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Inspired by biological processes, feature learning techniques, such as deep

learning, have achieved great success in various fields. However, since biolo-
gical organs may operate differently from semiconductor devices, deep
models usually require dedicated hardware and are computation-complex.
High energy consumption has made deep model growth unsustainable. We
present an approach that directly implements feature learning using semi-

conductor physics to minimize disparity between model and hardware. Fol-
lowing this approach, a feature learning technique based on memristor drift-
diffusion kinetics is proposed by leveraging the dynamic response of a single
memristor to learn features. The model parameters and computational
operations of the kinetics-based network are reduced by up to 2 and 4 orders
of magnitude, respectively, compared with deep models. We experimentally
implement the proposed network on 180 nm memristor chips for various
dimensional pattern classification tasks. Compared with memristor-based
deep learning hardware, the memristor kinetics-based hardware can further
reduce energy and area consumption significantly. We propose that innova-
tions in hardware physics could create an intriguing solution for intelligent
models by balancing model complexity and performance.

In recent decades, artificial intelligence (Al) has significantly advanced
and has had a profound impact on human life. Feature learning, also
known as representation learning, enables machines to automatically
discover appropriate features from raw data'. Inspired by the dis-
coveries in neuroscience?, deep neural network (DNN) have emerged
as the most effective feature learning method for pattern classification.
However, current feature learning techniques have very high demands
for computing power and data storage, resulting in significant energy
consumption. In some scenarios, such as edge-computing, these
demands can hardly be satisfied.

The implementation of neuroscience-inspired feature learning
techniques using existing computing hardware is often accompanied
by significant hardware-cost and energy consumption, as these neural

systems may operate differently from computing hardware built upon
hardware physics. Other than the above approach, researchers have
found success in incorporating ideas from physics into Al, demon-
strated in works like simulated annealing®, and Hamiltonian neural
networks®. While these techniques are largely “inspired by physics”,
they are not “compute-with-physics” or physics-based, still facing
issues with hardware and energy costs. For example, the simulated
annealing usually involves compute-intensive processes inside a highly
interconnected interaction network and stochastic search algorithms
that necessitate random number generation with an exponentially
decaying probability distribution®. While the Hamiltonian neural net-
work computes frequently the partial differential equations (PDEs) of
the Hamiltonian function with respect to momentum vectors. The
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solving of PDEs often requires the use of expensive numerical solvers®.
Despite the potential of emerging in-memory computing approaches
to enhance computational efficiency significantly, they remain con-
strained by limited memory capacity’ and incompatible algorithms®. A
physics-based feature learning method that is computationally effi-
cient remains elusive.

Memrristors are being explored for their potential to revolutionize
data storage and processing technologies. In the past few years, the
switching endurance, data retention time, energy consumption,
switching time, integration density, and price of memristive non-
volatile memories has been remarkably improved (depending on the
materials used, values up to ~10” cycles, >10 years, ~0.1 pJ, ~10 ns, 256
gigabits per die, and <$0.30 per gigabit have been achieved)’. Resistive
Random Access Memory (RRAM), leveraging its non-volatility, multi-
bit storage, and Complementary Metal-Oxide-Semiconductor Tran-
sistor (CMOS) compatibility, emerges as one of the most promising
contenders for next-generation non-volatile memory (NVM). Recent
advancements have seen major semiconductor manufacturers,
including Taiwan Semiconductor Manufacturing Company (TSMC)
and Semiconductor Manufacturing International Corporation (SMIC),
successfully establish commercial RRAM production lines. TSMC has
achieved mass production of 40 nm node chips and is currently pro-
ducing embedded RRAM with 28 nm and 22 nm nodes'*". Additionally,
TSMC has also implemented 32 Mb RRAM with 12 nm ultra-low power
FinFET technology. Meanwhile, companies like Intel, Fujitsu, Infi-
neon, and Panasonic have actively developed embedded RRAM pro-
ducts, showcasing significant progress in technology and increasing
commercial viability”. Fujitsu officially announced the launch of a
12 Mb RRAM chip, targeting its application in hearing aids and wear-
able devices like watches™. Infineon’s AURIX™ TC4x series introducing
RRAM as the NVM for automotive applications in 2024'°.These devel-
opments underscore the rapid progress in RRAM technology and its
increasing commercial viability across various applications.

