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Compositional data analysis enables
statistical rigor in comparative glycomics

Alexander R. Bennett 1, Jon Lundstrøm 2,3, Sayantani Chatterjee4,
Morten Thaysen-Andersen 4,5 & Daniel Bojar 2,3

Comparative glycomics data are compositional data, where measured glycans
are parts of a whole, indicated by relative abundances. Applying traditional
statistical analyses to these data often results in misleading conclusions, such
as spurious “decreases” of glycans when other structures increase in abun-
dance, or high false-positive rates for differential abundance. Our work
introduces a compositional data analysis framework, tailored to comparative
glycomics, to account for these data dependencies. We employ center log-
ratio and additive log-ratio transformations, augmented with a scale uncer-
tainty/informationmodel, to introduce a statistically robust and sensitive data
analysis pipeline. Applied to comparative glycomics datasets, including known
glycan concentrations in defined mixtures, this approach controls false-
positive rates and results in reproducible biological findings. Additionally, we
present specialized analysis modalities: alpha- and beta-diversity analyze gly-
can distributions within and between samples, while cross-class glycan cor-
relations shed light on previously undetected interdependencies. These
approaches reveal insights into glycome variations that are critical to under-
standing roles of glycans in health and disease.

Glycomics, the comprehensive study of glycan structures within a
biological sample1,2, yields fundamentally compositional data. While
“composition” in the context of a glycan may refer to its underlying
monosaccharides (e.g., Hex3HexNAc4), within statistics it refers to a
fixed whole that contains several components with non-negative
quantities (e.g., relative abundances in the context of glycomics).
Within this work, we use the statistical meaning of “composition”
unless specified otherwise. Using such compositional data, compara-
tive glycomics, which aims to quantitatively compare the measured
glycome between two or more conditions, has emerged as an
increasingly popular approach to unveil glycan abundances differ-
ences across disease conditions3–5.

These data, representing relative abundances of glycans, reside
on the Aitchison simplex—a geometric representationwhere thewhole
is the sum of its parts. Compositional data are ubiquitous in systems

biology6–9 and are found whenever (implicit) proportions or prob-
abilities are the subject of analysis10. This extends to sequencing-
based areas, wherein the total number of reads is immaterial and
only relative proportions (between genes or between samples) are
relevant. In the context of glycomics data, relative abundances
usually indicate the proportion of integrated ion intensity of one gly-
can species in relation to the total glycan-derived ion intensity mea-
sured by mass spectrometry. Changes in relative abundances of
glycans are often cited as potential disease biomarkers11,12. Yet not
accounting for the compositional nature of glycomics data is a major
contributor to divergent results of differential expression methods13

and, in general, results in very high false-positive rates14,15. Traditional
comparative glycomics analyses typically ignore these compositional
characteristics, leading to spurious interpretations and false-positive
results, such as perceived decreases or increases in glycan quantities
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that are artifacts of relative abundance changes rather than
absolute ones.

To make this point clear, the addition of an exogenous glycan
standard in high concentration to one sample would lead to the per-
ceived “downregulation” of all other present glycans in that sample, as
their relative abundances decrease. Thismisinterpretation stems from
an oversight of the simplex’s constraints, where an increase in one part
necessitates a decrease in another. It is amathematical imposition, not
a biological phenomenon, and necessitates a tailored analytical
approach to focus the findings on biological effects instead. Compo-
sitional data analysis (CoDA)16 provides such a framework, respecting
the relative scale of the data and avoiding the misapprehensions that
traditional methods incur.

Our work presents a CoDA-based framework specifically designed
for glycomics (N-linked, O-linked, glycosphingolipids (GSLs), milk oli-
gosaccharides, etc.), which we show to be also applicable to glyco-
proteomics, the system-wide analysis of intact glycopeptides17. Central
to our approach are the center log-ratio (CLR) and additive log-ratio
(ALR) transformations. The former normalizes glycan abundances to
the geometric mean of a sample, facilitating comparisons across
conditions as the relations between the individual abundances are
accounted for. The latter normalizes abundances to a rigorously cho-
sen reference glycan that best re-captures the geometry achieved by
CLR transformation. We then further refine these transformations by
integrating both uninformed (i.e., scale uncertainty) and informed-
scale models to account for changes in absolute scale between
conditions18,19 (i.e., greater or lower number of glycan molecules
overall, in one condition). This, together with other improvements,
markedly enhances the sensitivity and robustness of glycomics data
interpretation. We present our pipeline(s), integrated into the open-
source glycowork Python package20, as the state-of-the-art in com-
parative glycomics data analysis.

When applied to a range of glycomics datasets, we show that
differential expression analysis using this enhanced CLR/ALR trans-
formation can reveal biological insights. We then further improved
analysis modalities by developing CoDA-based glycome similarity
analyses using CoDA-appropriate alpha- and beta-diversity metrics,
such as Aitchison distance6. These have revealed variations within and
between biological samples, enriching our understanding of glycan
roles in physiological processes. Lastly, we introduce a CoDA-based
method for assessing cross-class glycan correlations, similar to Sparse
Correlations for Compositional Data (SparCC)21, originally developed
for microbiome data analysis. This has provided a window into com-
plex, previously concealed, glycan interdependencies, aswell as glycan
motif–transcript associations.

The introduction of these methodologies represents a significant
advancement in comparative glycomics data analysis and is in linewith
the need for advanced data science approaches in the glycosciences22.
For maximum uptake and impact, all methods are integrated into the
glycowork package (version 1.3+), presenting a full analysis suite for
glycomics data that adheres to the proper analysis of compositional
data. By providing a more accurate interpretation of glycan systems
biology data, our approach facilitates the discovery of robust biolo-
gical insights with implications for understanding the roles of glycans
in health and disease. This analytical paradigm promises to redefine
comparative glycomics data analysis, offering a rigorous foundation
for future explorations into the glycome.

Results
Analyzing comparative glycomics data as non-compositional
data is fundamentally flawed
The current gold standard in analyzing glycomicsdata is to express the
individual glycans as relative abundances (e.g., as percent of the total
ion intensity) and then perform individual statistical tests for each
glycan between conditions. As will be shown in the following, this is a

fundamentally flawed approach that is both lacking sensitivity as well
as incurring an intolerably large fraction of false positives. Two inter-
connected reasons can be brought forth to explain this. (i) The inter-
dependent nature of relative abundances means that an increase in
glycan A demands a decrease in all other glycans—even if these other
sequences exhibit a constant number of molecules across conditions
(Fig. 1a, b, Supplementary Data 1), causing spurious findings and
obscuring real findings. (ii) Additionally, as will be shown, the total
number of molecules is rarely invariant across conditions, further
distorting the obtained relative abundances and their differences
across conditions.

