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A dynamic optimization of soil phosphorus
status approach could reduce phosphorus
fertilizer use by half in China

Haiqing Gong1,2, Yulong Yin1,2, Zhong Chen1, Qingsong Zhang1, Xingshuai Tian1,
Zihan Wang1, Yingcheng Wang1 & Zhenling Cui 1

Sustainable phosphorus (P) management is essential for ensuring crop pro-
ductionwhile avoiding environmental damage and the depletion of phosphate
rock reserves. Despite local demonstration scale successes, the widespread
mobilization of smallholder farmers to adopt sustainable management prac-
tices remains a challenge, primarily due to the associated high costs and
complicated sampling. Here, we propose a dynamic optimization of soil P
status (DOP) approach aimed at managing long-term soil P status within the
range of agronomic and environmental soil P thresholds, which facilitates the
precise determination of optimal P application rates without the need for
frequent soil testing. We evaluate the DOP approach in 35,575 on-farm trials,
and the results show that it is agronomically acceptable. Our evaluation
extends to estimating future soil P status and P fertilizer inputs across all
counties in China for three cereal crops (wheat, rice, and maize). The results
indicate that, compared to current practices, the DOP approach can achieve a
47.4% reduction in P fertilizer usewithout any yieldpenalty. TheDOPapproach
could become an effective tool for global P management to safeguard food
security and enhance environmental sustainability.

The planetary phosphorus (P) boundary has been substantially trans-
gressed in many regions1,2. Agriculture is the primary driver con-
tributing to global P depletion, consuming over 80–90% of global P
reserves through the 2010s3. The massive input of P fertilizer to agri-
culture has led to substantial P accumulation in agricultural soils.
Globally, croplands experience an annual soil P accumulation of 6.6 Tg
P yr–1 (ref. 3), exacerbating P loss to the environment and contributing
to freshwater eutrophication4–6. It is estimated that the total P fertilizer
input needs to be reduced by at least 50% globally to maintain the
global P cycle within suggested planetary boundaries7,8. Meanwhile,
phosphate rock is unevenly distributed globally and non-renewable9.
Higher phosphate rock prices can further hinder access to affordable
P fertilizers for millions of farmers in low-income countries, exacer-
bating the already low efficiency of crop production10. In-season

P management strategies have been developed to optimize P inputs
based on real-time soil testing10. However, these methods require
substantial investments of time and human resources, presenting
scalability challenges, particularly in regions predominated by small-
holder farming, such as sub-Saharan Africa, India, and China11. Mobi-
lizing smallholders to adopt advanced P technologies that do not
require sophisticated soil testing for significant P reduction is a priority
for global sustainable development goals.

China is at a point where P fertilizer consumption has increased
5-fold from 1978 (1.0million tons) to 2017 (5.0 million tons) for food
security12. Smallholders in China tend to adopt a cautious approach to
P management, in which P inputs are significantly higher than crop
P removal, with an average soil P surplus of 39.3 kg P ha–1 yr–1

(refs. 12,13). This substantial soil legacy P contributes to elevated
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leaching and runoff, threatening the wellbeing of aquatic organisms
and humans14–16. These problems have become increasingly pro-
nounced in recent years, carrying substantial global implications.
Notably, from 2011 to 2020, 18.8% of the increase in global P con-
sumption is attributed to China17. In 2020, China consumes >30% and
produced 35% of the global P fertilizer annually18,19, while possessing
only 4.6% of the global phosphate rock reserves20. Thus, improved soil
Pmanagement practices in China are of significant interest globally, as
an indicator of P-related pollution and scarcity challenges.

Optimal Pmanagement strategies entail the annual monitoring of
soil P levels and determination of the additional P amounts required
for the subsequent crop21. In soils with a low P status, high P fertilizer
application rates increase soil P levels over time, resulting in aug-
mented yields and higher residual soil P levels22. For soils with mod-
erate P levels and little P fixation, management efforts must focus on
balancing inputs and outputs at the scales of field and farm to max-
imize profitability, avoid excessive accumulation, and minimize the
risk of P losses23,24. However, limited information on soil P status has
impeded the development of rational P management strategies on
smallholder farms, and the static soil Olsen P testing method is
tedious, which discourages its routine use by smallholder farmers or
for regional monitoring. Numerous studies have noted that changes in
soil P status can be represented by the balance of P inputs and outputs,
which are directly determined soil available P25,26. Currently, methods
for the dynamic simulation of annual soil P status annually remain
limited due to their unsatisfactory extrapolation performance (e.g.
climate, soil, and management) in treating complex correlations in
various locations and the lack of strongly correlated covariates. Such
uncertainty is a significant barrier to accurate P management and
improved policies to sustain economic crop benefits and food suffi-
ciency with minimum P-related pollution.

