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Optimizing process and heat-treatment parameters of laser powder bed fusion
for producing Ti-6Al-4V alloys with high strength and ductility is crucial to

meet performance demands in various applications. Nevertheless, inherent
trade-offs between strength and ductility render traditional trial-and-error
methods inefficient. Herein, we present Pareto active learning framework with
targeted experimental validation to efficiently explore vast parameter space of
296 candidates, pinpointing optimal parameters to augment both strength
and ductility. All Ti-6Al-4V alloys produced with the pinpointed parameters
exhibit higher ductility at similar strength levels and greater strength at similar
ductility levels compared to those in previous studies. By improving one
property without significantly compromising the other, the framework

demonstrates efficiency in overcoming the inherent trade-offs. Ultimately, Ti-
6Al-4V alloys with ultimate tensile strength and total elongation of 1190 MPa
and 16.5%, respectively, are produced. The proposed framework streamlines
discovery of optimal processing parameters and promises accelerated devel-
opment of high-performance alloys.

In the field of additive manufacturing, laser powder bed fusion
(LPBF) leads a new era in fabricating complex components. Through
precision melting of metal powders in successive layers by a con-
centrated high-energy laser beam, LPBF, controlled with intricate
computer-aided design (CAD) models, is pivotal in producing
detailed near-net-shape components'™*. The ability of LPBF to pro-
duce such complex components is particularly pronounced in the
fabrication of Ti-6Al-4V alloy components, a material distinguished
by its superior mechanical strength®®, creep resistance’®, corrosion
resistance’’, and biocompatibility"*2.

Nevertheless, the broad application of LPBF-manufactured Ti-6Al-
4V alloys has encountered a notable strength-ductility compromise.
The as-fabricated samples of Ti-6Al-4V alloys comprise acicular o
martensite characterized by fine, needle-like structures that exhibit
high strength (-1100 MPa) but lower ductility (-8%)" . To address the
trade-off between strength and ductility, post-processing techniques
have become essential for enhancing ductility by transforming the o*
phase into a more ductile o + 3 two-phase microstructure, even though
the ultimate tensile strength (UTS) is often decreased. Therefore,
optimizing both the process and post-heat treatment (HT) parameters
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to successfully balance strength and ductility is critical for meeting
performance demands.

Optimization of strength and ductility can be achieved, con-
sidering precise manipulation of processing parameters in LPBF allows
control over the microstructural development in Ti-6Al-4V alloys'*,
Unlike traditional manufacturing techniques, LPBF subjects materials
to extreme thermal histories characterized by rapid solidification and
cyclic reheating. Therefore, the resulting microstructures are con-
siderably influenced by the processing parameters of LPBF. Several
studies'* have reported that higher laser power decreases the cool-
ing rate, potentially leading to coarser martensitic structures or
enhanced texture intensity. This effect is attributed to the increased
thermal retention in the melt pool, which facilitates the alignment of
dendrites parallel to the thermal flux, consequently fostering the
development of columnar crystals. Conversely, increasing the scan-
ning speed tends to increase the cooling rate and reduce the tem-
perature gradient in the molten pool, resulting in a transition from a
large columnar-like morphology to a small cellular morphology**.

Moreover, various post-HTs have been employed to refine the as-
built microstructure and balance the trade-off between strength and
ductility. Through sub-transus HT, the as-built microstructure com-
prising intertwined o martensitic needles within prior-3 grains can be
refined into an equilibrium phase while preserving the initial micro-
structure, consequently retaining strength. Super-transus HTs cause
considerable growth in columnar prior- grains, enhancing ductility
and partially mitigating the apparent anisotropic deformation
behavior?. Even when HTs are conducted beyond the usual range,
such as duplex annealing®?*, diverse microstructural characteristics
can be obtained. Therefore, both LPBF process parameters and post-
HT conditions must be considered to comprehensively understand
process-property relationships and to optimize mechanical properties
of additive manufactured Ti-6Al-4V alloys.

Recently, numerous efforts have been made based on
experimental”* and computational methods*?° to understand
process-property correlations and, therefore, to find optimal combi-
nations for obtaining materials with superior mechanical properties.
Experimentally, a large number of iterative experiments have been
conducted based on the design of experiments (DoE) method and,
computationally, various properties of Ti-6Al-4V alloys have been
explored through simulations to identify combinations that can yield
the desired properties of alloys. Additionally, methods to improve the
computational efficiency of these computational approaches have also
been proposed®. While these experimental and computational studies
have successfully produced alloys with the desired mechanical prop-
erties, vast number of combinations worth exploring still exist due to
the time and resource limitations of both methods™.