These limitations are, in part, known to practitioners, yet are
commonly ignored in practice. Occasionally, researchers will analyze
ratios between glycans across conditions, perhaps out of the correct—
but tacit—intuition that this mitigates the compositional nature of the
data.Wemaintain here that this compositional nature, if not addressed
correctly, is a major problem in the field and will become worse as
sample sizes increase, because of unacknowledged bias14,18, leading to
incredible false-positive rates of >30% even at rather modest sample
sizes (Fig. 1c). Statistically, the interdependent nature of relative
abundances canbe resolvedwith transformations suchasCLR orALR6,
transforming the data from the Aitchison simplex to real space. The
further inclusion of a simple scale uncertainty model (i.e., acknowl-
edging uncertainty as to potential differences in the total number of
molecules between conditions) then largely resolves the possibility of
scale differences mentioned above18,19. Thus, our workflow for differ-
ential glycomics expression analysis, incorporating these principles, is
robust to false-positive rates (Fig. 1c), while still maintaining excellent
sensitivity (Fig. 1d), presenting a solid state-of-the-art foundation for
the burgeoning exploration of glycomics and the role of glycans in
diseases.

For a standard, two-group, differential glycan profile analysis, our
workflow (Fig. 1e) will automatically infer whether to use ALR or CLR
for data transformation (Fig. 1f; see “Methods”; mainly dependent on
the presence of a suitable reference component for ALR). On the one
hand, this is coupled with outlier treatment, machine learning-based
imputation, variance-based filtering, and multiple testing correction5.
On the other hand, this also supports analyses on the sequence, motif,
and motif set level5. While we expect further advances to tailor these
methods more to other types of data, such as glycoproteomics, gly-
colipidomics, or lectin microarray analysis23, we note that this work-
flow is applicable to glycoproteomics data already, without any
required changes (Supplementary Fig. 1).

A compositional data analysis workflow for comparative gly-
comics unveils biological insights
Another corollary of compositional data is that real-space distance
metrics (e.g., Euclidean distance) are not valid in the Aitchison
simplex6. Thus,we reasoned that clustering—usually based on distance
matrices—can be improved by CLR/ALR transformation. Applying this
to a bacteremia N-glycomics dataset3, we indeed find that Aitchison
distance (i.e., Euclidean distance after ALR transformation) results in
an improved clustering (Supplementary Fig. 2) that better separates
patient and donor classes than clustering on the distances between
log-transformed glycan abundances (adjusted Rand index: 0.79 vs
0.74; normalized mutual information: 0.76 vs 0.70). We are further
excited to see even finer clustering below disease classes using
Aitchison distance, such as a sub-clustering of the healthy
volunteers in this sample by sex, which is known to affect glycosylation
profiles24.

We then used this insight to reanalyze another dataset, of human
B-cell O-glycans from acute lymphoblastic leukemia patients and
healthy bone marrow donors25, illustrating the effectiveness of com-
positional data handling in making comparison between samples
(Fig. 2a). The aim of this study was to identify glycoprotein markers of
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diagnosis and prognosis of mixed-lineage leukemia gene rearranged
B-cell precursor acute lymphoblastic leukemia. Healthy bone marrow
samples (RB7) were compared to MLL samples, and comparative gly-
comics was employed to propose biomarker candidates. Upon rea-
nalysis of these data with CLR transformation, we find much more
effective clustering between glycans and samples, compared with the
same clustering approach using relative abundances (Dunn index

0.828 vs 8.647,which is also higher than theDunn indexof 7.928 that is
achieved by log transformation alone).

Additionally, we have analyzed a dataset of GSLs derived from
ocular tissues of seven human donors26. This exploratory study aimed
to characterize and compare the gangliosides of several ocular and
peripheral tissues. Here, we find improved statistical power to detect
whether tissues differed in mono-, di-, and tetra-sialylated GSLs,
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whereas trisialyl species did no longer show differential tissue
expression when using CoDA-based analyses (Fig. 2b). This also
showed that our workflow is applicable to glycolipid data, extending
beyond glycans liberated from protein carriers.

We then extended these re-analyses to a large set of comparative
glycomics studies (Table 1), where we overall show that CoDA-based
analyses often differed from analyzing relative abundances, indicating
the importance of appropriately analyzing glycomics data for valid
conclusions. Importantly, even for previous studies without formal
statistical analyses, we could confirm and/or revise qualitative con-
clusions that the respective authors drew from their glycomics data.

Informed-scale models for glycomics shed light on absolute
changes in glycans
The scale uncertainty model presented above is an effective means to
prevent false positives and can be universally applied by choosing one
simple variance parameter γ. As pointed out by others19, this means
that this γ parameter, when varied, can even serve as an indicator of
effect robustness (i.e., an effect is deemed more robust if it is pre-
served under a higher γ). We probed this phenomenonwith an analysis
of a skin cancer O-glycomics dataset27. For each structure, we report
the γ-cutoff value at which no significant difference can be detected
(Supplementary Fig. 3), providing robustness indicators for each dif-
ference and showing that the dysregulation of the disialyl T antigen
presented the most robust finding in this case.

The default values of γ, while introducing some variance, still
routinely result in reproducible analyses, even if the random seed is
notfixed (Supplementary Fig. 4). However, as practically useful as scale
uncertainty is, higher values of γ will also inevitably lower the sensi-
tivity of analyses (Supplementary Fig. 3).We thus investigatedwhether
we could also achieve an informed-scalemodel14, injecting information
into our analyses about the actual difference in terms of numbers of
molecules between conditions, instead of merely introducing uncer-
tainty about this difference. Many sources for this informed-scale
model could be envisioned, yet—since this information is often avail-
able to researchers—we started by using the sum of integrated ion
intensities from the original glycomics raw data as a measure of the
total glycan signal within a sample.

Of course, quantifying glycans via MS1 peak integration is inevi-
tably confounded to some degree by differences in ionization pro-
pensity of different glycans and glycopeptides28, which is why it is
crucial to include an error term in this scale estimation to account for
such effects. It is important to note, however, that the differential
ionization propensity of glycans (e.g., sialylated glycans ionizing more
efficiently in negative ion mode) does not affect comparison of the
same glycan across samples and thus is not necessarily a confounder in
this context.

