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Negative refraction of light in an
atomic medium

L. Ruks1,2,3 , K. E. Ballantine4 & J. Ruostekoski 4

The quest to manipulate light propagation in ways not possible with natural
media has driven the development of artificially structured metamaterials.
One of the most striking effects is negative refraction, where the light beam
deflects away from the boundary normal. However, due to material char-
acteristics, the applications of this phenomenon, such as lensing that sur-
passes the diffraction limit, have been constrained. Here, we demonstrate
negative refraction of light in an atomic medium without the use of artificial
metamaterials, employing essentially exact simulations of light propagation.
High transmission negative refraction is achieved in atomic arrays for different
level structures and lattice constants, within the scope of currently realised
experimental systems. We introduce an intuitive description of negative
refraction based on collective excitation bands, whose transverse group
velocities are antiparallel to the excitation quasi-momenta. We also illustrate
how this phenomenon is robust to lattice imperfections and can be sig-
nificantly enhanced through subradiance.

Negative refraction of electromagnetic waves1–7 is characterised by
counter-intuitive phenomena, such as the bending of waves in a
medium in the opposite direction to what normally occurs and the
amplification of evanescent waves in the bulk8,9. These entail possibi-
lities of transformative applications, including cloaking10–12 and
superlensing9,13, and have also gained considerable attention in other
wave types, such as elastic and acoustic waves14,15. Metamaterials,
synthetic man-made media, were developed to overcome limitations
of natural materials, with these unconventional refraction phenomena
serving as a key driving force behind their advancement. Despite the
significant interest in negative refraction, intrinsic non-radiative
damping and ever-present fabrication imperfections of resonators in
metamaterials result in significant losses at optical frequencies16,17.
Similarly, negative refraction in 3D photonic crystals18,19 is constrained
by the refractive indices of their constituent dielectrics, is sensitive to
imperfections, and operates within a narrow range of incidence angles
with limited subwavelength resolution due to the requirement of
wavelength-scale periodicity. Consequently, a practical application of
negative refraction of light has yet to be demonstrated.

Here we show that negative refraction of light can be obtained in
atomic media without the use of artificially fabricated resonators. This
is made possible by harnessing and utilising cooperative, non-local
atom responses that arise from strong light-mediated interactions at
high densities. We achieve this controlled response by considering
subwavelength atomic arrays20 with unit filling, which can be experi-
mentally realised in system sizes up to tens of wavelengths21. Coop-
erative optical interactions in atomic arrays have recently been
confirmed in transmitted light, as evidenced by the spectral resonance
narrowing below the fundamental quantum limit dictated by a single
atom22 and coherently manipulated optical switching23. In contrast to
our approach, previous proposals for utilising atomicmedia to achieve
negative refraction have relied on quantum interference effects in
multilevel systems involving inherently weak magnetic dipole transi-
tions for independently scattering atoms24,25. These approaches
necessitate, e.g., exceptionally high refractive indices at high densities,
that currently surpass the limits of experimental capabilities26.

We demonstrate the negative refraction of light through micro-
scopic, atom-by-atom simulations that exactly incorporate all
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recurrent scattering processes between stationary atoms in the low
light intensity limit27,28, and accurately describe experimental
conditions22,29. Our analysis encompasses both the J =0 ! J0 = 1 tran-
sition, typical of experimentally relevant alkaline-earth-metals and
rare-earth metals (e.g., Sr, Yb), and a two-level transition found in
cycling transitions for alkali-metal atoms, using the optical lattice
spacing of Rb from light transmission experiments22,23. The simulations
uncover a distinct deflection of propagating light beams in the oppo-
site direction to what normally occurs. This enables us to extract from
microscopic simulations the negative value of refractive index. We
demonstrate high-transmission negative refraction that is resilient to
lattice imperfections, such as missing atoms and position uncertainty,
over a range of laser frequencies, incident angles, and lattice constants
by modelling 3D atom arrays as stacked infinite 2D planar layers when
in each layer the scattering problem is represented in momentum
space. Our findings, confirmed for finite-sized arrays in a few-layer
scenario through large-scale simulations, reveal that such refraction
aligns with the simple phenomenology of transverse Bloch band col-
lective resonances. Notably, negative refraction can be realised by
engineering and exciting such resonance bands whose in-plane group
velocities are antiparallel to the excitation quasimomenta—which are a
common occurrence in moderately subwavelength arrays. Intrigu-
ingly, the effective refractive index can be significantly enhanced
through coupling with more subradiant excitations.

Results
We consider a 3D cubic Bravais lattice of Nx ×Ny ×Nz atoms, pri-
marily examining the large array limit within the yz plane. To facil-
itate this limit, we represent the system as stacked planar square
arrays with a lattice constant a, positioned at planes x = x‘ = ‘a
(‘ = 0, …, Nx − 1), as illustrated in Fig. 1a. We assume the low light
intensity limit where a coherent monochromatic Gaussian laser,
with the amplitude E + ðrÞ, dominant wavevector k = (kx, k∥), and
wavelength λ = 2π/k, is incident from x = −∞ propagating in the
positive x direction at an angle θ to the y-axis, such that kz = 0.
Unless the lattice is finite, we further assume the beam is confined in
the xy plane only (Supplementary Note 1). For the J =0 ! J0 = 1
atomic transition, we write the dipole excitation as a vectorDPðnÞ in
atom n, where D denotes the reduced dipole matrix element and
n = ð‘, jÞ indexes the atom at position rn = ‘ax̂+ rkj for the in-plane
lattice vector r∥j. For simulation cases that consider a two-level
transition with unit polarisation vector êν, the atomic dipole
amplitude, PðnÞ = êνPðnÞ, is reduced to a scalar. We denote the light
and atomic excitation amplitudes as slowly varying positive-
frequency components, with rapid oscillations e−iωt at the laser fre-
quencyω factored out30. The atomic dipole amplitude of the atom n
is driven by the incident field Rabi frequency R + ðrnÞ=DE + ðrnÞ=_
and the field scattered by all the other atoms, and satisfies the