To overcome the constraints regarding time and resources and to
further investigate the extensive process parameter space of LPBF,
data-driven approaches, specifically machine learning (ML), have been
applied in the field of additive manufacturing®*. The key reason for
this success lies in the vast amount of data generated from prior
experiments and simulations, addressing the most significant chal-
lenge of ML approaches: generating sufficient training data. By utiliz-
ing these existing data from prior studies to train ML models,
properties of alloys produced under unexplored LPBF process para-
meters could be expeditiously and relatively accurately predicted.
Based on these predictions, focusing efforts on process parameters
with the highest potential can significantly reduce the number of
experiments or simulations required, saving time and resources.
Therefore, many studies have utilized ML in various aspects of additive
manufacturing. Specifically, Akbari et al.*® used ML to predict the yield
strength, UTS, and elastic modulus of additively manufactured com-
ponents, while Zhan et al.”’ developed an ML model to predict the
fatigue life of stainless steel 316 L using additive manufacturing pro-
cess parameters as input features.

In line with the demonstrated usefulness of data-driven approach,
various studies in other fields**** have widely utilized active learning,
another type of data-driven approach that is particularly specialized
for optimizing targeted properties. Unlike traditional ML, active
learning involves iterative cycles of prediction and experimentation,
using a surrogate model trained on labeled data alongside an acqui-
sition function to select high-uncertainty, unlabeled data points for
further testing. This process enables efficient exploration of vast
parameter spaces by continuously refining the model, targeting data
points with high potential for desired properties. Ultimately, active
learning provides a time- and resource-efficient method for identifying
data with superior target properties through focused experimentation.

Inspired by the various advantages and achievements of active
learning, this study leverages active learning for the efficient and
effective exploration of large number of unexplored combinations of
LPBF process parameters and HT conditions, aiming to identify those
that can produce Ti-6Al-4V alloys with high UTS and total elongation
(TE) values simultaneously. The framework of active learning with
multiple objectives, the Pareto active learning framework, is estab-
lished with a Gaussian process regressor (GPR), initially trained with
119 different combinations of LPBF process parameters and HT con-
ditions from previous studies, employed as the surrogate model, and
expected hypervolume improvement (EHVI) used as the acquisition
function. For every active learning iteration, two new combinations of
LPBF process parameters and HT conditions were selected to produce
the corresponding Ti-6Al-4V alloy specimens, with their UTS and TE
values obtained through tensile tests. Moreover, with a detailed
microstructure characterization and analysis of the correlation
between process variables and mechanical properties, this study fur-
ther validates the superior UTS and TE values of Ti-6Al-4V alloy spe-
cimens produced with the selected combinations, showing that their
microstructures also share similar characteristics with those known to
have high UTS and TE, respectively. The proposed Pareto active
learning framework whose efficiency and effectiveness are demon-
strated throughout this study is expected to enable precise and effi-
cient tailoring of LPBF-fabricated Ti-6Al-4V alloys to meet diverse
application requirements.

Results and discussion

Initial dataset

The workflow of this study is shown in Fig. 1 and proceeds in the order
of initial dataset construction, implementation of the Pareto active
learning framework, and microstructure analysis. First, the establish-
ment of the initial dataset entailed a detailed description of the process
parameters for LPBF and the subsequent HT conditions, as depicted in
Fig. 1a. The LPBF process parameters included laser power, scan speed,
and volumetric energy density (VED), calculated as

VED(J/mm?3) = P @

hot’

where P, h, v, and t denote laser power, hatch spacing, scan speed, and
layer thickness, respectively. Furthermore, post-HT conditions
included parameters such as HT time and temperature. The entire
compiled dataset was subjected to consistent furnace cooling, without
annealing after the initial HT. A total of 119 combinations of LPBF
process parameters and post-HT conditions were extracted from
previous studies*’, and the UTS and TE of Ti-6Al-4V alloys fabricated
using each combination were recorded. Utilizing the obtained 119
labeled datasets, the goal was to explore combinations that have not
yet been investigated. Thus, a separate unlabeled dataset of 296
unexplored combinations was constructed, aiming to expeditiously
and accurately identify combinations that can produce Ti-6Al-4V alloys
with high UTS and TE using the Pareto active learning framework. For
unexplored combinations, the scan speed and laser power were
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Fig. 1| Schematic of the overall flow. Three components comprising the overall
workflow of exploration for Ti-6Al-4V alloys with superior mechanical properties
are shown. a Construction of the initial Ti-6Al-4V LPBF dataset incorporating pro-
cess and HT parameters. b Implementation of the Pareto active learning frame-
work. The proposed active learning framework operated iteratively by selecting
two combinations of the LPBF process parameters and post-HT conditions from the
unlabeled dataset in each iteration. The two combinations are expected to maxi-
mally extend the Pareto front, depicted by yellow lines, which represents an
exchange surface where improving one property necessitates compromising the