It is crucial to emphasize that this is only a feasible route if glycans
from the same amount of (glyco)protein starting material have been
analyzed for each sample, as ion intensities only then can serve as an
indicator of scale. Following previous work14, we then transform the
relative abundances via the ratio of scales between groups, taking into
account experimental error in determining those ion intensities in the
first place, with the γ parameter used before (Fig. 3a).

When applying this approach to comparative glycomics data, we
routinely identified scale differences between conditions (e.g., Sup-
plementary Fig. 5), showcasing how crucial the inclusion of an
informed-scale model is for accurate biological conclusions. With the
example of a longitudinal dataset of N- and O-glycomes during
monocyte-to-macrophage differentiation29, we decided to showcase
this scale difference for time series analysis (full results in Supple-
mentary Data 2–9). This study tracked changes in the N- and O-linked
glycome of monocytes during differentiation into macrophages,
identifying glycans that were differentially or stably expressed during
the differentiation process. Reassuringly, some effects, such as an
increase in Neu5Acα2-3Gal substructures in O-glycans during differ-
entiation, were generally maintained with an informed-scale model
(Fig. 3b, c). Yet, as in this case, the total glycan signal increases over
differentiation, and some results changed, compared to CLR/ALR-
transformed data, with a scale uncertainty model. Examples here
include changing results, such as a reported decrease of core fucosy-
lation in N-glycans5,29 that can no longer be observed when scale is
considered (Fig. 3d, e), as the absolute trend now rather pointed to a,
marginally significant, increase in core fucosylation. On the other side,
additional results may emerge, such as an absolute increase of
Neu5Acα2-6Gal termini in N-glycans during differentiation, yet only
when scale is considered (Fig. 3f, g). It is important to note that, despite
the increase in scale over time, some decreases in abundancewere still
maintained under this informed-scale model (Supplementary Fig. 6),
potentially indicating an actual decrease in the number of specific
molecules over the differentiation course.

As performed by some practitioners in the field, another possible
avenue could have been to perform analyses directly on the raw ion
intensities instead of relative abundances, possibly after log transfor-
mation. However, we find that the variance of ion intensities typically
outweighs the additional information that they contain (Supplemen-
tary Fig. 7) and hence propose that relative abundances, combined
with an informed-scalemodel that is derived from ion intensities, are a
superior approach to analyzing comparative glycomics data.

Analyzing glycome similarity and cross-class regulation as fresh
views on differential glycome profiling
Many biological questions cannot be answered by a differential
expression approach, which is whywe set out to developmethods that

Fig. 1 | Glycomics data are compositional. a Relative to absolute abundances
(top), relative abundances (middle) distort relationships between glycans, which
can be rescued via compositional data analysis (bottom). Transformed abundances
indicate CLR-transformed data with an informed-scale model. b Ion intensities
(absolute values), relative abundances (%), and ALR-transformed abundances of
glycan standards (Supplementary Data 1). Control standards (gray) were added as
2 pmol/µL in all samples, whereas standard 3/4 were added in increasing con-
centrations (colored). Data are shown as bar graphs with standard deviation (cen-
tered at samplemean),with datapoints (n = 3 independentmixtures) overlayedas a
scatterplot. Significance was established via two-tailed Welch’s t-tests. All com-
parisons without a star did not reach the significance threshold (<0.05). c False-
positive rate (FDR) for identifying spurious differences between conditions
increases with sample size when ignoring the compositional nature of glycomics
data. Glycomics data were simulated via Dirichlet distributions with defined effects
(see “Methods”). For each sample size, 10 independent simulationswereperformed
(n = 10) and results are shown as means with standard deviation as error bars. The

Benjamini–Hochberg procedure was used for FDR control, except for ALR (our
herein presented workflow, which used the two-stage Benjamini–Hochberg pro-
cedure). d Compositional data analysis maintains excellent sensitivity for identi-
fying differences between conditions. Simulations as in (c), with the difference of
tracking sensitivity instead of type I error. eOverview of CoDA-improved workflow
for differential glycomics abundance analysis. While the schema most closely
resembles the differential expression workflow (get_differential_expression), indi-
cated steps were largely preserved in all analyses presented here and in glycowork.
ALRwas considered tohave failed if the Procrustes correlation of thebest reference
glycan was below 0.9 or if its log2-transformed variance was above 0.1.
f Implementing CLR- and ALR-transformations for glycomics data. ALR depicts the
successful choice of a reference glycan, which fulfills the desired criteria. Scale
uncertainty can further be introduced into ALR by subtracting log2(N(0, γ)) from
the reference. Both depictions describe the usage with an uninformed scale model
(i.e., scale uncertainty). *p <0.05, **p <0.01, ***p <0.001. Source data are provided
as a Source Data file.
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a Relative abundances [%] CLR-transformed abundancesa

Dunn index: 0.828 Dunn index: 8.647
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incorporate the CoDA principles laid out above. Example applications
for this include questions related to overall glycome changes beyond
individual sequences/motifs, biomarker discovery, or regulation
across data modalities. To demonstrate the capabilities of these data
analysis modalities, we then set out to reanalyze suitable glycomics
datasets to gain robust insights. A study30 investigating the impact of
HIV gag-transfection on the N- and O-glycomes of cells additionally
used a mock-transfected group as a procedural control. While differ-
ential expression analysis revealed significant differences for one N-
glycan motif (antennary fucosylation; Supplementary Data 10)
between the non-transfected and mock-transfected control groups,
our alpha biodiversity indices reported no significant differences
(Fig. 4a, b), suggesting that the differentially expressed motifs are of
relatively low abundance. This corroborates the conclusions of the
published study30, which is that themock-transfected cells were largely
representative of the non-transfected cells, and the transfection pro-
cess itself had only a minor influence on the glycome.