To fill these research gaps and to inform policymaking for opti-
mizing P management, we develop an approach termed dynamic
optimization of soil P status (DOP) to assist farmers in determining
optimal P application rates without the need for frequent soil testing.
The first step in developing the DOP approach is to calculate the soil
available P efficiency (APE), defined as the change in soil available P
(mgkg–1) per unit of soil P balance (kgha–1) for a specificfield. Then, the
geographical distribution of APE across major agroecological zones in
China is used to estimate P application rates based on the simulated
soil P status. The fundamental objective of the DOP approach is to
optimize the root-zone soil P status within prescribed agronomic and
environmental soil P thresholds by modulating the soil P balance. The
DOP approach is tested in tens of thousands of controlled field trials
with maize (n = 15,851), rice (n = 7424), and wheat (n = 12,300) across
China. Finally, we apply the DOP approach to predict yearly recom-
mended P application rates and soil available P for cereal crops (wheat,
rice, and maize) in ~3000 counties in China. Our findings will guide
policymakers and facilitate region-specific P management in China,
while also being applicable to other countries striving to enhance food
security and reduce P-related pollution simultaneously.

Results
Soil available P efficiency in China
We collected 424 published observations from 68 locations to esti-
mate soil APE (Supplementary Fig. 1). The APE across all in-situ
observations ranged from 0.01 to 0.21mg kg–1/kg ha–1 (5th–95th per-
centile), with a mean of 0.08mg kg–1/kg ha–1. Notably, APE values were
consistently highest in soils under wheat, followed by those under
maize and rice. The largest APE was observed in Cambisols, which was
about 42.9% higher than in semi-hydromorphic soil, followed by
Luvisols, Ferralsols, Semi-luvisols, Anthropic soil, and Calcisols. Fur-
thermore, APE values varied based on the type of P fertilizer used.
Monoammonium phosphate and diammonium phosphate demon-
strated higher APE values compared to super-phosphate and triple

super-phosphate, whereas the lowest values were observed with cal-
cium magnesium phosphate used (Fig. 1a).

We performed the random forest (RF) modeling to assess the
influenceof environmental factors onAPE. The results showed that the
mean annual temperature (MAT), soil available P (AP), bulk density
(BD),microbial biomass P (MBP),microbial biomass carbon (MBC), soil
organic carbon (SOC), region, soil clay content (Clay), and soil total
nitrogen (TN) emerged as the most influential factors (Supplementary
Fig. 2). Direct relationships between continuous explanatory variables
and APE were further analyzed using a nonparametric smooth
regression model (Fig. 1b). APE increased with higher levels of MAT,
AP, SOC, Clay, pH, and TN initially. However, above certain thresholds,
such as a MAT of 12°C, soil AP of 30mg kg–1, SOC of 14 g kg–1, Clay of
18%, pH 7.8, and TN of 0.8 g kg–1, APE was substantially decreased. APE
tended to increase, stabilize, and then further increase at BD levels of
<1.2, 1.2–1.3, and >1.3 g cm–3, respectively. MBP exhibited a non-linear
relationship with APE, with increases observed below 12mg kg–1 and
above 18mg kg–1. Conversely, higher MAP values were associated with
decreases in APE. MBC showed a distinct pattern with APE, with
increases observed below 220mg kg–1 and above 500mgkg–1.

We developed an RF regression model using machine learning
techniques to elucidate the detailed spatial patterns of APE. The RF
regressionmodel links APE with climate, soil, and region, according to
high-spatial-resolution raster datasets (Supplementary Fig. 3). A com-
parison of observed and simulated APE by RF modeling produced a
regression coefficient of determination (R2) of 0.75, indicating that the
fitted RFmodels explained 75%of the impact by input variable impacts
on APE (Supplementary Fig. 2b). The models effectively captured the
spatial patterns of APE, demonstrating their suitability for upscaling to
the national level.

APE values were estimated by the model at a grid scale of 1 km×
1 km (Fig. 1c). The estimated area-weighted mean grid-level APE was
0.08mg kg–1/kg ha–1 (0.05–0.11mg kg–1/kg ha–1, 5th–95th percentile),
which is consistent with the value obtained for the synthesized dataset
(0.08mg kg–1/kg ha–1). Cropland APE exhibited pronounced spatial
heterogeneity, ranging from 0.03–0.13mg kg–1/kg ha–1. Notably, our
findings also highlight large spatial variability in APE among regions.
APEwas highest in Central China (CC), with an average of 0.10mgkg–1/
kg ha–1, and lowest in South China (SC), with an average of
0.06mg kg–1/kg ha–1.

