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Cellular interactions within the immune
microenvironment underpins resistance
to cell cycle inhibition in breast cancers

Jason I. Griffiths 1,2,6 , Patrick A. Cosgrove 1,6, Eric F.Medina1, Aritro Nath 1,
Jinfeng Chen1, Frederick R. Adler 2,3, Jeffrey T. Chang 4, Qamar J. Khan5 &
Andrea H. Bild 1

Immune evasion by cancer cells involves reshaping the tumor microenviron-
ment (TME) via communicationwith non-malignant cells. However, resistance-
promoting interactions during treatment remain lesser known. Here we
examine the composition, communication, and phenotypes of tumor-
associated cells in serial biopsies from stage II and III high-risk estrogen
receptor positive (ER+ ) breast cancers of patients receiving endocrine therapy
(letrozole) as single agent or in combination with ribociclib, a CDK4/6-tar-
geting cell cycle inhibitor. Single-cell RNA sequencing analyses on long-
itudinally collected samples show that in tumors overcoming the growth
suppressive effects of ribociclib, first cancer cells upregulate cytokines and
growth factors that stimulate immune-suppressive myeloid differentiation,
resulting in reduced myeloid cell- CD8 + T-cell crosstalk via IL-15/18 signaling.
Subsequently, tumors growing during treatment show diminished T-cell acti-
vation and recruitment. In vitro, ribociclib does not only inhibit cancer cell
growth but also T cell proliferation and activation upon co-culturing. Exo-
genous IL-15 improves CDK4/6 inhibitor efficacy by augmenting T-cell pro-
liferation and cancer cell killing by T cells. In summary, response to ribociclib
in stage II and III high-risk ER + breast cancer depends on the composition,
activation phenotypes and communication network of immune cells.

In healthy tissues, interactions among epithelial, stromal and immune
cells tightly regulate cell phenotypes, proliferation and tissue
composition1. These cellular communication networks aredisrupted in
tumors, with a strengthening of growth-promoting signals and weak-
ening of growth-inhibitory controls2–4. The milieu of communications
between cancer and non-cancer cell types can engineer the tumor
microenvironment (TME) to trigger the onset ofmalignancy, and drive
disease progression and establishment of a metastatic niche5.

The phenotype, communication and composition of non-cancer
cellswithin the tumor influence treatment resistance, in addition to the
genetic heterogeneity and evolution of cancer cells. Diverse non-
cancer cell types canmodulate growth and survival signals in the TME,
potentially contributing to resistance and progression. For example,
tumor-associated macrophages can differentiate into an immune-
suppressive M2-like phenotype instead of an immune activating M1-
like state, switching signals in the TME from an anti-cancer to a pro-
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cancer state6. Fibroblasts can promote extracellular matrix deposition
to support cancer cell growth, and endothelial cells can support
angiogenesis to supply oxygen and nutrients to a growing tumor7,8.
Corrupt cancer cell communications with these non-cancer cells of the
TME allow exploitation of their regulatory functions to engineer a pro-
tumor TME or avoid immune surveillance9. However, it remains
unknown how differences in tumor communication, composition and
cell phenotypes prior to and during treatment regulate tumor
response to specific treatments.

Our recent studies have shown that stage II and III high-risk
estrogen receptor positive (ER + ) breast cancer cells upregulate
growth factor receptors to amplify alternatives to estrogen growth
signaling after treatment with endocrine and cell cycle therapy to
bypass cell cycle arrest and promote resistance10. We have also shown
how autocrine estrogen signaling by intrinsically resistant cancer cells
can provide transferable CDK4/6 inhibitor resistance to otherwise
sensitive cells in the microenvironment11. Targeting such aberrant
communications provides therapeutic opportunities to block tumor-
promoting TME interactions and control cancer proliferation5,12.

However, CDK4/6 inhibitor mechanisms of action are clearly
more diverse than originally thought13. Results from recent clinical
trials (RIBECCA, POP and MONALEESA 2/3/7) and in vivo model
studies indicate that immune interactions also play an important but
complex role in determining tumor response to CDK4/6 inhibition.
Beneficial treatment effects potentially include enhanced cancer
immunogenicity14, induced T cell activation15, TME inflammation16, and
reduced abundance of regulatory T cells (Tregs) and immunosup-
pressive cytokines17. CDK4/6 inhibitionalso reducesT cell proliferation
and induces high rates of leukopenia which is associated with shorter
progression free survival18,19. Patients with low baseline lymphopenia
and those that retain high regulatory immune populations during
therapy more frequently progress20,21. For more patients to benefit
from CDK4/6 inhibitor therapy, research is needed to determine how
cancer cells of CDK4/6 inhibitor resistant tumors modify non-cancer
regulatory communications to produce a supportive TME.

Communications are often mediated by ligand-receptor (L-R)
interactions. Ligand signals produced by diverse cell types accumulate
in the TME and bind to receptors on receiving cells. Signal transduc-
tion to thenucleus controls gene expression, culminating in changes in
cell phenotype and function. Insights into how cellular phenotype
influences communication between individual pairs of cells can be
obtained by deciphering cell–cell interactions (CCI’s) from tran-
scriptomic data22. Individual level CCI’s are then inferred from ligand
and receptor gene expression of the sending and receiving cell and
tested using permutation23–26 or graph-based approaches27–29. The
ability of cancer and non-cancer cell types to amass corrupting signals
in the TME depends on the cellular abundance and composition of
each phenotype, with rare cell types contributing sparse signals across
the TME, even if individual cells are active communicators.

To understand how phenotypically diverse populations of cancer
and non-cancer cells in a tumor communicate through production and
receipt of signals,we apply anextendedexpressionproductmethod to
single-cell RNA sequencing (scRNAseq) ligand and receptor tran-
scriptomic profiles3,22. This extends the individual level CCI concept to
measure population-level signaling received by individual cells from
across all single cells profiled in a tumor (i.e., tumor-wide) or from
cancer or non-cancerous populations. Accounting for both composi-
tion and phenotypic heterogeneity, using detailed annotations of the
tumor’s cell type composition, uncovers networks of communication
between the phenotypically diverse populations of cancer and non-
cancer cell types constituting the tumor. This tumor-wide perspective
of communication is essential to study the cancer ecosystem as a
whole. Different cell subtypes can have conflicting roles in TME engi-
neering and the abundance and strength of signaling of each cell
population influences the tumor progression. One example is the

relative abundance of the dichotomous tumor-promoting and sup-
pressing M1/M2-like macrophage populations respectively30.

Here, we investigate the dynamics of communication between
cancer and non-cancer cell populations within early-stage ER+ breast
cancer tumors during endocrine and cell cycle inhibitor treatment. We
leverage serially collected patient tumor biopsies that are either
growing or shrinking while on therapy, based on clinical measure-
ments.We includeboth an initial discovery cohort of patients aswell as
a second independent cohort that effectively doubles the scale of our
dataset and allows us to test and validate analyses discovered in the
first cohort. The resultant collection consists of 424,581 single cells,
encompassing both cancer and non-cancer cell types, obtained from
173 tumor biopsies taken from 62 patients pre, during and post
treatment. By assessing the changing diversity of cell types and their
communication within endocrine and cell cycle inhibitor shrinking
(sensitive) and growing (resistant) tumors during treatment, we unveil
ecosystem-wide variations in TME composition and cancer-immune
communication. Notably, we find that CDK4/6 inhibitor resistant
tumors exhibit immune suppressive cancer to myeloid signaling and
hindered T cell recruitment and activation during treatment. Through
in vitro coculture experiments, we discover the immune-suppressive
effects of CDK4/6 inhibition and demonstrate that enhancing T cell
activating communications can overcome this, reinvigorating cancer
cell response to cycle therapy.

Results
Patient treatment, sample collection and tumor response
We studied the tumor-wide communication among cells in tumors of
post-menopausal women with node positive or > 2 cm ER+ and/or
PR+ , HER2 negative breast cancer enrolled on the FELINE clinical
trial10,31,32 (clinicaltrials.gov # NCT02712723). This trial evaluated the
efficacy of combining CDK inhibition of the cell cycle with (single
agent) endocrine therapy in the neoadjuvant setting. Tumor-wide
communication was determined in patients randomized to receive
either combined CDK inhibition and endocrine therapy (combination
ribociclib = ribociclib + letrozole) (n = 80 patients) or endocrine ther-
apy alone (letrozole alone = letrozole + placebo) (n = 40 patients).
Patients were treated for six months and biopsies were collected at
baseline (day 0), following treatment initiation (day 14), and end of
treatment (surgery around day 180). Each patient’s tumor was pre-
viously identified as growing (resistant) or shrinking (sensitive) during
therapy, using multi-model tumor growth measurements over time
using MRI, mammograms and ultrasounds, clinical physical examina-
tion and pathology (detailed in ref. 10). Published results show that
resistant tumors exhibited regrowth during treatment, a higher pro-
portion of tumor remaining post therapy (final size > 2/3 initial size) (t-
statistic = 4.45, p <0.001) and had consistent endpoint pathology
response assessments (94% agreement).

Discovery and validation cohort sequencing
The 120 patients were divided into two equally sized cohorts: a
hypothesis generating discovery cohort and a validation cohort. Two-
thirds of the patients in each cohort received the combination ribo-
ciclib treatment, while the remainder received letrozole alone. Single-
cell RNA sequencing (scRNAseq) was performed on each serially col-
lected sample of the tumors (detailed in ref. 10). In the discovery
cohort, 35 patients provided high-quality biopsy samples yielding
serial time-point scRNAseq (10X) data for analysis of cell type, phe-
notype, communication and composition (Fig. 1). Of these patients, 23
received combination ribociclib (13 resistant and 10 sensitive tumors)
and 12 received letrozole alone (5 resistant and7 sensitive tumors). The
validation cohort was sampled and processed following the same
procedures and we additionally rescued some lower quality cells to
retain a greater number of non-cancer cell types (especially immune
cells) across samples. From the validation cohort biopsies, high-quality
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serial scRNAseq data were obtained for 27 patients, of which 16
received combination ribociclib (5 resistant and 11 sensitive tumors)
and 11 received letrozole alone (7 resistant and4 sensitive tumors). The
discovery and validation cohorts were sequenced independently and
in subsequent analyses (below) the validation cohort was used to
replicate and verify key results detected in the discovery cohort.

Cell type annotation and verification
We obtained high quality transcriptional profiles for 424,581 single
cells (41% discovery cohort, 59% validation cohort) with stringent
quality controls ensuring high-coverage, low mitochondrial content,
and high-confidence of doublet removal. For each cohort, broad cell
types, such as epithelial cells, myeloid cells, T cells, fibroblasts, adi-
pocytes, pericytes and endothelial cells, were discerned using
singleR33. Cancer cells exhibited frequent and pronounced copy
number amplification allowing them to be clearly identified using

inferCNV34. Broad cell type annotations were verified by cell type
specific marker gene expression and UMAP/TSNE analyses
(Figure S1A)10,35. Granular immune subtype annotations were obtained
using ImmClassifier36. Annotations were confirmed to be consistent
between cohorts using a random forest classifier (see “methods”;
Figure S1B/C).

Shrinking tumors are immune enriched vs. cancer/stromal
dominated growing tumors
Prior to examining communication between the cancer and non-
cancer populations we compared the relative frequency of each cell
type across tumors, allowing identification of archetypical tumor
ecosystem compositions observable across early-stage ER + breast
cancers. Immune cell type abundances were found to be highly cor-
relatedwith eachother using hierarchical clustering. Similarly, stromal
and endothelial abundances in tumors were correlated (Fig. 2A). The

Fig. 1 |Workflowexploring composition and communication of phenotypically
diverse cancer and non-cancer cells within the tumor microenvironment of
early-stage ER+ breast cancer patient tumors resistant or sensitive to CDK4/6i
and endocrine therapy. Serial single-cell RNA-seq data was generated for 62
patients by applying 10x Genomics to 173 tumor biopsy samples, collected over 3
treatment time points (Pre-treatment baseline (Day 0), Early follow-up (Day 14) and
Post-treatment (Day 180)). A total of 424,581 high quality cells were tran-
scriptionally profiled, with cancer and non-cancer cell types classified using
established machine learning classifiers (see methods). Figure S1/2 show UMAP
dimension reduction plots of single cell gene expression profiles, supporting cell
type classification. The TME compositions of CDK4/6i-resistant/sensitive tumors
were contrasted based on cell type frequencies, using pairwise distance-based
dimension reduction. This identified archetypical tumor ecosystem compositions
and their association with CDK4/6i response. Phenotypically diverse cell type
subpopulations were resolved using cell type specific UMAP dimension reduction
of ssGSEA profiles. Communication pathways through which cell subpopulations
may signal were defined by 1444 ligand-receptor communication pairs with known
protein-protein interaction. Networks of communication between the

phenotypically diverse populations of cancer and non-cancer cell types constitut-
ing the tumor were measured, accounting for both composition and phenotype
(see methods and schematic overview in Figure S3). Networks of diverse ligand-
receptor communications between cancer and non-cancer cell types were com-
pared between treatment-resistant (growing) and sensitive (shrinking) tumors.
Divergent aspects of cell type communication were identified using a bootstrap
comparison and verified in the independently profiled validation cohort. Specific
ligand-receptor communications associated with resistance were used to predict
and subsequently verify consequences on the phenotype and abundance of signal
receiving cell types. The CDK4/6i treatment effects on immune cell abundance in
the tumor microenvironment were then compared to temporal changes in per-
ipheral blood mononuclear cells (PBMC) during treatment in the same patient
cohort. In vitro experiments were then conducted to validate predicted effects/
side-effects of CDK4/6i on cancer/non-cancer cell proliferation. Finally, we exam-
ined whether modulation of communications associated with CDK4/6i-resistance
in patient tumors can overcome CDK4/6i side-effects on non-cancer cells and
improve control of cancer cell growth.
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compositional similarity of tumor samples from the discovery cohort
was determined and projected by applying the UMAP algorithm to
pairwise composition distances (see methods section: Archetypal
tumor compositions). Tumorswith similar cell compositions clustered
close together and distant from tumors with more dissimilar compo-
sitions. This analysis indicated that tumors fall into distinct arche-
typical ecosystem compositions associated with tumor response to
treatment (Fig. 2B, C). This conclusion was supported by hierarchical
clustering analyses (Figure S2A/B).

We identified three archetypal tumor compositions in the dis-
covery cohort, using a Gaussian Mixture model and Bayesian infor-
mation criterion model comparison to determine the appropriate
number of TME archetypes (Figure S2C/D). Major compositional dif-
ferences between archetypal compositions were identified using
Dirichlet regression and correlation of TME landscape axes with cell
type frequencies. The three distinct tumor archetypal ecosystems
(Fig. 2B, top panel) were: i) a cancer-dominated state, ii) an immune-
hot and diverse state, and iii) a fibroblast and endothelial-enriched
state. Before treatment, we found growing (resistant) and shrinking
(sensitive) tumors in all three states, but also a significant association
of sensitive tumors with the immune-hot state (association of pre-

treatment archetype with tumor response: =11.285, df = 2, p <0.005)
(Fig. 2B, middle/bottom panels). After treatment, we observed a clear
polarization, with 83% of shrinking treatment-sensitive tumors in the
immune-hot state, and 75% of growing treatment-resistant tumors in
the other two states (Figure S3).