Memristor is widely recognized as a promising “compute-with-
physics” device that directly implements matrix-vector multiplication
(MVM) using physical laws, namely Ohm’s law for multiplication and
Kirchhoff's law for summation’. As MVM is the most frequently used
operation in deep learning, this implementation has resulted in greatly
improved energy efficiency” . However, since memristors are tai-
lored to fit these algorithms, problems like large number of parameters
and computation operations still exist. Moreover, current Al models
mostly rely on the thermodynamic equilibrium states of devices, like
the binary states of transistors and the multiple conductance states of
memristors, to represent information. The device kinetic processes
between thermodynamic steady states can yield additional time
dimensional information under the same energy input, leading to
enhanced information gain per energy consumed. The current use of
memristors as variable resistors only scratches the surface of their full
potential as their abundant kinetics like coupled ionic and electronic
migration®**°, have yet to be fully utilized. The majority of research and
development in memristor materials and devices has been centered
around modifying device features to align with current computing
models or algorithms. However, this approach often oversimplifies or
disregards the potential of emerging device features. Meanwhile, there
has been minimal endeavor in algorithm design to incorporate these
recent discoveries in materials and devices.

Here, we introduce drift-diffusion kinetics (DDK) model, which
leverages drift-diffusion kinetics in resistive switching (RS) to enable
feature learning. Firstly, a drift-diffusion-based physical model is pre-
sented to describe RS dynamics. The DDK model is proposed as a
general form of this model. Secondly, the model is experimentally
demonstrated on a single memristive device (TiN/TaO,/HfO,/TiN),
with externally applied electrical pulses serving to tune the model
parameters. Thirdly, construction of feature maps is demonstrated by
applying electrical pulses to the device and recording its conductance

responses. Finally, the DDK neural network is experimentally imple-
mented on 180 nm memristor chips using hardware-software co-
optimization techniques to handle device intrinsic variation, especially
in the kinetics. Compared with state-of-the-art feature extraction/
learning algorithms, the DDK neural network exhibits exceptional
performance on various tasks, with the number of parameters and
computation operations (evaluated by multiply-accumulate opera-
tions (MACs)) greatly reduced. For example, in recognition task of
10 speakers in Speakers in the Wild (SITW*') dataset, the DDK network
shows significantly better average accuracy (93.5%) than CNN (sample-
level CNN*, 88.1%). Moreover, the DDK network exhibits a reduction in
the number of parameters and computational operations by approxi-
mately 296 and 6972 times, respectively, in comparison to the CNN.
The reduction of parameters and operations across all layers may be
attributed to the low number of adjustable parameters and the low
complexity of the DDK layer, as well as the simplified classification
layer resulting from the uncomplicated DDK layer. Even compared
with memristor DNN hardware, the memristor DDK hardware can
further reduce energy and area consumption by at least about 83 and
1128 times, respectively. The latency and energy consumption of the
DDK operation are on the order of nano-second and pico-joule,
respectively. Our approach significantly decreases the computational
complexity of Al models by leveraging device physics, resulting in
faster and more energy-efficient Al hardware.

Results

Memristor DDK model

We propose a RS model with simplified drift-diffusion kinetics (Fig. 1a)
according to R. Stanley Williams et al*>. The memristive device is a
sandwiched structure with an insulation layer of length L between two
electrodes. The RS layer is divided into two regions, one has high
concentration of dopants with resistance Roy and length w while the
other has almost zero dopants with resistance Rogr. By assuming ohmic
electronic conduction, linear ionic drift, linear dopant distribution in
the dopant region and uniform electric field**, we obtain

v(t)= (RON @ +Rorr (1 - @) > it @

dw(®) _ () .. D

T wo

dt L @

where v(¢) is externally applied voltage, i(¢) is current flow through the
device, u is mobility of dopants and D is diffusion coefficient of
dopants. Equation (1) describes current-voltage (/-V) relation in a
voltage-controlled memristor. The first and second term on the right
side of Eq. (2) describes the drift and diffusion velocity of dopants,
respectively. A typical bipolar RS behavior of the model is shown in
Fig. 1b, 1c. Other typical curves, e.g., abrupt switching and negative
differential resistance (NDR) are shown in Fig. S1. Equation (2) can be
generalized into the following forms by assuming input or indepen-
dent variable x is always non-negative:

dy «a

iy’ Bx (SET) 3)
dy «a
acy Bx (RESET) “4)

where y is output or state variable, « and S are positive constants
controlling increase and decrease speed of y, respectively. Equations
(3) and (4) describe the dynamics behavior of y at input x. In mem-
ristors, a=D, f=pu/L, y=w(t) and x = v(t). y is output or the state vari-
able of the memrristor device that represents the length of the doped
region within the resistive switching layer after the diffusion and
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Fig. 1| RS model and its principle for temporal feature learning. a A simplified
drift-diffusion model for RS. Internal state of a memristor is described by length of a
doped region w. The length of an un-doped region is L — w. Time evolution of the
internal state is related to the drift and diffusion velocity of the doped region.

b Variation of w/L with a sinusoidal input voltage vosin(wot). The axes are dimen-
sionless, with vp=1V, wp =10, g =3.2 x10™ m?V's?, Rors/Ron =20 and L =60 nm.
c A typical simulated /-V curve of the model shows electric hysteresis. Response of
the model to unambiguous (d) and ambiguous (e) sounds, respectively. The sounds