Estimation of the current soil P status
Maintaining soil available P concentrations at safe P levels through
sustainable cropland P management is a prerequisite for maximizing
food security and minimizing environmental risks. These safe soil P
levels lie between the agronomic and environmental soil P threshold
values (Fig. 2a). The agronomic soil P threshold is the level of soil P that
is considered optimal for crop growth and yield. We determined
agronomic soil P threshold values in farm trials during 2005–2014 at
11,079, 7492, and 8325 sites for maize, rice, and wheat, respectively
(Supplementary Fig. 4). For double-crop rotation, we adopted the
higher agronomic soil P threshold for maize and wheat as the agri-
cultural soil P threshold. The recommended agronomic soil P thresh-
olds for upland soils (wheat and maize) in the Northwest (NW),
Northeast (NE), CC, Yangtze Plain (YP), and SC regions were 25.8, 19.2,
23.9, 26.7, and 24.4mgkg–1, respectively, whereas those for rice pro-
duction, were 22.1, 23.2, 19.7, 18.7, and 25.3mgkg−1, respectively
(Fig. 2b and Supplementary Fig. 5). The environmental soil P thresh-
olds were determined according to critical levels for P leaching
potential, as 39.9, 51.6, 51.0, 40.2, and 50.3mgkg–1 for the NW, NE, CC,
YP, and SC regions, respectively (Fig. 2b), as described in previous
studies27–30.

Employing data from nationwide soil testing campaigns con-
ducted in 2018, we estimated soil available P status for maize
(n = 79,131, Supplementary Fig. 6a), rice (n = 62,360, Supplementary
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Fig. 6b), and wheat (n = 28,487, Supplementary Fig. 6c) systems in
China. The interpolation method was used to standardize the reso-
lution of all data to a 1 km × 1 km grid-level; the estimated national
average soil available P formaize, rice, andwheat were 30.2, 25.0, and
24.2mg kg–1, respectively (Supplementary Fig. 6d–f). Soil available P
levels exhibited large spatial variation at the national scale. P defi-
ciency (soil available P <agronomic soil P threshold)was observed for
maize, rice, and wheat, accounting for 58.5%, 59.9%, and 69.5% of all
land, respectively. The relative proportions of land with optimal
P levels (agronomic soil P threshold ≤soil available P <environmental
soil P threshold) were 24.6%, 28.3%, and 21.3% for maize, rice, and
wheat, respectively. The proportions of total arable land exhibiting
P leaching risk (soil available P ≥environmental soil P threshold)
were 16.9%, 11.8%, and 9.2% for maize, rice, and wheat, respectively
(Fig. 2c–e).

Implementation of DOP approach with smallholder fields
TheDOP approachwas specifically designed to improve soil P status in
P deficient soil, and limit the accumulation of soil P in soils with high

risk of P leaching. The P fertilizer application rates recommended
based on the DOP approach can be less than, more than, or equal to
crop P removal, depending onwhether the soil P level is at a P leaching
risk, P deficient, or optimal. The DOP approach was derived from on-
farm P rate experiments conducted during 2005–2014 at 15,851, 7424,
and 12,300 sites for maize, rice, and wheat, respectively (Supplemen-
tary Fig. 7). Plots were established for four treatments: no P applica-
tion, optimum P application rates (OPR), 50% OPR, and 150% OPR,
where OPR was determined by local extension staff based on county-
specific ranges. In soils with P deficiency, high P inputs (150% OPR)
were required to maintain high crop yields. Conversely, in soils with
P levels exceeding the leaching risk, crop yields in the OPR, 50% OPR,
and 150% OPR treatments did not differ significantly from the no
P treatment. In soils with optimum P levels, OPR treatments with equal
P input andP removal rates achieved the highest yields, and the further
addition of P beyond OPR did not increase yield. P application rates
below the OPR resulted in reduced yields (Fig. 3).

Employing data from 8.64 million farmer surveys, we mapped
county-specific soil P balance for the three cereal crops in China. The
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Fig. 1 | Soil available phosphorus (P) efficiency in China. a Soil available P effi-
ciency from literature-based dataset. The solid line within the box indicates the
median value, while the red solid line represents the mean. The left and right
edges of the box mark the 25th and 75th percentiles, respectively. The short lines
(whiskers) at both ends denote the 5th and 95th percentiles, respectively, and the
solid black dots represent outliers. Different lowercase letters indicate significant
differences between groups within each category at the p < 0.05 level. b The
relationship between observed soil available P efficiency and predicted, deter-
mined by random forest modeling. The error bands (shaded areas) correspond to
the 95% confidence intervals of the relationships, and the dashed lines represent

the average soil available P efficiency. Statistical analysis was performed using a
two-sided t-test, and all results were considered significant at the p < 0.01 level.
c Maps showing the predicted soil available P efficiency of cropland. AP soil
available P, BD soil bulk density, MBP microbial biomass P, MBC microbial bio-
mass carbon, SOC soil organic carbon, Clay soil clay content, TN soil total
nitrogen, APE soil available P efficiency, CC Central China, YP Yangtze Plain, NE
Northeast, NW Northwest, SC South China. Source data are provided as a Source
Data file. Base map data adapted from GS(2020)4619, http://bzdt.ch.mnr.gov.cn/.
Map created using ArcGIS software.
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soil P balance across all counties averaged 23.4 kg P ha–1 for maize
(ranging from −24.1 to 118.5 kg P ha–1), 11.9 kg P ha–1 for rice (ranging
from −23.2 to 102.8 kg P ha–1), and 25.8 kg P ha–1 for wheat (ranging
from −30.7 to 130.1 kg P ha–1) (Supplementary Fig. 8). The estimated
national average soil available P levels were 29.2 (ranging from 7.0 to
129.6mg kg–1), 27.1 (ranging from 6.2 to 125.6mg kg–1), and
24.2mg kg–1 (ranging from 5.8 to 129.8mg kg–1) in 2020 for maize,
rice, and wheat, respectively. The DOP approach was used to opti-
mize P application rates for all counties and summarized at the
country level. The optimized country-scale P application rates were
estimated to be 23.6, 31.2, and 20.9 kg P ha–1, which are 47.1%, 19.0%,
and 51.4% less than those currently applied by farmers (Supplemen-
tary Fig. 9).