Engineering strain, %

other. Based on the two combinations, Ti-6Al-4V alloys are fabricated to obtain
their UTS and TE values through tensile tests. New data from these tests are added
to the labeled dataset to expand the Pareto front, and another two combinations
are recommended for testing in a repetitive process. Five iterations were con-
ducted in this study, resulting in experiments on ten new combinations whose UTS
and TE values are indicated by red dots. ¢ Microstructure analyses to validate the
superior UTS and TE values of Ti-6Al-4V alloy specimens produced with the
selected combinations. Source data are provided as Source Data file.

adjusted according to the VED values to prevent the occurrence of
keyholes and lack-of-fusion defects®®*. Therefore, the scan speed was
set to increase by 50 mm/s from 500 mmy/s to 2000 mmy/s, while the
laser power was configured to increase by 50 W between 100 W and
350 W. For HT conditions, the parameters included a range of
temperature and time conditions such as the as-built condition,
martensite start temperature (Ms), and p-transus temperature.

Consequently, the considered temperatures were 25, 595, 900, and
1050 °C, while the considered HT times were O and 2 h.

Pairwise plot to investigate correlation

Before implementing the Pareto active learning framework, pairwise
plots (Fig. 2) were generated using the initial dataset to determine
whether combinations of LPBF process parameters and post-HT
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Fig. 2 | Pairwise plot and distribution demonstrating correlations between five
input parameters and two mechanical properties. a Correlations between five
input parameters and UTS (in pink) and correlations between them and TE (in blue).
The individual effects of each parameter were visualized without holding other
parameters constant, due to the inherent variability and interdependencies within
the initial dataset, which comprises data from multiple studies and experimental
conditions. The shaded areas represent the distribution of data points, illustrating

the variability and spread within each dataset. The solid lines indicate the fitted
trends derived from linear regression of the distributions, capturing the overall
relationship between variables. b Distribution of all Ti-6Al-4V samples in the initial
dataset marked in gray, that of those with the top 10% of TE marked in blue, and that
of those with the top 10% of UTS marked in red based on the values of laser power,
HT temperature, and HT time. Source data are provided as Source Data file.

conditions that can produce Ti-6Al-4V alloys with high UTS and TE
could be designed based solely on the pairwise relationships between
each parameter and mechanical properties, and to understand the
individual effects of LPBF process parameters and post-HT conditions
on UTS and TE. In the pairwise plot of Fig. 2a, an inverse correlation
between UTS and laser power, HT temperature, and HT time was
observed, whereas a direct correlation with TE was observed for the
three parameters. These relationships are further elucidated in Fig. 2b.
Corroborating the trends identified in Fig. 2a, the Ti-6Al-4V samples
with the top 10% TE values were fabricated with high values for all three
parameters, whereas those with the top 10% UTS were fabricated with
low values. Through the pairwise plot, it was observed that laser
power, HT temperature, and HT time exhibit an inverse correlation
with UTS and a direct correlation with TE, and a discussion regarding
why each of these parameters shows this type of relationship, based on
previously established insights, can be found in the Supplementary
Note 1. Unlike laser power, HT temperature, and HT time, scan speed
and VED did not show consistent trends in their effects on UTS and TE.
Therefore, the analysis in this section focused on the parameters that
showed clear and discernible patterns.

However, it was impossible to design combinations of LPBF
process parameters and post-HT conditions that can produce Ti-6Al-
4V alloys with high UTS and TE based on the correlations identified
from the pairwise plots. First, to understand the pure effect of a

single parameter on mechanical properties, the other parameters
excluding that parameter need to be fixed. However, since the ana-
lysis was conducted based on the initial dataset, this was not possi-
ble; determining such pure effects would require multiple additional
experiments, demanding significant time and resources. Second,
because all three parameters, laser power, post-HT temperature, and
post-HT time, showed a tendency where increasing UTS led to a
decrease in TE, it was very difficult to achieve high values for both
UTS and TE through pairwise correlations. To simultaneously
increase UTS and TE, certain parameters would need to be set low to
enhance UTS, but it was unclear which parameters to adjust and by
how much. This implies that it is essential to consider synergistic
effects between them for fabricating Ti-6Al-4V alloys with both high
UTS and TE. Therefore, instead of relying solely on one-to-one rela-
tionships, an active learning framework was employed to consider
the synergistic effects, thereby overcoming the limitations of con-
ventional analytical methods.

Pareto active learning framework
The Pareto active learning framework proposed in this study proceeds
according to the following steps, with an overview of the framework
presented in Fig. 3.
1. The surrogate model, GPR, is trained with a labeled training
dataset to learn the relationship between the three types of LPBF
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Fig. 3 | Overview of the Pareto active learning framework proposed in this study. The steps are iteratively repeated to find a combination that achieves both high
ultimate tensile strength and total elongation in a Ti-6Al-4V alloy. Source data are provided as Source Data file.

process parameters, two types of post-HT conditions, and the
mechanical properties, specifically UTS and TE.