Tumors in the validation cohortmapped into the same archetypal
states in UMAP space and shrinking treatment-sensitive tumors were
similarly associated with the immune-hot state. This result indicates
that tumors growing during treatment become increasingly immune-
cold and depauperate during treatment. Immune cell loss has been
associated with resistance in various cancers37. ER+ breast cancers are
often considered uniformly immunologically cold38 even though
multiple trials show a subset of ER+ breast cancer patient tumors
respond to immunotherapy39,40. T cell abundances were particularly
sparse in both non-immune clusters (Fig. 2C, top/middle panels),
highlighting differences between tumor archetypes. In addition, the
cancer cell dominant archetype showed a significantly lower Shannon
diversity index score (est = −1.82, df = 165, t = −10.0, p < 0.0001)
(Fig. 2C, bottom panel), and was dominated by growing treatment-
resistant tumors. In summary, early-stage breast cancer tumors have
three main TME compositional archetypes: Immune hot/diverse,

4

2

0

2

Fig. 2 | Resistant and sensitive tumors have distinct TME compositions, with
sensitive tumors having greater immune cell infiltration. A Heatmap showing
relative abundance of high-quality (HQ) cells of each cell type in tumor biopsies of
the discovery and validation cohorts. Tumors samples (y-axis) are clustered into
three compositional archetypes based on pairwise distance of compositional
similarity (UMAP and Gaussian mixture model (GMM)). Cell types (x-axis) are
clustered using hierarchical clustering to show correlation of pairwise abundance,
with immune cell abundances being highly correlated with one another. Equivalent
read depth cutoff applied to select HQ cells from both cohorts (see methods).
B Distinction of three archetypal tumor compositions shown by UMAP dimension
reduction using logit-Euclidean distance of compositional similarity (points =
tumor samples, color = archetype, shape = cohort). Tumor data points close toge-
ther have high compositional similarity. Distinct archetypal tumor compositions
(top panel colors) were identified by applying the GMM to the UMAP composition
space coordinates of the discovery cohort data. Then, validation cohort tumor
compositions were projected into the same UMAPmodel space and compositional
archetypes were classified by the parameterized GMM. Tumor response outcomes
were associatedwith their compositional archetype pre, during and post treatment

with combination ribociclib (middle panel) or letrozole alone (bottom panel)
(shape = timepoint). Post treatment, sensitive tumorsmore frequently exhibited an
immune hot archetype (logistic generalized linear model predicting tumor
response probability by archetype compared responsiveness of immune hot to
other archetypes: Immune hot response rate relative to other archetypes: Combi-
nation ribociclib estimate = 1.7,se = 0.8, df = 29,z = 2.12, p = 0.033; Letrozole alone
estimate = 3.3,se = 1.3, df = 17,z = 2.47, p =0.013). C Tumor archetypes differ in
immune cell type abundance and diversity (Shannon diversity) (color = relative
abundance, shape = archetype). Comparing tumor archetypes, tumors in the
immune hot and diverse archetype show increased: i) immune cell abundance
(logistic generalized linear model: Increased logit immune fraction
estimate = 1.47,se = 0.01, df = 166,z = 101.3, p = 2e-16), ii)T cell abundance (logistic
generalized linear model: Increased logit T cell fraction estimate = 2.62,se =0.04,
df = 166,z = 62.4,p = 2e-16) and iii) Shannondiversity (ANOVA logdiversity increase:
estimate = 0.87,se = 0.15, df = 166, t = 5.82, p = 2.9e-8). Sample size = 422,635/
424,581 annotated cells (ensuring equivelant HQbetween cohorts) from 173 biopsy
samples of 62 patient tumors at 3 timepoints. All statistical tests two-sided. Source
data are provided as a Source Data file.
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fibroblast/endothelial enriched or cancer dominated. Immune hot and
diverse tumors, with high T cell and macrophage abundance were
more sensitive to cell cycle and endocrine therapy, while immune cold
tumors were more resistant.

Deciphering communication between phenotypically diverse
populations
To understand how TME composition and communication can con-
tribute to therapy resistance, wemeasured tumor-wide signaling from
diverse non-cancer cell sub-populations and heterogeneous cancer
lineages to each receiving cell (Figure S4).Whereas cell-cell interaction
approaches reveal how one cell of one type communicates with
another, the extended expression-product approach measures the
signal individual cells receive fromacrossmany phenotypically diverse
subpopulations of cells (e.g., signal from all M1-like vs M2-like differ-
entiated macrophages) that all contribute signals to the TME. This
accounts for the abundance and ligand production of each signaling
phenotype and the receptor activity of receiving cells. To do this, we
dissect broad cell types into phenotypically coherent subpopulations
and quantify the total contribution of signaling molecules from each
group (see methods). This reveals how both phenotypic and compo-
sitional changes modify communication feedbacks and impact treat-
ment response.We then relate these inferred LR communications back
to observable changes in TME cellular phenotypes and abundances
and examine in vitro how this can influence treatment response.

Global dysregulation of communication in growing cell cycle
inhibitor resistant tumors
Communication pathway scores measured the communication of
ligand signals produced by one cell type population and received by
individual cells of each cell type via a cognate receptor. A diverse set of
1444 ligand-receptor (LR) communication pathways were measured
based on known protein-protein interactions (see methods). The
overall strength of communication of one cell type with another was
determined by averaging across LR communication pathway scores
from each sender cell type to the receiver (Fig. 3A, B).

Across different tumors, treatments and cohorts, cancer cells
contributed more communication signals to the TME than other cell
types (Fig. 3A) (est = 0.67, df = 970, t = 6.26, p <0.0001). In contrast,
cancer cells received the least signal in general from across the TME,
receiving substantially fewer communications than non-cancer epi-
thelial, stromal and immune cells (Fig. 3B) (est = −2.45, df = 970,
t = −32.0, p <0.0001). However, a small subset of communications,
such as growth factor communications (via ERBB family receptors)
were most strongly received by cancer cells (est = 0.52, df = 967,
t = 5.32, p <0.0001) (Figure S5). These results indicate that cancer cells
receive relatively few regulatory signals in the TME while concurrently
transmitting broad and strong communications to non-cancer cells in
the TME.

Wenext assessed howcommunicationbetween cell types differed
in therapy-resistant/sensitive tumors before and during treatment.
Contrasting communication across many biopsies, rather than within
individual biopsies, revealed the TME cell type interactions distin-
guishing resistant and sensitive tumors and the evolution of commu-
nication during treatment. Significant differences in communication
between tumors growing and shrinking during each treatment were
identified for the discovery and validation cohorts using permutation-
based bootstrap randomization of the tumor response annotations for
each communication pathway (see Methods) (Fig. 3C).

Prior to treatment, the resistant tumors that grew during riboci-
clib treatment had distinctly different communication networks from
those that shrunk, showing stronger communication from cancer cells
to myeloid cells (Fig. 3C, top left panel: Day 0 subpanel) (est = 0.19,
z = 15.05, p < 0.0001) (Figure S6). This strengthening of cancer to
myeloid cell communication in growing ribociclib-resistant tumors

wasverified in the independently profiled validationcohort (est = 0.03,
z = 15.23, p < 0.0001) (Fig. 3C, top right panel: Day0 subpanel). Specific
ligand-receptor (LR) communications activated in growing tumors
were identified using log-linear regression with FDR multiple com-
parisons correction. Most activated LR communication pathways (14/
20) bound to myeloid receptors known to promote an immune-
suppressive myeloid phenotype (Figure S7A) (Supplementary
Data 1:10). These communication pathways were not activated in
growing letrozole-resistant tumors (Supplementary Data 11:20). This
result revealed pre-existing communications of cancer cells with
myeloid cells that may predispose resistance to cell cycle inhibition
but not endocrine therapy. Activation of immune suppressive com-
munications prior to treatment distinguished growing and shrinking
(resistant/sensitive) tumors, indicating that these signals are not just
indirect correlates of tumor response to treatment.

After 180 days of treatment, cell type communication diverged
between tumors growing versus shrinking during therapy in both the
discovery and validation cohort. In growing ribociclib-resistant
tumors, all cell types developed weaker communications with cyto-
toxic CD8 +T cells (Fig. 3C top panels) (−0.31<est < −0.04,3< z < 13.5,
p <0.0001). In contrast, shrinking ribociclib-sensitive tumors retained
more persistent communications with cytotoxic CD8 +T cells, with
stronger signals from fibroblasts and cancer cells (Fig. 3C top right
panels) (Discovery: est = 0.16, z = 13.03, p <0.0001, Validation:
est=0.05, z = 3.24, p <0.00001) (Figure S7B). The strong fibroblast-
CD8 + T cell interaction reflected increased costimulatory and
recruitment integrin communications in shrinking ribociclib-sensitive
tumors at day 180 (e.g., ADAM12-ITGB1: est = 0.83, df = 5, t = 4.77,
p <0.05)41,42. Cancer cells of ribociclib-sensitive shrinking tumors also
provided greater amounts of immune-activating communications to
myeloid cells, including stimulation of CCR5/7 receptors43 (e.g., CCL5-
CCR5:est = 2.84, df = 6, t = 4.73, p <0.005) (Supplementary Data 2).
However, these communication pathways were expressed at levels too
low to be verified in the validation cohort. Across cohorts, the tumor-
wide decrease in CD8 +T cell communication did not occur during
letrozole treatment (Fig. 3C bottom panels). In contrast, in growing
letrozole-resistant tumors, cancer cells developed strong commu-
nications with stromal and epithelial cells at day 180 (Fig. 3C bottom
panels: Day 180 subpanels) (Discover: 0.02< est< 0.42, 16.5< z < 31.0,
p <0.0001; Validation:0.004< est< 0.07, 10.2< z < 22.3, p <0.0001).

The pre-treatment communication differences between growing
and shrinking tumorswerevisualizedusing directedweightednetwork
graphs of overall communication (Fig. 3D). Growing and shrinking
tumors showed ecosystem-wide divergence in communication before
treatment in each cohort (Fig. 3D). Growing ribociclib-resistant tumor
cells exhibited stronger communication between epithelial cells and
myeloid and endothelial cells whereas ribociclib-sensitive shrinking
tumors had greater communication with CD8 +T cells from both
cancer andnon-cancer cells (Fig. 3D toppanels). Thiswas not observed
in letrozole-sensitive tumors (Fig. 3D bottom panels). Overall, the
dynamics of communication reveal the pre-treatment heterogeneity of
cancer communication with myeloid cells that predate resistance to
cell cycle inhibition but not endocrine therapy and the breakdown of
tumor-regulating immune interactions in growing ribociclib-resistant
tumors as well as the increase of growth-promoting interactions
instead in letrozole-resistant tumors.

Cancer cell communication with myeloid cells pre-treatment is
associated with an immune-suppressing macrophage pheno-
type in growing ribociclib-resistant tumors
As cancer cells of growing ribociclib-resistant tumors communicated
immune-suppressive signalsmore strongly tomyeloid cells, via a range
of LR pathways, we next examined the consequences on myeloid cell
phenotype. Myeloid cells are a phenotypically diverse and differenti-
able population that sense TME conditions and regulate immune
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responses and wound healing7. Signals from dead cancer cells can
promote differentiation to an immune-activating M1-like macrophage
or dendritic cell phenotype. However, a host of alternative signals,
from cancer or non-cancer cells in the TME can promote their differ-
entiation to an immune-suppressive M2-like phenotype that supports
cancer cell proliferation and survival6. To assess whether the identified
immune-suppressive communications from cancer cells are promot-
ing differentiation of macrophages to a pro-tumor state, we char-
acterized myeloid phenotypic heterogeneity by applying UMAP
dimension reduction to the gene expression profile of all myeloid cells
in the discovery cohort. Monocyte and dendritic cells, independently
annotated using the machine learning immune classifier, formed dis-
tinct clusters and macrophages showed broad phenotypic diversity
(Fig. 4A, top left panel). Assessment of genes correlated with each
UMAP dimension revealed that higher UMAP2 scores characterized
cells with increased M2-like macrophage polarization, with a clear
expression gradient of immune-suppressive marker genes, including
CD36 (pro-fibrotic M2-like marker upregulated by CSF1 stimulation
that functions as a receptor of apoptotic cells to promote removal and

reduce inflammation), CYP27A1 (cholesterol metabolite growth pro-
moter), DHRS9 (M2b Mreg marker), LIPA (marker of fatty acid oxida-
tion supporting M2-like metabolism) and PPARG (regulator of lipid
metabolism and inflammatory signaling)(Figure S8)(respective Pear-
son correlations = 0.49, 0.42, 0.4, 0.41, 0.36)44–49.