Managing P over time in China
We predicted the time required to bring soil P to the optimal level
(agronomic soil P threshold ≤ soil available P < environmental soil P
threshold) at the county-level (see Methods). Assuming that all
counties adopt the DOP approach, the estimated time for soil P to
reach the optimal level was 45 years for maize, 49 years for rice, and
57 years for wheat (Fig. 4a–c). The corresponding county-specific soil
available P increased by 12.5%, 12.8%, and 24.0% compared to 2018
levels (Fig. 4d–f). Theoptimal P application rateswere thus estimated
to be 21.2, 26.5, and 17.1 kg P ha–1 for maize, rice, and wheat, respec-
tively, representing reductions of 52.5%, 31.2%, and 59.2% compared
to 2018 levels. The overall net reduction in P use would be 1.8 Tg (0.8
Tg formaize, 0.3 Tg for rice, and 0.7 Tg for wheat), representing 47.4
% of the national P use for cereal crop production in 2018 (Fig. 4g–i).
Notably, if the DOP approach is not implemented, 1521 (81.4%), 772
(59.3%), and 1243 (85.7%) counties would face high risk of P leaching
under maize, rice, and wheat production, respectively (Supplemen-
tary Fig. 10).

Discussion
Achieving investments to build up soil P availability is critical to meet
the growing food demand while addressing the multiple challenges of
exacerbating P-related pollution and depleting phosphate rock
reserves10,31. Over the past century, P-related pollution has grown in
association with increasing population, agricultural intensification,
and a warming climate32,33. Although efforts are now focused on
reversing this problem through frequent real-time in situ field mon-
itoring, the long history of P overuse to maximize crop yields in some
developed regions continues to drive high stream P concentrations
and coastal eutrophication16,34. We propose an innovative DOP
approach for achieving dynamic, region-specific P management by
conducting soil tests every few years and continuously improving the
model as new data become available. In the long term, the DOP
approach has the potential to reduce fertilizer use significantly, by
47.4% without compromising crop yields in China, compared to cur-
rent practices. Our study provides a simple and useful tool for estab-
lishing a county-specific P fertilizer program, enabling local farmers to
manage soil P precisely, thereby enhancing productivity and improv-
ing environmental performance.

Our study constitutes an important addition to the range of viable
solutions aimed at informing policymaking with regard to addressing
P-related challenges. Effective P management requires tailored
approaches, considering that larger P inputs are necessary for low
P soils, while lower inputs suffice for higher P soils to minimize
P movement into the environment34. However, both P-poor and P-rich
regions lack the means to assess soil P levels and determine soil
P balance at larger scales, and farmers lack incentives to promote the
adoption of P conservation practices5,35,36. Our study presents national
high-resolution maps with spatial estimates of APE, offering a method
for simulating soil available P to predict, accurately, annual crop
P application. Using the DOP approach, policymakers could develop
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using ArcGIS software.
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location-specific P fertilizer rates as obligatory fertilization quotas,
avoiding uniform fertilization rates at the national scale. Governments
could also regulate total national P consumption, invest in domestic P
fertilizer production, and participate in global trade. Global P con-
sumption may be overestimated if based solely on past global P use
trends and per capita gross domestic product37,38. In many developed
countries, cereal yields have increased over the past 20 yearswithout a
significant rise in P fertilizer use, and in some areas, P use has even
substantially declined39,40. Historically high P fertilization has boosted
soil P fertility and increased P movement from agricultural systems to
the environment in the USA and UK, where national soil P levels
average 17.6 and 46.6mg kg–1, respectively41. Recently, crop produc-
tion has continued to rise without significant increases in P fertilizer in
the USA and with substantial declines in the UK. Consequently, P fer-
tility in both countries has remained stable or even declined in regions
with high soil P levels.