2. The trained GPR is used to make predictions for combinations of
LPBF process parameters and post-HT conditions that have not
yet been experimentally verified for their UTS and TE. This step
yields predictions for UTS and TE values of the unlabeled dataset,
along with the uncertainty of each prediction.

3. The acquisition function, specifically EHVI, uses these values to
calculate EHVI values for the unlabeled combinations.

4. Two unlabeled combinations with the highest EHVI values are
selected to fabricate specimens using those LPBF process para-
meters and post-HT conditions. Tensile tests are then conducted on
the produced specimens to obtain their actual UTS and TE values.

5. Newly acquired data from the experiments are added to the
labeled training dataset for the next iteration.

6. The process starts again from Step 1 with the updated training
dataset and repeats until the predefined condition is satisfied; in
this study, the stopping condition is defined as when both selec-
ted combinations in an iteration fail to expand the Pareto front.

As aforementioned, the two most crucial components in the
active learning framework are the surrogate model and acquisition
function, with GPR and EHVI utilized for each component, respectively.
Details regarding GPR (i.e., hyperparameters and kernel functions) and
the mathematical expression of EHVI are provided in the Method
section, while descriptions of the concepts of GPR and EHVI, as well as
the reasons for their use in this study, are provided in the Supple-
mentary Note 2. Also, to validate that EHVI is the most suitable
acquisition function for the Pareto active learning framework of this
study, comparative tests were conducted under conditions specified in
Supplementary Note 3. As a result, it was confirmed that EHVI could
identify data that could expand the Pareto front more expeditiously
and accurately than the other three compared acquisition functions,
and therefore EHVI was utilized in this study; the results of the com-
parative tests can also be found in Supplementary Note 3.

Active learning iterations

The Pareto active learning framework in this study began with training
a GPR on an initial dataset of 119 parameter combinations. In the first
iteration, two new combinations were selected from an unexplored
dataset of 296, and three specimens for each combination were fab-
ricated and tested, with average UTS and TE values recorded (Table 1
and Supplementary Fig. 1). These selections successfully expanded the
Pareto fronts of the initial 119 combinations, thereby increasing the
enclosed hypervolume, as shown in Fig. 4a. To be more specific,
among the 119 combinations, the highest TE in the alloys with a UTS of
~1060 MPa was 14%. However, a single experiment enabled the iden-
tification of LPBF process parameters and post-HT conditions that
fabricated a Ti-6Al-4V alloy with a 4.3% point increase in TE. Similarly,
whereas the highest UTS among alloys with -18% of TE was 945 MPa,
the combination identified in the first iteration resulted in a UTS of
1061 MPa, enhancing the UTS by 116 MPa. Hence, the framework
accurately pinpointed the combinations capable of fabricating Ti-6Al-
4V alloys with higher TE at comparable UTS levels and vice versa, thus
demonstrating the possibility of improving one property without sig-
nificantly compromising the other. The second iteration followed a
similar process, updating the GPR with 121 data points, including two
new data points from the first iteration, and selecting two more
combinations from the remaining 294. The iteration also successfully
expands the Pareto front, as shown in Fig. 4b. Considering TE, UTS was
maintained at ~1200 MPa while achieving a 4.1% point increase in TE
compared with the 121 training dataset. Furthermore, regarding UTS,
while maintaining TE at around 12%, UTS was increased by 120 MPa.
The third iteration further expanded the Pareto front as presented in
Fig. 4c, identifying combinations that resulted in Ti-6Al-4V alloys with a
3.5% pointincrease in TE and a 125 MPa improvement in UTS compared
with the updated training dataset comprising known 123 combina-
tions. In the 4th iteration, the 4-1 sample, selected for having the
highest EHVI value, was able to increase the Pareto front by 1.2% in
terms of TE and 69.3 MPa in terms of UTS compared to the training
dataset of 125 combinations. However, the 4-2 sample, selected for
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Table 1| Combinations of LPBF process parameters and post-HT conditions selected by the framework as iterations proceeded,
and the corresponding UTS and TE values obtained through tensile tests

Iteration and Sample Printing Parameters

Measured Properties

Number

Laser Power (W) Scan Speed Heating Tempera- Heating Time (h) Volumetric Ultimate Total
(mm/s) ture (°C) Energy Density Tensile Elonga-
J/mm?d) Strength tion (%)
(MPa)