- ikl

Output/response

are firstly binarized into vectors. The vectors are input to the algorithm and its
output (response) are recorded. Then, the time evolution of response with input
number is obtained. For the unambiguous sound, the strongest response (indi-
cated by a grey arrow) occurs only at the start when the sound is repeated one-by-
one. However, for the ambiguous sound, the response shows three possible
starting points. The predicted results are highly in coincidence with psychological
experiments.

migration of dopants. From Eq. (1), it is evident that since Roy is sig-
nificantly smaller than Rogr (Ron < < Rors), the resistance of the device
is primarily influenced by the second term (Rysr(1—%2)). Specifi-
cally, as the variable w(t) increases, the resistance of the device
decreases, clearly illustrating a negative correlation between w and the
device resistance. Therefore, the y in Eqs. (3) and (4) is positively
correlated with the conductivity of the memristor device. a and 8 are
positive constants controlling increase and decrease speed of y,
respectively. Equations (3) and (4) describe the dynamics behavior of y
at input x.

Here we show that Eq. (4) can be used to extract feature from
temporal pattern. Two temporal pattens, namely unambiguous (Fig. 1d)
and ambiguous (Fig. 1e), are presented as examples. Here “1” stands for
the present of a sound, while “0” present a silence. For unambiguous
pattern, the responses at the start input are more pronounced (Fig. 1d).
On the contrary, the responses of ambiguous pattern at the first, fourth
and sixth inputs are almost equal (Fig. 1e). Thus, by employing the RS
model at RESET (Eq. (4)), critical features in temporal patterns can be
obtained for discrimination. As shown in Fig. S2, « is close related to an
asymptote position of y, while 8 mainly controls the decrease speed.
This indicates that the diffusion coefficient of dopants (D =a) mainly
determines the final conductance, while the mobility of dopants

(u=pL) influences primarily the rate of conductivity change. With the
increasing of S, the output y decreases more rapidly to asymptote so
that it keeps almost constant even under subsequent input signals. This
observation suggests that as the mobility of dopants increases, the rate
of conductance declines more precipitously. Therefore, combination
of diffusion coefficient of dopants and mobility of dopants can effec-
tively control not only the feature learning process, but also the length
of information where feature learning is performed. The different
tunability of a and S are discussed in the following. From the physical
meanings in Eq. (2), a (=D) and S (=i/L) should be insensitive to external
electric field. However, the normalized x(t), other than the real voltage
configuration it is mapped to, is used as input in the curve-fitting, thus,
the impact of pulse configuration or initial state is reflected in  value.
This method can overcome difficulties in representing pulse config-
uration and initial state that are physical multiparameter as a single
mathematical value.

Memristive devices and characterization

The choice of appropriate @ and S values directly influences the
learned features. Hence, it is imperative to consider the adjustability of
a or B in order to achieve a comprehensive hardware realization of
the DDK.
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Fig. 2 | Characterization of TiN/TaO,/HfO,/TiN memristive crossbar array cells.
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pulse width (c) and initial resistance (d) are studied in cycle-to-cycle test (100
cycles), respectively. Statistics of a (orange line) and S (blue line) are presented in
error band diagrams (95% confident interval). Parameter « is almost insensitive to
input pulse and initial resistance, while parameter £ is positively proportional to the
above factors. Moreover, when the initial resistance becomes larger, § saturates.

The adjustability of a or B is experimentally studied in a TiN/TaO,/
HfO,/TiN memristor-based crossbar array. The fabrication and char-
acterization of the array is detailed in Methods. The device structure is
confirmed by high resolution transmission electron microscope
(HRTEM, Fig. S3). A typical -V curve of the device in RS are illustrated in
Fig. 2a. The RS mechanism is studied by comprehensive physical
modelling detailed in Methods. The physical parameters used for
device simulation is listed in Table S1 and the results are shown in
Fig. S4, Figures S5 and S6. The formation and rupture of the conductive
filament driven by the drift-diffusion kinetics of oxygen vacancy
probably induces the RS. The pulsed /-V-t curves are shown in Fig. S7,
showing linear and symmetric conductance change with an operation
region from 6.1 pS to 202.1 pS.