Biomarker discovery rests on identifying molecular features that
reliably distinguish, via their abundance, between two or more states.
In the context of a glycan, a feature can refer to a full glycan molecule
or any of the substructures found in suchmolecules (e.g., fucosylation,
Lewis X, level of branching in N-glycans, etc.) Glycan features have
been emerging as very sensitive biomarker candidates11, yet many
glycan alterations are due to systemic changes (e.g., inflammation31)
and thus potentially not very specific to a particular condition. To
enable biomarker discovery within our CoDA framework, benefiting
from an informed-scale model, we developed a receiver operating
characteristic–area under the curve (ROC-AUC) pipeline to first iden-
tify the best distinguishing substructure between healthy and infected
individuals from a recent dataset3, where serum N-glycomics was
performed to identify potential strain-specific biomarkers during
bacteremia. Our analysis highlighted terminal Neu5Acα2-6Gal epi-
topes with an AUC of 0.91 (Fig. 4c). Then, addressing the issue of
specificity of glycan-derived biomarkers, we engaged in a One-vs-Rest
approach of the same function, uncovering the best glycan sub-
structure to identify each specific bacterial infection, resulting in
excellent biomarker candidates for each of the assayed bacterial

species (AUC 0.91–1.00; Fig. 4c) and extending the findings of the
original study3.

We then set out to show that glycomics beta-biodiversity—chan-
ges in glycan distributionmeasured byAitchison distance6—is a potent
means for clustering subjects from an ovarian cancer dataset32. In this
dataset, glycoprotein secretions from serous and mucinous tumors of
different grades were analyzed, to determine biomarker candidates of
disease class and severity. A principal component analysis of the beta-
diversity distance matrix indeed clearly showed the simultaneous
clustering of mucinous and serous tumors as well as their respective
high- and low-grade subgroups (Fig. 4d), which was quantifiably
superior to clustering distances from un-transformed abundances
(Dunn index and silhouettewidth inFig. 4d).Notably, the first principal
component here stratified mucinous and serous tumors, while the
second principal component effectively separates high- and low-grade
tumors, suggesting that the same changes in the glycomedifferentiate
high- and low-grade tumors in distinct tissues.

Lastly, we wanted to address the, somewhat artificial, separation
of the glycome into different classes, largely driven bymethodological
constraints. Thus, we sought to establish a cross-class analysis mod-
ality by developing a CoDA-based correlation analysis across glycan
classes, conceptually similar to SparCC21. For this, we again investi-
gated correlations between structural motifs associated with N- or O-
glycans during macrophage differentiation29 (Fig. 4e). N-linked sialy-
lation, LacNAc extension, and biantennary complex structures showed
positive correlation with sialylated and Fucα1-2Gal-containing O-gly-
cans, and negative correlation with core 2-related structural motifs.
The latter, in contrast, were found to positively correlate with high-
mannose structures as well as N-glycans modified with core fucosyla-
tion or bisecting GlcNAc. Overall, while sialylation was positively cor-
related across classes, fucosylation showed no significant correlation
between N- and O-glycans. Interestingly, we even identified a negative
correlation between the presence of Lewis X motifs in N- and O-gly-
cans, respectively.

Since we designed this workflow to be maximally flexible,
we could use the same method to analyze cross-correlations
between glycomics and other data types. We used this to investigate

Table 1 | Findings upon compositional data-based analysis (CoDA) of published glycomics datasets

ID Original findings CoDA findings

PMID3511271430 Transfection of HEK293 cells withHIV-1 Gag andmock plasmids results
in differential glycosylation signals. (No statistics reported regarding
glycome composition)

Differential expression detected between only the non-transfected
and Gag-transfected cells within the N-glycome (p < 0.012). Non-
transfected cells showdifferential expression compared tobothmock
and gag-transfected cells within the O-glycome (p < 0.0015).

PMID3834311637 Sequential sample preparation results in greater sensitivity of analysis,
demonstrated by greater numbers of glycans identified in comparison
with parallel sample preparation, evidenced by total number of glycan
species and peak areas.

Higher alpha diversities among sequentially prepared samples
(p < 0.004) support original conclusions about sensitivity.

PMID2608518553 Tumorigenic tissues possess greater α2,6- and reduced α2,3- sialyla-
tion of N-glycans compared to non-tumorigenic controls (p < 0.05).

No significant differences amongN-glycanmotifs detected, including
Neu5Ac-containing motifs.

PMID3583207954 One structure and 8 motifs were found to be differentially expressed
between cancerous and healthy tissues.

14 structures and 17 motifs were found to be differentially expressed
between cancerous and healthy tissues.

PMID1915228955 Core 3 disialyl-Lex may be a biomarker of malignancy in colon cancer. No significant difference is observedbetween the expressionof core3
disialyl-Lex structures in tumorigenic and health samples.

PMID3464638425 Non-significant differences observed in N-glycan sialylation and fuco-
sylation in leukemia cells, along with increased core 2 O-glycans.

Significant differences observed in three sialylated/ fucosylated
N-glycan structures, but no significant differences among N-glycan
motifs. Significant differences in fucosylation, sialylation, and core 2
O-glycans.

PMID2607538432 Lewis structures can be used to differentiate mucinous and serous
epithelial ovarian tumors.

Many motifs, including Lewis X, are significantly differentially
expressed between the two tumor types.

PMID3695255156 N- and O-glycan sialylation decreases over time, as samples are stored
at 22 °C.

No significant changes observed in structures or sialylated motifs.

PMID2799758926 Qualitative judgements on tissue specificities of ganglioside glycan
chains, no statistical analysis is reported.

Significant differences in the expression of mono-, di-, and tetra-
sialylated GSLs between tissues.

Original findings from the respective publications were summarized and juxtaposed with results from corresponding CoDA using CLR/ALR transformation and a scale uncertainty model.
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glycan motif–transcript relationships in the abovementioned B-cell
dataset (Supplementary Fig. 8), still in the herein developed CoDA
framework, now applied to both glycomics and transcriptomics
data. This revealed significant associations of glycogenes and their
cognate motif (e.g., ST6GALNAC1 and Neu5Acα2-6GalNAc in O-gly-
cans, FUT4 and Fucα1-3GlcNAc in N-glycans, or GCNT4 and the core 2
structure in O-glycans) but also interesting negative associations

(e.g., the N-glycan branching enzyme MGAT4A and fucose-containing
motifs) potentially hinting at motifs interfering with the action of
an enzyme, such as branching inhibiting antennary fucosylation (or
vice versa). Overall, our SparCC-inspired analysis of cross-class corre-
lations can yield insights into possible co-regulatory mechanisms
that would otherwise remain hidden if each dataset is considered
independently.
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A CoDA meta-analysis of oligo- and pauci-mannose N-glycans
in cancer
Previous results have established the robustness and sensitivity of
our approach to glycomics data analysis. Next, we wanted to com-
bine this with the established framework of engaging in meta-ana-
lyses, formally combining results across studies for robust
conclusions, to showcase the biological implications of these analysis
capabilities. For this, we used an existing set of comparative gly-
comics datasets investigating the relative abundance of oligo- and
pauci-mannose N-glycans across different types of cancer4,33, com-
paring healthy tissue and tumor samples (total N = 194 across nine
datasets). While, for CLR-transformed data, this resulted in a number
of structures that exhibited significant dysregulation across studies
(Supplementary Data 11), other structures exhibited more modest or
inconclusive effects (Fig. 5a).