1 11 250 1100 900 2 94.69 1061+27.5 18.3%15
1-2 250 1150 900 2 90.57 1065+17.0 16.3+2.0
2 21 200 2000 595 2 41.66 1221+£18.0 12.9+0.2
2-2 200 1950 595 2 42.73 1209+8.0 12.2+2.1
3 3-1 200 1850 595 2 45.04 1186+9.0 16.4+0.7
3-2 200 1900 595 2 43.85 1190+£12.4 16.5%1.3
4 441 200 1700 595 2 49.01 1130+£13.0 17.6+0.5
4-2 250 1750 595 2 47.61 1M36+4.0 14722
5 5-1 150 1500 595 2 41.66 1207+£10.2 12.9%1.2
5-2 350 1450 0 0 100.0 1214+215 8.64+1.4

having the second largest EHVI value, had UTS and TE values posi-
tioned within the Pareto front, failing to expand it. Similarly, in the 5th
iteration, both of selected combinations failed to expand the Pareto
front, indicating that the unexplored combinations capable of
expanding the current Pareto front had been depleted. Thus, the
stopping criterion was satisfied in the 5th iteration, concluding the
active learning iterations. For thorough validation purposes, and to
confirm whether depletion had indeed occurred, a 6th iteration was
conducted, and an additional experiment was performed on the
combination with the largest EHVI value. However, the result also
failed to expand the Pareto front, and is reported in the Supplementary
Fig. 2 and Supplementary Table 1.

Remarkably, except for the 5-2 sample, the UTS and TE values of
the remaining 9 combinations of Ti-6Al-4V alloys, identified by the
Pareto active learning framework, not only surpassed those in the
initial dataset of 119 combinations used for the framework but also
exhibited superior performance compared to the properties of Ti-6Al-
4V alloys reported in previous studies on directed energy deposition
(DED)-processed and wrought Ti-6Al-4V alloys, as illustrated in Fig. 4f.
Consequently, it was demonstrated that the Pareto active learning
framework proposed in this study effectively investigated unknown
combinations of LPBF process parameters and post-HT conditions,
expeditiously and accurately identifying combinations that yielded Ti-
6Al-4V alloys with high strength and ductility.

Interpretation on the selection of the combinations

From the results above, it was observed that the combinations selected
in each iteration effectively expanded the Pareto front. The inter-
pretation of why the Pareto active learning framework selected these
combinations can be made by examining the predicted UTS and TE
values along with their corresponding uncertainties that are provided
by the GPR surrogate model and by considering the concept of EHVI.
Figure 5 represents the predicted UTS and TE values of the combina-
tions selected during 5 iterations and their corresponding uncertain-
ties. In particular, to visually convey the uncertainty information,
probability density functions created based on the predicted values
and corresponding uncertainties are also provided, which additionally
allowed for the evaluation of the reliability of the GPR surrogate model,
as presented in the Supplementary Note 4. The prediction results of
the GPR surrogate model on these combinations can be broadly divi-
ded into two groups: one with very high prediction uncertainty (e.g.,
samples 2-1, 2-2, 5-1, 5-2) and another with low uncertainty (e.g., sam-
ples1-1,1-2, 3-1, 3-2, 4-1, 4-2). First, examining the predicted UTS and TE
values of the group with very high uncertainty, they are generally

located inside the Pareto front. In other words, considering only the
predicted property values or the exploitation concept (selecting
combinations with high predicted property values), these combina-
tions are not favorable. However, as explained in the Supplementary
Note 5, EHVI considers both exploitation and exploration (selecting
combinations with high uncertainty) in a combined manner. In the
EHVI equation, the term corresponding to exploration, as visually
represented in Supplementary Fig. 19, increases proportionally with
the uncertainty value. Therefore, samples with very high uncertainty
like 2-1, 2-2, 5-1, and 5-2 were selected because their EHVI values
increased from the exploration perspective, based on the idea that
combinations with high potential are hidden in unexplored combina-
tion spaces. Conversely, in the group with relatively low uncertainty,
the predicted UTS and TE values are generally located on the Pareto
front line, such as samples 3-1, 3-2, 4-1, and 4-2, or outside the Pareto
front line like samples 1-1 and 1-2. In other words, they possess high
predicted UTS and TE values, and accordingly, the term corresponding
to exploitation in the EHVI equation, as visually represented in Sup-
plementary Fig. 20, increases proportionally, resulting in those com-
binations to possess high EHVI values. Additionally, because they are
not only favorable from the exploitation perspective but also have a
certain level of prediction uncertainty, they had further high EHVI
values and were thus selected. In summary, the Pareto active learning
framework alternates between exploration-favorable selections and
exploitation-favorable selections in each iteration, a tendency derived
from ability of EHVI to account both exploration and exploitation. This
ability of EHVI enabled the identification of combinations that can
enhance both UTS and TE, overcoming the inherent trade-off rela-
tionship between them.