Fig. 1 | Negative refraction and transmission of light through an atomic med-
ium. a Schematic shows light transmission through a cubic atom array, stacked in
infinite planar lattices along the x-axis, with the incident beam propagating towards
x=∞. The dominant wavevector k lies in the xy plane at angle θ= arcsinðky=kÞ to the
lattice normal, tilting in the y direction. The transmitted beam undergoes lateral
displacement D along the y-axis. b Negative refraction of a beam incident with
θ=0.2 ×π and laser detuning Δ/γ=0.73 from the atomic resonance, in units of single-
atom linewidth γ, through a 25-layer atomic lattice for the J =0 ! J 0 = 1 transition. This
is manifested in the normalised light intensity profile I/I0 (outside the medium) and
atomic polarisation density jhP̂+ ij2=jhP̂+ ij2max (within the lattice delimited by the

dashed green box) at plane z=0, scaled by resonance wavelength λ, where
I0 = 2ϵ0cmaxrjE + ðrÞj2 represents the maximum incident intensity. For visualisation,
jhP̂ + ij2=jhP̂+ ij2max for point-like atoms is smoothed by convolution with a Gaussian of
the root-mean-square widths σx=0.25a and σy=0.5a. The blue dashed lines trace the
peak light intensity, while the connecting green line marks the effective trajectory in
themedium. cD/λ and d power transmission T as a function ofΔ/γ and ky/k across the
transmission band. Green stars denote the parameters taken in b for the incident
beam. e Variation of T and effective group refractive index n0

eff with ky/k, for the same
laser detuning as in (b).
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differential equation of coupled driven linear oscillators

_P
ðnÞ

= iΔ� γð ÞPðnÞ + iR + ðrnÞ+ iξ
X
n0≠n

Gðrn � rn0 ÞPðn0 Þ, ð1Þ

where GðrÞ is the free-space dipole radiation kernel31, ξ =D2=ð_ϵ0Þ, γ
the single-atom linewidth, and Δ =ω −ω0 the laser detuning from the
atomic resonance frequency ω0. More details of the formalism are
provided in Supplementary Note 1.

While the linear system Eq. (1) can be solved in the steady state to
obtain the radiative excitations and to determine the total coherently
scattered field ϵ0hÊ+

s ðrÞi=
P

nGðr� rnÞDPðnÞ, this becomes computa-
tionally prohibitive in large systems. To calculate the transmission and
refraction of light through large atomic ensembles, we instead utilise a
momentum space representation of Eq. (1) (Methods). This involves
considering sufficiently large atomic layers that can be approximated as
translationally invariant along the y- and z-axes, with well-defined exci-
tation quasimomenta. This approach enables us to construct effective
light propagators for each atomic layer in the yz plane through a
numerically efficient momentum-space summation of radiative inter-
actions within those layers. The momentum-space representation
naturally includes the high-frequency cutoff implicit in nonrelativistic
electrodynamics30, and permits regularisation of the high-momentum
divergence, while avoiding mathematical issues32 stemming from the
lack of absolute convergence in these sums (Supplementary Note 1).
The atomic polarisation amplitudes of Eq. (1) for the ℓth layer with in-
plane Bloch wavevector q∥, determined by the propagating light, are
represented by Bloch waves Pð‘, jÞ =

P
qk
P‘ðqkÞeiqk�rkj (Methods). The

dynamics of coupled layers then resembles that of 1D electrodynamics
in waveguides33 where each layer forms an effective superatom34–36.
However, as a crucial deviation from the ideal 1D propagation, coupling
between in-plane and out-of-plane polarisation components are pre-
sent, along with decaying evanescent (near-field) contributions due to
higher Bragg scattering orders. This approach allows for efficient
numerical computation of radiative excitations and the scattered light.

Given that kz = 0 and due to the symmetry in an infinite layer, the
beam selectively excites only Fourier componentsP‘ðqy,qz =0Þ along
the principal lattice axis. As a result, the contribution from the
∣J =0,m=0i ! ∣J0 = 1,m=0i transition (for quantisation axis along z)
cancels out in the optical response for the studied p-polarised incident
light. Negative refraction is not observed in the current atomic array
for s-polarised light. However, the possibility for negative refraction
with the s-polarisation is not in general precluded, as strong coop-
erative magnetic dipole responses can be induced through more
specifically tailored atomic geometries37,38.

In Fig. 1b, we demonstrate cooperative negative refraction of light
through a 25-infinite-layer atomic medium (Nx = 25, Ny =Nz =∞) with a
J =0 ! J0 = 1 transition and the lattice constant a =0.45λ. This illus-
tration is based on atom-by-atom simulations for the propagating
beam incident at angle θ= arcsinðky=kÞ=0:2 ×π relative to the array
normal. The negative refraction of light is revealed by a negative y-
displacement D ≃−9λ (see Fig. 1a) from y =0 in the coherent trans-
mitted light intensity profile I = 2ϵ0cjhÊ+ ðrÞij2, for the total coherent
field hÊ+ ðrÞi =E + ðrÞ+ hÊ+

s ðrÞi, whilst the deflection of the beam within
the medium is clearly manifested in the accompanying atomic polar-
isation profile. The propagation direction and displacement of the
coherent beam unambiguously determine refraction-like19 behaviour
due to subwavelength periodicity of the lattice that results in all non-
zero diffraction orders of the transmitted beam to be evanescent. We
find a high power transmission T ≃0.8 despite the large medium
thickness (Nx − 1)a = 10.8 × λ of many wavelengths as, in sharp contrast
to metamaterials, losses in atomic ensembles for fixed positions arise
solely from the scattering at finite in-plane boundaries39.