The DOP approach is agronomically robust and relatively flexible,
making it accessible for smallholders, despite variation in P manage-
ment across different counties and locations. We suggest that this
approach may be extended to other regions, particularly in counties
with large disparities between agronomic P inputs andoutputs, suchas

many parts of Asia and North America39,42. A sizeable fraction of the
global cropland area (69%) exhibits large negative or positive P
imbalances, corresponding to P deficient soils and the P leaching rich
soil, respectively42. Considering the numerous challenges confronting
farmers and the low adoption rate of improved P management prac-
tices, the successful implementation of the DOP approachwill depend
on the establishment of incentive frameworks in each region, with
governmental subsidies serving as indispensable policy tools to
incentivize improved P management for smallholders43. In terms of
technological support, a national county-based evaluation platform is
needed to obtain more precise optimal P rate recommendations that
are revisedwithout frequent soil testing, similar to the Comprehensive
Nutrient Management Plans implemented in the USA44.

We amalgamated existing experiments, modeling, statistics, and
surveys of Chinese crop production, and found that the DOP approach
is a useful tool for developing region-specific P management recom-
mendations. Nevertheless, these comprehensive analyses presented
are subject to limitations. First, although field measurements for ana-
lyzing APE were distributed across five major P management regions,
relatively few in situ field experiments have been performed to esti-
mate APE across China, which may have led to uncertainties in our
analysis. The types of P fertilizer were not considered in the con-
struction of the APE model, due to current lack of grid data on the
specific forms of P fertilizers used. Moreover, the gridded dataset
included climate factors and soil properties from different periods
may have contributed to uncertainty in our estimations. Nationwide
APE monitoring studies and detailed data should be conducted to
correct these uncertainties in the future. Soil available P change can be
influencedby soil P accumulation, thus influencingAPE. Studies should
pay attention to this process to refine this models26. Second, fluctua-
tions in weather and future climate change could potentially impact
P recommendations45,46. Significant uncertainties exist in our DOP
approach for obtaining precise optimal P rate recommendations since
we cannot predict the frequency and extent of future extreme climate
events. Establishing a research infrastructure that can react rapidly to
changing environmental conditions, similar to a previously proposed
nitrogen (N) rate strategy47, is essential for increasing the feasibility of
our method amidst a changing climate. Third, specific cropland man-
agement factors were not explicitly considered in our analyses. The
methods and timing of P fertilizer application, irrigation practices, and
the incorporation of straw/stover may influence soil P cycles and,
consequently, impact APE. Therefore, the DOP approach should be
routinely updated and refined to ensure that it remains suitable for
various locations and cropping systems.

Achieving investments to promote soil P availability to secure
future productivity andmitigate environmental losses by smallholders
necessitates further refinement of P recommendations. These man-
agement strategies should be routinelyupdated to ensure that they are
suitable for various locations, genetics, cropping systems, and cli-
mates. Coupling our county-specific DOP approach with other
advanced P fertilizer management techniques (e.g., P fertilizer coating
and fertigation) and other practices (e.g., cropping system patterns
and residue retention) would further increase the benefits of adopting
optimal P rates, creating a virtuous circle of food security and envir-
onmental sustainability48. Our study contributes to the creation of a
precise county-level inventory for sustainable Pmanagement, offering
a valuable solution to simultaneously achieve the co-benefits of con-
serving P resources and enhancing environmental performance. The
DOP approach is pivotal for ensuring the long-term sustainability of
food production and has the potential to inspire a global vision for
P sustainability.

Methods
The research reported here consists of four components (Fig. 5): (i)
Data collection from peer-reviewed articles derived from field trials

P deficient soil P optimal soil P leaching risk soil

Fig. 3 | Implementation of the dynamic optimization of soil phosphorus (P)
status approach with smallholder fields. Crop yields with different P treatments
during 2005 to 2014 were observed at 15,851, 7424, and 12,300 sites for maize, rice,
andwheat, respectively. The P treatments includeno P application (No P), aswell as
50%, 100%, and 150% of the optimal P rate (OPR). The solid line within the box
indicates the median, while the red solid line represents the mean. The upper and
lower edges of the box denote the 75th and 25th percentiles, respectively. The
whiskers (short lines extending from the box) correspond to the 95th and 5th
percentiles, respectively, and the solid black dots represent outliers. Different
lowercase letters indicate significant differences in cereal crop yield among the
various P treatments (p <0.05). Source data are provided as a Source Data file.
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conducted across major agroecological zones, which were used to
develop RFmodels to predict current grid-level national cropland APE;
(ii) Development of the DOP approach to determine optimal P appli-
cation rates by simulating soil P status through the geographic

distribution of APE across China; (iii) Testing of the DOP approach in
35,575 on-farm trials during 2005–2014 to assess its applicability; and
(iv) Prediction of optimal P application rates and changes in soil
available P based on the DOP approach, assuming that crop yields
remain would consistent with 2018 levels.

Data collection for soil APE estimation
With the aim of constructing a comprehensive database of experi-
mentally determined APE values across major agroecological zones in
China, we searched for peer-reviewed research papers published from
January 1980 to December 2022 on the Web of Science (https://www.
webofscience.com), Google Scholar (http://scholar.google.com) and
China National Knowledge Infrastructure (http://www.cnki.net). The
search terms included the keywords “phosphorus”, “soil available
phosphorus”, “soil phosphorus balance”, “soil phosphorus budget”,
and “phosphorus fertilizer” in combination with “field application”,
“phosphorus uptake”, and “crop yield” in the article title, abstract or
keywords. The results from the three databases were aggregated and
relevant articles were carefully selected.