Microstructure analysis

After identifying LPBF process parameters and post-HT conditions that
could lead to the production of Ti-6AlI-4V alloys with high strength and
ductility, microstructural analyses were conducted to validate the
source of their strength and ductility; aiming to confirm whether the
microstructures of the alloys produced in this study simultaneously
exhibit the microstructural characteristics of those with high UTS and
those with high TE that were respectively identified in previous studies.
In this section, the microstructures of one each from samples 1-1, 2-1, 3-
1, and 3-2 listed in Table 1 are discussed while discussion regarding
those of the 4-1, 5-1, and 6-1 samples are presented in Supplementary
Figs. 3-7 and Supplementary Note 6. Furthermore, based on this
microstructure analysis, the discussion in Supplementary Note 7
addresses how achieving a balance between UTS and TE was possible
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triangles correspond to experiment results; the probability density function shown
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samples. al-d1 Low-magnification EBSD IPF maps of o laths observed in the xz-
plane of the LPBF samples. a2-d2 IPF maps of reconstructed prior- phases on the
xz-plane corresponding to (al-d1) where the grain structure of the prior-3 phase
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was reconstructed according to the Burgers orientation relationship® based on the
local texture of the martensites « phase. a3-d3 Contour pole figures of (0001),
corresponding to (al-d1). a4-d4 Contour pole figures of (1120), corresponding
to (al-d1).

without compromising either; specifically exploring the relationship
between process, structure, and property by analyzing how energy
density and post-HT temperature (i.e., process) affected the micro-
structure, and how the resulting microstructure ultimately impacted
the mechanical properties.

First, the o orientation maps (Fig. 6al, 6bl, 6¢1, 6d1, and Supple-
mentary Fig. 8) revealed that all samples exhibited a fully acicular
microstructure, characterized by « laths arranged in a Widmanstétten
structure®® comprising elongated o laths that formed within the a-
phase matrix. The thickness of these a laths, however, varied among
the samples, with the 1-1 sample presenting the thickest laths
(-2.62 pm) and the 2-1 sample the thinnest (-0.71 pm) (Supplementary
Fig. 9). The 3-1 and 3-2 samples had similar measurements (~-0.97 and
~0.90 um), representing values slightly higher than that of the 2-1
sample. Because the reduction in the o laths thickness contributed to a
proliferation of the number of « lath interfaces, it can be explicated
that the 1-1sample yielded a lower UTS compared to the other samples,
while the 2-1 sample had the highest UTS relative to others. Further-
more, the relatively slower scan speed and higher laser power used for
the 1-1 sample resulted in a reduced cooling rate, allowing for more

duration for « laths growth and coarsening. This slower solidification
process led to fewer a laths interfaces, which in turn contributed to the
lower UTS observed in the 1-1 sample.

Second, the width of the prior- phase, obtained from the EBSD-
IPF maps of the reconstructed prior-f phase (Fig. 6a2, 6b2, 6c2, and
6d2), exhibited a profound interrelation with the thickness of a laths.
Similar to the thickness, samples with a smaller width of the prior-$
phase had higher UTS values, as shown in Supplementary Fig. 9. This
phenomenon occurred as larger prior-§ grains provided an expanded
volume conducive to the nucleation and growth of the phase. Conse-
quently, the width of the prior-p phases influenced the formation of
thick o laths, and the resulting o laths thickness in turn determined
the UTS.

Third, PF images (Fig. 6a3, 6b3, 6¢3, and 6d3) illustrated that all
samples had PF in the (0001), direction parallel to the building
direction. On comparing the PF intensities of 2-1, 3-1, and 3-2 samples,
which employed low-temperature HT conditions, an orderly increase
in PF intensity was identified; the PF intensities increased in the order
of 2-1, 3-2, and 3-1 sample. The increased intensity indicates a strong
fiber texture, which contributes to anisotropy in the mechanical
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properties by limiting slip occurrence. Notably, the impact of PF
intensities on the evolution of strength was, however, comparably less
than those of a lath thickness and prior- 3 grain width. Additionally, PF
in the (1120),, direction across all samples (Fig. 6a4, 6b4, 6¢4, and 6d4)

exhibited a random distribution, contrary to the more uniform dis-
tribution observed in the (0001), direction.