In Fig. 1c–e, we show the beam displacement D, measured in the
positive y-direction, from the maximum intensity at the entrance face

to that at the exit face, and power transmission T across various light
detunings and incident angles. Collective resonances, forming a
transmission band, are characterised by local maxima in T and ∣D∣. In
the chosen system, negative refraction (D <0)—such as the case shown
in Fig. 1b—is prevalent. Remarkably, transmission resonance maxima
approach unity, with deviations from perfect transmission due to the
finite beam waist. Well within the transmission band, we generally
observe high transmission taking a minimum of about T ≃0.5, with
minima approaching zero towards the edge of the transmission band.
Theoscillations near unit transmissionwithin a broadbackgroundT≃0
are characteristic of Fano resonances, arising from coupling between
superradiant and subradiant excitations formed by scattering between
layers, analogously tobehaviour in chains of atoms coupled through 1D
waveguides33. For each incident angle, both the number of resonances
and inverse linewidths of resonance within the transmission band then
grow linearlywith the number of layers. The beamdisplacement, which
has no analogue in 1D electrodynamics, exhibits oscillations in phase
with transmission and is also found to grow linearly with medium
thickness inside the transmission band, as the travel distance of the
deflected beam is extended with increasing layer number.

Negative refraction of light, shown in Fig. 1, occurs for the J =0 !
J0 = 1 transition found in alkaline-earth-metals and rare-earth metals
suchas Sr andYb,where theMott-insulator transition in optical lattices
has been observed40,41. In contrast, the experiments on light trans-
mission through Mott-insulator states in optical lattices in refs. 22,23
use Rb, with the lattice constant a ≃0.68λ. Similar to other alkaline-
metal atoms, Rb can utilise an isolated two-level cycling transition. In
Fig. 2, we show transmission of light through a cubic array of two-level
atoms with the same lattice constant, consisting of five infinite planar
arrays. Despite the absence of isotropic atomic polarisation and the
significantly thinner sample, the negative refraction of light is dis-
tinctly observable. We find a lateral displacement D ≃−λ for a beam
with reducedwaistw = 5λ, (1/e radius of the field amplitude) incident at
an oblique angle θ= arcsinð0:2Þ, achieving high transmission T ≃0.95.

The propagation of light shown in Figs. 1 and 2 is based on precise
microscopic atomic simulations. The transition from microscopic
descriptions to themacroscopic electrodynamicsof continuousmedia
—characterised by bulk material parameters—is highly non-trivial.
Indeed, exact simulations have dramatically shown that standard
continuous media electrodynamics, which is based on the coarse-

Fig. 2 | Negative refraction in a 5-layer lattice of two-level atomswithRb lattice
spacing. Transmission of light through a cubic array of atoms, formed by five
stacked infinite planar lattices. Each atom, denoted by a green dot, exhibits an
isolated σ+-polarised two-level transition, with the quantisation axis along z, and a
lattice constant a =0.68λ, corresponding toMott insulator-state experiments of Rb
atoms22,23. Negative refraction is demonstrated by normalised light intensity I/I0
outside the medium at the plane z =0, where I0 = 2ϵ0cmaxrjE + ðrÞj2 represents the
maximum incident field intensity. Within the lattice, delimited by the dashed green
box, the atomic polarisation density jhP̂ + ij2=jhP̂+ ij2max is visualised and smoothed
using convolution with a Gaussian of root-mean-square widths σx =0.25, σy =0.5.
The light beam, incident in the xyplane at angle θ= arcsinð0:2Þ to the lattice normal
and with a detuning Δ = −0.1γ from the atomic resonance, shows a lateral dis-
placement along the y-axis of approximately −λ and power transmission T ≃0.95.
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grained averaging over precise atomic positions in granular samples,
can be significantly violated42–45. In this context, phase velocities
for Bloch waves excited in discrete atomic layers, or a refractive
index for themedium, generally cannot be defined in the conventional
sense. To determine the effective group refractive index and
quantify the beam’s deflection, we define the real part of the refractive
index46, n0

eff , for each angle of incidence by analogy with the Snell-
Descartes law, sin θ=n0

eff sinθ
0, where the effective deflection angle

θ0 = arctanðD=½ðNx � 1Þa�Þ is calculated using the beam displacement
and medium thickness (Nx − 1)a. In Fig. 1b, we find n0

eff ’ �0:5.
Considering a fixed detuning Δ =0.73γ in Fig. 1c, d, we have con-

firmed that negative refraction, with n0
eff ≲ � 0:5, persists over a broad

range of incidence angles π/6≲ θ≲π/2 (Fig. 1e), whilst n0
eff< 0 more

generally is found in the region, 0≲Δ≲ γ, of D <0 occupying a large
fraction of the transmissionband in Fig. 1c.Oscillatory behaviour in the
negative effective group index as a functionof the incident angle aligns
with similar patterns found in the lateral displacement in Fig. 1c.
Standard positive refraction is observed in the narrow upper region in
Fig. 1c, with a specific instance demonstrated in Supplementary Fig. 1.