Myeloid lineage differentiation was characterized using pseudo-
time reconstruction (see methods), revealing multiple branching dif-
ferentiation trajectories that lead to the divergence between M1- and
M2-like states (Figure S8A/B). Myeloid polarization was thenmeasured
by the divergence in pseudotime from the undifferentiated monocyte
state (Fig. 4A, bottom left panel) and genes changing in expression
with polarization characterized the transcriptional programofM1- and
M2-like cells (Figure S8C). Gene set enrichment analysis showed the
activation of known myeloid differentiation genes in polarized cells
(Figure S9A), with established M2 markers being upregulated in cells
with increased polarization and high M2-like enrichment scores
(Figure S9B–D; Figure S10). Together, these analyses provided com-
plementary lines of evidence supporting a data-driven characteriza-
tion of the polarization ofmyeloid cells fromamonocyteprogenitor to

Fig. 3 | Cell type communication differences between resistant (growing) and
sensitive (shrinking) tumors pre- and post-treatment. A Box plot showing cell
type contribution to signaling with each cell type (points) across combination
ribociclib or letrozole alone treated tumors of the discovery/validation cohorts
(cohort = shape). Cancer cellswere higher signal contributors thannon-cancer cells
(Linear model: Ribociclib:estimate =0.67,se = 0.11, df = 970, t = 6.26, p = 5.6e-10;
Letrozole:estimate = 0.37,se = 0.13, df = 970, t = 2.89, p =0.0039). B Box plot
showing signal strength received by each cell type (points = sender types) across
tumors within treatment groups in the discovery/validation cohorts (cohort =
shape). Cancer cells received fewer signals across communicationpathways (Linear
model: Ribociclib:estimate = −2.45,se =0.076, df = 970, t = −32.0, p = 2e-16;
Letrozole:estimate = −2.47,se = 0.10, df = 970, t = −24.3,p = 2e-16), despite receiving
stronger growth factor signaling via ERBB receptors. Sample size for A/B = 108 cell
type communicationmeasurements for each of 9 cell types (x-axis).Measurements
quantify mean signal sent/received by a cell type to/from another across resistant
/sensitive tumors and sample days (0,14,180) in the discovery/validation cohort.
Box elements in A/B represent median signal sent/received across cell type com-
munication measurements (center line), upper/lower quantiles (hinges), 1.5*inter-
quartile range (whiskers). C Differences in cell type communication (x-axis =

sending cell type, y-axis = receiving cells type) between tumors resistant and sen-
sitive to combination ribociclib or letrozole alone (top/bottom subpanels) pre- and
post-treatment (left/right subpanels). Cell types communicating significantlymore
strongly in resistant tumors (red) and sensitive tumors (blue) were identified using
permutation-based bootstrap randomization tests in the discovery and validation
cohorts (left/right panel). Z-scores (color intensity) quantify resistant-sensitive
tumor communication differences (white = no significant difference). Black boxes
indicate: i) strengthened cancer/epithelial-myeloid communication in ribociclib-
resistant tumors pre-treatment, ii) reduced signaling to CD8 + T cells from across
the TME in ribociclib-resistant tumors throughout treatment and iii) increased
cancer signaling to diverse cell types in post-treatment letrozole-resistant tumors.
D Network graphs showing divergence in cell type communication between
resistant and sensitive tumors before treatment (top/bottom panel) in the dis-
covery and validation cohorts (left vs right panels). Nodes represent cell types;
arrow width indicates average directed communication strength across tumors.
Strong communications (black) exceed 1sd above mean (other communications =
gray). Sample size = 424,581 annotated cells, 1444 LR communication pathways
from 173 biopsy samples of 62 patient tumors. All statistical tests two-sided. Source
data are provided as a Source Data file.
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either an M1- or M2-like state being the primary axis of macrophage
heterogeneity.

We next assessed differences in myeloid differentiation between
treatment-resistant and sensitive tumors. Consistent with the detec-
tion of immune-suppressive cancer to myeloid communications, we
found that macrophages in growing ribociclib-resistant tumors had
greater M2-like differentiation prior to and throughout treatment in
both the discovery and validation cohorts, while tumors shrinking
during ribociclib treatment had more M1-like macrophages (Fig. 4A,
right panel: left subpanels) (est = 0.34, df = 32.66, t = 3.04, p < 0.005).
Consistent results were obtained when measuring myeloid pheno-
types using knowledge-definedgene set enrichment analysis andwhen
comparing pseudotime polarization (Figure S11; Figure S12). Antigen
presenting dendritic cells were present in ribociclib-sensitive shrinking

tumors but almost entirely absent from growing ribociclib-resistant
tumors. TheM2-like polarization was not present in letrozole-resistant
tumors (lmer est = −0.30, df = 20.13, t = −1.52, p = 0.145) (Fig. 4A, right
panel: right subpanels). One growing letrozole-resistant tumor of the
discovery cohorthadparticularly stronglyM1-likemacrophages. These
cells had an unusual myeloid phenotype, with considerable ERBB4
growth factor receptor upregulation which is associated with NRG4
mediated apoptosis of pro-inflammatory macrophage50. We repeated
analyses with this patient’s myeloid cells excluded to verify our
conclusions.

To determine whether the pre-existing M2-like macrophage
polarization was clinically predictive of tumor response, we analyzed
averagemyeloid phenotypes of tumors early in treatment (day 0-14) in
the independent discovery and validation cohorts. We verified that

Fig. 4 | Cancer-myeloid communications stimulate pro-tumorM2-like myeloid
differentiation in CDK4/6i -resistant tumors. A Top-left: UMAP of myeloid phe-
notypic heterogeneity across discovery/validation cohorts. Cells (points) with
similar transcriptomic profiles clustered by ImmClassifier subtype (color). Bottom-
left: Major axis of myeloid phenotypic variation reflects polarization from mono-
cyte progenitor (gray) towards M1-like (immune-activating;blue) or M2-like (pro-
tumor;red) phenotypes (polarization = pseudotime divergence;see methods).
Black curves = pseudotime trajectory branching (M1/M2-like divergence). Right
panel: Myeloid cell phenotypes were compared between resistant/sensitive (red/
blue) tumors receiving combination ribociclib or letrozole alone in the discovery/
validation cohort. Ribociclib-resistant tumors had greater M2-like differentiation
(Hierarchical random effects model: Combination ribociclib:estimate = 0.337,se =
0.11, df = 32.66, t = 3.04, p =0.0046;Letrozole alone:estimate = −0.30,se = 0.20,
df = 20.13, t = −1.52, p =0.145). B Left: Box plots showing increasedM2-likemyeloid
differentiation in resistant versus sensitive tumors (red/blue) early (day 0-14) in
combination ribociclib treatment (top panel)(linear model:estimate = 0.33,se =
0.11, df = 34, t = 2.99, p =0.005) with no cohort-specific difference (estima-
te=0.058,se=0.11, df=34, t = 0.52, p =0.61). Points=meanM2-like differentiation per
tumor across early timepoints. No significant (NS) difference between letrozole
resistant/sensitive tumors (bottom panel)(linear model:estimate = −0.23,se = 0.21,
df = 21, t = 1.11, p =0.28). Right: Box plots showing lower M1-like (immune-activat-
ing) myeloid cell proportion (M1/(M1 +M2)) in ribociclib-resistant tumors early in
treatment (linear model:estimate = −0.24,se = 0.12, df = 64, t = −2.008, p =0.048)
with no cohort-specific difference (estimate = 0.21,se =0.18, df = 64, t = 1.17,

p =0.25). No difference in M1-like myeloid proportion between letrozole-resistant/
sensitive tumors (linear model:estimate=0.14, se = 0.14, df = 37, t = 0.97, p = 0.34).
Points =meanearlyM1-likemyeloidproportion (60 tumors;multiplemyeloid cell to
estimate proportion). Box elements =median(center line), upper/lower quantile-
s(hinges),1.5*inter-quartile range(whiskers). Sample size for A/B:n = 27127 myeloid
cells (Discovery:10940+Validation:16187 cells),167/173 biopsies,61/62 tumors
(combination ribociclib = 37+letrozole alone = 24). C Schematic of cancer-myeloid
communication analysis. For each tumor sample, the average strength of com-
munication (via each LR pathway) sent by heterogeneous cancer populations to
myeloid cells was measured. Significant pre-treatment communication differences
between resistant/sensitive tumors were verified in the discovery/validation
cohorts (log-linear regression+FDR-adjusted ANOVA). D Heatmap showing pre-
treatment cancer-myeloid communications targeting M2-like macrophage differ-
entiation (columns) strengthened in tumors resistant (red row annotation) versus
sensitive (blue row annotation) to combination ribociclib but not letrozole alone
(right-left panels) in the discovery/validation cohorts (top-bottom panels; linear
model statistics in Supplementary Data 21–24). Coloration = cancer-myeloid LR-
specific communication strength, showing heterogeneous pathways activated
across tumors (white = no signaling detected). Sample size:268155 cancer+myeloid
cells (Discovery:10940 myeloid+110568 cancer;Validation:16097 myeloid+130550
cancer),21279 genes,1444 LR pathways in 167 biopsy samples
(Discovery:biopsies = 86, patients = 34;Validation:biopsies = 81, patients = 27). All
statistical tests two-sided. Source data are provided as a Source Data file.
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growing ribociclib-resistant tumors had more M2-like myeloid cells
early in treatment compared to ribociclib-sensitive tumors shrinking
during treatment (est = 0.33, df=34, t = 2.99, p < 0.005) (Fig. 4B, left
panels). This pattern did not differ between the discovery and valida-
tion cohort (est = 0.058, df = 34, t = 0.52, p =0.61). Across the dis-
covery and validation cohorts, ribociclib-sensitive shrinking tumors
instead had a higher proportion of their myeloid cells in the immune-
activating M1-like state early in treatment (est = 0.24, df = 64, z = 2.00,
p <0.05) (Fig. 4B, right panels). The balance of immune-activating
versus immune-suppressive myeloid cell frequency was more indica-
tive of response than the total myeloid abundance.

We next measured the between tumor heterogeneity in the cancer
cell communications promoting macrophage polarization and tumor
growth during ribociclib treatment. We first verified the reliability of
M2-like polarizing communication measurements through comparison
of known M2-like differentiation communication pathways, including
CSF1-CSF1R, ADAM10-AXL and ZP3-MERTK, to M1-/M2-like cells
(Figure S13A)51,52. We then performed a supervised analysis of the
strength of cancer to macrophage signaling across tumors in the dis-
cover and validation cohorts (Fig. 4C) (Supplementary Data 21–24).
Using the discovery cohort, we identified the range of cancer ligands
used to modulate macrophage phenotype and associated these with
tumor response. We selected communication pathways through which
cancer cells: a) signal more strongly with macrophages in growing than
shrinking tumors or b) have stronger inferred cell-cell interactions with
M2-like versusM1-likemacrophages.We then compared the strength of
each M2-like stimulating communication from cancer to myeloid cells
in growing (resistant) and shrinking (sensitive) tumor samples taken
prior to treatment (Day 0) in each cohort (Fig. 4D). Cancer cells of
growing ribociclib-resistant tumors used a diverse set of M2-like dif-
ferentiation stimulating communication pathways as shown by a range
of markers: CSF1, CLCF1, several FGFs (1/2/7/17/18/23), the TGF family
member GDF9, interleukin 5/11/12, MADCAM1 and PLAU (Fig. 4D, left
panel) (Supplementary Data 21–22). These ligands have been estab-
lished to contribute to macrophage M2-like polarization and immune
suppression via stimulation of macrophage receptors CSF1R, CSF2RB,
NRP1 and IL6R53–59. In contrast, macrophages in growing letrozole-
resistant tumors did not consistently receive these M2-like differentia-
tion communications from cancer cells (Fig. 4D, right panel) (Supple-
mentary Data 23–24).We verified that the cancer cells were the primary
contributors of these M2-like differentiation communications in grow-
ing ribociclib-resistant tumors by comparing the signaling contribution
of each non-cancer and cancer cell type (Figure S13B). In these tumors,
the cancer cell contribution was 35% greater than the total signal from
across all cell typeswithin the shrinking ribociclib-sensitive tumors. The
ability of cancer cells to facilitate polarization of monocytes toward an
M2-like phenotype has been previously characterized in vitro under
coculture experiments across multiple cancer types including glio-
blastoma, lung, and breast cancers60–62. We confirmed using in vitro
cancer-myeloid cocultures that breast cancer cell communications can
induce the predicted form of M2-like myeloid differentiation. We
compared the transcriptomic profiles ofmonocytes grown alone versus
when cocultured with breast cancer cells in a transwell setting to pre-
vent direct contact. Differential expression analysis showed the
increased myeloid expression of many established M2-like marker
genes when cocultured with cancer cells (Figure S14). This experiment
validated the ability of breast cancer cells to induce myeloid polariza-
tion towards an immune-suppressing M2-like phenotype.

A comparison of the strength of each M2-like differentiation
communication across tumors showed that the heterogeneous cancer
populations of each growing ribociclib-resistant tumor used unique
combinations of these M2-like differentiation communications (Sup-
plementary Data 21–22). Additional M2-like differentiation commu-
nications not identified in the discovery cohort were detected in the
validation cohort’s growing ribociclib-resistant tumors. This diversity

suggests that directly blocking all M2-like differentiation signals would
be challenging. Together these results reveal that M2-like macrophage
polarization was likely driven by heterogeneous cancer communica-
tions from cancer cells that evolved prior to treatment.

Growing tumors enriched in immune suppressing myeloid cells
exhibit diminished interleukin signaling and reduced CD8+T
cell recruitment and activation during ribociclib treatment
Macrophage polarization to an M1-like or M2-like phenotype is
expected to drive either anti-tumor immune activation or pro-tumor
immune suppression, respectively. We therefore examined the com-
munications of macrophages with cytotoxic CD8 + T cells across
treatment resistant and sensitive tumors. We first tested the reliability
of macrophage to CD8 +T cells communication measurements by
testing known signaling effects of these cells and confirmed that
individual M1-like macrophages sent stronger immune-activating sig-
nals (e.g., CXCL9) and M2-like macrophages sent stronger immune-
suppressing signals (e.g., CXCL13 and CD47) (Figure S15A)63,64.

We next determined how the M2-like polarization of the entire
myeloid cell population in tumors growing during ribociclib treat-
ment impacted the communication of immune-activating signals to
T cells with an analysis overview presented in Fig. 5A. Our analysis
identified specific macrophage to T cell inflammatory cytokine
communications that diverged during treatment between ribociclib-
resistant /sensitive tumors in the discovery cohort. These were then
assessed in the independent validation cohort. Hierarchical random
effects models quantified macrophage to T cell communication dif-
ferences at end of treatment between growing and shrinking tumors
of the discovery cohort, while controlling for background patient
specific variation in immune states. This analysis revealed that
CD8 + T cells of growing ribociclib-resistant tumors received fewer
interleukin 15 and 18 (IL-15, IL-18) activation signals from macro-
phages compared to shrinking ribociclib-sensitive tumors; with less
stimulation of interleukin receptors 2, 15 and 18 on T cells (Fig. 5B top
left) (IL-15-IL2RA: est = 0.035, df = 180.4, t = 3.85, p = 1.6e-4; IL-15-IL-
15RA: est = 0.026, df = 132.8, t = 2.72, p = 7.3e-3; IL-18-IL-18R1:
est = 0.04, df = 197.67, t = 4.92, p = 1.8e-6)(Supplementary Data 25).
These receptors are essential for survival, proliferation, and effector
differentiation respectively65–68. Using the independently profiled
validation cohort, we verified that T cells of growing ribociclib-
resistant tumors received fewer of each of these IL-15/18 activation
signals during treatment, while these communications increased in
shrinking ribociclib-sensitive tumors (Fig. 5B top right) (Supple-
mentary Data 26–29). This lack of T cell activation by myeloid cells
was not observed in growing letrozole-resistant tumors of the dis-
covery or validation cohort (Fig. 5B bottom).

We compared this tumor-wide communication from across mac-
rophages with the ability of individual M1-like macrophages to cross-
talk with CD8 +T cells. We found that significantly fewer T cell
activating communications were sent per M1-like macrophage in
growing ribociclib-resistant tumors, indicating the suppressed activity
of cells in this key immune stimulating population (Figure S15B). We
measured the overall immune activating myeloid to CD8 +T cells
communication across immune activating inflammatory cytokine
pathways (identified using the gene-ontology database69). Hierarchical
regression analysis of this data also indicated that the M2-like domi-
nated macrophage populations of growing ribociclib-resistant tumors
provided progressively fewer immune activating signals to
CD8 + T cells throughout treatment (est = −0.023, df = 778.8, t = −15.18,
p <0.0001), whilst immune activation was maintained in shrinking
ribociclib-sensitive tumors (stronger end of treatment communication
vs growing ribociclib-resistant tumors: est = 0.024, df = 778.8, t = 6.79,
p <0.0001) (Figure S15C).