Regarding ductility, the Schmid factor (SF) values were evaluated
for basal slip ({0001}<1120,>), as shown in Fig, 7al, 7bl, 7cl, and 7d1
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where the basal slip system in « titanium alloys is known to possess the
lowest critical resolved shear stress (CRSS) at room temperature,
making it the most readily activated slip system during deformation.
Accordingly, the frequencies of SF values between 0.4 and 0.5 were
compared across all four samples, focusing only on the range of SF
values that represented the basal slip system. The SF value distribution
for each sample is shown in Fig. 7a2, 7b2, 7¢2, and 7d2, with the section
of interest highlighted in blue and the percentage of SF values in the
range of 0.4 and 0.5. The 1-1sample exhibited higher SF values than the
2-1 sample, suggesting that the 1-1 sample has easier activation of the
slip system than the others samples, thereby possessing better ducti-
lity; 54.80% of the total SF values for the 1-1 sample were positioned
between 0.4 and 0.5, whereas only 27.26% are for the 2-1 sample. The
higher VED in sample 1-1 resulted in slower cooling, which facilitated
the transformation to an o+ dual-phase microstructure as the
material underwent gradual solidification. This phase transformation
increased the potential for slip system activation within the grains,
particularly in the basal slip system, which was significantly influenced
by variations in temperature and cooling rate, leading to enhanced
activation. Accordingly, the 1-1 sample exhibited a higher TE value
compared to that of the 2-1 sample, which showed signs of localized
softening. Such softening in the 2-1 sample could result in premature
necking or fracture, preceding significant plastic deformation and,
therefore, can culminate in reduced ductility. Moreover, the 3-1and 3-2
samples, which exhibited TE values between those of 1-1 and 2-1 sam-
ples, had frequencies of SF values between 0.4 and 0.5 at 36.80 and
46.38%, respectively; thus, both the values were between those of the
1-1 and 2-1 samples. In addition to the SF analysis, the effects of phase
constitution and alloying element partitioning between the o’ and 3
phases on mechanical properties were also examined, and the
results are reported in Supplementary Note 8 and Supplementary
Figs. 21 and 22.

Hence, through this microstructure analysis, it was confirmed that
the samples produced with combinations of LPBF parameters and
post-HT conditions selected by the proposed framework not only
share microstructural characteristics commonly observed in alloys
with high UTS, such as the narrow width of the prior-p phase, which
influences the thickness of the formed o laths, and the low PF intensity
in the (0001),, direction, but also exhibit high frequencies of SF values
between 0.4 and 0.5, which are also frequently seen in alloys with high
TE. In that the samples produced in this study share microstructural
characteristics typically observed in both high UTS alloys and high TE
alloys, the balance between strength and ductility achieved in this
study could be validated.

Concluding remarks and future directions

In summary, this study was the first to apply a data-driven approach to
overcome the inherent trade-offs between strength and ductility in
LPBF-fabricated Ti-6Al-4V alloys and to identify combinations of LPBF
process parameters and HT conditions that can produce alloys with
high UTS and TE. Unlike traditional ML approaches, the proposed
Pareto active learning framework considered prediction uncertainty in
the selection process, enabling practical exploration of a broad para-
meter space. Also, by iteratively performing experiments and predic-
tions, it allowed for the optimization of UTS and TE. Specifically, the
EHVI acquisition function was instrumental in identifying combina-
tions that could expand the Pareto front by overcoming the trade-off
relationship between UTS and TE. Consequently, all ten combinations
selected by the Pareto active learning framework across five iterations
consistently produced high-performance alloys, achieving high UTS
and TE of (1061 MPa, 18.3%), (1130 MPa, 17.6%), (1190 MPa, 16.5%), and
(1221 MPa, 12.9%) within only five trials, with the combination produ-
cing (1190 MPa, 16.5%) being determined as optimal due to its balanced
high UTS and TE values. Additionally, microstructural analysis vali-
dated the balance achieved between UTS and TE by confirming that

the microstructures of samples produced in the study share the
microstructural characteristics of both high UTS alloys and high TE
alloys identified in previous studies. In conclusion, the proposed Par-
eto active learning framework whose ability to optimize both UTS and
TE simultaneously was demonstrated throughout this study can be
easily adjusted to consider additional LPBF parameters or optimize
other properties, making it a valuable tool for future data-driven
research. Furthermore, the resulting dataset of 130 combinations
of LPBF process parameters and post-HT conditions will provide a
strong foundation for ML research on Ti-6Al-4V alloys, accelerating
advancements in alloy property optimization.

As a direction for future research, combining data-driven and
physics-based approaches would be promising. While this study was
conducted using only a data-driven method due to the relative abun-
dance of Ti-6Al-4V data, exploring recently developed alloys or more
diverse types of parameter considered for Ti-6Al-4V present chal-
lenges due to limited data availability. In these cases, rather than
relying solely on data, additionally utilizing existing physics knowledge
and physics-based simulations, as demonstrated in previous
studies®®', could enhance prediction accuracy for alloy properties
even under data constraints.

Methods

Data preprocessing and active learning method

For the Pareto active learning framework, all data, including 119 initial
training data (details in supplementary data 1) and 296 previously
unexplored test data, were preprocessed using Standard Scaler from
the Python-based scikit-learn package for standardization. When ori-
ginal values were required, an inverse transformation was used to
restore them. Additionally, the Pareto active learning framework was
built using Python and was modeled using PyTorch. Details regarding
GPR and EHVI (e.g., equations and kernel functions) are provided in
Table 2, where GPR was specified by its kernel (k(xV, x@?)) and mean
function (u(x)); the detailed interpretation of EHVI acquisition function
is presented in Supplementary Note 5.