In contrast to metamaterials, which require material optimisation
of individual elements, negative refraction in atomic systems can be
engineered solely from the strong collective response arising from the
lattice geometry. The atomic configurations are not subject to strin-
gent conditions, and we have generally observed negative refraction
when a≲ λ. It is important to note that equal in-plane and out-of-plane
lattice spacings are not a prerequisite for observing negative refrac-
tion. Our formalism readily generalises to different spacings, wherewe
have also observed qualitatively similar results, even when the lattice
constant in one dimension exceeds the resonance wavelength.

To intuitively elucidate the optical response of finitely many
stacks, we cast the multiple scattering dynamics into the form of an
eigenvalue problem (see Methods). The eigenmodes represent col-
lective resonances of atomic polarisation profiles, each with a well-
defined in-plane quasimomentum q∥. The accompanying eigenvalues
define resonance linewidths υ(j)(q∥) and line shifts δ(j)(q∥), observed in
Fig. 3a for Nx = 25 layers infinite in the xy plane and the J =0 ! J0 = 1
transition, for each band indexed by j = 1…, 3Nx. Whilst the number of
bands is determined by the layer number and the number of transi-
tions, comparison with Fig. 3b reveals how the geometry of the bands
emerges from the otherwise identical few-layer medium, with Nx = 5,
which already exhibit qualitatively similar line shift profiles. The in-
plane band structure is commonly employed to determine transmis-
sion also through single layer atomic arrays20,36,47. By diagonalising a
3Nx × 3Nx matrix for each q∥, we efficiently characterise transmission
through Nx layers, facilitating numerically feasible calculations for
large finite 3D structures46 whose optical responses are not accurately
predicted by the fully-infinite 3D band structure48.

In Fig. 3c, d, we present the displacement of a beam resonant at
each of the collective excitation bands in the few layer (Nx = 5) and
many-layer (Nx = 25) cases, respectively. Refraction is then understood
in terms of collective polarisation eigenmodes excited by the incident
field, with an illustration given in Fig. 4a. A spectrally narrow beam
excites a coherent polarisation wavepacket with in-plane wavevectors
centred around k∥, at resonance Δ ≃−δ(j)(q∥) for band j. The group
velocity of a wavepacket is determined by the gradient of the
dispersion band, vg = −∇qδ

(j)(q), where the derivative is taken
with respect to the quasimomentum q. The light-induced excitation
wavepacket experiences transverse displacement along the y axis
due to propagation at the group velocity component in that
direction, vg,y = −∂δ(j)(q∥)/∂qy. The lifetime of this excitation is given
by the inverse of the collective linewidth of the excited eigenmode
1/υ(j)(q∥). We can approximate −∂δ(j)(q∥)/∂qy and υ(j)(q∥), for all appre-
ciably excited quasimomenta q∥, by their values at q∥ = k∥, after
neglecting terms of the next order in the inverse beam waist.
We then find that the beam accumulates a transverse displacement

D ’ ~Dðkk,ΔÞ= � ∂δðjÞðkkÞ=∂qy × 1=υ
ðjÞðkkÞ over the collective mode

lifetime. Thegroup velocity thus determines, through ~D, the sign of the
effective group refractive index. Comparing ~D with the exact dis-
placement across the transmission band (Fig. 3c), we find the basic
approximation ~D ’ D to be remarkably accurate at resonance. Intri-
guingly, narrow resonance linewidths result in dramatically increased
displacements, indicating a strong enhancementof effective refraction
due to subradiant collective radiative excitation eigenmodes. This
effect is observed irrespective of the effective group-index sign, whilst
the approximation continues to hold for few-layer media (Fig. 3d).

Our analysis of the lateral displacement also allows us to derive
scaling behaviour of the optical response as a function of the sample
thickness, achieving the macroscopic ‘bulk’ behaviour limit of light
refraction. The emergence of the refractive index from the micro-
scopic principles is illustrated in Fig. 4b–d where the number of layers
is varied from 25 to 100, effectively maintaining the macroscopic
refractive response while the collective transverse dispersion band
density increases. This scaling is possible because the collective line-
width υ∝ 1/Nx precisely compensates for the increasing layer number
Nx, such that (Nx − 1)υ remains finite for large Nx. The finite limit of
(Nx − 1)υ for phase-matched resonances within the transmission band
is consistent with the observed 1/Nx linewidth scaling of light-coupled
resonant excitations in atomic arrays34, and directly demonstrates the
linear dependence of D on thickness in macroscopic media.

Our examination of negative refraction, employing stacked infi-
nite layers, offers a computationally powerful approach even for large
systems. However, in realistic finite arrays, edge effects may alter the
excitations and lead to scattering off the sample boundaries. Conse-
quently, wedirectly calculate the transmission of light, using Eq. (1), for
a finite lattice of Nx ×Ny ×Nz = 5 × 25 × 25 two-level atoms in Fig. 5a.
When compared with the case of infinite in-plane arrays (Fig. 2) we
observe an excellent match in the exact scattering profile for z =0,
which exhibits a negative refraction predicted by the resonant polar-
isation Bloch bands (Fig. 5b) at qz =0. These results are consistent with
experimental observations of light transmission through an atomic