Phenotypic activation of CD8 +T cells of the discovery and vali-
dation cohort was measured using a CD8 T cell specific ssGSEA
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pathway contrasting gene expression of naive and cancer killing
effector cells (GSE22886: Naive CD8 T cell vs NK cell up pathway). This
analysis showed that activation to an effector CD8+ T cell phenotype
was associated with the strength of inflammatory cytokine commu-
nications received from macrophages (est = 0.10, df = 1975, t = 7.69,

p <0.0001) (Figure S15D). In growing ribociclib-resistant tumors, the-
loss of T cell activating communications was concurrent with
the reduction of CD8+ T cell differentiation away from a cytotoxic
effector state during treatment (est = −1.33, df=112.7, t = −4.26,
p <0.0001) (Fig. 5C).

Fig. 5 | Anti-tumormyeloid communicationsmaintain CD8+T cell cytotoxicity
and migration in CDK4/6i-sensitive tumors. A Schematic: communication path-
way analysis revealing consequences of M2-like polarization of myeloid populations
on immune-activating signals to CD8+T cells. Cytokine communication strengths
from phenotypically diverse myeloid populations to CD8+T cells were contrasted
between resistant/sensitive tumors throughout treatment (Hierarchical random
effects models (HRE)+Satterthwaite t-test) and verified in discovery/validation
cohorts. B Box plot: reduced CD8+T cell activating communications from myeloid
populations in ribociclib-resistant versus sensitive tumors (top panels) post-
treatment (Day 180) in thediscovery/validationcohortsbutnot under letrozole alone
(NS= not significant)(HRE statistics in Supplementary Data 29)(color = Interleukin
communication). Sample size: 42049 cells (Myeloid:Discovery = 10940+Validation =
16097; T-cell:Discovery = 3496+Validation = 11516), 139 cytokine receptors (from
gene-ontology), 347 LR communications, 134 tumor samples (Discovery:biopsies =
59, patients = 28,Validation:biopsies = 75, patients = 27), 3 timepoints. C Box plot:
reduced CD8+T cell effector differentiation in ribociclib-resistant tumors during
treatment (top) causing lower effector function post-treatment versus sensitive
tumors (HRE::differentiation trend:estimate = −1.33,se = 3.13e-5, df = 112.7, t =−4.26,
p = 2.2e-5;post-treatment:estimate=1.63,se=7.7e-5, df=72.3, t = 2.11, p =0.035). No
trend in differentiation under letrozole alone (bottom)(estimate = −1.29,se = 1.35e-4,
df = 141.7, t =−0.94, p =0.35). Effector differentiation of discovery/validation cohort
(shape) measured using CD8+T cell specific ssGSEA pathway contrasting naive/
cancer-killing effector expression (GSE_22886_Naive_CD8_T_cell_vs_NK_cell_up).
Sample size: 2579 CD8+T-cells (Discovery = 1977+Validation =602 cells), 116
tumor samples (Discovery:biopsies = 56, patients = 28;Validation:biopsies = 60,
patients = 26), 3 timepoints. D Box plot: reduced CD8+T cell recruitment commu-
nications from myeloid populations in ribociclib-resistant versus sensitive tumors
(top panels) post-treatment in the discovery/validation cohorts but not under

letrozole alone (HRE statistics in Supplementary Data 29)(color = integrin recruit-
ment communication)(Sample size: as in B). E Box plot: reduced T cell abundance in
ribociclib-resistant tumors (top) during treatment (x-axis) causing lower abundance
post-treatment versus sensitive tumors in discovery/validation cohorts (shape)
(logistic regression:logit(resistant-trend):estimate = −0.73,se =0.046,
df = 100,z =−16.06, p = 2e-16;post-treatment:estimate =0.60,se =0.058,
df = 100,z = 10.47,p = 2e-16). Throughout letrozole alone treatment, T cell abundance
was lower in resistant versus sensitive tumors (logit(difference):estimate =0.61,se =
0.050, df = 59,z = 12.3, p= 2e-16). Sample size: 424,581 cells (T-cells = 3166),173 tumor
samples,62 patients,3 timepoints. F Box plot: reduced immune response phenotype
across cell types (x-axis) post-treatment in resistant versus sensitive tumors under
combination ribociclib (top) but not letrozole alone (bottom)(HRE::ribociclib:
[Cancer:estimate = −0.027,se =0.001, df = 1913, t = −20.2, p = 2e-16;Diploid epithelia-
l:estimate = −0.018,se=0.001, df = 2154, t = −12.6, p = 2e-16;Myeloid:estimate =
−0.013,se =0.002, df = 3551, t = −8.49, p = 2e-16;CD8+T-cell:estimate = −0.026,se =
0.005, df = 6918, t =−5.24, p = 1.7e-7;CD4+T-cell:estimate =−0.012,se =0.002,
df = 4916, t =−6.03, p= 1.7e-9;Stromal:estimate =−0.014,se =0.0014, df = 1961,
t = −9.9, p = 2e-16];letrozole[Cancer:estimate=0.014,se=0.009, df=1.8, t = 1.47,
p =0.16;Diploid epithelial:estimate =0.002,se =0.009, df = 1.9, t = 0.25,
p =0.81;Myeloid:estimate = −0.005,se =0.009, df = 1.9, t =−0.61, p =0.55;CD8+T-
cell:estimate =−0.004,se =0.011, df = 4.1, t =−0.36, p =0.72;CD4+T-
cell:estimate =−0.014,se =0.009, df = 1.9, t =−1.58, p =0.13;Stromal:estimate =
−0.005,se =0.0092, df = 1.8, t = −0.55, p =0.59]). Points =mean(ssGSEA hallmark
interferon gamma response score) per tumor in discovery/validation cohorts
(shape). Sample size:108844 cells (Discovery = 43814;Validation = 65030), 53 post-
treatment tumors biopsies. All box elements represent median (center line),upper/
lower quantiles (hinges),1.5*inter-quartile range (whiskers). All statistical tests two-
sided. Source data provided as a Source Data file.
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By the end of treatment, T cells of growing ribociclib-resistant
tumors received fewer recruitment signals from macrophages com-
pared to shrinking ribociclib-sensitive tumors (Supplementary Data 25).
Stimulation of a variety of T cell integrin receptors was reduced,
including ITGB1, ITGB2 and ITGA4 (Fig. 5D top left) (ADAM121-ITGB1:
est =0.044, df = 293.7, t = 8.33, p<0.0001; ICAM2-ITGB2: est = 0.058,
df = 281.7, t = 6.57, p<0.0001; VCAM1-ITGA4: est =0.064, df = 461,
t = 13.1, p<0.0001). These integrins are critical for T cell migration and
recruitment throughbasementmembranes70,71. Again, these resultswere
validated in the independently profiled validation cohort, with T cells of
growing ribociclib-resistant tumors receiving fewer recruitment signals
than those of shrinking ribociclib-sensitive tumors (Fig. 5D top right)
(Supplementary Data 26-29). In contrast, myeloid recruitment signaling
to T cells was not linked to letrozole response in either the discovery or
validation cohorts (Fig. 5D bottom panels). We next confirmed that in
growing ribociclib-resistant tumors, the decrease of T cell recruitment
communications from myeloid cells was linked to a post treatment
reduction in T cell abundance (est =−0.73, df = 100, z=−16.06,
p<0.0001) (Fig. 5E). In contrast, a stable abundance of T cells was
observed in ribociclib-sensitive shrinking tumors. Throughout letrozole
treatment, T cell abundance was also lower in growing than in shrinking
tumors (est = −0.61, df = 59, z= 12.3, p<0.0001). Together, these results
indicate the central role of macrophages in orchestrating T cell activa-
tion and recruitment and an effective anti-tumor response during ribo-
ciclib treatment.

We then assessed how cancer and non-cancer cells responded
to the diverse cytokine communications in the TME. We hypothe-
sized that in immune hot TME’s, the high levels of immune activating
signals and T cell recruitment and activation should induce an
inflammatory phenotypic response across cell types, with activation
of interferon regulatory factors (IRFs) and induction of interferon-
stimulated genes (e.g., interferon gamma-induced proteins) allowing
recognition and killing of cancer cells72,73. The activation of the
interferon gamma response pathway is expected in response to
cancer antigens rather than interferon alpha response upon viral
infection. Wemeasured the interferon gamma response at the end of
treatment in cells of each cell type and across tumors using the
Hallmark interferon gamma response ssGSEA signature. The inter-
feron gamma immune response was suppressed across all cell types
in growing ribociclib-resistant tumors compared with either
ribociclib-sensitive shrinking tumors (Fig. 5F), but this was not
observed under letrozole alone.

Cancer cells in particular exhibited a substantially weaker inter-
feron gamma response post treatment in growing ribociclib-resistant
tumors compared to ribociclib-sensitive shrinking tumors (Fig. 5F top)
(est = −0.027, df = 1913, t = −20.2, p <0.0001). This lack of immune
detection in growing tumors was confirmed in ribociclib-resistant
cancer cells of the validation cohort (est = −0.006, df = 1459, t = −4.3,
p <0.0001) but was not observed in growing letrozole-resistant
tumors of either the discover cohort (Fig. 5E bottom) or the valida-
tion cohort (est = −0.003, df = 9.6, t = −0.2, p = 0.84). Communication
pathways strongly associated with high cancer interferon gamma
response phenotype activationwere found using Lasso regression (see
Methods). A cancer interferon gamma response was frequently asso-
ciated with receipt of strong IL-15 signals (28% of tumor subclones) or
related cytokine receptors such as: Toll-like receptor 2 (TLR2: 19%
subclones), Interleukin-22 Receptor Subunit Alpha 1 (IL22RA1: 17%
subclones), Interleukin-12 Receptor Subunit Beta-1 (IL12RB1: 15% sub-
clones) (Figure S16). Together these results indicate that cells in
growing ribociclib-resistant tumors experienced a less hot tumor
microenvironment at end of treatment compared to those of
ribociclib-sensitive shrinking tumors. This was linked to cancer cells
exhibiting aweaker interferon phenotype response, lessening immune
detection.

IL-15 treatment overcomes immune suppressive effects of
CDK4/6 inhibition
We next assessed the immune suppressive effect of ribociclib treat-
ment both in patient peripheral blood samples from the FELINE trial
andusing in vitro experimentalmodel systemscoculturing cancer cells
with patient-derived T cells.

We first analyzed the white blood cell (WBC) counts in FELINE
patient peripheral blood mononuclear cell samples obtained
throughout treatment with either combination ribociclib or letrozole
alone. We found, using a generalized additive model, that early in
treatment the abundance of WBC’s was approximately halved under
ribociclib treatment (eff.df = 2.27, F = 12.52, p = 4.6e-7) but remained
stable under letrozole treatment (Fig. 6A). This independent periph-
eral blood mononuclear cell data aligns with the immune suppressive
side effects of ribociclib identified through our scRNAseq analyses of
composition and communication.

We then performed in vitro experiments to validate the direct
inhibitory effects of ribociclib on patient-derived CD8 + T cells and
examined how CD8 + T cell viability is impacted by IL-15 cytokine
signals in the environment in the presence or absence of ribociclib
(Fig. 6B). We confirmed that the viability and spheroid area of
patient-derived CD8 + T cell populations was reduced by ribociclib
treatment (viability: est = −0.48, df = 2, t = −6.04, p < 0.005; area:
est = −0.44, df = 2, t = −14.8, p < 0.0001) but was substantially
increased by IL-15 cytokine treatment (viability: est = 0.29, df = 45,
t = 8.63, p < 0.0001; area: est = 0.23, df = 43, t = 12.4, p < 0.0001).
Similarly, T cell ATP, and proliferation was reduced by ribociclib
treatment but more greatly increased by IL-15 cytokine treatment
(Figure S17A/B). CD8 + T cell activation was confirmed by Interferon
gamma (IFN-γ) production in monoculture p (<0.05) and coculture
with cancer cells when treated with IL-15 (p < 0.0001, Figure S17C). In
the presence of IL-15, IFN-γ production significantly increased in
coculture with cancer cells compared to monoculture alone
(p < 0.0001) and was unaffected by ribociclib treatment in both
monoculture and coculture conditions. This indicates that IL-15
cytokine treatment can rescue CD8 + T cell proliferation and activa-
tion during ribociclib treatment and overcome immune suppressive
side effects.

We then examined how ribociclib and IL-15 cytokine signals
impact CD8 +T cell regulation of cancer population growth by
experimentally coculturing patient-derived T cells with one of four
fluorescently labeled cancer cell lines (ribociclib resistant vs sensitive
CAMA-1 andMDA-MB-134 cells; non-autologous). Resistant cancer cell
lines were generated from the parental sensitive line through long
term selection. Using serial imaging, we tracked cancer population
growth over time in mono and coculture conditions across a six-point
gradient of IL-15 concentration and with or without ribociclib treat-
ment (Figure S18). The average growth of each replicate cancer
population during 7 days of treatment was measured by the relative
growth rate (rgr) (seemethods).We confirmed that, despite cancer cell
lines being allogeneic, T cells did not show Graft-versus-host disease
(GVHD) reactions and had little effect on cancer growth without IL-15
treatment. For each cancer cell line, we then compared the impact of
IL-15 treatment on cancer growth in cancermonocultures and cancer-T
cell co-cultures between ribociclib treatment and DMSO control con-
ditions (Fig. 6C).

This analysis showed that cancer monocultures were unaffected
by IL-15 concentration. In cocultures, IL-15 T cell activation sig-
nificantly reduced cancer population growth of ribociclib sensitive
and resistant cells. Ribociclib had little effect at slowing the growth
of resistant cells (Figure S19). Further, the immune suppressive effect
of ribociclib on T cells opposed IL-15 T cell activation, reducing the
efficacy of T cells in regulating cancer growth (Fig. 6C, D). However,
with higher concentrations of IL-15 the T cells effectively controlled
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cancer growth, leading to cancer spheroid shrinkage and the essential
eradication of both resistant and sensitive cancer cell populations
(Fig. 6C, D) (MDA-MB-134 spheroid images in Figure S20). We con-
firmed, using cancer-macrophages-T cell tricultures, that in presence
of monocyte derived macrophages the combination of ribociclib and
IL-15 promotes cancer control via T cell killing (Figure S21). These
results show that IL-15 activation of T cells can overcome the immune
suppressive effects of ribociclib treatment and reinvigorate the control
of cancer growth, which is in line with the computational patient-
focused tumor analyses.