One goal of such a meta-analysis is to identify potential bio-
markers, or molecules to target for imaging and other endeavors.
Hence, identifying the decrease of a structure such as Manα1-
3(Manα1-6)Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc in cancer
(dcombined = −0.5, padj = 0.0004) could be viewed as an actionable
finding. Yet this translation of relative decrease into absolute
decrease pre-supposes equal scale between conditions. We thus
repeated this analysis with an informed-scale model based on the ion
intensities and noticed that, on average, the total glycan signal
increased in cancer (average scale ratio: 1.34). Factoring in this scale
difference led to much stronger findings (Fig. 5b, Supplementary
Data 12) that were, on average, indicating an increase in most oligo-
and pauci-mannose N-glycans in cancer, including the above-
mentioned structure (dcombined = 1.31, padj = 6.2 × 10−12). Hence, ana-
lyzing the data without scale would have erroneously resulted in the
conclusion that some of these structures decrease in absolute
abundance between conditions, whereas the opposite seems to
be true.

On the motif level, we observe similar trends (Fig. 5c, d, Supple-
mentary Data 13 and 14), in that including an informed-scale model
improves sensitivity and provides a better indication of the actual
biological changes between conditions. In the case of terminal Manα1-
2 epitopes (Fig. 5c, d), we for instanceonly report an absolute decrease
in lung cancer and chronic lymphocytic leukemia, after factoring in
scale differences between conditions. Findings from these methods
could then provide a more solid foundation for (i) general-purpose
biomarkers as well as (ii) specific markers that can be accurately
tracked with methods that are sensitive to absolute expression levels
(e.g., staining).

Reasoning that the combination of CLR and an informed-scale
model do, in fact, more accurately identify biomarker candidates from
glycomics data, we then engaged in a biomarker analysis via the ROC
curve analysis workflow we developed herein. This indeed resulted in
better predictive performance in a pan-cancer setting for the same
structures (Fig. 5e, f; AUC 0.69 vs 0.81). We also noted that oligo- and
pauci-mannose N-glycans in cancer exhibited a significantly higher
alpha diversity (Fig. 5g; number of unique expressed structures;
p =0.002), again emphasizing the potential for cancer-relevant
structures.

Lastly, sincewe had access to bothN- andO-glycomics data of one
cancer dataset, prostate cancer34 (N = 55), we also performed a cross-
class correlation analysis of CLR-transformed data (Fig. 5h). A positive
correlation of fucose-containing glycans in both classes that we iden-
tified here could indicate a co-regulation across classes in prostate
cancer, especially when contrasted to the lack of cross-class correla-
tion of fucosylation during macrophage differentiation (Fig. 4e). Fur-
ther, the neutral extension of core 2 structures was negatively
correlated with oligo-mannose structures, while O-linked sialylation
correlated positively with oligo-mannose structures. We again would
like to note that these cross-class dependencies are crucial for inter-
pretation, as an analysis that only factored in prostate cancerN-glycans
might ascribe phenotypic effects to increases in oligo-mannose
structures, while this is potentially confounded by concomitant
increases in O-glycan sialylation. We thus urge researchers to factor in
the entire glycome, which can be analyzed bymethods such as the one
presented here. We leave this section with a firm conviction that gly-
come analysis needs to be (i) statistically sound, (ii) robust yet sensi-
tive, and (iii) integrating information across glycan classes, in order to
be useful in the laboratory as well as, eventually, in the clinic.

Discussion
Ignoring the compositional nature of data, in any systems biology
discipline, is not an option. Intolerably high false-positive rates, ana-
lyses being dominated by the behavior of a few highly abundant gly-
cans, or conclusions of differential expression that are the opposite of
the biological reality—glycomics data need CoDA, if its results should
serve as a solid foundation for the glycosciences.We showhere that all
these challenges are solvable and present a whole analysis suite to
engage in various CoDA-powered glycomics analysis methods, that
can yield robust biological insights and result in more actionable
findings, as the indication of changes in absolute number of glycans
across conditions aligns more closely with follow-up methods. An
integration of all these state-of-the-art workflows into the easily
accessible glycowork software platform20 will ensure both compat-
ibility with existing workflows and long-term support for these meth-
ods. While we show that these workflows can be applied to
glycoproteomics data in principle, we caution that a proper workflow
in future work would ideally need to account for the nested nature of
glycoproteins, glycosites, and glycoforms.

We are especially enthusiastic about steps into rigorous analysis
of multi-omics data that include glycomics data; facilitated by our
flexible get_SparCC function, which is capable of comparing glycomics
and non-glycomics datasets. Since this analysis modality still retains
the flexibility to readily analyze glycan data on the motif level, identi-
fying microbe-motif associations or gene-motif associations becomes
almost trivially easy. We expect this to broaden the appeal of, and
insight into, glycans as anexplanatorymodality across systemsbiology
data types, or find application in evolutionary analyses comparing
groups of species35,36.We alsonote that our treatment of other systems
biology data (e.g.,metagenomics or transcriptomics) as compositional
data in thismethod ismore appropriate thanmost existing approaches
that are geared specifically toward analyzing those data types. Addi-
tionally, methods to measure several glycan classes from the same

Fig. 3 | Informed-scale model with ion intensities. a Applying an informed-scale
model to glycomics data analysis. Terms within the equations are explained where
necessary. Calculations of the scale factor ζ are provided for two as well asmultiple
groups and use the integrated ion intensities. The meaning of γ in this case is
transformed to an estimate of the experimental error in determining the absolute
scales. InALR, an informed-scalemodel is achievedby subtracting log2(N(ζ, γ)) from
the reference. b, c Monitoring Neu5Acα2-3Gal abundance in O-glycans during
macrophage differentiation29. CLR-transformed relative abundances with a scale
uncertainty (b) or informed-scale model (c), were used with the get_time_series
(glycowork, version 1.3) function to fit an ordinary least squares model, where a

two-tailed F-test determined the statistical significanceof a linear regression. Donor
identity (D1, D2, D3) for each data point is indicated by a unique shape. Monitoring
core fucose (d, e) and Neu5Acα2-6Gal (f, g) abundance in N-glycans during mac-
rophage differentiation. ALR-transformed relative abundances with a scale uncer-
tainty (d, f) or with an informed-scalemodel (e,g) wereusedwith the get_time_series
(glycowork, version 1.3) function to fit an ordinary least squares model, where a
two-tailed F-test determined the statistical significance of a linear regression.
b–g Variance between samples by a 95% confidence band, indicated by shading.
Source data are provided as a Source Data file.
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samples37 also produce data that can be readily analyzed with this
approach.