Fig. 3 | Collective resonance excitation band structure and beam displacement
for the J =0 ! J 0 = 1 transition. a25-layerb 5-layer collective line shiftsδ(j)(qy,qz=0),
inunits of the single-atom linewidth γ, for atomicBlochwave resonances acrossbands
indexed by j, as a function of in-plane quasimomentum qy, indicative of the incident
light’s tilting angle. The lattice spacing a =0.45λ, in units of resonance wavelength λ.
The colour coding indicates the collective resonance linewidth (see Methods),
υ(j)(qy, qz=0), on a logarithmic scale, normalised to γ. c 25-layerd 5-layer exact (scatter
points) lateral displacement D(k∥, −δ(j)(ky, 0)), in units of λ, compared with approx-
imate (solid lines) lateral beam displacement ~Dðkk, � δðjÞðky, 0ÞÞ= vðjÞg, y=υðjÞðky, 0Þ,
derived from the group velocity vðjÞg, y = � ∂δðjÞðky, 0Þ=∂ky along the y-axis for laser
detuning Δ=−δ(j)(ky, 0) resonant with band j, considering the incident light’s wave-
vector y-component ky.
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Fig. 4 | Microscopic origin of negative refraction and emergence of macro-
scopic optical bulk response. a Schematic illustrates themicroscopicmechanism
of negative refraction. An atomic polarisation wavepacket, excited by the incident
beam, propagates along the y-axis over its lifetime t = 1/υ, where υ = υ(j)(qy, qz =0) is
the collective linewidth, accumulating a transverse displacement of D ≃vg,y × 1/υ.
The transverse group velocity component vg,y = −∂δ(j)(qy, qz =0)/∂qy is derived from
the collective line shifts δ(j)(qy, qz =0) for phase-matched quasimomenta qy in
resonant band j. Green and grey wavepackets illustrate cases of negative and

positive displacement, respectively. For b Nx = 25, c Nx = 50, and d Nx = 100 infinite
layers, collective line shifts, in units of the single-atom linewidth γ, arepresented for
the lattice spacing a =0.45λ, where λ is the resonance wavelength. The in-plane
quasimomentum, indicative of the incident light’s tilting angle, is varied. The col-
lective resonance linewidth is normalised to γ/(Nx − 1) on a colour-coded logarith-
mic scale. This choice highlights the linear dependence of the wavepacket lifetime,
and displacement D, on sample thickness a(Nx − 1), as alluded to in (a). Anomalous
bright dots correspond to resonances due to array edges in the x-direction.

Fig. 5 | Effects of finite lattice size and imperfections on negative refraction.
a Negative refraction of light through a 5 × 25 × 25 atomic array, denoted by green
dots, with spacing a =0.68λ, resonance wavelength λ, and an isolated σ+-polarised
two-level transition. The light is incident in the xyplane at angleθ= arcsinð0:2Þ to the
lattice normal, with laser detuning Δ = −0.1γ from the atomic resonance, scaled by
the single-atom linewidth γ. The image shows the normalised light intensity profile
I/I0 (outside the medium) and atomic polarisation density jhP̂+ ij2=jhP̂+ ij2max (within
the lattice delimited by the dashed green box) at plane z =0, scaled by λ, where
I0 = 2ϵ0cmaxrjE + ðrÞj2 represents themaximum incident intensity. jhP̂+ ij2=jhP̂+ ij2max

for point-like atoms is smoothed by convolution with a Gaussian of the root-mean-
square widths σx =0.25a and σy=0.5a. The blue dashed lines trace the peak light
intensity. b Collective line shifts δ(j)(qy, qz =0), in units of γ, for atomic Bloch wave
resonances across bands indexed by j in the corresponding lattice with infinite in-

plane layers. The in-planequasimomentumqy, indicative of the incident light’s tilting
angle, is varied. The colour coding represents the collective resonance linewidth (see
Methods), υ(j)(qy, qz=0), on a logarithmic scale, normalised to γ. In contrast with
Fig. 3b, the larger lattice spacing gives rise to diffraction of phase-matched beams
once qy ≳0.48k, so we restrict the quasimomentum qy ≲0.35k to lie well within this
range. The green star denotes the dominantly excited resonance with linewidth
≃0.05γ in (a). c Power transmission T and lateral displacement D from the centre of
the layer at the exit (not the displacement of the incident beam), in units of λ, as a
function of the incident light’s wavevector y-component ky. Perfect lattice with
infinite layers (dashed lines) and finite-size layers (dotted lines); atomic position
fluctuations with 1/e density width 0.074a about each site, obtained from stochastic
simulations (diamonds); phenomenologicalmodelwith corresponding imperfection
parameter ζf =0.975 with infinite layers (solid lines) and finite-size layers (stars).
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monolayer22 that demonstrated coupling in a finite layer to collective
modes resembling those of an infinite array.

Until now, we have considered steady-state responses. In Sup-
plementary Fig. 2, we demonstrate that negative refraction can be
observed even before the system reaches steady state. Supplementary
Fig. 2 shows the dynamics when the light is instantaneously switched
on at t =0. Initially, the short time dynamics are dominated by the
broad superradiant excitation, resulting in beam reflection. As time
progresses, the transmission of the beam increases, accompanied by
greater beam displacement and negative refraction, as the subradiant
contribution is enhanced.

We next study the effect of lattice imperfections. The change in
scattering resulting from imperfect filling fraction ζ < 1 due to missing
atoms can be quantified mean-field theoretically by taking a coarse-
grained approach to each array plane36. For fixed atomic positions, the
average atomic polarisation density then appears diminished by the
factor ζ. This constitutes a phenomenological model for light propa-
gation in the presence of imperfections (Methods).