To be included in the database, published experiments were
required to satisfy the following criteria: (1) the experiment reported in
the study was conducted in the field, excluding any laboratory,
greenhouse, or pot experiments; (2) initial and final soil available
P content as well as experiment start and end dates were reported; (3)
to reflect the P balance, detailed descriptions of total P use and crop
P uptake were reported; (4) the publications reported comparisons
between control (i.e., no P input) and P treatments (i.e., with P input).
Using these constraints, a total of 424 pairs of observations across
China were selected from 68 published studies for our analysis (Sup-
plementary Fig. 11). The full list of all publications used inour analysis is
included at the endof the Supplementary Information (Supplementary
Note 1), and detailed information on each of the locations of the
experimental sites is provided in Supplementary Fig. 1.

Soil properties, climate variables, and management-related
variables were extracted from each record. Soil properties included
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Fig. 4 | Managing phosphorus (P) over time in China. a–c Predicted years
required to bring P to the optimal level for maize, rice, and wheat production.
d–f Trends of annual P application and soil available P for maize, rice, and wheat
production. g–i Current total P fertilizer input level (CL) and the recommended

P fertilizer input after optimization (OR) for maize, rice, and wheat production.
Source data are provided as a Source Data file. Base map data adapted from
GS(2020)4619, http://bzdt.ch.mnr.gov.cn/. Map created using ArcGIS software.
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soil pH, soil available P (AP, mg kg–1), soil total nitrogen content (TN,
g kg–1), soil organic carbon (SOC, g kg–1), bulk density (BD, g cm–3),
microbial biomass carbon (MBC,mg kg–1), microbial biomass P (MBP,
mg kg–1), and soil clay content (Clay, %). Climate variables included
mean annual temperature (MAT, °C) and mean annual precipitation
(MAP, mm). Management-related variables mainly comprised the
type of P fertilizer used. Graphical data were extracted using the
GetData Graph Digitizer (https://sourceforge.net/projects/getdata/
files/latest/download). Missing soil and climate factor data from
several sites were either provided by the study authors through
direct correspondence, or obtained from the spatial gridded data-
bases based on latitude and longitude. These data were analyzed to
determine the impact of the environment on cropland APE and
develop a model for predicting national grid-level cropland APE.

The gridded dataset included climate factors and soil properties
(Supplementary Fig. 3). Climate variables, such as MAT and MAP,
were obtained from the Climatic Research Unit Time Series (1-km
resolution grid) (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/
cruts.2103051243.v4.05/). Spatial SOC, TN, Clay, BD, and pH data
were acquired from the Harmonized World Soil Database v1.2 (1-km
resolution grid) (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012), which con-
tains data predominantly collected around 1995 and compiled into
harmonized database by 2012. MBC and MBP were acquired from a
previous study49, which compiled data from peer-reviewed journal
articles published before 2022 for use in an RF model. Soil available
P data were compiled from a national campaign conducted by the
Cultivated Land Quality Monitoring and Protection Center,
Ministry of Agriculture and Rural Affairs in 2018, and re-gridded to
a resolution of 1 km × 1 km using a first-order conservative
interpolation.

Estimation of soil APE
The APE was defined as the change of soil available P (AP, mg kg–1) per
unit of soil P balance (Pb, kg ha–1)50. To mitigate the influence of
environmental factors on APE, we used the following formula to esti-
mate APE (mg kg–1/kg ha–1):

APE = ðAPtreatment � APckÞ=ðPbtreatment � PbckÞ ð1Þ

Where APtreatment (mg kg–1) is the soil available P in the P addition
treatment and APck (mg kg−1)is the soil available P for the control
(no P input). Pbtreatment (kg ha–1) is the soil P balance (P input into
agricultural systemsminus P removal via agricultural products) for the
P treatment, and Pbck (kg ha–1) is that for the control.

Application of RF modeling to predict grid-level national
cropland APE
We constructed an RF model using machine learning techniques to
predict current grid-level national cropland APE. The RF model was
developed using an observation dataset that we collected from peer-
reviewed research papers. Significant factors, including MAT, AP, BD,
MBP, MBC, SOC, Clay, region, and TN, were included in the RF model
(Supplementary Fig. 2a). Prior to building the RF model, we deter-
mined the best “mtry” and “ntrees” values though bootstrap sampling
of the training dataset using the e1071 package in R software. First, we
constructed an RF model with m features selected from a total of
n (m < n), and created nodes and daughter nodes among the chosen
features. Subsequently, the process was iterated to assemble a forest
comprising n decision trees. Finally, the model was run using a test
dataset to generate a decision tree and forecast new outputs. All
computations were performed using the RandomForest package in R
software.

