additional variables in
McMLP, finding that the incorporation of covariates significantly
improves the predictive performance for most cases (Fig. 5). We also
analyzed the permutation feature importance of the three covariates
by shuffling the values of a covariate in the input and then measuring
the reduction in the average Spearman Correlation Coefficients p. We
found that all three covariates are important, except that gender is
slightly less important than age when predicting the SCFAs (Supple-
mentary Fig. 9).

We wonder if the predictive performance of McMLP can be
enhanced if we use the functional profiles generated from the whole-
metagenome shotgun (WMS) sequencing instead of the microbial
compositions derived from the 16S rRNA gene sequencing. To test this,
we leveraged the available WMS sequencing data for a subset of
samples in the avocado study. In the end, only 45 individuals have
paired baseline-endpoint data. Their functional profiles are repre-
sented by 375 pathway features (see Methods section for details). For
the 45 paired baseline-endpoint data, we compared the predictive
performance among three different input data types: (1) microbial
compositions, (2) functional profiles, and (3) combining both micro-
bial compositions and functional profiles. The performance compar-
ison of the three different input data types yields no significant
difference (Supplementary Figs. 10, 11).

For the avocado dataset, we also grouped the ASV (Amplicon
Sequence Variants) compositions from the 16S rRNA gene sequencing
and the species-level microbial compositions from the WMS sequen-
cing to the genus level. When analyzing the 16S sequencing data,
predictions using the ASV-level compositions are generally more
accurate than those using the genus-level compositions (Supplemen-
tary Fig. 12). For SCFAs, the predictive performances based on two
types of compositions are comparable. Regarding the WMS data, we
observed that predictions using the species-level compositions are
slightly better than those using the genus-level compositions (Sup-
plementary Fig. 13).

Inferring the tripartite food-microbe-metabolite relationship

It has been previously shown that an individual’s metabolite response
depends on her/his gut microbial composition”*>*, If we want to
introduce a new dietary resource to boost the concentration of a
health-beneficial metabolite mediated by gut microbes, we need to
target “key” microbial species that meet two criteria: (1) the species can
consume one or more dietary components in the introduced food
resource; (2) the species can increase the metabolite concentration. If
either criterion is not met, it is difficult to boost the metabolite con-
centration via this dietary intervention. Specifically, we identify these
“key” species that satisfy both criteria by revealing the food-microbe
consumption and microbe-metabolite production patterns, which can
be summarized in a tripartite food-microbe-metabolite graph (Sup-
plementary Fig. 14). To achieve this, we performed the sensitivity
analysis of McMLP. In particular, we interpreted a potential relation-
ship between an input variable x and an output variable y by per-
turbing x by a small amount (denoted as Ax) and then measuring the
response of y (denoted as Ay). Following the notion of sensitivity in
engineering sciences, we defined sensitivity s= % and used its sign
(positive/negative) to reflect whether y changes in the same/opposite
direction as x. More technical details of this calculation can be found in
the Methods section or in our previous study®.

We calculated sensitivities for step-1 (and step-2) in McMLP to
infer potential food-microbe consumption (and microbe-metabolite
production) interactions, respectively (Fig. 6a). Specifically, in step-1,
we perturbed the amount of food resource a« and measured the change
in the relative abundance of species i. The sensitivity of species i to
food resource «a is s;, = AA;’a and its sign can be used to reflect the
interaction between species i and food resource a. s;,>0, indicates that
species i can consume some nutrient components of food resource a.

Similarly, for step-2, we define the sensitivity of metabolite § to species
iassg= % The positive sensitivity, sg;>0, reveals potential produc-
tion of the metabolite by species i.