The effect of fluctuations in the atomic positions at each lattice
site, which may arise from quantum or thermal fluctuations in a finite-
depth optical lattice potential, can be incorporated through stochastic
electrodynamics simulations. In this method, the dynamics in Eq. (1)
are solved for a specific set of fixed atomic positions, stochastically
sampled from the density distributions at each lattice site49. The
expectation values are then obtained by ensemble averaging over
many realisations. This approach has been formally shown to converge
to the exact result in the studied cases27,28.

For large arrays, a computationally faster, coarse-grained estimate
can be obtained using the momentum-space representation of the
scattering problem by incorporating smearing out of high momenta
according to the atomic position uncertainty (Supplementary Note 1).
This approach is adapted from the momentum-space regularisation
procedure of infinite lattices32,50. Here, the momentum cutoff term
exp½�q2η2=4�, where η >0 identifies a non-zero cutoff length, physi-
cally represents the Gaussian exp½�r2=η2� smearing of atomic posi-
tions. It can also be approximated by the phenomenological model
based on the reduced polarisability, collective linewidth and line shift
by the factor ζ f = exp½�k2η2=4� (Methods).

The few-layer finite lattice size of Fig. 5a allows us to include full
stochastic simulation analysis of atomicpositionfluctuations.Weassume
Gaussian density distributions about each site with 1/e-width η=0.074a,
which are present formoderate optical lattice depths of several hundred
recoil energies, employed in light transmission experiments22,23. Despite
the fluctuations, a coherent outgoing beam trajectory generally remains
present in the realisation-averaged intensity distribution to yield a pre-
cise estimate for D, within the sampling error.

In Fig. 5c, we show power transmission and lateral beam dis-
placement at varying angles of incidence in the presence of position
fluctuations. For detuning Δ = −ζf × 0.1γ, aligned with the resonance
shift obtained from the phenomenological model (Methods), we find
that negative refraction (D <0), with significant transmission T ≳0.3,
persists almost entirely throughout the transmission band
(θ≲0.16 ×π). Generally, reduced values of T and ∣D∣ result from
degraded coherent coupling to phase-matched lattice modes. Appar-
ent reductions in displacement of the total transmitted beam can also
partially be attributed to contributions from incoherent scattering,
which account for the increase in T conversely observed towards the
edge of the transmission band. The results are otherwise qualitatively
in agreement with estimates of the phenomenological model in which
case the predictions also remain valid for the imperfections due to
missing atoms with filling fractions ζ =0.975 that are lower than
achievable experimental values (e.g., above 0.99 in ref. 51). The effect
ofminor imperfections is to smoothly decrease coherent transmission
and the magnitude of beam displacement from their ideal values, and
our findings accordingly display no sharp threshold for the emergence

of negative refractionwhen varying filling fraction, spatialfluctuations,
or incident beam angle. Thus, even with experimentally realistic
atomic position fluctuations and missing atom numbers, the investi-
gation of negative refraction remains feasible. Whilst strong dipole-
dipole interactions at very small lattice constants are expected to lead
to more pronounced effects of position fluctuations, we have con-
firmed with exact stochastic simulations also for shorter lattice spa-
cings a =0.45λ, and for the J =0 ! J0 = 1 atomic transition, that
negative refraction through five layers remains observable for
η/a≃0.074, with similar drops in beam transmission and displacement
magnitude when targeting resonances of comparable linewidth.

As shown inMethods, the phenomenologicalmodel indicates that
greater deterioration of displacement and transmission occurs for any
given lattice constant when exciting subradiant eigenmodes with
narrower resonances. To maintain high transmission, exciting these
narrow resonances then requires tighter trapping potentials.

Previously,we linked thenumerically calculated cooperative atom
response to the real part n0

eff of the effective refractive index of the
sample based on the deflection of the propagating light beam. The
connection between microscopic electrodynamics simulations of a
granular atomic ensemble and the standard material parameters of
macroscopic continuous media electrodynamics can be further
explored by considering qualitative descriptions for the imaginary
component n00

eff of the effective refractive index (neff =n
0
eff + in

00
eff ). We

can estimate the attenuation length of a beam due to imperfections
using a mean-field approach in the phenomenological model that
depends on the out-of-plane group velocity, as demonstrated in Sup-
plementary Fig. 3. This relationship suggests resonant eigenmodes
with large out-of-plane group velocities may be preferentially targeted
to increase visibility of the transmitted beam.

Our calculations are based on the low light intensity limit, where
each atom responds linearly to light. However, in Supplementary Fig. 4,
we demonstrate that negative refraction is not exclusively a phenom-
enon of linearly responding systems and can persist beyond the low
light intensity limit. We incorporate beyond low light intensity effects
within a mean-field approximation, which neglects quantum correla-
tions between different atoms28. This approach has provided good
qualitative descriptions of optical responses at all intensities outside
the regimes of phase transitions52. We find that, similar to the effects of
imperfect filling fractions and position fluctuations, excitations in the
studied example are reduced due to nonlinearities, resulting in
decreased coherent light transmission and beam displacement.

Discussion
We have conducted large atomic-scale simulations to demonstrate the
negative refraction of light in atomicmedia. These simulations are based
on a methodology that has been shown to accurately describe the
experiments on atoms illuminated with resonant light in optical
lattices22,23. The essentially exact treatment of light-atom coupling
establishes a direct link between themicroscopic quantumproperties of
atoms andmaterial bulk parameters of macroscopic electromagnetism.