From Eq. (2), the switching dynamics is influenced by input vol-
tage, charge carrier mobility or diffusion coefficient and thickness of
the switching layer. The only possible influence factor that can be
controlled in-situ is input voltage. Moreover, initial resistance state is
another factor since it determines the ON/OFF ratio. Therefore, the
tunability of a and f is studied under various pulse configurations with
different initial resistances. The input x(¢) in Eq. (4) is assumed to be a
vector with a constant value 1 and a length of 100. Then x(¢) is mapped
to a certain pulse configuration with 1 being represented by pulse
amplitude or width. Afterwards, voltage pulses in this configuration
are applied on the device and the conductance change with pulse
number is measured. At last, the conductance change region is nor-
malized. Figure 2b-d shows error band diagrams (95% confident
interval) of fitted a« and S for the RESET process in cycle-to-cycle tests
(100 cycles) with various pulse amplitudes, pulse widths and initial
resistances, respectively. It can be concluded that a value is almost

independent on the above influence factors, while g value is positively
proportional to the above factors. S becomes almost constant at initial
resistance of >15 KQ, since the first applied voltage pulse can cause a
nearly complete RESET in this situation with a low ON/OFF ratio.
Device-to-device tests (100 devices, Fig. S8) draw identical conclu-
sions. The error bars in Fig. S8 denote a 95% confidence interval. In
RESET, B describes the decease speed of device conductance. With
large values of amplitude, width or initial resistance, RESET process
becomes more rapidly.

Feature learning with DDK model and memristor device

Construction of the DDK feature maps is a necessary step for sub-
routine tasks, e.g., pattern classification. The process of feature map
construction is demonstrated using 1-D raw waveform as an exam-
ple. Two methods are proposed. One is that the feature is extracted
from the whole waveform. Since Eq. (4) is calculated sequentially,
this method is time-consuming and may not fully exploit the parallel
nature of memristor array. The other is that the high-dimensional
waveform is sub-sampled into several low-dimensional utterances,
as shown in Fig. 3a. Then utterance features can be extracted in
parallel. This method is faster than the first one but uses more
devices. A 1-D pooling layer can be used in the above two methods
for dimension reduction. For algorithm-level implementation, the
constraints on the variables in Eq. (4) are removed. The input vectors
are firstly normalized to a range of O to 1. The corresponding output
is the extracted feature. For the hardware implementation with
memristors, the input vectors are linearly mapped to the amplitude
or width of voltage pulses, suggesting that the samples and voltage
pulses have equal number. Then the voltage pulse train is applied on
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Fig. 3 | Construction of memristor-based feature maps. a A flow chart for feature
map construction from waveforms. Firstly, the waveform is input into the drift-
diffusion kinetics (DDK) equation (algorithm) or transformed to a series of voltage
pulses (hardware). Then, the equation solution or memristor conductance
response constitutes the feature map. b Hardware-level feature extraction from
whale sounds in WMMS. The sound waveforms of blue, dwarf, fin and humpback
whales (upper panel) are sub-sampled into 8 utterances and average pooled

10° 10® 107 10° 10° 10* 10° 102 107
Latency (s)

(1x 60). The corresponding feature maps are shown in the lower panel. ¢ The
device conductance change of the hardware feature map (blue whale). The fitted -V
curves of alpha and beta parameters are shown by orange solid lines, while the
measured curves are depicted as blue scattered dots. The fitting accuracy is
represented as sum of the squared residuals (R). d Comparison of our method in
terms of latency and energy consumption with MFCC-based hardware.

the memristor, and the resultant conductance after each pulse
constitutes the feature map. Feature map construction from high-
dimensional raw data follows the same procedure by decomposing
the tensors into several 1-D vectors.

Sound waveforms from 4 whales, namely blue, dwarf, fin and
humpback whale, in Watkins Marine Mammal Sound (WMMS)
database®, are presented in upper panels of Fig. 3b to experimentally
demonstrating the feature map construction. Each whale soundwave
of 48000 samples is firstly divided into 8 utterances. Secondly, the
6000 samples in each utterance are reduced in dimension by an
average 1-D pooling layer with a size of 1 x 60. Thirdly, the 100 samples

of each pooled utterance are mapped to voltage pulse amplitudes
ranging from 2 to 3V, pulse width and initial resistance are fixed at
100ns and 5 KQ, respectively. The conductance after each pulse
applied on the device is measured. Finally, an 8 x 100 size feature map
is constructed, as shown in lower panel of Fig. 3b. The conductance
evolution of 8 utterances from blue whale sound is illustrated as an
example in Fig. 3c. The fitted /-V curves of different pairs of alpha and
beta parameters are shown by orange solid lines, while the measured /-
V curves are depicted as blue scattered dots. The fitting accuracy is
represented as sum of the squared residuals (represented as R) shown
in individual plots.
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programming

conventional machine learning techniques where features are extracted manually,
features in the proposed algorithm are learned automatically from datasets via
back-propagation-based optimizer. ¢ Hybrid training method. The DDK layer is
trained ex-situ while the classification layer is trained in-situ.