To develop the machine learning model for predicting grid-level
national cropland APE, we divided the entire dataset into 10 subsets of
equal size, and used 70% of the data subsets to train the RF model

through 10-fold cross-validation, with the remaining 30% of the data
used for model validate51. The model was evaluated based on the
coefficient of determination (R2) and root-mean-square error (RMSE)
according to the following equations:

R2 = 1�
Pn

m= 1ðym � ŷmÞ2Pn
m= 1ðym � �yÞ2

ð2Þ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
m= 1ðym � ŷmÞ2

n

s
ð3Þ

where ym represents an observation (m = 1, 2, 3,…), bym represents the
corresponding prediction, �y represents the mean value of observa-
tions, and n represents the total number of observations.

Climate and soil parameters (Supplementary Fig. 3) were incor-
porated into the model to obtain the best-fit simulation based on R2

and RMSE. Model validation indicated that the model was robust, with
an adjusted coefficient of R2 of 0.75 and low RMSE value of 0.03, and
themodel showed good consistency between observed and predicted
value with a slope of 0.71 for estimating national APE (Supplementary
Fig. 2b). These results affirm the suitability of thedevelopedmodels for
predicting grid-level APE.

Development of the DOP approach
We developed the DOP approach at the county level based on the
P build-up and maintenance approach. For counties where soil avail-
able P levels are lower than the agronomic soil P threshold, P fertilizer
should be added to meet the agronomic soil P threshold. For counties
where soil available P levels are within the range of the agronomic and
environmental soil P thresholds, P fertilizer rates are adjusted tomatch
the amount of P removed by crops, representing a zero-surplus
P fertilizer management strategy. For counties where soil available
P levels exceed the environmental soil P threshold, P fertilizer appli-
cation should be terminated in the short term to reduce soil surplus
P and reduce the risk of environmental P loss, then resumed following
the P replacement rate based on crop removal21.

Under the DOP approach, P fertilizer application rates (PF, kg P
ha–1) were calculated for each county as follows:

PFn + 1 =

APr�APn
APECounty

+Prem if PFn < 1:5 � Prem

1:5 � Prem ifPFn ≥ 1:5 � Prem

(
ifAPn<APr

Prem ifAPr ≤APn<APl

0 ifAPn ≥APl

8
>>>><

>>>>:

ð4Þ

where APr (mg kg–1) is the agronomic soil P threshold, APl (mg kg–1) is
the environmental soil P threshold, Prem (kg ha–1) is P removal by
plants, and n is the year. APn (mg kg–1) is the soil available P, and
APECounty (mg kg–1/kg ha–1) is theAPE for each county,which re-gridded
from the grid to the county level using first-order conservative
interpolation. The recommended P fertilizer application rates was
defined as a rate that does not exceed 1.5 times the crop P removal.

The soil available P (AP, mg kg–1) using DOP approach for each
county was estimated as follows:

APn+ 1 =APn +Pbalance ×APE ð5Þ

Pbalance =PFn � Prem ð6Þ

where Pbalance (kg P ha–1) is the P balance, and APE (mg kg–1/kg ha–1) is
the soil available P efficiency. When Pbalance =0, n represents the year
in which soil P reaches the optimal level (agronomic soil P threshold
≤APn <environmental soil P threshold).
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On-farm testing trials for the DOP approach
We tested theDOP approach in 35,575 on-farm trials conducted during
2005–2014 for the three cereal crops (15,851, 7424, and 12,300 sites for
maize, rice, and wheat, respectively) during the National Soil Test and
Fertilizer Recommendation Projects of the Ministry of Agriculture and
Rural Affairs across all agroecological zones in China (Supplementary
Fig. 7). All trials were designed and managed by local agricultural
experts and/or trained extension personnel11. Four treatments were
established at each experimental site: no P, application at the OPR as
recommended by local agricultural extension employees based on soil
tests and target yields (developed specifically for each county), 50%
OPR, and 150% OPR. We included a 50% OPR treatment to explore the
potential to further reduce P fertilizer and a 150% OPR treatment to
ensuremaximumcrop yield. All experimentalfields receivedoptimal N
and potassium (K) application rates based on soil testing and target
yields at mean levels of 204, 173, and 192 kgN ha–1 for maize, rice, and
wheat, respectively, and 95, 103, 94 kg K2O ha–1, respectively, for the
three cereal crops.Noorganic amendments or strawwasused in anyof
the field experiments.

On-farm trials for agronomic soil P thresholds
To establish a quantitative understanding of agronomic soil P thresh-
olds across China, data from a total of 26,896 field sites were collected
(11,079 for maize, 7492 for rice, and 8325 for wheat) (Supplementary
Fig. 4). Four P fertilizer application rates were used in each trial,
including0,0.5, 1.0 and 1.5 times theoptimumP rate atoptimumNand
K rates. Optimum N, P, and K rates were recommended by local agri-
cultural experts and/or trained extension personnel based on an
integrated nutrient management strategy24. Notably, none of these
experiments had inputs of animal manure or other organic P sources.
We used the optimumP rate as a starting point for setting the gradient
of P fertilizer rates (0, 0.5, 1.0 and 1.5 times the optimum P) for each
field experiment, which allowed us to establish reliable relative
yield–soil available P response curves.