Discussion
Analyzes of the phenotypes, composition and communication of cell
types within the TME revealed the central role of tumor ecosystem-
wide signaling in CDK4/6 inhibitor treatment response (Fig. 6E). Can-
cer cells from growing ribociclib-resistant tumorsmodify the behavior
of immune regulating myeloid cells, through production of diverse
communications including CSF1, CLCF1, FGF, and TGF family members
and interleukins 5/11/12. These ribociclib-resistant tumor specific
communications polarize myeloid cells into an M2-like phenotype,
suppressing subsequent T cell activation and recruitment through loss

Fig. 6 | Interleukin 15 (IL-15) addition overcomes CDK4/6i-induced immune
suppression, boosting CD8 +T cell activation and cancer control. A Ribociclib
immune-suppression shown by decreased peripheral white blood cell (WBC) counts
in serial blood samples (points) of FELINE patients during combination ribociclib
treatment but not letrozole alone (generalized additive model (GAM):non-linear
trend::ribocicli:eff.df = 2.27, F = 12.52, p =4.6e-7;letrozole:eff.df = 1.0(linear),
F =0.045, p =0.83(trend; not significant:NS))(solid line =GAM treatment-specific
trend,shaded = 95% confidence interval(+/-1.96*SE)). No pre-treatment difference
betweenarms (log-linearmodel+ANOVA:estimate =0.073,se =0.081, df = 59, t = 0.91,
p =0.37). Sample size = 408 blood draws, 62 patients (Treatment:ribociclib =
39,letrozole = 23) across 7 timepoints. B Ribociclib (color) reduced patient-derived
CD8+T cell viability (top) and area (bottom) after 163-hour monoculture (log-linear
model(IL-15 = 0ng/mL):ATP:estimate =−0.48,se =0.079, df = 2, t = −6.04,
p =0.0038;Area:estimate = −0.44,se =0.03, df = 2, t =−14.8, p =0.0045). IL-15 over-
came inhibition, with IL-15 > 1 ng/mL restoring viability/area above DMSO control
(GAM:IL-15 activation::ATP:eff.df = 3, F = 760.87, p= 2e-16;Area:eff.df = 2.94, F = 611.5,
p = 2e-16). GAM characterized non-linear dose-dependent IL-15 effect with/without
ribociclib (solid line = expectation;shaded regions =95% confidence interval (expec-
tation + /-1.96*se)). Sample size = 48 measurements, 3 experimental replicates
under 16 treatment (8 IL-15 levels(0-10ng/mL)+/-1uM ribociclib). C IL-15 (x-axis)
slowed cancer growth of 4 cell lines (panels:CAMA-1/MDA-MB-134 ribociclib-resis-
tant/sensitive pairs) in patient-derived T cell cocultures (circles;seeding-ratio::-
cancer:T-cell=4:1) but not monocultures (triangles)(GAM::IL-15|coculture:CAMA-
1:resistant:edf = 2.00, F = 1323.00, p = 1e-16,CAMA-1:sensitive:edf = 2.00, F = 543.25,
p = 1e-16,MD-AMB-134:resistant:edf = 2.00, F = 146.85, p= 1e-16,MDAMB134:

sensitive:edf = 1.70, F = 693.80,p = 1e-16). Coculturedcancergrowthwas reduced less
by IL-15 stimulation under ribociclib treatment (yellow circles) versus DMSO control
cocultures (blue circles)(GAM::IL-15|ribo:CAMA-1:resistant:edf = 1.88, F = 56.15, p < 1e-
16,CAMA-1:sensitive:edf = 1.00, F = 9.61, p = 2.7e-5,MD-AMB-134:resistant:edf = 1.88,
F = 16.07, p = 1.5e-6,MDAMB134:sensitive:edf = 1.95, F = 51.77, p < e-16). Higher dose
IL-15 controlled ribociclib-treated coculture cancer growth. Points = replicate cancer
growth rate over 6 days versus mean of IL-15 untreated monocultures (blue trian-
gles:IL-15 = 0ng/mL) per ribociclib treatment). GAMs characterized treatment
impacts on growth rates per lineage and coculture composition (dashed/solid
lines =mono/coculture expectations;shaded =95% confidence intervals (+/-1.96*se)).
Sample size = 288 spheroids, 4 cancer lineages (CAMA-1/MDA-MB-134 resistant/sen-
sitive), 2 compositions (mono/coculture), 6 IL-15 concentrations (0/0.5/0.75/1/2.5/
5 ng/mL), 2 ribociclib doses (0/1uM), 3 experimental replicates. D Representative
florescent imaging (4x magnification) demonstrating IL-15 activation of an effective
cytotoxic T-Cell (unlabeled: black) response in sensitive (YFP labeled:yellow) or
ribociclib-resistant (CFP labeled:blue) CAMA-1 cancer cells. Cancermonoculture (top
rows) andcancer-T cell coculture (bottomrows) spheroids following6-day treatment
with DMSO (0.1%;control), ribociclib (1 µM), IL-15 (1-5 ng/mL), or combination ribo-
ciclib (1 µM)+ IL-15 (1-5 ng/mL). E Schematic: diverse pre-treatment cancer commu-
nications stimulate immune-suppressing M2-like myeloid polarization in ribociclib-
resistant tumors. Reduced pro-immune M1-like myeloid differentiation diminishes
interleukin/integrin signaling and subsequent CD8+T cell activation/recruitment,
preventing effective killing of quiescent cancer cells. All statistical tests two-sided.
Source data provided as a Source Data file.
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of interleukin and integrin signaling respectively. These signaling
effects precede a reduced T cell differentiation and abundances in
growing ribociclib-resistant tumors during treatment and associate
with a lack of an interferon response required for cancer recognition
and killing by T cells. Assessment of patient’s peripheral immune cell
counts indicated the systematic immune-suppressive side-effects of
CDK4/6 inhibitor treatment. In vitro cancer-immune coculture assays
showed that IL-15 treatment can reinvigorate T cell proliferation and
cancer control.

Results highlight how the tumor microenvironment impacts
CDK4/6 inhibitor response. Immune activation at baseline and during
treatment correlated with improved tumor response to both letrozole
alone and combination ribociclib treatments. However, response to
ribociclib was far more dependent on the composition, phenotypes
and communication of immune cells, particularly macrophages,
compared to letrozole response. This finding may be due to the
broader effects of ribociclib on immune cells, as it is known that cell
cycle inhibitors can cause low white blood cell counts and block T cell
proliferation15,17,74. The dual impact on both cancer and immune cell
proliferation could more strongly exacerbate pre-existing TME dif-
ferences that determine a tumor’s response. In contrast, the targeted
effect of letrozole on the cancer cell specific estrogen growth factor
pathway has less impact on immune cell signaling and T cell
cytotoxicity.

Results in Figs. 5, 6 support the hypothesis that recruitment,
abundance, and activation of cytotoxic T cells are critical components
of CDK4/6 inhibitor efficacy13. It may often be insufficient to block
cancer cell growth alone; immune cell recognition, cytotoxic effects,
and clearance of cancer cells may be a critical component of tumor
response to cell cycle therapies.We have previously shown that tumor
phenotypic evolution during combination ribociclib therapy leads to
the emergence of cell cycle reactivation through a shift from estrogen
to alternative growth signal-mediated proliferation in this early-stage
ER+ breast cancer population10. We propose that a durable tumor
response to cell cycle treatment requires the killing of cancer cells by
the immune system. Otherwise, it is possible that the cancer cells can
evolve to bypass the effects of anti-proliferative drugs.

The perspective that breast cancer is immunologically cold and
not treatable with immunotherapy is being challenged75, yet clinically
ER+ tumors are still presumed to be less responsive to immu-
notherapy than other subtypes76,77. However, evidence is accumu-
lating that a strong immune response is essential to ensure tumors
respond well to CDK4/6 therapy14–17,20,21. For example, a high abun-
dance of inactive or regulatory T cells predicted worse overall sur-
vival and relapse risk of metastatic ER+ breast cancer patients during
the RIBECCA trial17 and more generally across other treatments78.
Conversely, the co-occurrence of many CD8+ cytotoxic T cells with
CD4+ helper T cells has been associated with increased progression
free and overall survival79. Our results in Fig. 2 show that within ER+
breast cancers, there exist three distinct archetypical ecosystem
compositions: i) a cancer-dominated state, ii) an immune-hot and
diverse state, and iii) a fibroblast and endothelial-enriched state.
Those initially immune-hot tumors are sensitive to treatment with
anti-proliferative endocrine and cell cycle inhibitor treatments. This
result indicates that preemptively or concurrently heating cold
tumors may improve response to cell cycle and endocrine inhibition.
CDK4/6 inhibitors themselves have some favorable immunomodu-
latory effects, such as increasing immunogenicity and T cell
activation14–16. However, results in Fig. 6 highlight their counteracting
immunosuppressive side-effects on T cell proliferation, recruitment
and activation that predominate in resistant tumors. These dual
effects explain the association of CDK4/6 inhibitor clinical responses
with a reduction of immunosuppressive cell types in the peripheral
blood of metastatic patients21. Together these findings indicate that
CDK4/6 treatment efficacy can be improved by overcoming immune

suppressive side effects whilst nurturing favorable immune
modulation.

A broad range of immune signaling exists that impacts cancer
recognition across hot and cold tumors80. Our results in Fig. 4 show
that cancer to macrophage communications prior to treatment are
associatedwith suppression of immune function in ribociclib-resistant
tumors. These data identify immunotherapy targets to overcome cell
cycle inhibitor resistance, such as myeloid cell differentiation and
cytokine signaling81. Our results show that cell cycle therapy response
is higher in tumors with more abundant dendritic cells and more
inflammatory M1-like macrophages. Several promising immunother-
apeutic strategies are emerging to promote M1-like differentiation82.
These include: local low-dose irradiation83, intra-tumoral IL-21
injections84, immune checkpoint inhibitors85, autologous GM-CSF
vaccines86 or chimeric antigen receptor macrophage transfer87.
Treatments could directly activate cytokine signaling to recruit and
activate effector T cells and promote antigen presentation. Our ana-
lyses identified that shrinking ribociclib-sensitive tumors had
increased IL-15 signaling between macrophages, T cells and cancer
cells, leading to increased T cell activation and stronger antigenic
interferon responses. IL-15 T cell activation can overcome the immune
suppressive side-effects of ribociclib. In both breast and colon cancer
murine models, IL-15 promotes tumor destruction and reduces
metastasis through T cell activation88,89. Furthermore, IL-15 agonizts
can overcome the immunosuppressive effects of anti-proliferative
drugs (e.g., MEK inhibitors)90. Ongoing clinical studies are testing IL-15
efficacy as an adjuvant or combination treatment for metastatic solid
tumors91. Potential benefits over other FDA approved cytokines such
as IL-2 may include reduced toxicity and avoidance of Treg differ-
entiation or activation-induced CD8+ T cell death92.

By serially profiling cancer and non-cancer cells in a cohort of
patient tumors resistant or sensitive to treatment, we can identify the
key mechanisms of resistance driven by the tumor microenvironment
(TME). This analysis provides valuable insights into tumor composi-
tion, intercellular communication, and phenotypes, which can be used
to identify new treatment strategies. By examining the TME compo-
sition and myeloid cell phenotypes, we can detect early indicators of
tumor sensitivity to cell cycle and endocrine therapies. Moreover,
studying the dynamics of communication between cancer and
immune cells revealed a key immunological component to ribociclib
resistance. It also uncovers potential mechanisms underlying TME
dysregulation and identifies possible treatment targets to counteract
the immune-suppressive effects of ribociclib. Approaches to reignite
immune activity in early-stage ER+ breast cancer may help overcome
CDK4/6 inhibitor resistance, enhancing the effectiveness of treatment
strategies.

Methods
Patient cohort and sample collection
Patient tumor core biopsies were collected prospectively under Clin-
ical Trial #NCT0271272331, during a randomized, placebo controlled,
multicenter investigator-initiated trial led by Dr. Qamar Khan at the
University of Kansas Medical Center (IND #127673). The trial entitled
FELINE studied Femara (letrozole) plus ribociclib (LEE011) or placebo
as neo-adjuvant endocrine therapy for women with ER-positive, HER2-
negative early-stage breast cancer. Postmenopausal women with
pathologically confirmed non-metastatic, operable, invasive breast
cancer and clinical tumor size of at least 2 cm were enrolled from 10
centers across the United States. Invasive breast cancer had to be ER
positive ( ≥ 66% of the cells positive or ER Allred score 6–8) and HER2
negative by ASCO-CAP guidelines.

One hundred and twenty patients were randomized equally
across three treatment arms (40:40:40). ArmA received letrozole plus
placebo, Arm B letrozole plus ribociclib 600mg daily for 21 out of
28 days of each cycle and Arm C received letrozole plus ribociclib
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400mg continuously. Protocol therapy was continued until the day
before surgery. Tumor response to treatment was assessed using
multiple imagingmodalities. Mammogram,MRI and ultrasound of the
affected breast were performed at baseline and a mammogram and
ultrasound was performed at completion of neoadjuvant therapy. MRI
of the breast was performed after completion of 2 cycles of treatment
(Day 1 of cycle 3). Serial tissue biopsies using a 14-gauge needle were
mandatory, providing three core tumor sample over the course of
treatment: baseline (Day 0), Cycle 1 follow up (Day 14), and end of
treatment (Day 180). Immediately after collection, biopsy samples
were snap frozen embedded in optimal cutting temperature condi-
tions. Informed consent was obtained from all patients following
protocols approved by the institutional IRBs and in accordance with
the Declaration of Helsinki. The study was approved by University of
Kansas Institutional Review Board (protocol #CLEE011XUS10T).

Single nuclei RNA sequencing and processing
Tumor single cell nuclei were isolated from OCT embedded core
tumor biopsies using amodified lysis buffer containing0.2% IgepalCA-
630 as previously described93. Single cell RNA-Sequencing (scRNAseq)
was performed on single nuclei suspensions (i.e., single nuclei RNA
sequencing) using 10X Genomics Chromium platform as previously
described10. Sequence reads were processed with BETSY and Cell-
Ranger v3.0.2, which aligned reads to reference genome (GRChg38)
using STAR v2.6.094. For each sample, a gene-barcode count matrix
was generated containing counts of unique molecular identifiers
(UMIs) for each gene in each cell.

We reanalyzed the validation cohort cells to recover intermediate-
quality non-cancer cells that were excluded based on the filters used
originally in the discovery cohort analysis. Cells were clustered based
on the percentage of mitochondrial genes using k-means clustering
(k = 4). We filtered out high mitochondrial content clusters
(centroids = 55 and 87% mitochondrial genes) and retained low per-
cent mitochondrial genes (centers = 0.2 and 20%). We further filtered
out cells classified as epithelial by SingleR analysis33 and with less than
100 genes expressed.