Sample fabrication

For each combination of LPBF process parameters and post-HT con-
ditions selected by the Pareto active learning framework, we fabricated
coupon samples of the Ti-6Al-4V alloy using an LPBF machine (Con-
cept Laser M2, GE Additive, USA). The coupon samples were printed
with widths, lengths, and heights of 30, 8, and 10 mm, respectively. We
used a gas- atomized metallic powder with a nominal composition, as
shown in Supplementary Table 2. The Ti64 powder was characterized
by scanning electron microscopy (SEM), JEOL JSM-7100F. The SEM
images of the powders and the corresponding powder size distribu-
tions are shown in Supplementary Fig. 12. The process parameters
employed in this study are listed in Table 1, with all samples produced
using the same layer thickness of 50 um, rotation angle of 67°, and
hatch distance of 48 um. The post-HT conditions utilized in this study
are listed in Table 1, and, after the post-HT, all the samples were cooled
in a furnace under the argon atmosphere. The density of the speci-
mens, determined via the Archimedes method utilizing XPR 205
(Mettler Toledo, USA), was measured as 4.406 + 0.004, 4.407 + 0.003,
4.418+0.007, and 4.412+0.002 g/cm® for the 1-1, 2-1, 3-1, and 3-2
samples, respectively. These measurements were consistent with the
generally reported values (4.43 g/cm’).

Electron microscopy characterization

EBSD was employed to conduct microstructural analysis on the xz-
plane, with the x-axis aligned with the direction of the powder appli-
cation and the z-axis corresponding to the build orientation. Before
the EBSD examination, specimen surfaces were mechanically polished
using a 1200-grit emery paper to achieve the requisite surface finish.
EBSD analysis was performed using field emission scanning electron
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Table 2 | Details about the surrogate model (Gaussian process regressor) and the acquisition function (expected hypervolume

improvement)

Gaussian process regressor

GPR(u(x), k(x?, x?))

H(x): constant mean function

k(x®,x@) = g2 (1 +5d 4 %) exp(—@) ]

Expected hypervolume improvement

N o 0 0 () NCwa® (0 0 0 0 [0
EHVI= Y o, vy, . 00) - (5. 5, 1y, )+ (W, By, 00) — P, 0y, 00)) - WG 1 1y, 0,)(2)
i=1 i=1

Ox.y,z,w)=(y —x[1- @(%5%)] (3)

U, y.z, w=wp((LE) +z -1 - 0(L2)] (4)

x1, x@; feature vectors

d: distance between two vectors x" and x?

l: length scale where [ ~ Gamma(3.0, 6.0)

0: output scale whereg ~ Gamma(2.0, 0.15)

lg'), 1(2”: lower bounds of partitioning integration region
I, Ho: mean of predicted values for each objective

ul?, ud: upper bounds of partitioning integration region
0,, 0,: standard deviation of predictions for each objective
@: standard cumulative probability distribution function
¢: standard probability density function

N: number of integration region by partitioning

microscopy (JSM-7100F, JEOL, Japan), with step sizes of 0.9 pm at 300x
magnification and 0.23 pm at 1000x maghnification. EBSD analysis was
performed in the xz plane. Raw EBSD data were analyzed using
orientation imaging microscopy (OIM) software (TSL OIM Analysis 7).
EBSD data for the prior-f phase was post-processed and visualized
using the MTEX package (v. 6.0)%. The chemical compositions of the
specimens were determined by SEM-EDS. The XRD measurement was
carried out using Bruker/XRD D8-Advance Davinci instrument apply-
ing Cu Ka radiation with a wavelength of 0.154 nm. The XRD pattern
was obtained between the 20 range of 30-90° at the scan rate of
1°min™ and the scan interval of 0.02°. The full width at half maximum
(FWHM) of selected peaks was measured through single peak fitting,
using a Pseudo-Voigt peak approximation.

Tensile test

Dog-bone-shaped tensile test specimens with a gauge length of 5 mm,
gauge width of 2.5 mm, and thickness of 1.0 mm were extracted from the
as-built LPBF samples as shown in Supplementary Fig. 13. The specimens
were subjected to uniaxial tensile tests at a strain rate of 5x1073s7,
utilizing an universal testing machine (Instron 1361, Instron, USA). Pre-
cise strains were measured during the tensile tests using the digital
image correlation method (ARAMIS 12 M, GOM, Germany). All tensile
tests were repeated at least three times to obtain reproducible results.

Data availability

The raw data generated in this study are available within the article and
its supplementary data 1 and 2. There is no restriction on data avail-
ability. The same dataset has been deposited in the Figshare repository
under the https://doi.org/10.6084/m9.figshare.25971973. Source data
are provided with this paper.

Code availability

All codes are provided separately with this paper and deposited in
Code Ocean under the https://doi.org/10.24433/C0.0857013.v1. There
is no restriction on code availability.
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