We first evaluated our sensitivity method on the synthetic data for
which we know the ground truth of food-microbe consumption and
microbe-metabolite production interactions. We found that the
inferred sensitivity values for all food-microbe and microbe-
metabolite pairs (Fig. 6b) have a zero-nonzero pattern very similar to
the ground-truth consumption and production rates assigned in
MiCRM (Fig. 6¢). We chose zero as the sensitivity threshold and kept
only positive values for food-microbe pairs (green cells in Fig. 6b, c)
and for microbe-metabolite pairs (red cells in Fig. 6b, c) to explore
consumption and production interactions respectively. To statistically
verify the agreement between ground-truth interactions and inferred
interactions based on sensitivity values, we computed the AUROC
(Area Under the Receiver Operating Characteristic curve) based on the
overlap between true and predicted interactions when the classifica-
tion threshold is varied. More specifically, for each classification
threshold s, .., we predicted the consumption of food resource a by
species i (or production of metabolite a by species i) to be true only if
Sie>Sthres (O Sai>Sthres): We achieved excellent performance in
inferring either food-microbe consumption interactions (green line
and dots with AUROC=0.9 in Fig. 6d) or microbe-metabolite pro-
duction interactions (red line and dots with AUROC = 0.92 in Fig. 6d).

We then performed the same inference on real data from the
avocado study?®. The results are shown in Fig. 6e (Inference results of
other studies provided in the Supplementary Data). Our results shown
in Fig. 6e are in agreement with prior biological knowledge that Fae-
calibacterium prausnitzii is a stronger producer of butyrate* than
Ruminococcus callidus, and R. calidus is a stronger producer of acetate
than F. prausnitzii’®>.

The inference results also enable us to construct the tripartite
food-microbe-metabolite graph. For the sake of simplicity, here we
visualize the avocado-microbe-butyrate subgraph (Fig. 6f). Note that
increased butyrate levels have been shown to be beneficial to host
health by enhancing immune status”*. For the avocado-microbe-
butyrate subgraph, we focused on the top-20 avacado-microbe con-
sumption and top-20 microbe-butyrate production interactions
ranked by their absolute sensitivity values. Only nodes and links
associated with these interactions were shown in this subgraph.
Widths of individual edges in this figure are proportional to the
absolute values of the corresponding sensitivities and node sizes for
microbes are proportional to the products of edge widths connecting
this microbe to avocado at the top and butyrate at the bottom of this
subgraph. We ordered microbial nodes in the middle layer in the
increasing order of node sizes from left to right (Fig. 6f). This organi-
zation helps us identify the key species that serve as both strong
consumers of avocado and strong producers of butyrate. F. prausnitzii
emerged as the most important key species for butyrate production in
response to avocado intervention. Our results are consistent with
previous studies*’. For example, F. prausnitzii levels have been pre-
viously shown to be elevated when avocado is supplied by diet*. In a
separate study, F. prausnitzii has also been shown to produce butyrate
as a metabolite byproduct®.

Discussion

A highly accurate computational method for predicting metabolite
responses based on baseline data and a potential dietary intervention
strategy is a prerequisite for precision nutrition. In this paper, we
developed a deep learning method, McMLP, which predicts metabo-
lomic profiles after a dietary intervention better than existing meth-
ods. We first validated the superior performance of McMLP using
synthetic data generated by a microbial consumer-resource model and
investigated the influence of diet intervention doses and training
sample sizes. We then demonstrated that McMLP produced the most
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Fig. 6 | Applying sensitivity analysis of McMLP accurately infers food-microbe
consumption interactions and microbe-metabolite production interactions in
both synthetic and real data. a The sensitivity of the relative abundance of species
i to the supplied dietary resource a is denoted as s;,. It is defined as the ratio
between the change in the relative abundance of species i (Ay;) and a small per-
turbation in the supplied dietary resource a (Ax,). Similarly, the sensitivity of the
concentration of metabolite 3 to the relative abundance of species i is denoted as
sgi. It is defined as the ratio between the change in the concentration of metabolite 8
(Ayp) and the perturbation in the relative abundance of species i (Ax;). b The
sensitivity values for food-microbe consumption interactions (colored in green)
and microbe-metabolite production interactions (colored in red) in the synthetic
data. ¢ The ground-truth food-microbe consumption rates (colored in green) and
microbe-metabolite production rates (colored in red) in the synthetic data. d The