One source of bias that is currently not explicitly and routinely
included in glycomics data analysis is technical variation, asmeasuring
the same sample twice would likely result in slightly different values.
One solution could be to include technical replicates in analyses, yet
this information is rarely available. A microbiome differential abun-
dance method, ALDEx29, addresses this by simulating technical

variation via Monte Carlo simulations of multinomial Dirichlet dis-
tributions, seeded by the actual relative abundances as concentration
parameters. Then, each “instance” can be statistically tested and the
test results can be averaged for a more robust inference. It is known,
however, that this process is severely detrimental to the sensitivity of
detecting effects for lowly abundant features9 (i.e., most glycans) and
is thus unsuitable for routine usage in glycomics. Instead, the report-
edly more sensitive Dirichlet-multinomial modeling38 could be a
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promising future avenue for further improving comparative glycomics
analysis, yet would require major efforts to develop within Python.
Other sources of variation when comparing glycomics data, such as
incomplete labeling/reducing of glycans, comparing samples mea-
sured at different times, or sample degradation, have also been dis-
cussed before39 and are, at least to some extent, mitigated by the
inclusion of scale uncertainty.

We also caution that, while the inclusion of an informed-scale
model can rectify misapprehensions of changes in conditions, it nei-
ther implies a specificmechanismnor suggests a causal relationship to
the disease. Thus, if the total glycan signal increases in, e.g., cancer,
several possible scenarios may be possible, such as changes in reg-
ulation (e.g., increasing glycosyltransferase expression) or distribu-
tional shifts (e.g., increasing expression of proteins that carry more
glycans). Additionally, it is known that the exact quantification of
glycans in a sample depends on the isolation strategy40, which not only
means that the experimental error estimate is crucial for robustness
but also that this can be improved upon experimental advances.

We are convinced that the incorporation of CoDA into compara-
tive glycomics analysis is a needed and especially timely one, as the
unacknowledged bias present in current analysis methods is known to
paradoxically increase false-positive rates with increasing sample
size18,19,41. Others have noted previously that the rather modest sample
sizes in systems biology fields, such as glycomics, have unexpectedly
protected researchers from too many spurious findings18,19,41. As com-
parative glycomics is on the cusp of increasing data collection and
analysis throughput42,43, it becomes crucial to mitigate this unac-
knowledged bias, which is for instance achieved by accounting for
scale uncertainty18,19. We thus envision that by making these cutting-
edge statistical approaches to comparative glycomics data analysis
easily available to the glycoscience community, the quality of results
and conclusions will be raised, yielding a firmer understanding of
glycans and their roles in biology.

Methods
Glycomics data simulation
Simulating glycomics data, such as to investigate the effect of sample
size on type 1 error or sensitivity, largely followed the procedure we
established previously5. Briefly, we used original relative abundances
from carefully selected glycomics datasets as concentration para-
meters to sample replicates from a Dirichlet distribution that were
paired with random glycans from SugarBase20. Known effects herein
were introduced by scaling the concentration parameters of sialylated
and fucosylated glycans up and down, respectively.

Glycomics data generation
Standards includedmammalian-typeN-glycans (0.1mg;NG-CM-051-M,
NG-HM-001-OH, NG-CM-005-OH, NG-CM-054-OH, NG-CM-051-OH, all

from NatGlycan) that were chemically reduced by dissolving them in
50 µL of 0.5M NaBH4 and 20mM NaOH overnight at 50 °C. All stan-
dards were stored at 1 nmol/µL after reduction. For all samples,
reduced glycan standards weremixedwith 20 µL of releasedO-glycans
from porcine gastricmucin (Type III PGM, Sigma-Aldrich, St. Louis, MI,
USA). NG-HM-001-OH, NG-CM-005-OH, and NG-CM-051-OH were
added to a final concentration of 2 pmol/µL for all samples, while both
NG-CM-051-M and NG-CM-054-OH were added to final concentrations
of 2, 6, 12, and 18 pmol/µL in triplicates.

Then, all samples (N = 12, with n = 3 biological replicates of each of
the four conditions) were analyzed by liquid chromatography-
electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS),
similar to our earlier work36. For glycan isomer separation, we used a
porous graphite column (10 cm× 250 µm, packed in-house with 5 µm
particles fromHypercarb, Thermo-Hypersil, Runcorn,UK).We injected
2 µL for all samples. Then, glycans were eluted with an acetonitrile
gradient (Buffer A, 10mM ammonium bicarbonate; Buffer B, 10mM
ammonium bicarbonate in 80% acetonitrile). We eluted the gradient
(0–45% Buffer B) for 46min, followed by washing with 100% Buffer B,
and equilibrated with Buffer A for the next 24min. We then used a
30 cm× 50 µm i.d. fused silica capillary as a transfer line to the ion
source.

We analyzed all samples in triplicate in negative mode, using
compressed air as the nebulizer gas, on a linear ion trap mass spec-
trometer (LTQ, Thermo Electron, San José, CA), with an IonMax ESI
source and a stainless-steel needle at −3.5 kV. We maintained the
heated capillary at 270 °C and −50kV. We then performed a full scan
(m/z 380–2000, two micro scans, maximum 100ms, target value of
30,000) in data-dependent acquisition mode. For data acquisition, we
used Xcalibur (Version 2.0.7, Thermo Scientific) and for the quantifi-
cation of glycans via their ion intensity we used Progenesis QI (Non-
linear Dynamics, Waters Corp., Milford, MA, USA). The LC-ESI-MS/MS
raw data have been deposited in GlycoPOST under the accession
number GPST000487.