Here the Mel-frequency cepstral coefficient (MFCC) method is
presented for comparison with the DDK method. The MFCC-based
method is a dominant feature extraction method that is widely used
in audio signal processing”. It typically requires heavy preproces-
sing to guarantee a high-quality spectrum for subsequent coefficient
calculation. In comparison with MFCC-based approaches (Fig. S9),
hardware implementation of the proposed algorithm with memris-
tors is very simple and shows great advantages in latency and energy
consumption. As shown in Fig. 3d and Table S2, the latency and
energy consumption of a single DDK operation of the TiN/TaO,/
HfO,/TiN cell are estimated to be 10 ns and 0.8 pJ, using an average
voltage of 2V and an average resistance of 50 KQ (detailed in Sup-
plementary Notes), which are reduced by 917 (graphics processing
unit, GPU*)-1.6x10° (application specific integrated circuit,
ASIC*®) times and 6800 (ASIC*)-~1.725x10" (central processing

unit, CPU*°) times in comparison with the MFCC operation,
respectively.

Neural network deployment and optimization

The DDK system architecture is shown in Fig. S10. To make the net-
work training process be aware of hardware non-idealities, the
imprecision-based neural network training framework incorporates
limited device conductance range, output noise and device failure in
network training (detailed in Supplementary Notes)*. Figure 4a shows
a typical DDK network structure for pattern recognition. Figure 4b
shows network training procedure, in which the parameters a and S are
learned via back-propagation method (detailed in Methods). After
modeling, the network is deployed on the hardware (Fig. S11) via a
compiler (detailed in Supplementary Notes). For task scheduling, a
hybrid training technique that involves off-chip pre-training and on-

Nature Communications | (2025)16:913


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56286-y

a I Simulation
I Experiment
1.0+
8 0.925
3
]
©
&os
8
%02
2]
©
o
0.0
Software training (32-bit Imprecise inference after Imprecision- based Imprecision- based Experimental hybrid
weight, 32-bit input) software training hybrid training training
1.00 DDK DDK- LeNet
30.95 DK MFCC DDK-
go. SL- DDK "oy TF LSTM DDK ppk- C3D
§ 0.90 exp
<085
0.80
100M
£ 10M
& 1M
£
S 100k
E 10k
1k
- 100G
8 10G 1
<§i 1G4
< 100M 4
c 10M+
2 1M
S 100k
o 10k4
O 1k
SITW AGNews MNIST UCF ModelNet
Audio Text Image Video 3D object
c 1m : d 100M ‘
Memristor neural network Memristor neural network
100y 10M ¢
3 t
5 10p Zisx 1M E I
a &
% 1y DDK £ 100k} DNN
g 100n S 10k} T
3 < 1128x
g 1on who|
&
1n 100 DDK
10ae SITW UCF SITW UCF

Fig. 5 | Hardware-software co-optimization and comparison of DDK with deep
learning and MFCC-based methods. a Effectiveness of imprecision-based training
and hybrid training in accuracy improvement. b Comparison of the DDK network
(software: DDK; hardware experiment: DDK-exp) with other feature learning (DNN)

and feature extraction (MFCC) techniques. Error bar is obtained by running simu-
lations for 5 times. TF: Transformer. ¢ Energy consumption comparison between
the DDK network and memristor-based DNN. d Area comparison between the DDK
network and memristor-based DNN.

chip fine-tuning is proposed (Fig. 4c) considering the large variation in
DDK. In this technique, the DDK layer is trained ex-situ. The reason is
that in hardware implementation, « and S are implicit and obtained by
curve fitting of the conductance evolution with time, but not by a
direct conductance measurement as in the classification layer, thus
evaluation and tuning of & and S in-situ is time-consuming. The sig-
nificant variations of parameters a and S in in-situ training may intro-
duce instability, impeding the network ability to converge rapidly.
The off-chip pre-training follows the procedure of back-
propagation method in Fig. 4b. It includes the hardware constraints
of aand Bin training, according to the experimental results in Fig. 2b-d.
The on-chip fine-tuning phase is as follows: (1) initialization: with the
parameters a and S of the DDK layer already pre-trained, appropriate
pulse configurations for performing feature extraction in the