Area Under the Receiver Operating Characteristic (AUROC) curve based on True
Positive (TP) rates and False Positive (FP) rates which are obtained by using dif-
ferent sensitivity thresholds to classify interactions. e The sensitivity values for
avocado-microbe consumption interactions (colored in green) and microbe-
metabolite production interactions (colored in red) for the real data from the
avocado intervention study. f The avocado-microbe-butyrate tripartite graph
constructed based on the sensitivity values of avocado-microbe consumption
interactions and microbe-butyrate production interactions for the real data from
the avocado intervention study. The edge width and edge arrow sizes are pro-
portional to the absolute values of the sensitivities. All microbes in the middle layer
are arranged from left to right in the increasing order of the incoming edge width
multiplied by the outgoing edge width. Source data are provided as a Source
Data file.

accurate predictions across six different dietary intervention
studies”’?%**3** We proceeded with a biological interpretation of
McMLP results using sensitivity analysis to infer the tripartite food-
microbe-metabolite relationship, finding that the inferred relationship
was quite accurate in synthetic data. Finally, we demonstrated that our
sensitivity analysis applied to real data revealed key species whose

metabolic capabilities were consistent with prior
knowledge.

Currently available dietary intervention studies have many lim-
itations for use in machine learning. First, the sample size (or number
of participants) of these studies is typically small, on the order of
dozens”*****1, The relatively small sample size fundamentally limits

biological
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the performance of any predictive model. While the cross-validation
that we employed is a widely used method for assessing model
robustness and preventing overfitting, its reliability is contingent upon
the sample size. It has been well-documented that performance esti-
mates derived from cross-validation can carry a significant degree of
uncertainty when applied to small datasets such as dietary interven-
tion with walnuts, almonds, and broccoli®. This uncertainty is attrib-
uted to the increased variability in training and validation splits, which
can result in overestimated or underestimated model performance.
This problem may be mitigated in ongoing large-scale research
cohorts with many participants. One such cohort is the All of Us
Research Program, which is attempting to build a diverse health
database of more than one million people across the U.S. and then use
the data to learn how human biology, lifestyle, and environment affect
health. As part of this observational cohort, the recently announced
Nutrition for Precision Health Study will recruit 10,000 participants to
conduct precision dietary interventions®. Second, only a handful of
dietary components have ever been explored in dedicated diet-
microbiota studies. As a result, the computational approaches can only
predict metabolite responses for the limited set of dietary components
used in these studies. However, to realize the promise of precision
nutrition to provide accurate personalized dietary recommendations,
we need a predictive model that can accurately predict metabolite
responses for a wide range of dietary components. Last, other baseline
variables unavailable to us here (e.g., meal composition, age, sex,
demographics, and anthropometric data) might help to improve the
predictive performance. If such data are available, they can be incor-
porated into MCMLP as extra input variables.