Cell type classification and verification
We obtained transcriptional profiles of 424,581 single cells, using
stringent quality controls to ensure high-coverage, low mitochondrial
content, and doublet removal (detailed in ref. 10). On average, we
recovered 2.75 (out of 3) time point samples per patient. Broad cell
types were annotated using singleR33, cancer cells were identified by
their frequent and pronounced copy numbers amplification using
InferCNV34. Cell type annotations were verified by cell type specific
marker gene expression and UMAP/TSNE analyses10,35. Granular
immune subtype annotations were obtained using our recently pub-
lished ImmClassifier machine learning method, which has been vali-
dated by flow cytometry comparisons36.

Machine learning classifier for cell type annotations
Cell subtype annotations for the discovery and validation cohorts
were confirmed to be consistently annotated by training a random
forest machine learning classifier to identify cell types using the well-
curated discovery cohort data. We then applied the classifier to
predict cell type annotations in the validation cohort. First, we
identified the marker genes associated with each cell type in the
discovery cohort cells, using a negative binomial test to find genes
differentially expressed in each cell type relative to all others. Genes
expressed in > 25% of cells in at least one group and showing a log
fold change in expression > 0.25 between the groups were selected
as candidate markers. We additionally included cell cycle score (G2M
and S scores calculated by Seurat’s CellCycleScoring function) as
latent variables. The top 100 marker genes of each cell type were
selected as candidate features in the machine learning analysis. The

classifier was constructed using SingleCellNet, a top pair
random forest approach to predict each cell type95. First, we split the
high-quality discovery cohort into a training and validation subset.
We then trained the classifier on the training subset with the
parameters nTopGenes = 25, nRand = 100, nTrees = 1000 and
nTopGenePairs = 50. Performance assessment in the held-out vali-
dation subset showed good performance with area under the recei-
ver operator curve > 0.9 (Figure S1C). To confirm the consistency of
the discovery and validation cohorts, all cells were projected into a
common UMAP space, using the first 10 principal components of the
scaled expression levels of 100 marker genes associated with each
cell type (Figure S1). We verified that the UMAP clusters, indicating a
major biological cell type, were assigned consistent cell type anno-
tations across cohorts when using the manual curation and machine
learning classification approaches. Most cell types were uniquely
assigned to a single cluster and this accuracy was further improved
by retaining cells with a cell type prediction probability > 0.75.

Archetypal tumor compositions
The composition of each tumor sample was summarized by first cal-
culating the proportion of each cell subtype, to correct for sampling
variation. The compositional similarity of each tumor sample was then
measured using the pairwise logit-Euclidean and supported by Man-
hattan distances. This quantified the fraction of each tumor compo-
sition that would need to be altered to generate the compositional
profile of each other sample. Compositionally similar tumors and
collections of cell types with correlated abundances were grouped
using hierarchical clustering (method = ‘ward.D2’).

To identify archetypal ER+ breast cancer tumor compositions, we
projected all tumor samples into a composition landscape, using
UMAP (version 0.2.3.1) to account for the non-linearity and non-
normality of compositional data35. Highly compositionally similar
tumors located close together in this ordination space and distant
from tumorswith divergent compositions.We then applied a Gaussian
Mixture model (GMM) and Bayesian information criterion to prob-
abilistically identify distinctly similar clusters of tumor samples96. This
identified the appropriate number of archetypal tumor compositions
supported by the data and classified each tumor sample into an
archetype. Major compositional differences between archetypal
compositions were identified using Dirichlet regression (R package
DirichletRegv0.7-1) and the rank correlation of UMAP TME composi-
tion axes with cell type frequencies.

Subclonal cancer composition and evolution from scRNA copy
number alteration
Cancer subclonal populations of each tumor sample were identified
through infercnv analysis (R package infercnv v1.0.2; cutoff = 0,
min_cells_per_gene = 100 or 500, cluster_by_groups = T, HMM=T,
analysis_mode= “subclusters”). Genomic regions of copy number
alteration in each cell were detected relative to a subset of 500
reference immune or stromal cells, using the count matrix. Then,
cancer populations with distinct copy number profiles were defined as
cancer subclones of a patient tumor using hierarchical clustering (R
package fastcluster v1.1.25; method = ‘ward.D2’)97. Clusters with dis-
tinct copy number profiles were defined as subclones for each patient.
Single-cell grouping was performed based on hierarchical cluster
analysis.

Cell phenotypes from Gene Set enrichment analysis
The gene expression count matrix of each cell type was filtered to keep
genes expressed in at least 10 cells, zinbwave normalized with total
number of counts, gene length andGC-content as covariates (R package
zinbwave v 1.8.0; K = 2, X = “~log (total number of counts)”, V = “ ~ GC-
content + log (gene length)”, epsilon = 1000, normalizedValues =
TRUE)98. Single sample Gene Set Enrichment Analysis (ssGSEA) scores of
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50 hallmark signatures (MSigDB, hallmark) and 4725 curated pathway
signatures (MSigDB, c2) were calculated for each cell using the nor-
malized count matrix in GSVA (R package GSVA v1.30.0; kcdf = “
Gaussian”, method= ‘ssgsea’)99,100.

Communication from across diverse cell type populations
through: Tumor-wide integration of signaling to each
receiver cell
Networks of communication from across diverse cell type populations
and received by individual cancer and non-cancer cells of a tumor were
uncovered by applying an extended expression product method to
ligand-receptor scRNAseq data. This measures population level com-
municationusing single-cell geneexpression (countpermillion).Wefirst
extended individual level cell-cell interaction (CCI) approaches
(reviewed in ref. 22) to measure communications received from entire
cell type populations or from across the entire tumor population
(tumor-wide communication), accounting for tumor composition and
within cell type phenotypic heterogeneity. The tumor-wide commu-
nicationmetricwasderivedby formulating adifferential equationmodel
of tumor ecosystem signaling. This describes the change in concentra-
tion of a signaling ligand molecule (S) in the TME as following:

dS
dt

=
X

i

σxiPi �
X

j

qjyjγPj
S�μS:

Signals are produced by cells in the TME at a rate proportional to
their expression of the signaling ligands. Within cancer and non-cancer
cell types, subpopulations vary phenotypically and differ in ligand gene
expression, with subpopulation i having ligand expression xi. Ligands
produced by a cell are released into TME at rate σ. The total signal
production by each cell subpopulation is proportional to heir abun-
dance in the TME (Pi) and the total signal production across the TME is
given by the sum of production across all cell subpopulations. Signaling
ligands are removed from the TME through decay or diffusion at rate (μ)
or when bound to a receptor on a receiving cell (receptor binding
rate = γ) and taken up (ligand internalization rate =qj). Phenotypically
different subpopulations within cancer and non-cancer cell types have
differing receptor concentrations, with receptor density of cell type j
depending on its receptor gene expression (yj). The total ligand uptake
by each cell subpopulation is proportional to their abundance in the
TME (Pj) and the fraction of molecules are taken up and removed from
the TME once receptor bound. The total signal uptake is given by the
sum of uptake across all cell subpopulations.

The steady state analysis of the TME signal concentration is
given by:

S* =
P

i σxiPiP
j qjyjγPj

+μ

Assuming ligand release after receptor binding (qj is small), the
strength of signal transmitted from all cell subpopulation in the TME
(tumor-wide communication) to a focal receiver cell in subpopulation j
is given by:

Cj x, yj
� �

= yjγS* =
γσ
μ
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Given a sampled tumor composition (P̂i = cell proportion of sub-
population i), the tumor-wide communication transmitted via ligand-
receptor pathway k to a receiver cell (of type j) can bemeasured given
a vector of ligand gene expression for each cell types present (xk),
and the receptor expression of the receiving cell (yjk) as:
Cjkðxk , yjkÞ/ðyjk

P
ixik P̂iÞ (Fig. 1C).

This generalizes the CCI approaches using the ligand-receptor
product and expression correlation method (e.g., CCCExplorer,
ICELLNET, NATMI, NicheNet and scTensor; reviewed in ref. 22) to the
broader tumor ecosystem perspective. Rather than measuring one-
one interactions between individual cells, Cjkðxk , yjkÞ measures the
many-one communication strength a focal cell receives from the
diversity of cells that are releasing communications into the TME. This
is again distinct from the many-many mapping of communication
implemented to quantify the probability of cell-cell communication
between two cell types (e.g., in CellChat)24. The extended expression
product method therefore allows an assessment of how phenotypi-
cally diverse populations of cells contribute communications to the
signaling reservoir in theTME to stimulate the receiver cell, accounting
for the abundance and ligand production of each signaling pheno-
type (Fig. 1C).

We validated that by restricting tumor-wide communications to
individual level communications between one sending cell of one cell
type and another receiving cell, measurements are consistent with
individual level cell-cell interactions obtained using the ligand-
receptor correlation/expression product method3 (as used in CCCEx-
plorer, ICELLNET,NATMI,NicheNet and scTensor; reviewed in ref. 22)3.
The model also shows how tumor-wide communications generalize
the established CCI approach to the broader tumor ecosystem per-
spective. Crucially, instead of just revealing how an individual cell
of one cell type communicates with a cell of another type (individual
one-one cell crosstalk), the extended expression product method
allows an assessment of how a phenotypically diverse population of
cells within each major cell type (e.g., macrophages in distinct states)
contribute communications to the receiver, accounting for the abun-
dance and ligand production of each signaling phenotype (population
many-one cell crosstalk). This is distinct from methods such as Cell-
Chat which use cell counts to weight the probability that an individual
of the two cell types interact (i.e., frequency of individual one-one cell
crosstalk).

Measuring tumor-wide communications received from diverse
cell phenotypes
We applied the extended expression product method to measure
tumor-wide signaling from diverse non-cancer cell sub-populations
and heterogeneous cancer lineages to receiving cells.We first resolved
diverse subpopulations of each cancer and non-cancer cell type (e.g.,
macrophages in different differentiation states). For each broad cell
type we generated a cell-type specific UMAP based on ssGSEA profiles,
with the intrinsic UMAP dimensionality determined using the packing
number estimator101. We then break down each cell type into subtypes
of at least 30 cells with coherent phenotypes and of equal interval
width along eachphenotype axis. This allowed cell typeswith relatively
continuous phenotypic variation, such as macrophages, to be sub-
divided into an ordered set of cell states along multiple axes of phe-
notypic heterogeneity andmaintains phenotype covariance structure.
We then calculated the relative abundance of each subpopulation of
each major cell type within a tumor sample (P̂i).

We next used a curated LR communication database102 to define a
set of 1444 LR communication pathways (Cjkðxk , yjkÞ) based on known
protein-protein interactions. We extracted single-cell expression of a
ligand and usedmeanCPMof a cell subpopulation as ametric of signal
production (xk) and the mean CPM receptor expression to quantify
signal receipt by a focal cell (yjk). We calculated activity of each LR
communication pathway (k = 1:1444) between each pair of sending (i)
and receiving (j) subpopulations (i! j) within a tumor:

Ci!j, k xik , yjk
� �

= yjkxik P̂i

� �
:
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Strength of communication between cell types: contribution
and receipt of signals
To obtain communications via LR pathway k between broad cell
types, we totaled signals from sending cell type populations (1: n
ligand producing subpopulations of a cell type) and averaged
signals to receiving cells (across 1:m signal receiving subpopula-
tions of a cell type). We use a weighted average so that the signal
to each receiving cell type population is weighted by abundance
(Fig. 1C).
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We refer to this as the strength of communication from a cell type
population to a typical cell of another type. For example, the con-
tribution ofn heterogeneous cancer cell populations (Cancer1:n) to the
communication with a myeloid cell of phenotype z via ligand x and
receptor y is given by:
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The strength of communication received by a typical myeloid cell
in a sample (Myeloid) from the diversity of cancer cells is given by:
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This was repeated for each LR communication pathway between
cell types and across tumor samples. Each communication pathway
has a distinct potency to modulate cellular phenotype and behavior
and so communication pathway scores were standardized (mean =0,
sd = 1) across patients, preventing highly expressed ligand-receptor
pairs dominating communications. The average strength of commu-
nication from one cell type to another across LR pathways (�Ci1:n!�j) was
measured by the median standardized communication from one cell
to another.

Validation of communication measurements
We validated the method in peripheral blood immune cells, in
which communications between cell types are well known and
distinctly different from those expected in tumor biopsy
samples103. Our approach successfully recovered the expected
communication network, with myeloid cells having a central role
in communicating via cytokine pathways with many cell types
(Figure S22). We also validated that we could recover canonical
cell type specific communications including receipt of: macro-
phage colony stimulating factor primarily in myeloid cells, vas-
cular endothelial growth factor (VEGF) in endothelial cell,
fibroblast growth factor (FGF) in fibroblasts, epidermal growth
factor (EGF) in epithelial cells and C-C chemokine receptor type 5
(CCR5) in T cells (Figure S5). Finally, we compared the measured
differences in communication between the resistant and sensitive
tumors of the discovery and validation cohort. This verified the
high degree of consistency in the signals each cell type received
via each LR communication pathway tumor response groups
within across the two cohorts (R2 = 0:81) (Figure S23).

Cell type communication differences between resistant (grow-
ing) and sensitive (shrinking) tumors: Bootstrapping randomi-
zation comparison
Contrasting communication across many biopsies, rather than within
individual samples, provided comparative insights into the evolution of
communication during treatment and the cell type communications
that distinguish resistant and sensitive tumors. We contrasted the net-
works of communication between cell types in resistant and sensitive
tumors and examined how communications changed throughout
treatment with ribociclib or letrozole. We determined the difference in
the average strength of communication from one cell type to another
(�Ci1:n!�j) between resistant and sensitive tumors. To identify which cell
type communications significantly differed between tumors resistant
and sensitive to each treatment, we perform a bootstrapping rando-
mization analysis. We repeatedly shuffled the observed cell type L-R
communications across resistant and sensitive tumors to remove any
response related structure of the communication network. For 1000
randomized communication networks, the difference in average com-
munication was recalculated. The distribution of communication dif-
ferences produced by chance in the randomized networks (null model:
average communication does not differ between resistant and sensitive
tumors) was then compared to the observed difference in the average
communication between cell types.

Using the mean and standard deviation of the communication
differences in the randomized networks, z statistics were calculated to
indicate how much each cell type’s communication differed between
resistant and sensitive tumors. Randomization p-values were calcu-
lated by the rank of the observed average communication difference
within the distribution of randomized differences between resistant
and sensitive communication networks. A Holm’s conservative cor-
rection for statistical significance was applied to correct for multiple
comparisons.

Divergent communication networks between cell types in
resistant (growing) and sensitive (shrinking) tumors
We obtained the expected cell type communication of one cell type to
another in resistant and sensitive tumors at each time point of each
treatment. This summarized the average strength of communication
(�Ci1:n!�j) across each individual tumor within each response category
and treatment time point. Pre-treatment cell type communication net-
works were then described by directed weighted network graphs,
constructed for resistant and sensitive tumors. Cell types were repre-
sented by network nodes and the proportional changes in commu-
nication were described by the weight of the vertex from one cell type
to another (indicated by arrow width). We also calculated the propor-
tional change in expected cell type communication post treatment in
resistant and sensitive tumors, relative to the baseline overall average.