memristor DDK layer are selected according to the experimental
results. (2) Mapping pre-trained weights: the pre-trained weights of the
classification layer are written into the RRAM devices by adjusting their
conductance values using write-and-verify technique. The write-and-
verify technique, weight updating and MVM output accuracy are
shown in Fig. S12. This process ensures that the initial state of the
memristor or resistance random access memory (RRAM) devices
corresponds to the optimized weights obtained during the off-chip
pre-training phase. (3) Forward pass: given a set of input data, the input
features are firstly processed by the DDK layer. Feature maps are
obtained by applying electrical pulses with such configuration to
memristive devices in the DDK layer and record their conductance
evolution with the pulses. These feature maps are then fed into the
memristor classification layer. The computation results from the
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RRAM arrays in the classification layer are used to generate predic-
tions. (4) Loss calculation: the predictions generated by the memristor
classification layer are compared against the actual targets to compute
the loss function. (5) Backward pass and gradient calculation: the loss
function is then differentiated with respect to the conductance values
of the RRAM devices in the classification layer. This involves calculat-
ing the gradients of the loss function with respect to the RRAM output,
which in turn requires calculating the gradients through the entire
network (but focusing on the classification layer for updates). Since the
DDK layer parameters are fixed, the gradients are only propagated
through the classification layer. (6) In-situ weight update: using the
calculated gradients, the conductance values of the RRAM devices are
updated in-situ. The goal is to reduce the loss by adjusting the weights
(represented by the RRAM conductance) in the direction that
improves the model predictions. (7) Iteration and convergence: the
forward pass, loss calculation, backward pass, and in-situ weight
update steps are repeated iteratively until the model converges. (8)
Evaluation: once the fine-tuning process is complete, the model per-
formance is evaluated on a validation or test dataset to assess its
generalization ability and robustness.

The advantage of our approach is that the feature extraction is
performed by the differential equation that is defined by only two
parameters, namely alpha and beta. While in the competing approa-
ches, such as attention mechanism, convolution and recurrent con-
nections, the feature extraction is defined by a set of weight matrices.
Therefore, not only the feature extraction is simplified, but also the
subsequent classification layer is minimized due to the small number
of features to be processed. Moreover, our approach also accelerates
the feature extraction and classification based on computing-in-
memory. For other RRAM-based approaches that implements exist-
ing Al models, they only accelerate the MVM, but cannot simplify the
feature extraction and classification layers.

Pattern classification of the DDK neural networks

The effectiveness of the proposed imprecision-based training and
hybrid training is studied in a 10-class speaker recognition task in the
Speakers in the Wild (SITW) dataset™, as shown in Fig. 5a. The details of
the DDK network are shown in Supplementary Notes, Fig. S13a, and
Table S3. When the entire network is exclusively trained based on
software without non-idealities (referred to as software training), the
accuracy of software testing can achieve 94.8%. Nevertheless, when
simulating the hardware inference process by incorporating experi-
mental noise into the aforementioned network (imprecise inference
after software training), the accuracy is merely 15.5%. The reason is that
software training cannot account for hardware imperfections, leading
to a diminished level of network resilience. If the DDK and classifica-
tion layer are all trained on software with noises (imprecision-based
training), the test accuracy can reach 91.2%. The performance can be
enhanced further by adopting the fine-tuning training method on the
classification layer (imprecision-based hybrid training). This approach
involves preserving or fixing the pre-trained parameters of the DDK
layers, which were originally obtained through software training with
noise, while solely retraining the classification layer on software with
noise. Using this strategy, we ultimately achieve an enhanced robust-
ness and attain an accuracy of 92.8%, reflecting a substantial
improvement in performance. The DDK network was experimentally
trained on memristive chips using the hybrid training method. The
feature maps of the ten speakers in dataset are experimentally
obtained with memristors, as shown in Fig. S14. The DDK layer is firstly
trained on software and then deployed on hardware, while the classi-
fication layer is trained in-situ on hardware (experimental hybrid
training). Training procedure and parameters are shown in Fig. S15 and
Table S4, respectively. This experimental accuracy of 92.5% demon-
strates the effectiveness of this strategy in enhancing classification
accuracy on practical memristive hardware. The impact of cycle-to-

cycle variability on neural network accuracy is simulated in the speaker
recognition task (Fig. S16). The variation is modeled as Gaussian
noise*>*®, The noise is added to the target conductance in the RRAM
synaptic devices in the classification layer and the a and 8 of the RRAM
conductance in the DDK layer. The noise value equals to the standard
deviation of the distribution. In the simulation process, the study range
for a and S noise is set between 0 and 0.5, while the range for synaptic
noise is set between 0 and 2.5 (unit: uS). The results further confirm the
effectiveness of the proposed hybrid training strategy.