High-transmission negative refraction is observed in a lattice over
a broad range of incident angles (π/6≲ θ≲π/2 in Fig. 1) across the
transmission band, even without fine-tuning the lattice geometry or
optimising parameters. These conclusions hold equally for beams
incident in both the xy and xz planes, demonstrating that negative
refraction is present in a 3D angular range. We find that negative
refraction can generally be achieved in few-layer and many-layer sub-
wavelength lattices, regardless of the lattice constant, both with equal
or unequal subwavelength spacing, and evenwhen the lattice constant
in one dimension exceeds the resonance wavelength.

In the studied examples, negative refraction remain robust in the
presenceof lattice imperfections due topositionfluctuations in optical
lattices with moderate depths (several hundred recoil energies, as in
light transmission experiments22,23), and due to missing atoms with
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filling fractions ζ =0.975 in Fig. 5 that are lower than achievable
experimental values. We have derived a general condition, ζυ ≳ (1− ζ)γ,
in terms of collective and single-atom linewidths, to observe the rele-
vant resonances (Methods).

Atoms can now routinely be prepared in Mott-insulator states in
optical lattices. Recent experiments include observations of anti-
ferromagnetism in a 3D lattice of 800,000 sites21. The atomic arrays
offer several distinct advantages for the studies of light propagation.
Unlike cold, random atom clouds, they allow for well-defined medium
boundaries. Technology for trapping atoms in periodic arrays is
advancing rapidly22,23,53–59, offering a broad range of potential
applications20. Cold atoms in optical lattices serve as a promising plat-
form for quantum simulators60. In marked contrast to solid-state
metamaterials61, quantum interfaces between atoms and light are
already well established, with the potential for the arrays to operate in
the quantum regime52,62 at the single-photon level and serve as quantum
networks63. The atoms also exhibit long coherence times and are free
from non-radiative absorption losses. Additionally, a well-developed
atomic physics technology exists to control andmanipulate atomic sites
and internal atomic levels that possess precise resonance frequencies,
free from manufacturing imperfections. Atomic arrays with sub-
wavelength spacings experience strong multiple scattering, enabling
non-local collective and nonlinear responses, while strong collective
effects in metamaterials typically require special circumstances64,65. This
makes atomic arrays an exciting platform for exploring, e.g., topologi-
cally non-trivial phases66 and time-varying optical phenomena67,68 with
negative refraction. A microscopic description of atomic arrays as an
ensemble of stationary atoms interacting with light at the low intensity
limit—and thus our formalism—is exact27,28 for the studied atomic level
schemes, eliminating the need to approximate the resonators’ internal
structure, as is necessary in collectively responding metamaterials65,69.
This enables both accurate and computationally efficient design of
optical devices and functionalities in increasingly large-scale atomic
systems realised in the state-of-the-art experiments.

Methods
Calculation of the scattered field
Here, we expand upon the formalism enabling the calculation of
induced dipoles and the scattered field for arrays of infinite extent. A
detailed discussion of light-atom interactions may be found in the
Supplementary Note 1. We substitute the Bloch wave representation
Pð‘, jÞ =

P
qk
P‘ðqkÞeiqk�rkj into the multiple scattering relation Eq. (1), to

obtain a momentum-space counterpart describing scattering of in-
plane excitations between layers,

_P‘ðqkÞ= ðiΔ� γÞP‘ðqkÞ+ iR+
‘ ðqkÞ

+ iξ
XNx�1

m=0

GLðx‘ � xm,0;qkÞPmðqkÞ,
ð2Þ

where R +
‘ ðqkÞ=DE +

‘ ðqkÞ=_ are the in-plane Fourier components of
the incident field Rabi frequency when restricted to the plane x = xℓ.
The layer propagator GLðx, rk;qkÞ plays the role of a dipole radiation
kernel for an infinite layer located at x =0 and excited with in-plane
quasimomentum q∥. For x =0, r∥ =0 (‘ =m in Eq. (2)),GL describes the
light-mediated interaction between atomswithin each 2D layer70,71 and
is included even in the case of a single layer. The layer propagator is
defined in each case by a lattice sum,

GLðx, rk;qkÞ=
X
j

eiqk�rkjGðrk � rkj + xêxÞ, x ≠0, ð3Þ

GLð0,0;qkÞ=
X
j≠0

eiqk�rkjGðrkjÞ, ð4Þ

for the dipole radiation kernel31,

GνμðrÞ=
∂
∂rν

∂
∂rμ

� δνμ∇
2

" #
eikr

4πr
� δνμδðrÞ: ð5Þ

Themomentum summation within each layer, encapsulated in Eqs. (3)
and (4), provides numerically efficient computation: solving for the
steady-state polarisation amplitudes P‘ðqkÞ of Nx atomic layers
amounts to inverting, for each q∥, a 3Nx × 3Nx block matrix.GL is used
in Eq. (2) to solve for the induced dipoles under light illumination and
to obtain the scattered field by decomposing into radiation contribu-
tions for each layer ‘ and polarisation Bloch wave DP‘ðqkÞ,

ϵ0
�
Ê+
s ðrÞ

�
=
X
qk

XNx�1

‘=0

GLðx � x‘, rk;qkÞDP‘ðqkÞ: ð6Þ

These are used to generate the intensity profiles in Figs. 1b, 2, and 5a.
Power transmission T, presented in Figs. 1d, e and 5c, is calculated
using the total field intensity, with the expectation values taken over
fluctuating atomic positions,

T =

R P
μ

�
êμ � Ê+ ðrÞÊ�ðrÞ � ê*μ

�
dΩR

E + ðrÞ � E�ðrÞdΩ , ð7Þ

for solid angle elements dΩ enclosing the incident and transmitted
beams, where the summation is over the three orthogonal polarisa-
tions. To analyse focussed transmission, we assume a small collection
surface in the plane x = a(Nx − 1) + 2λ, extending across—10λ ≤ y, z ≤ 10λ.