Communication pathway analysis: identifying response related
communications
For each LR communication pathway, we contrasted the strength of
communication between cell types in tumors growing (resistant) or
shrinking (sensitive) during each treatment. We used log-linear
regression to describe trends in cell type communication within
resistant and sensitive tumors (log ð1 +Ci1:n!�j, kðxi1:nk

, yj1:mkÞÞ). General
communication trends during treatment and changes specific to
growing treatment-resistant tumors were detected using likelihood
ratio tests. Significant differences in the strength of cell type com-
munication between resistant and sensitive tumors either before or
after treatment were identified by using ANOVA on the endpoint data
(Day 0 and 180 separately). We accounted for multiple comparisons
using false discovery rate (FDR) p-value correction. To identify broadly
divergent communications between resistant and sensitive tumors
before treatment, we enumerated the detected communications sent
and received by each cell type.
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Myeloid phenotype landscape reconstruction
The diversity of myeloid phenotypes was examined through UMAP
analysis of single cell transcriptional profiles (log(1 + CPM)).Geneswith
greater than 5% coverage in cells were used. Dendritic cell and mac-
rophage cell subtype annotations obtained from ImmClassifier36 were
overlaid onto the UMAP, confirming consistent identification of dis-
tinct cell population between approaches. The M1-like:M2-like phe-
notype gradient across the UMAP (dimension 2) was identified using
the rank correlation of UMAP axes with each gene’s expression. Mye-
loid phenotypic heterogeneity in the verification cohort was char-
acterized using the UMAP model, trained with the discover cohort
CPM data, to project myeloid cells of the validation cohort into a
consistent myeloid phenotype space. This provided equivalent M1-
like:M2-like phenotype scores for each myeloid cell of the validation
cohort. Finally, M1-like macrophages were defined as having below
average M1-like:M2-like phenotype scores and other macrophages
classified into the M2-like phenotype.

Myeloid lineage differentiation structure
Trajectories of myeloid differentiation were inferred through pseu-
dotime reconstruction, using the slingshot algorithm104. First, we
identified 21 distinct myeloid cell clusters from the UMAP phenotype
landscape, using a Gaussianmixturemodel and Bayesian Information
Criteria. Next, we characterized the global structure of myeloid dif-
ferentiation lineages (including the trajectory branching number and
locations), using slingshot to construct a cluster-based
minimum spanning tree (MST) and describe the continuous differ-
entiation trajectory of each lineage with principal curves. We incor-
porated the known biology, that macrophages differentiate from
monocyte progenitors within this analysis by constraining the MST
to begin from the monocyte dominated cluster. The positioning of
cells along each lineage trajectory was then obtained by orthogonal
projection onto the curves to provide lineage specific pseudotime
trajectories. Average pseudotime values quantified the relative dif-
ferentiation of each myeloid cell away from the monocyte state.
Myeloid cells were then categorized into a differentiated or
undifferentiated state based on their average pseudotime value,
using a two-state Gaussian mixture model. The nonlinear division
boundary between M1- and M2-like myeloid cells was detected by
applying a generalized additive model to the UMAP coordinates of
undifferentiated cells. Myeloid polarization was then measured by
the linear pseudotime divergence of cells from the M1/M2 division
boundary. This polarization metric provided a continuous measure
of myeloid differentiation from a monocyte to either an M1- or M2-
like state.

Detecting the transcriptional profiles defining myeloid
polarization
To identify the core transcriptional program defining the M1- to M2-
like myeloid cell transition, we characterized the underlying gene
expression changes as cells are polarized along the M1/M2 pseudo-
time trajectories from the monocyte progenitor state. For each gene,
we fitted a general additive model (GAM) to detect the potentially
nonlinear relationship between polarization pseudotime and gene
expression across myeloid cells (following105). We identified genes
that exhibited significant changes in expression along polarization
pseudotime and explored the top 40 genes that were most sig-
nificantly (greatest F value) linked to increased and decreased
polarization.

Demonstrating myeloid differentiation using knowledge-based
gene signatures
To demonstrate that myeloid differentiation and polarization scores
reflect an M1- to M2- like transition, a knowledge-defined gene

signature was used to test for gene set enrichment (GSE) with inferred
myeloid differentiation. Current knowledge of cancer-associated
myeloid cell markers from recent scRNAseq analyses across human
cancer types were obtained106,107 and enriched with differentiation
markers identified in other recently published studies (Supplementary
Data 30). Gene set enrichment (GSE) of single myeloid cells was mea-
sured using two comparable methods: Gene Set Variation Analysis
(GSVA), a GSEmethod that estimates variation of gene set activity over
a sample population in an unsupervised manner and Pathway Level
Analysis of Gene Expression (PLAGE), a GSE method that estimates
single cell pathway activity using an SVD-based approach99,100. We then
examined the relationship between these single cell gene signature
scores and the data-derived axes of myeloid differentiation and
polarization, using generalized additive models and correlation
assessment. We additionally tested for the increased expression of
established M2-like macrophage marker genes in cells identified from
our data-driven phenotype and pseudotime polarization analyses as
having M2-like differentiation.

Verifying that myeloid polarization predicts resistance
To test for differences inmacrophage differentiation between growing
treatment-resistant and shrinking treatment-sensitive tumors, we fit-
ted a hierarchical linear model describing how the M1-like:M2-like
phenotype score differed in myeloid cells from resistant and sensitive
tumors, accounting for patient specific heterogeneity in myeloid
phenotype and the shared TME of cells within a sample. We similarly
assessed whether myeloid cells of growing ribociclib-resistant tumors
showed greater M2-like differentiation in the discovery and validation
cohort.

We next confirmed that ribociclib-resistant tumors can be iden-
tified early in treatment (Day 0-14) by the increased M2-like differ-
entiation of their myeloid cells. We contrasted the phenotypes of
myeloid cells in resistant and sensitive tumors in the independently
profiled verification cohort. We applied two complementary analyses.
Firstly, we summarized the mean M1-like:M2-like phenotype score of
myeloid cells in each tumor. We then contrasted the mean myeloid
differentiation early in treatment (Day 0-14) between resistant and
sensitive tumors using ANOVA. We confirmed that findings did not
depend on the choice of myeloid differentiation metric (UMAP
dimension, polarization pseudotime, PLAGE or GSVA). Secondly, we
compared the relative abundance of M1-like andM2-like macrophages
in resistant and sensitive tumors early in treatment, using logistic
regression to describe how the proportion of M1-like cells per tumor
biopsy varied by treatment and resistance outcome.

Measuring targeted cancer cell signaling to M1-like and M2-like
macrophages
We identified cancer cell communications that predominantly target
either M1-like or M2-like macrophages. First, we measured cell-cell
interactions between phenotypically diverse cancer and macrophage
subpopulations in each tumor sample, using the ligand-receptor pro-
duct approach22. For each tumor sample, we calculated the average
cell-cell interaction of cancer cells with each macrophage via each
communication pathway. We contrasted the log cancer-macrophage
cell-cell interaction received by M1-like and M2-like macrophages,
using a hierarchical linearmodel to detect differential communication
with myeloid cell types and to account for baseline tumor specific
differences in cancer-macrophage communication. Significant differ-
ences in cancer communication with M1-like and M2-like cells were
identified using likelihood ratio tests contrasting: i) the full model with
communication toM1-like andM2-like cells differing and ii) the nested
null model with no difference in communication. The twenty most
significantly activated communications with M1-like and M2-like mac-
rophage were assessed.
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Contrasting the heterogeneity of cancer to macrophage com-
munications across resistant and sensitive tumors
We combined the list of communication pathways through which
cancer cells: a) communicate more strongly with macrophages in
resistant than sensitive tumors (see Communication pathway analy-
sis) and b) have stronger cell-cell interactions with M2-like versus M1-
like macrophages (as described above). From this list, we identified
the ligands the cancer cells used to modulate macrophage pheno-
type and tumor response. Communication pathways binding these
ligands were defined as M2-like differentiation communications and
selected for supervised analysis. We contrasted the strength of
communication from cancer to myeloid cells via each M2-like dif-
ferentiation communication pathway in resistant and sensitive
tumors samples taken early in each treatment (Day 0 and 14). Heat-
maps were used to visualize the heterogeneity of communication
pathway activity across tumors.

Cancer and non-cancer cell type contributions to myeloid
polarizing communications
We next determined which cell types most strongly contributed to
myeloid differentiation communications. We extracted the strengths
of eachM2-likedifferentiation communication sent fromeach cell type
tomyeloid cells. For each tumor sample, themedian standardizedM2-
like differentiation communication from each cell type was calculated.
We then contrasted the average M2-like differentiation communica-
tion sent by each cell type in resistant and sensitive tumors and under
each treatment.

Identifying differential communications of M1-like and M2-like
myeloid cells with CD8+T cells
We next identified myeloid communications with T cells primarily
produced by either M1-like orM2-like myeloid cells. We first measured
cell-cell interactions between phenotypically diverse macrophage and
T cell subpopulations in each tumor sample, using the ligand-receptor
product approach22. For each tumor sample, we calculated the average
cell-cell interaction of M1-like andM2-like myeloid cells with T cells via
each communication pathway.

We then identified communication pathways by which T cells
received significantly different cell-cell interactions fromM1-like and
M2-like myeloid cells. The log macrophage-T cell interactions from
M1-like andM2-like macrophages were contrasted, using hierarchical
linear models. A patient specific random component accounted for
the heterogeneity in immune communication between TME’s and a
random component associated with T cell phenotype accounted for
the diversity of T cell activation phenotypes within and between
tumors. Significant differences in T cell communication fromM1-like
and M2-like cells were identified using likelihood ratio tests con-
trasting: i) the full model with communication from M1-like and M2-
like cells differing and ii) the nested null model with no difference in
communication.

Contrasting M1-like communication with T cells in resistant and
sensitive tumors
Next, we isolated the M1-like macrophages and examined their com-
munication with T cells in resistant and sensitive tumors. For each
communication pathway, we contrasted M1-like macrophage to T cell
interactions (log transformed) in resistant and sensitive tumor using
hierarchical linear models. Again, a patient specific random compo-
nent accounted for the heterogeneity in immune communication
between TME’s and a random component associated with T cell phe-
notype accounted for the diversity of T cell activation phenotypes
within and between tumors. A likelihood ratio test was used to detect
communication pathways significantly differing between resistant and
sensitive tumors.

Diverging inflammatory communication from myeloid cells to
CD8+T cells in resistant and sensitive tumors
We next determined how the M2-like polarization of the myeloid
population in ribociclib-resistant tumors impacted the communication
of immune cytokine signals to T cells. First immune activating inflam-
matory cytokine communications were identified, using the receptors
gene-ontology database signatures69. For each CD8+T cell we totaled
the signal received from all myeloid subpopulations within that tumor
sample via each inflammatory cytokine communication pathway. To
obtain the overall immune activating communication received by each
CD8+T cell from the myeloid population, we averaged across com-
munications pathway scores after scaling and log transformation.

We then analyzed at the single cell level how each of the immune
activating communications from myeloid to CD8 + T cells diverged
during treatment in resistant and sensitive tumors. Using a hierarchical
regression model, we described pre-treatment differences in CD8 +T
cell activating communication between resistant and sensitive tumors
and temporal change during treatment (as previously described in
ref. 10). Significant divergence in immune activating communication
with T cells of resistant and sensitive tumors was determined using a
two-tailed t-test. The Satterthwaite method was applied to perform
degree of freedom, t-statistic and p-value calculations lmerTest R
package108.

Linking myeloid inflammatory communications to CD8+T cell
activation
We characterized how the differentiation and activation to an effector
CD8+T cell phenotype was related to the strength of immune cytokine
communication they received frommyeloid cells. For each CD8+T cell,
differentiation was measured using a CD8+T cell specific ssGSEA
pathway contrasting gene expression of naive and cancer killing effector
cells (GSE22886NaiveCD8Tcell vsNKcell up). The single cell activation
state was then linked to the immune activating communication received
from across the myeloid population (measured above). Each
CD8+T cells differentiation state was then linked to the inflammatory
cytokine communication it received from across the myeloid popula-
tion. Linear regression was used to measure the increase in T cell acti-
vation with increasing inflammatory communication. The strength of
inflammatory cytokine communication received was discretized into
deciles of signal strength and the distribution of phenotypic state
assessed in cells receiving each level of stimulus.

We then analyzed at the single cell level how the CD8 + T cell
activation diverged during treatment in resistant and sensitive tumors.
Using a hierarchical regression model, we described pre-treatment
differences in CD8 +T cell activation between resistant and sensitive
tumors and temporal change during treatment (detailed in ref. 10).
Significant divergence of CD8+ T cell activation in resistant and sen-
sitive tumors was determined using a two-tailed t-test. The Sat-
terthwaite method was applied to perform degree of freedom,
t-statistic and p-value calculations, using ref. 108.

Contrasting T cell relative abundance during treatment in
resistant and sensitive tumors
Differences in T cell abundancebetween resistant and sensitive tumors
were analyzed at each treatment time point and separately for tumors
receiving each treatment, using logistic regression. We identified sig-
nificant differences in the proportion of T cells between tumor
response groups using a two-tailed Wald-test to generate z statistics
and p values.

Comparingpost treatment immune response across cell types in
resistant and sensitive tumors
We compared the difference in immune response observed across all
cell types between tumors resistant and sensitive to each treatment.
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For each single cell observed at the end of treatment, we measured
immune stimulation using Hallmark Interferon Gamma response
ssGSEA pathway scores.

We analyzed the difference in Interferon Gamma response
between treatment-resistant and sensitive tumors, using a nested
hierarchical regression model to account for the patient specific dif-
ferences in immune response and the between cell type differences in
this phenotype. Cell type specific random effects were nested within
the patient random component, reflecting the occurrence of each cell
type within different patient tumors. Significant divergence in Inter-
feronGamma responsebetween resistant and sensitive tumors treated
with combination ribociclib or letrozole alone were determined using
two-tailed t-tests.

Linking inflammatory communications to cancer interferon
gamma response
We next determined how cancer cell phenotypes responded to
increasing inflammatory cytokine communications in the TME. We
assessed the cancer cells interferon response phenotype, using their
Hallmark Interferon Gamma Response ssGSEA scores. This cancer
phenotype measured intracellular transduction of cytokine signals to
the nucleus and induction of interferon regulatory factors (IRFs),
interferon-stimulated gene activation (e.g., Interferon gamma-induced
proteins) and the production of antigen presenting major histo-
compatibility complex molecules (MHC I) allowing recognition and
killing of cancer cells72,73.