The performances of the DDK algorithm and hardware on1-D, 2-D
and 3-D raw data are studied and compared with mainstream deep
models, as shown in Fig. 5b. The details of the neural networks are
presented in Supplementary Notes, Fig. S13, Table S3 and S5. The
statistical findings were collected from a series of five network training
sessions. Various pattern classification tasks, such as speaker recog-
nition (SITW dataset), text classification (AG News dataset*’), image
recognition of handwritten digits (MNIST dataset*®), action recogni-
tion from video stream (UCF dataset’) and 3D object recognition
based on voxel (ModelNet dataset™) are performed on representative
datasets. Among the five types of pattern classification tasks, the DDK
network has a similar level of performance to the other networks being
compared. The number of network parameters and operations are
reduced by up to 296 times (speaker recognition) and 58,441 times
(action recognition), respectively. To better disclose the importance of
feature extraction in the neural networks and demonstrate the sig-
nificance of the proposed DDK layer in simplifying the networks, the
number of MACs and their proportions in the feature extraction,
classification, and the total number of MACs in the DDK network and
other comparative DNNs are listed in Tables S6 and S7. The statistical
results show that in the LeNet-5 for MNIST dataset classification, the
MAGCs in the feature extraction stage account for 70.5% of the total
MAGs. For other models such as SL-CNN for SITW dataset, VoxNet for
ModelNet dataset, LSTM and Transformer for AGNews dataset, and
C3D for UCF dataset, the proportion of MACs in the feature extraction
stage is over 98% of the total MACs in the network. This finding
highlights the significant impact that the feature extraction part has on
the overall computational complexity of neural network models. It
shows that the feature extraction part is the most computation-
intensive one in the entire Al models. On the contrary, the proportion
of MACs in the feature extraction stage in the proposed DDK networks
only ranges from 1.2% to 10.39%. And the total MACs of the DDK net-
work is also significantly lower than its counterparts.

Therefore, compared with mainstream DNNs, the proposed DDK
layer not only simplifies the feature extraction, but also makes the
entire Al model more lightweight. This improvement may not only
reduce energy consumption, but also decrease latency, thereby
enhancing the overall performance of the model when deployed on
hardware. This is especially important for resource-constrained
application scenarios, such as edge computing.

CNN use kernels to address phrase dependencies. The quantity of
kernels needed to encompass the interconnections among every word
combination in a phrase would be vast and impractical due to the
exponential growth of combinations while augmenting the maximum
length of input sentences. Furthermore, the dependency length is
determined by kernel size, which is a manually selected hyperpara-
meter. In recurrent deep learning methods such as recurrent neural
network (RNN)* or long short-term memory (LSTM)%, long-term
dependencies are ignored due to exploding or vanishing gradient
problems. Moreover, the dependency length is dictated by network
structure that is hand-crafted hyperparameter, resulting in a larger
number of parameters that need to be trained. Transformers eliminate
recursion by processing entire sentences in parallel. Additionally, they
mitigate performance degradation due to long dependencies by uti-
lizing multi-head attention mechanisms and positional embeddings to
learn relationships between words. This parallel processing capability
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requires more parameters, especially when applying transformers to
extended sequences. Transformers can only capture dependencies
within predetermined input size.

The proposed DDK network explicitly models dependencies like
transformers, eliminating the possibility of performance degradation
in proportion to sequence length. Table S8 shows the comparison of
network layers based on computational efficiency metrics. The DDK
layer shows the reported low per-layer complexity and maximum path
length, indicating that it can be computed more efficiently without
losing long-term information. Although the DDK layer shares some
similarity with RNNs in the processing of sequential operations, the
problem of parallelization is less pronounced since the DDK network
does not use deep structures to represent dependencies. Thus, the
parallelization of the DDK layer can be performed on one of the two
dimensions defining the input. Besides, a great advantage of the DDK
model is that the dependency length is automatically determined from
data, rather than relying on pre-determined hyperparameters as in
other deep learning techniques. However, the DDK network shows a
comparatively lower accuracy (2.11% decrease) in image classification
than the CNN. The likely reason is that the handwritten digit images do
not possess temporal relevance information. It is suggested that the
DDK may have better performance in datasets where temporal relation
among samples is existed and important.

In contrast to the outcomes obtained from software simulations,
the experimental implementations generally exhibit a minor but
acceptable decrease in accuracy (<4.1%), probably owing to the
nonidealities in device and array. Quantization performance of the
DDK network is evaluated on SITW dataset by using post-training
quantization (PTQ) and quantization-aware training (QAT), as shown
in Fig. S17, proving that quantization is feasible. In terms of quanti-
zation precision, there are slight accuracy loss (<4.8%, with activa-
tion function quantization) for the PTQ if the precision is >6 bit.
While for the QAT, even the accuracy loss of 4-bit quantization (3.6%,
with and without activation function quantization) is still acceptable.
Therefore, a 4-bit or higher weight precision is acceptable for the
DDK network in this example, showing that the DDK hardware does
not necessarily need a high-precision analog-to-digital convertor
(ADC) or digital-to-analog convertor (DAC). The effect of endurance
on neural network performance is studied in Supplementary Notes,
Figs. SI18 and S19. Probably because of the “second order
memristor”*?, the write pulse with long width in the DDK layer leads
to non-gradual resistive switching, making the device reaches a
stable saturation state from the initial. As a result, the decrease in
classification accuracy is suppressed. However, the long pulse width
may result in a long write latency. This demonstrates that there is a
trade-off between latency and accuracy, considering the endurance
of memristor devices.