Consistent with most dietary intervention studies in the literature,
the data available for this study were primarily the 16S rRNA gene
sequencing data. We acknowledge that 16S rRNA gene sequencing may
restrict our taxonomic resolution to the genus level for certain taxa.
Yet, a unique aspect of this work is that the 16S results were able to be
further explored and validated using WMS data that were available for
a subset of the avocado study. Our comparison of the predictive per-
formance of McMLP between using the microbial compositions and
the functional profiles in the input demonstrates the effectiveness of
using the microbial compositions (at the ASV level) derived from the
16S rRNA gene sequencing data. Indeed, McMLP still yields highly
promising results for identifying important interactions supported by
works of literature: (1) Faecalibacterium prausnitzii is a stronger pro-
ducer of butyrate and (2) Ruminococcus callidus is a stronger producer
of acetate. Both Faecalibacterium prausnitzii and Ruminococcus calli-
dus are identified from the 16S data. These results showcase the power
of performing the sensitivity analysis on well-trained McMLP. Looking
ahead, we believe this lack of data will only be solved by the emergence
of more datasets from dietary intervention studies with paired meta-
bolome and WMS sequencing data. Hopefully, the emergence of new
datasets in the future will open new opportunities for applying and
refining our method. We recognize the inherent complexity of
microbe-metabolite interactions and acknowledge that our approach
primarily focuses on very simplified pairwise consumption/production
interactions between microbes and metabolites. In reality, these
interactions can extend beyond pairwise interactions. For example, the
serum level of enterolactone, one metabolite produced by some gut
microbiota upon consumption of dietary fibers, is influenced by the
dietary fat intake>>*°. Additionally, McMLP currently relies on a limited
selection of metabolites obtained from targeted metabolomics. In the
future, as dietary intervention studies incorporate more comprehen-
sive lists of metabolites, we anticipate that the prediction power of
McMLP will be further improved.

Our McMLP architecture is quite generic—its input variables and
their dimensions can be easily adapted to fit more complex datasets.
For example, if a particular dietary intervention study documents an
extensive list of dietary components, McMLP can be modified to

include an input node for each dietary component to reflect the
amount and frequency of its consumption. Similarly, the predicted
output variables of MCMLP need not be limited to metabolomic pro-
files measured in fecal samples. It can be generalized to predict other
variables such as immune biomarkers or metabolite concentrations
from blood samples. Moreover, McMLP can be interpreted through
sensitivity analysis, revealing numerous interactions supported by
existing literature evidence. If McMLP can successfully predict other
data types, it might be feasible to infer other types of interactions.

Unlike other machine learning methods that typically require
hyperparameter tuning to achieve the best performance for each
dataset with a different set of hyperparameters, McMLP consistently
outperformed existing machine learning methods across six real
datasets even without hyperparameter tuning. We speculate that
McMLP exploited the recently observed “double-descent” behavior for
the risk curve®’, which suggests that an overparametrized deep-
learning model (i.e., one with an extremely large number of model
parameters) can generate better and more consistent performance
than models with less capacity and more carefully tuned hyperpara-
meters. To reach this overparameterized regime, we used a large and
fixed number of layers Ny=6 and a large hidden layer dimension
N}, =2048, exceeding both the number of microbial species and the
number of metabolites. One benefit of using such a model free of
hyperparameter tuning is the shorter training time. Since the typical
5-fold cross-validation used to select the best set of hyperparameters is
the most time-consuming part of a typical deep learning workflow,
MCcMLP saves a significant amount of time required for hyperpara-
meter tuning and thus has a shorter training time (-5 min for each run
of McMLP on the avocado intervention study®).

Methods

Ethical compliance statement

In this study, we used publicly available datasets from previous studies,
whose study procedures were administered in accordance with the
Declaration of Helsinki and were approved by the University of lllinois
Institutional Review Board.