Datasets
Datasets analyzed in this work have been sourced from the academic
literature, by processing supplementary tables.Where possible, glycan
sequences were converted into IUPAC-condensed nomenclature,
either manually or using the canonicalize_iupac function within gly-
cowork, followed by manual inspection. Quantitative values were
usually recorded as relative abundances, summing up to 100%, where
this was not already performed. If the original authors imputed zeroes
with a small constant (e.g., 0.1), then we reverted this back to zero.
Otherwise, no alteration of the original data was performed. The pro-
cessed datasets can be found within glycowork (version 1.3+, available
via the glycomics_data_loader) and/or the supplementary tables in
this work.

Fig. 4 | Specialized analysis modalities for comparative glycomics data. Sig-
nificant differences (p <0.072, adjusted for a sample size of 8, see “Statistical
analysis” section) between the O-glycome alpha diversities (a: Shannon entropy,
p =0.011;b: Simpson entropy, p =0.016) of HEK293 cells transfectedwith HIV-1 gag
and untransfected controls30 (n = 8), determined via two-tailed Welch’s t-tests with
Benjamini–Hochberg correction. Data are depicted asmean values, with box edges
indicating quartiles, and whiskers indicating the remaining data distribution up to
the 95% confidence interval. c Identifying specific serum biomarkers for bacterial
infection. Using the get_roc function (glycowork, version 1.3) on an ALR-
transformed serum N-glycomics dataset with an informed-scale model, we
obtained the best motif that separated healthy and bacteria-containing samples
(totalN = 71).We then, for each infecting pathogen, repeated this process as a One-
Vs-Rest problem to identify the best motif that allowed us to separate the infecting
pathogen from all other classes (other pathogens and healthy donors). Perfor-
mances of this workflow without ALR transformation are also shown for

comparison. PA Pseudomonas aeruginosa, HV Healthy volunteers, SV Streptococcus
viridans, EC Escherichia coli, SA Staphylococcus aureus, Hybrid hybrid N-glycans,
bisecting bisecting GlcNAc, high-Man high-mannose; intLacNAc2 internal LacNAc
type 2. Area-under-the-curve (AUC) values are shown for all markers and a dashed
line represents random assignment. d Beta-biodiversity clusters ovarian cancer
types. We used a distance matrix from get_biodiversity (glycowork, version 1.3) of
ovarian cancer O-glycomes32 based on Aitchison distance for a principal compo-
nent analysis (PCA), in which the different types and grades were well separated,
indicated by colored clusters. The Eigenplot displays PCA clustering of distances
from CLR-transformed data, with clustering metrics describing the comparison
with PCA clustering of un-transformed data presented in an associated table.
e Significant correlations (p <0.048, adjusted for a sample size of 31) betweenCLR-
transformed N- and O-glycomics data during differentiation from monocytes to
macrophages29, derived from the get_SparCC function (glycowork, version 1.3).
Source data are provided as a Source Data file.
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Data processing
As a general processing step in all functions, glycanswith zerovalues in
all samples were dropped, followed by outlier treatment via
Winsorization44. Briefly, this procedure replaced the 5% most extreme
values on either end by the data-dependent values of the 5th and 95th
percentile, respectively, which has been shown to be effective across
all sample sizes to reduce the impact of outliers on statistical testing44.

Next, missing values were assumed to be missing at random and
imputed via an iterative application of a MissForest algorithm5,45

implemented within glycowork, starting with median values as place-
holders and proceeding for up to five iterations or convergence. An
exception to this was made when all samples of one condition exhib-
ited zero expression of a glycan. In such cases, zeroes were viewed as
not missing at random and were replaced with an arbitrarily small
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constant (10−5) to facilitate the transformations below. Thereafter,
each sample was re-normalized to a total sum of 100. All data pro-
cessing steps (and analyses below) have been entirely executed within
glycowork (version 1.3).

Transforming compositional data
While glycowork contains a substantial amount of functionality tar-
geted at the monosaccharide compositions (e.g., mass calculation or
structure mapping), we here focus on the statistical compositions
mentioned above. By default, data were transformed from the Aitch-
ison simplex to real space via a CLR transformation. This meant sub-
tracting the log2-transformed geometric mean from the log2-
transformed data. Further, the geometric mean here was only
formed from the non-zero elements of the data. In the case of an
applied scale uncertainty model14,18,19, this log-transformed geometric
mean was then modified by drawing samples from a normal distribu-
tion, with the log-transformed geometric mean as its center and an γ
parameter that controlled its variance (γ2). The default γ value in all
glycowork functions is set as 0.1, to always account for at least some
measure of scale uncertainty.

Alternatively, we also offer the possibility for an ALR transfor-
mation, which is the default transformation for N-glycomics datasets
with >50 identified structures. Here, the ratio of all glycans with a
reference glycan is formed after log2-transformation. To identify an
appropriate reference glycan that fulfills the requirements of CoDA,we
rank all possible glycans by a custom score that multiplies Procrustes
correlation by inverse glycan variance across conditions46. Here, the
Procrustes correlation measures how well the ALR transformation
using a candidate glycan re-captures the geometry achieved by a CLR
transformation of the same data. The glycan with the highest Pro-
crustes correlation and lowest variance is then chosen as the reference,
and hence excluded fromanalysis. If that glycan exhibited a Procrustes
correlation of below 0.9, or a between-group variance of above 0.1,
ALR was abandoned and data were transformed via CLR. We note that
neither CLR nor ALR are zero-bounded, so negative values are to be
expected in the output and simply translate to small(er) values.

Finally, if users have knowledge about the actual scale difference
(e.g., total number of glycans 20% lower in the treatment condition),
this information can be used for an informed-scale model, akin to
previous work14, which transforms the meaning of γ2 into an estimate
of the experimental error in determining that scale difference. For
binary comparisons, we used the ratio of the group scales, whereas a
dictionary of the scales, expressed as ratios to the lowest scale, was
used in multi-group settings. When using ion intensities for an
informed-scale model, we used themean of the sums of ion intensities
for each sample across a condition as an indicator for its average total
glycan amount.

Differential expression analysis
The key function for pairwise differential expression in glycowork is
get_differential_expression, together with get_glycanova for ANOVA-
based set-ups.