Calculation of the excitation band structure
The multiple scattering relation between atomic layers, Eq. (2), can be
cast in the form

_bðqkÞ= i½HðqkÞ+ δH�bðqkÞ+ f ðqkÞ, ð8Þ

with b3m�1 + νðqkÞ=PmνðqkÞ, f3m�1 + ν = iê
*
ν �R +

mðqkÞ, whilst the diagonal
matrix δH contains Δ. The collective excitation eigenmodes and the
resulting band structure in the case of isotropic polarisation is deter-
mined by the eigenvectors of the 3Nx × 3Nx matrix H

H3n�1 + ν, 3m�1 +μðqkÞ= ξGL
νμðxn � xm,0;qkÞ+ iγδνμδnm: ð9Þ

Thecorrespondingeigenvaluesδ(j)(q∥) + iυ(j)(q∥) comprise the collective
line shifts δ(j)(q∥) and linewidths υ(j)(q∥) for each in-plane quasimomen-
tumq∥ in band j. TheNx layer degrees of freedomand three orthogonal
dipole orientations available to the J =0 ! J0 = 1 transition together
yield 3Nx eigenvalues for each q∥, which we calculate to give the 3Nx

bands presented in Fig. 3a, b. To calculate the band structure in the
case of two-level atoms (Fig. 5b)with the unit dipole vector ê+ , we have
the matrix Hn,m, with Nx eigenvalues, for each q∥.

Modelling imperfections through diminished atomic polarisa-
tion density
We use diminished atomic polarisation density by a factor of ζ to
phenomenologically represent fractional filling ζ < 1. This mean-field
averaging approach can describe the impact of missing atoms on light
transmission through atomic arrays for ζ≃ 1, as numerically demon-
strated in ref. 36. In the calculationof the collective response in Eqs. (2)
or (8), this approach amounts to using H* in place of H for the band
structure,

H*
3n�1 + ν, 3m�1 +μðqkÞ= ζξGL

νμðxn � xm,0;qkÞ+ iγδνμδnm: ð10Þ

Article https://doi.org/10.1038/s41467-025-56250-w

Nature Communications |         (2025) 16:1433 7

www.nature.com/naturecommunications


Examining the eigenvalues of H* reveals the collective resonance line
shifts ζδ(j) and linewidths ζυ(j) + (1 − ζ)γmoving towards the single-atom
values, which we illustrate in Supplementary Fig. 5, due to the reduced
effect of light-mediated interactions through ζGL. This can be
straightforwardly demonstrated using the single-layer form of Eq. (2)

_P0ðqkÞ= ðiΔ� γÞP0ðqkÞ+ iR +
0 ðqkÞ+ iζξGLð0,0;qkÞP0ðqkÞ

= ½iΔ+ iζδsðqkÞ � γ � ζ~γsðqkÞ�P0ðqkÞ+ iR+
0 ðqkÞ,

ð11Þ

leading to the Lorentzian steady-state solution of the single-layer
excitation amplitude:

P0ðqkÞ=
�R +

0 ðqkÞ
Δ+ ζδsðqkÞ+ i½ζυsðqkÞ+ ð1� ζ Þγ� , ð12Þ

expressed in terms of the collective linewidth υsðqkÞ= γ + ~γsðqkÞ and
line shift δs(q∥), respectively, for the single layer. Analogous to the
resulting transmission amplitude of a single atomic layer,

t =
Δ+ ζδs + ð1� ζ Þγ
Δ+ ζδs + iðγ + ζ~γsÞ

, ð13Þ

we find that the transmission in the multilayer scenario similarly
diminishes by the factor (1 − ζ)γ. This observation aligns with our
analysis; generally, transmission notably falls from the ideal ζ = 1 when
ζυ(j)(q∥)≲ (1− ζ)γ.

The averaged effect of the atomic position fluctuations on the
excitation band structure can likewise be estimated by the similar
diminished light-mediated interactions32,50. This method has pre-
viously also been applied to model the optical responses of atom
arrays in the presence of position uncertainty72. In such instances,
Gaussian expð�r2=η2Þ position fluctuations at each lattice site in a
finite-depth trap are represented by a momentum-space band-struc-
ture summationwith afinite cutoff length expð�k2η2=4Þ,mirroring the
Fourier transform of the lattice site density distribution (Supplemen-
tary Note 1). It is analytically demonstrated that this effectively scales
the light-mediated interactions by a factor of ζ = expð�k2η2=4Þ32,50. We
have both numerically and analytically corroborated that also in our
system of a finite number of layers introducing the phenomenological
model of diminished propagator ζGL closely agrees with the results
derived using the momentum-space band-structure summation with a
finite cutoff length. Whilst either of these coarse-grained estimates
offer a computationally efficient alternative to exact stochastic elec-
trodynamic simulations for calculating light propagation and band
structure in larger atomic lattices, the significant discrepancies in
transmission even for weak imperfections ζ = 0.975 (Fig. 5c, Main Text)
highlight their limitations in capturing the full complexity of light
propagation in disordered media, where they generally only provide
qualitative estimates.

Data availability
Data is available at https://doi.org/10.5281/zenodo.14271057.

Code availability
The code is available upon request.
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