Datasets
The datasets utilized herein were generated as part of work on
bacterial’®® and metabolite’” biomarkers of food intake, which provided
anonymized microbial and metabolomic data. The dataset related to
the fibers or fermented foods intervention study is available for
download in the supplemental material of the original publication®.
The main characteristics of the dietary intervention studies used above
are summarized in Table 1. Across all studies, fecal or blood samples
were collected before and after each dietary intervention period. Gut
microbiota composition was determined by the 16S rRNA gene
sequencing and metabolomic profiles of either fecal samples or blood
serum samples were determined by tandem liquid chromatography-
mass spectrometry (LC-MS/MS) and gas chromatography-mass spec-
trometry (GC-MS) metabolomics. For all machine learning tasks, the
same fifty random 80/20 train-test splits were used to ensure a fair
comparison of methods. Further details are described below:
Avocado intervention study. This dataset was reported by a diet-
ary intervention study that investigated how avocado consumption
altered the relative abundance of gut bacteria and concentrations of
microbial metabolites in 132 adults with overweight or obesity®. All
participants were assigned to the avocado treatment or no-avocado
control group (66 each for arm). They consumed isocaloric meals with
or without avocado (175 g, men; 140 g, women) once daily for 12 weeks.
For fecal samples collected before and after the dietary intervention,
278 ASVs (Amplicon Sequence Variants) were determined by the 16S
rRNA gene sequencing and profiles of 6 SCFAs and 21 bile acids were
generated by LC-MS/MS metabolomics. Out of 132 individuals, 45
individuals’ fecal samples (both collected before and after the dietary
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intervention) underwent whole-metagenome shotgun (WMS)
sequencing. To obtain the taxonomic profiles, DIAMOND (double
index alignment of next-generation sequencing data) v2.0.11.149 was
used in conjunction with the National Center for Biotechnology
Information (NCBI) non-redundant (nr) protein reference database
(June 2021) to align translated DNA query sequences. DIAMOND was
set to “sensitive” mode, targeting alignments with >40% identity with
an e-value of 0.00001°%. Each sample’s sequences from the merged and
cleaned 165 FASTQ file were aligned against the NCBI-nr database,
producing a corresponding output DIAMOND alignment archive file.
DIAMOND was set to “sensitive” mode, targeting 167 alignments with
>40% identity with an e-value of 0.00001%. To generate the functional
profiles, MEGAN (MEtaGenome ANalyzer) v6.12.2 Ultimate Edition was
then used to perform functional analysis of the sequence alignments
against the KEGG gene database®™. For each sample, the sequence
alignments produced by DIAMOND in the previous step were matched
to a KEGG ortholog (KO) accession, producing a MEGAN file containing
the total count of each KO across each sample®. NCBI taxonomy
counts were also exported from MEGAN in a similar fashion®. Even-
tually, 859 microbial species-level microbial taxa were identified and
14,109 KOs were identified in the functional profiles. Since the number
of KOs (14,109) is too large to be included in our machine-learning
algorithms, all KOs are grouped into pathways. Eventually, there are
375 pathway features in the functional profiles.

Grains intervention study. This dietary intervention study inves-
tigated how grain barley and oat consumption affects gut bacteria
relative abundances and concentrations of microbial metabolites in 68
healthy adults®. All participants were randomly assigned to receive
one of three treatments: (1) a control diet containing 0.8 daily servings
of whole grain/1800 kcal, (2) a diet containing 4.4 daily servings of
whole grain barley/1800 kcal or (3) a diet containing 4.4 daily servings
of whole grain oats/1800 kcal. Fecal samples were collected before and
after the dietary intervention.

Walnut intervention study. This dietary intervention study inves-
tigated how walnut consumption affects the gut microbiota and
metabolite concentrations in 18 healthy adults”. All participants
completed two 3-week treatment/intervention periods separated by a
1-week washout period. Fecal samples were collected before and after
the dietary intervention period.

Almond intervention study. This dietary intervention study was
conducted in 18 healthy adults*®. All participants completed four
3-week treatment periods and one control period separated by a
1-week washout period. Fecal samples were collected before and after
the dietary intervention period.

Broccoli intervention study. In this study, 18 healthy adults com-
pleted two 18-day treatment periods separated by a 24-day washout
period*. Fecal samples were collected before and after the dietary
intervention period.

Fibers or fermented foods intervention study. This dietary inter-
vention study was designed to investigate how consumption of plant-
based foods rich in dietary fibers or fermented foods alters gut bac-
teria and their associated metabolites in 36 healthy adults®. All parti-
cipants were divided into the high-fiber or the high-fermented-foods
arm (18 each for arm). The entire dietary intervention lasted 17 weeks.
Their fecal or blood serum samples were collected before and after the
dietary intervention period. Gut microbiota composition in fecal
samples was determined by the 16S rRNA gene sequencing and
metabolomic profiles of serum samples were generated by the LC-MS
metabolomics.