If the analysis was performed on the motif level, CLR/ALR-trans-
formed data were used for the quantify_motifs function in glycowork,
which proportionally scales and sums abundances across different
glycans exhibiting a certainmotif/substructure. Motifs with redundant
information were identified and handled via the clean_up_heatmap
function in glycowork, which retains the largest motif of a redundant
group. Otherwise, the abundances of duplicate sequences were aver-
aged. Subsequently, all glycans/motifs with less than 2% overall var-
iance were discarded. Mean abundances of glycans/motifs were
calculated from theoriginal relative abundances. Then, for each glycan
or motif, the CLR/ALR-transformed values were tested for differential
abundance (Welch’s t-test or paired t-test), effect size (Cohen’s d/dz),
heteroscedasticity (Levene’s test), and equivalence (two one-sided
t-tests).

By default, we use the two-stage Benjamini–Hochberg procedure
for multiple testing correction47. Optionally, users can employ a
grouped two-stage Benjamini–Hochberg procedure for increased
sensitivity48, in which glycans are grouped by biosynthetic similarity
(e.g., core structures inO-glycans, high-mannose/complex/hybrid inN-
glycans, etc.). Meaningful groupings are confirmed by comparing
intra-group correlation to inter-group correlation via a linear mixed-
effects model. Groupings are only employed if the intra-group corre-
lation is three times larger than the inter-group correlation and larger
than 0.1, otherwise, a standard two-stage Benjamini–Hochberg pro-
cedure is executed. In either case, and also for themethodsmentioned
below, if the fraction of significant results ever exceeds 90%, a problem
in the CLR/ALR transformation is assumed and, for the sake of
robustness, multiple testing correction is switched to the conservative
Bonferroni correction.

Biodiversity analysis
Both alpha- and beta-diversity metrics can be mixed and matched
(both on the sequence and motif level) in the get_biodiversity function
in glycowork.

Alpha diversity metrics are designed to operate on count-based
data and use relative abundances, while beta-diversity metrics require
distances and thus use CLR/ALR-transformed data6. For alpha diver-
sity, we used sequence richness, Shannon entropy, and Simpson
entropy asmetrics, whichwere then compared via two-tailedWelch’s t-
tests for significant group differences. If more than two groups were
present, these tests were performed as ANOVAs on the respective
alpha diversity metrics.

For beta diversity, we constructed a distance matrix based on
Aitchison distance (Euclidean distance after CLR/ALR transformation
into real space) of glycans/motifs and then performed an analysis of
similarities (ANOSIM)49 and a permutational multivariate analysis of
variance (PERMANOVA)50 on this distance matrix. Briefly, an ANOSIM
compares between-group mean distance and within-group mean dis-
tance against the null hypothesis that they are equal, resulting in an R
value. A PERMANOVA compares variances in distance in a between-
group versus within-group setting, resulting in an F-statistic. In both
methods, a p value is obtained by comparing the actual difference (or

Fig. 5 | A compositional data meta-analysis of oligo- and pauci-mannose N-
glycans in cancer. Both full structures (a, b) and motifs (c, d) are consistently
dysregulated across cancer types in afixed-effectsmeta-analysis ofCLR-transformed
relative abundances (using the get_meta_analysis function within glycowork, version
1.3), using a single two-tailed t-test of the combined effect size. Adding an informed-
scale model based on the ion intensities (b, d) improves analytical sensitivity and
reveals an absolute increase of most considered structures and motifs in cancer.
Total n= 194 and combined effect sizes are shown as Cohen’s d. All results can be
found in Supplementary Data 11–14. A pairwise analysis of CLR-transformed data
from healthy samples and cancer tissues reveals structures of moderate predic-
tiveness (e; AUC=0.69), which is substantially improved by the informed-scale

model (f; AUC=0.81). ROC curves were analyzed and generated with the get_roc
function (glycowork, version 1.3). g In a pan-cancer analysis of oligo- and pauci-
mannose N-glycans, cancer samples exhibited a significantly greater alpha diversity
of these structures (p =0.002), measured as the number of expressed unique
structures per sample, calculated with the get_biodiversity function (glycowork,
version 1.3), using a single two-tailed Welch’s t-test. h Correlating CLR-transformed
N-glycomics and O-glycomics data from the same prostate cancer patients in dif-
ferent stages reveals substantial cross-class regulation. Only significant correlations,
derived from the get_SparCC function (glycowork, version 1.3), are shown as
Spearman’s rho,with everything else set to zero. **p <0.01. Sourcedata are provided
as a Source Data file.
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F-statistic) against differences (or F-statistics) obtained by shuffling
group labels in a large number of permutations (n = 999 in our case).
Obtained p values were then corrected for multiple testing via a two-
stage Benjamini–Hochberg procedure.

Cross-class associations
Using the get_SparCC function in glycowork, two systems biology
datasets can be cross-correlated. If glycomics datasets are used, this
can be performed at the whole-glycan or motif level. After processing,
both datasets are CLR/ALR-transformed and a Spearman correlation
matrix is calculated from the transformed values21. Pairwise correla-
tions are tested for significance via two-tailed t-tests, corrected for
multiple testing by a two-stage Benjamini–Hochberg procedure.

Statistical analysis
For all analyses, a sample-size appropriate α level for statistical sig-
nificance was chosen via Bayesian-aware alpha adjustment51, to always
obtain a Bayes factor of at least three for the threshold of statistical
significance (get_alphaN in glycowork). For statistical analysis, this
study used two-tailed Welch’s t-test for univariate and Hotelling’s T2

test for multivariate comparisons. Differences in variance were tested
by Levene’s test. Pairwise post-hoc comparisons were done with
Tukey’s honestly significant difference test. All multiple testing cor-
rections were done via the two-stage or grouped two-stage
Benjamini–Hochberg procedure. Effect sizes were estimated via
Cohen’s d/dz for univariate and the Mahalanobis distance for multi-
variate comparisons. All statistical testing has been done in Python
3.11.3 using the glycowork package (version 1.3), the statsmodels
package (version 0.14), and the scipy package (version 1.11). Friedmann
analysis was conducted in GraphPad Prism (version 10). Data normal-
ization and motif quantification were done with glycowork
(version 1.3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this article can either be found in supplementary tables
or as stored datasets within glycowork. Unless otherwise stated, all
data supporting the results of this study can be found in the article,
supplementary, and source data files. Generated glycomics data for
this article can be found on GlycoPOST, under the accession number
GPST000487. Source data are provided with this paper.

Code availability
Code and documentation are available via glycowork v1.3 [https://
github.com/BojarLab/glycowork]52, which can also be accessed via
Zenodo [https://zenodo.org/records/11543487].
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