To determine the major communication pathways stimulating a
cancer cell interferon gamma response, we next calculated the
strength of the communication each cancer cell received from across
the TME via each ligand receptor pathway. For each cancer cell, we
coupled the single cell interferon response phenotype to the total
communication stimulus eachcancer received fromacross theTMEvia
each receptor. The cancer cell data was subset by subclonal cancer
genotype (identified in ref. 10) and communication scores were square
root transformed, scaled and centered (mean=0, sd = 1) to improve
normality and comparability respectively.

For each cancer subclone of each tumor sample, we identified
communications strongly associated with activation of an interferon
response, using a lasso penalized likelihood regression model (R pack-
age glmnet). The lasso penalty (α = 1) encourages detection of the
communications most strongly activating interferon response, through
a shrinkage of the coefficients of all but dominant communications
predictors. This variable selection approachminimizes overfitting when
considering the role of many communication pathways and enhances
the interpretability and predictive accuracy of the model.

Cross-validation (internal 10-fold) was performed to determine
the penalty parameter (λ) that minimized the mean cross-validated
error. The contribution of each communication to (coefficients) the
explained variance in cancer cell interferon phenotype was then
assessed. We identified the communication receptors of cancer cells
detected to contribute to the interferon phenotype in more than 10%
of tumor subclones.

The association of a cancer interferon response with TME com-
munication to cancer via the most frequently detected receptor (IL-
15RA) was examined using a generalized additive model with a unique
smoothing term for resistant and sensitive tumors given each treat-
ment. The IL-15 communication received by cancer cells was also dis-
cretized into deciles of signal strength and the distribution of cancer
interferon response phenotypes compared to the signal received.

CD8+T-Cell isolation and activation
Leukocyte Reduction System (LRS) cones were obtained from a heal-
thy blood donor at City ofHope, Duarte, CA under Institutional Review
Board (IRB# 17387) approval. Blood fromLRS coneswas transferred to
K2EDTA blood collection tube (BD Biosciences), and centrifuged for

10min at room temperature and 800 × g. Plasma was removed and
buffy coat was collected and diluted to 5mL in 1x PBS without MgCl2
(Gibco) + 2% hiFBS (heat inactivated Fetal Bovine Serum). Red blood
cells were removed by immunomagnetic depletion using 50 µL of
EasySep RBC Depletion Reagent (Stemcell Technologies) per mL of
sample according to manufacturer instructions and froze as viable
peripheral blood mononuclear cells in 50% RPMI-1640 (Gibco) + 40%
heat inactivated FBS (hiFBS, Sigma-Aldrich) + 10% DMSO (Fisher Sci-
entific) and stored in liquid nitrogen vapor phase. Subsequently,
CD8 + T cells were isolated from buffy coat using EasySep Human
CD8 + T Cell Isolation Kit (Stemcell Technologies) by immunomag-
netic negative selection according to manufacturer instructions.

Isolated CD8+T cells were centrifuged for 5min at room tem-
perature, 300× g. CD8+T cells were then resuspended to 0.5e6 cell/mL
in RPMI-1640 (Gibco) + 10% hiFBS + 1x antibiotic-antimycotic (Gibco)
and stimulated for activation for 4 days supplementedwith 20ng/mL IL-
2 (Miltenyi Biotec) and CD3/CD28 Dynabeads Human T-Activator
(Gibco) in a 6-well tissue culture treated plate (Corning) and main-
tained in 37 °C humidified incubator + 5% CO2. Prior to co-culture with
cancer cells, CD8+T cells were collected andCD3/CD28beads removed
using DynaMag-15 magnet (Gibco). Purified activated CD8+T cells were
centrifuged at 300× g 5min, at room temperature and resuspended to
> 2.0e6 cell/mL in fresh RPMI-1640 complete culture media.

T cell viability assay
To assess T cell proliferation in the absence of cancer cells, activated
CD8 + T cells were cultured in RPMI-1640 + 10% hiFBS + 1x antibiotic-
antimycotic with control (0.1% DMSO), 0.5-5 ng/mL IL-15 (R&D Sys-
tems), 1 µM ribociclib (Selleck Chemicals), or combinations 0.5-5 ng/
mL IL-15 + 1 µM ribociclib in ULA spheroid plates. T cell growth was
monitored using Cytation 5 by brightfield imaging every 12 h. After
163 h, proliferation was assessed by measuring total ATP using the
CellTiterGlo Luminescent Cell Viability Assay (Promega Corporation).
We analyzed how T cell viability was impacted by ribociclib (1 µM) and
IL-15 cytokine (0.5-10 ng/mL) treatments, individually or in combina-
tion. A generalized additive model characterized the effect of each
treatment and combination on the total ATP at 163 h (fold change
relative to hour 0). Significant treatment effects on T cell viability were
determined using two-tailed t-tests.

Breast cancer cell line culture
Ribociclib sensitive Estrogen-receptor- positive (ER + ), HER2- breast
cancer cell lines CAMA-1 and MDA-MB-134, were respectively cultured
in DMEM (Gibco) + 10% hiFBS + 1x antibiotic-antimycotic, or RPMI-
1640 + 10% hiFBS + 1x antibiotic-antimycotic. The CAMA-1 ribociclib
resistant cell line was established by continuous treatment of 1 µM
ribociclib for 1 month followed by 250 nM ribociclib for 4 months as
previously described109. The MDA-MB-134 ribociclib resistant cell line
was established by continuous treatment with increasing concentra-
tion of ribociclib from 100nM up to 500 nM over the course of six
months (Figure S24). CAMA-1 (CAMA-1_Sens_V2) and MDA-MB-134
(MDA-MB-134_Sens_V2) sensitive cell lines were fluorescently
labeled by transduction with Venus containing lentivirus (LeGO-
V2, Addgene #27340, RRID:Addgene_27340), while CAMA-1 ribo-
ciclib resistant (CAMA-1_RiboR_Cer2) and MDA-MB-134 ribociclib
resistant (MDA-MB-134_RiboR_Cer2) were transduced with Cer-
ulean containing virus (LeGO-Cer2, Addgene #27338, RRI-
D:Addgene_27338). CAMA-1 ribociclib resistant cell line stock
culture media was supplemented with continuous treatment of
250 nM ribociclib, while MDA-MB-134 ribociclib resistant cell line
was supplemented with 500 nM ribociclib. Fluorescent cell
labeling allowed cancer abundance to be quantified in mono-
culture or when co-cultured with T cells, which were unlabeled.
Cancer cell lines were confirmed negative for mycoplasma con-
tamination using MycoAlert PLUS Mycoplasma detection kit

Article https://doi.org/10.1038/s41467-025-56279-x

Nature Communications |         (2025) 16:2132 18

www.nature.com/naturecommunications


(Lonza) and cell-lines authenticated by STR profiling. All cell lines
were cultured and maintained in a 37 °C humidified incubator +
5% CO2.

Cancer– T cell spheroid co-culture
Cancer cells of each of four cell lines (ribociclib resistant/sensitive
CAMA-1 and MDA-MB-134 cells) were plated at 5000 cells per well in a
total volume of 100 µL in 96-well Black/Clear Round Bottom Ultra-Low
Attachment (ULA) Surface Spheroid Microplate (Corning) in respec-
tive cell line complete culturemedia. After 24 h of spheroid formation,
spheroids were imaged prior to sequential addition of 50 µL of T-cell
suspension and 50 µL of 4X cytokine treatment to achieve 3 replicates
per treatment and coculture group. In coculture treatment replicates,
we added 50 µL of 2.5e4 CD8 + T cell per mL medium (final of
1,250 CD8 + T cells per well) (cancer + CD8 + T cell co-cultures) to
achieve a (4:1) Cancer: T-Cell Ratio. 50 µL of 4X drug stocks to
achieve the following final 1X cytokine/ribociclib treatment
combinations in respective cell line complete culture media:
control (0.1% DMSO), 0.5, 1, 5 ng/mL IL-15 (R&D Systems), 1 µM
ribociclib (SelleckChem), or combination 0.5, 1, or 5 ng/mL IL-
15 + 1 µM ribociclib. Cancer – T cell co-culture plates were main-
tained in a 37 °C humidified incubator + 5% CO2. After 3 days of
treatment, a 50% media change was performed with fresh 1X drug
stocks using Fluent 780 automated workstation (Tecan).

Interferon-gamma co-culture assay
Sensitive CAMA-1(CAMA-1_Sens_V2) cancer cells were plated at 5,000
cells per well in 96-well ULA plates and allowed 24 h for spheroid
formation incubated in 37 °C incubator + 5% CO2. After 24hrs, 5,000
CD8+ isolated T-cells were added at 50 µL per well to achieve a (1:1)
Cancer: T-Cell ratio, and 50 µL of 4x drug stocks were added to achieve
final concentrations of 0.1% DMSO, 1 µM Ribociclib, 5 ng/mL IL-15, or
combination 1 µM ribociclib + 5 ng/mL IL-15. After 3 days of treatment,
150 µL of cell culture supernatantwas collected andplaced into 96-well
V-bottom plate (Thomas Scientific). 96-well plate was centrifuged for
10min at 1000× g to pellet remaining cells and debris. 100 µL of
supernatant was collected and Interferon-gamma levels were mea-
sured according to manufacturer instructions using the Human
Interferon-gamma ELISA kit (Abcam) at OD450nm and OD620nm.

Cancer – macrophage – T cell spheroid tri-culture
THP-1 monocyte cell lines were plated at 2M cells per 100mm tissue
culture dish and differentiated to M0-like state in RPMI-1640
Media + 10% hiFBS + 1x antibiotic-antimycotic supplemented with
100 ng/mL phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich)
incubated for 72hrs. After differentiation, THP-1 M0-like cells were
washed 2x with fresh RPMI culture media and rested for 24hrs prior
to initial cancer-macrophage coculture with CAMA-1_SensV2 cells.
THP-1 M0 like macrophages and CAMA-1 sensitive cells were col-
lected with 0.25% Trypsin EDTA (Gibco). Cancer cells only or cancer –
macrophage coculture (2:1) 5,000 CAMA-1_Sens_V2 cells and 2,500
THP-1 M0-like macrophages were plated in 96-well ULA plates in
DMEM + 10% hiFBS + 1x antibiotic-antimycotic and cocultured
for 7 days with 50% media change after 4 days. 48hrs prior to
cancer – macrophage – T cell tri-culture, CD8 + T cells were iso-
lated and activated with IL-2/CD3/28 as described above. After
7 days of cancer – macrophage coculture, 2,500 CD8 + T-cells
were added per well to achieve initial plated cell number ratios of
(2:1:1) cancer – macrophage – T cell for tri-cultures in addition to
monocultures of cancer cells, T-cells, and cancer- macrophage
only cultures. At the time of CD8 + T cell addition, spheroid cul-
tures were concurrently treated with control (0.1% DMSO), 0.1,
0.5, or 1.0 ng/mL IL-15 + /− 1 µM ribociclib and cultured for 6 days.
All cell lines were cultured and maintained in a 37°C humidified
incubator + 5% CO2.

Spheroid imaging
Cancer cell abundance was observed throughout treatment by ima-
ging monocultures and coculture spheroids using a Cytation 5 cell
imaging multimode reader (BioTek Instruments) with 4X objective
under dual Bright Field, YFP (ex 500 / em 542 for Venus florescence),
and CFP Fret V2 (ex 433 / em475 for Cerulean) image acquisition using
a 2 × 2 montage image with 5-slice, 50 µm z-stack using Gen5 software
(BioTek Instruments, version 3.10.06). Spheroids were imaged prior to
co-culture or tri-culture addition or ribociclib/IL-15 treatment and then
every 24–72 h post ribociclib/IL-15 treatment for up to 7 days of co-
culture or tri-culture. Raw images were analyzed using Gen5 software
including image stitching, Z-projection using focused projection, and
spheroid size analysis assessing cancer cell viability as measured by
total YFP and CFP signal intensity above minimum background
intensity thresholds within the calculated spheroid area. Minimum
background intensity thresholds for each cell line were confirmed by
identifying peaks in the pixel intensity distribution across images that
correspond to either viable labeled cell fluorescent signal or back-
ground exposure noise using a Gaussian Mixture Model (Figure S25).
Fluorescence intensities were then converted into cancer cell type
abundances over time after constructing an experimental standard
curve to map known cell abundances to fluorescence intensities for
each cell line, using linear regression.

Spheroid co-culture growth response modeling
For each replicate cancerpopulation,wequantified its speedof growth
or shrinkage over a 75-hour period. Specifically, the relative growth
rate (rgr) of each cancer population was determined by the average
hourly change in log cancer abundance between the start (t0) and end
of treatment (t75), calculated as: rgr = logðNðt75ÞÞ�logðNðt0ÞÞ

t75�t0
(described in

ref. 110).
We analyzed how the cancer growth rate (rgr) of each of the

four cell lines was impacted by the individual and combined effects of:
i) co-culturing with T cells +/−macrophage cells, ii) cell cycle inhibitor
treatment with ribociclib and iii) cytokine treatments with IL-15, using
generalized additive models (GAMs) with the following predictor and
error structure:

rgri =β0 + β1,MR+β1,CRC
� �

+ ðs2,M Ið Þ+ s2,C ICð ÞÞ
+ ðs3,M IRð Þ+ s3,C IRCð ÞÞ+ ei

ei � Nð0, σ2Þ

For eachof the four cell lines, thefittedGAMestimated the impact
on cancer growth rate of: 1) ribociclib treatment in mono/cocultures
(β1,M=β1,C), 2) IL-15 concentration inmono/cocultures (s2,M/s2,C), and 3)
ribociclib and IL-15 synergy inmono/cocultures (s3,M/s3,C). For the IL-15
components (terms 2 and 3) we used shrinkage thin plate regression
splines to jointly describe the smooth nonlinear dose dependent
effects of IL-15 and to perform automatic feature selection and model
simplification. For each of the four cell lines, the benefit of IL-15 T cell
activation was examined by of the significance of the effect of IL-15
concentration on rgr in cocultures (s2,C ICð Þ). The impact of ribociclib
treatment on this T cell killing effect was then determined by the sig-
nificance of the coculture ribociclib and IL-15 synergy term (s3,C).
Models were fitted and significance determined using the mgcv r
package (version 1.9-0). The significance of treatment effects, co-
culturing effects and synergies were determined using two-tailed
F-tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
Pre-processed single cell RNA-seq gene expression data and relevant
metadata are available through GEO (the Gene Expression Omnibus)
under accession code GSE211434 at https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE211434. Source data provided with this
manuscript include PBMC data and in vitro T cell coculture cancer
growth data collected under ribociclib and IL-15 treatment. Source
data are provided with this paper.

Code availability
Customcodeused in analyses and to produceFigs. 1–6 are available on
GitHub at https://github.com/U54Bioinformatics/FELINE_project/
FELINE_immune_communication.
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