The relative yield (Yr , %) was calculated as follows:

Yr =Yno P=Ymax × 100 ð7Þ

where Yno P (kg ha–1) is the crop yield of the no P input treatment in
each on-farm trials, and Ymax (kg ha–1) is the maximum crop yield of
treatment (0, 0.5, 1.0, and 1.5 times the optimum P) in all experiments.

To identify agronomic soil P thresholds, we determined the rela-
tionship between relative yield and soil available P using the Mit-
scherlich equation52:

Y =A× ½1� expð�bxÞ� ð8Þ

where Y (%) is relative yield of the prediction, A (%) is the maximum
relative yield, and b is the coefficient of the relative yield of the soil
available P (x) value. The soil available P content is the agronomic
P threshold when the Mitscherlich model simulates a relative
yield of 90%.

Estimation of soil P balance
To understand the current soil P balance across China, survey data
were obtained from a nationwide farmer survey campaign conducted
during 2005–2014, whichwas organized by theMinistry of Agriculture
and Rural Affairs of China and carried out by various local agro-
technical extension departments. Survey data were collected from 31
provincial administrative regions of China and comprised 73% of the
total area planted (66.4 million ha) in 1,978 counties for maize, rice,
and wheat53. We filtered the data and included a total of 8.64 million
individual farmers who participated in the survey (3.01, 3.37, and 2.26
million for maize, rice, and wheat, respectively). The survey was

conducted via face-to-face interviews by county agricultural extension
agents using a questionnaire designed to obtain information on crop
yield and fertilizer use. Details information can be found from ref. 11.

The P balance (Pb, kg ha–1) was calculated as follows:

Pb =Pinput � Prem ð9Þ

Pinput =Pf er + Porg ð10Þ

Prem = Pgrain +Pstraw ð11Þ

where Pinput (kg ha–1) is the total P input; Pf er (kg ha–1) is the mineral
P fertilizer input, and was obtain directly from the farmer survey data;
Porg (kg ha–1) is organic P input, Pgrain (kg ha–1) is the P uptake in grain,
Pstraw (kg ha–1) is the P in crop straw removed from the field, and Prem

(kg ha–1) is the P removal with Pgrain and Pstraw. Pgrain and Pstraw were
calculated by multiplying the grain yield by the grain P concentration
andharvest index. Grain P concentration andharvest indexparameters
are shown in Supplementary Table 1.

Organic P input was calculated as follows:

Porg =
Xn

1
ðNumj ×Mrate × Lj ×PMjÞ+

Xm

1
ðCYi ×RSi ×Ai ×PSiÞ ð12Þ

where Num represents the total count of humans and animals per unit
area at the end of the year; j (j = 1, 2, 3, …n) represents the types of
human and animal wastes; Mrate is the rate of return of human and
animal waste to the field54; L (kg head–1 yr–1) refers to the annual human
and animal excrement. i (i = 1, 2, 3, …m) is the straw type; PM (%) is
P contents of human and animal wastes; CY is the yield of the eco-
nomic portion of crops; RS is the proportion of straw that is reinte-
grated into the field, and straw cycling ratios were 0.30 formaize, 0.42
for rice, and 0.74 for wheat55, and A is the ratio of grain to straw from
published literature54; PS (%) is P contents of straw. The P contents of
different manure sources and straw were taken from the Nutrient
Content in Organic Fertilizer of China report56.

Data analysis and management
Microsoft Excel 2010 (Version 14.0.4763.1000; Microsoft Corp., Red-
mond, WA, USA) was used for creating databases of peer-reviewed
publications. Daily weather analyses were performed using MATLAB
R2017a software (version 9.2.0.538062; MathWorks Inc., Natick, MA,
USA). R software (version 3.5.1; R Development Core Team, Vienna,
Austria), GraphPad Prism (version 9.0.0; GraphPad Software, La Jolla,
CA) and SigmaPlot (version 12.5; Systat Software Inc., San Jose, CA,
USA) software were employed for graph generation and data visuali-
zation. ArcGIS 10.2 software (https://www.esri.com/en-us/arcgis/
products/index) was used to perform map-related operations. The
publicly available map of China was obtained from the Resource and
Environment Data Cloud Platform (http://www.resdc.cn). All compu-
tations, including the implementation of the RF and a nonparametric
smooth regression model, were conducted using the R software
environment (version 3.5.1; R Development Core Team, Vienna,
Austria).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The literature search, survey data, on-farm testing trial data, and on-
farm demonstration data generated in this study have been deposited
the Data Repository on Zenodo (https://zenodo.org/records/
14553798). Source data are provided with this paper.
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Code availability
The code used in this study in the Data Repository on Zenodo (https://
zenodo.org/records/14553798).
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