McMLP

McMLP consists of two coupled MLPs: (step-1) in the first step (using
the MLP at the top in Supplementary Fig. 1a), we predict endpoint
microbial compositions based on baseline microbial compositions,
baseline metabolomic profiles, and dietary intervention strategy;

(step-2) in the second step (using the MLP at the bottom in Supple-

mentary Fig. 1a), we take the predicted endpoint microbial composi-

tions from the first MLP, baseline metabolomic profiles, and dietary
intervention strategy to predict endpoint metabolomic profiles.

* Data processing: The CLR (Centered Log-Ratio) transformation is
applied to microbial relative abundances and the loglO transfor-
mation is applied to metabolite concentrations.

Model detail: Each MLP model (for either the top or the bottom

MLP in Supplementary Fig. 1) has 6 hidden layers in the middle,

sandwiched by input and output variables. Each hidden layer has a

fixed hidden layer dimension of 2048.

* Training method: The Adam optimizer®” is used for the gradient
descent. Specifically, each dataset is split into the train-test set
with 80/20. Then the training set is further split into the train-
validation set with 80/20. Training stops when (1) the Mean
Squared Error (MSE) averaged over all metabolites on the training
set is less than 0.1 and (2) the mean SCC (Spearman Correlation
Coefficient) of annotated metabolites p on the validation set starts
to decrease within the last 20 epochs.

* Activation function: ReLU (Rectified Linear Unit).

Inference of food-microbe and microbe-metabolite interactions
via sensitivity

The two MLP models in the well-trained McMLP can be interpreted
separately. We first interpret the first MLP (step 1) in McMLP for food-
microbe consumption interactions by the amount of food resource a
(Ax,) and then measure the change in the relative abundance of spe-
cies i(Ay;). Mathematically, for the sample m in the training set, we set
the new value of this variable as zero. As a result, the perturbation

amount for this variable in sample m is Ax{™ =0 — x™ = — x™ where

x™ is the unperturbed value. We can measure the change in the

relative abundance of species i for sample m (Ayﬁ"’)) and define the
(m) _ &y
i Ax*
Finally, we can average sensitivity values across samples to obtain the

sensitivity of species i to food resource a for sample m as s

(m)

average sensitivity of species i to food resource a: s;, = NL where
train
Nrain is the number of training samples. Similarly, for the second MLP

A (m) (r_m A
= Aﬁfm, and sp; = #xﬂ’ to infer
microbe-metabolite interactions by perturbing the relative abundance
of species i (Ax;) and then measuring the change in concentration of

metabolite 3 (Ayp).

(step-2) in McMLP, we can define s

Statistics

To calculate correlations throughout the study, we used Spearman’s
correlation coefficient. Wherever P values were used we calculated the
associated null distributions were computed from scratch. The non-
parametric Wilcoxon signed-rank test is employed to evaluate differ-
ences in predictive performance among the algorithms. All statistical
tests were performed using standard numerical and scientific com-
puting libraries in the Python programming language (version 3.7.1)
and Jupyter Notebook (version 6.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Instructions for downloading 16S rRNA gene sequencing and meta-
bolomics data analyzed in this work can be found in the literature
exploring bacterial biomarkers of food intake®, metabolite
biomarkers*, and the effects of fibers or fermented foods on immune
markers®*. To facilitate the data downloading, the URLs to those
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datasets are also provided in our McMLP GitHub repository (https://

github.com/wt1005203/McMLP)%°,

The shotgun metagenomic

sequencing data of the avocado intervention study has been deposited
to NCBI SRA (project accession number: PRINA1198318). Source data
are provided with this paper.

Code availability
The code of McMLP was deposited to the same McMLP GitHub
repository.
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