In the hardware benchmark, we evaluate the hardware perfor-
mance using 8-bit ADC and DAC, which may be a reasonable selection
for most situations. The energy-efficiency of the DDK hardware is
evaluated in the speaker recognition task considering four layout
strategies (Fig. S20). Based on the hardware parameters in Table S9,
the latency, area and energy consumption of the circuits can be cal-
culated (Table S10). The energy-efficiency is evaluated to reach 2.77
TOP s W' at integer 8-bit (INT8) at 180 nm technology node (hardware
benchmark is detailed in Supplementary Notes and the result is listed
in Table S11, the number of operations of the networks used for eva-
luation are shown in Tables S12-S15), outperforming a Tesla VI00 GPU
by approximately 27.6 times®*. The time and energy of a single feature
extraction of the DDK hardware is estimated to be 35.4 ns and 236.68
pJ, respectively. Compared to the DNN implemented with memristors,
the DDK networks demonstrate notable benefits in terms of energy
(Fig. 5¢) and area (Fig. 5d). One can expect a decrease in energy and
area consumption by approximately 2 and 3 orders of magnitude,
respectively.

Discussion

In this work, we presented the drift-diffusion kinetics (DDK) network,
the previously unexplored feature learning model based entirely on
physical kinetics of memristors. It has reported low number of train-
able parameters, layer complexity, and maximum path length of the
DDK layer in comparison with existing deep models. Furthermore, it
can be implemented fully using memristor crossbar arrays. The DDK
feature learning can be realized directly using the resistive switching
kinetics of the array cell by simply applying programming electrical
signals and reading the corresponding device states after each signal.
The classification layer is implemented utilizing the MVM computing
capability of the arrays. The tunability limitations of the parameters
present in a single memristor can be overcome by decomposing the
DDK operation into several MVM ones. Our approach represents a
significant step towards Al model design based on the properties of
emerging materials and devices. We believe that it has the potential to
spur the development of powerful Al techniques grounded in real-
world physics, ultimately leading to the creation of fast and energy-
efficient computing models and systems.

Methods

Device fabrication and characterization

The crossbar arrays are in one-transistor-one-resistor (ITIR) configura-
tion. A 1TIR cell consists of a TiN/TaO,/HfO,/TiN memristive device
stacked on via 5 of metal layer 5 and a NMOS transistor that acts as a
selector to suppress sneak current and controls compliance current. The
arrays are fabricated in a hybrid fashion where metal layers 1 to 4 are
fabricated in a commercial standard 180 nm process and metal layers 5
to 6 are fabricated in a [aboratory 180 nm process. The thickness of the
TiN electrodes, TaO, layer and HfO, layer are ~30 nm, 45 nm and 9 nm,
respectively (Fig. S3). The TaO, layer is heavily-doped with high oxygen
vacancy concentration and act as an oxygen vacancy reservoir. After
fabrication, the arrays are sliced and packaged.

To conduct electrical characterization, the chip is subjected to
testing using a self-made hardware test system. The TiN electrode at the
HfO,/TiN interface is always grounded in electrical test. The material
characterizations of the device, including structure and chemical com-
ponent are performed by HRTEM. The flake samples are prepared by
focused ion beam (FIB) technique. The chemical component is char-
acterized by energy dispersive X-ray spectroscopy (EDS).

Device modeling
Figure S4a shows the axisymmetric 2D model geometry of the TiN/TaO,/
HfO,/TiN device. The RRAM device stack consists of a heavily-doped
TaOy layer (45 nm) on top of a HfO, (9 nm) layer sandwiched by top and
bottom TiN electrodes (TE and BE, 30 nm). In order to focus on the
switching behavior of the memristor, the simulation starts immediately
after the electroforming process, where a continuous conductive fila-
ment (CF) has been formed in the center of HfO, with a radius of 9 nm
and a height of 9 nm. The CF corresponds to a region of high oxygen
vacancy (V) concentration and thus exhibits locally high conductivity.
The local current and V;; concentration distribution during the set
and reset in this system are calculated by solving three coupled dif-
ferential equations through a numerical solver (COMSOL Multi-
physics). The differential equations comprise heat transfer equation
(Eq. 5), current continuity equation (Eq. 6) and drift-diffusion equation
(Eq. 7) for V; transport.

2
pCp%—: +v.(_kvr)—jE ®)
V.J=V.(0VV)=0 (6)
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where

J: current density,

o: electrical conductivity,

V: electrical potential,

T: temperature,

k: thermal conductivity,

Cp: heat capacity,

p: density of mass,

t. time,

ny. : concentration of V;, [mol/cm’],

D: diffusion coefficient of V;, [cm?s™],

S: Soret diffusion coefficient [1/K],

z;: (dimensionless) is the charge number of the ionic species,

R: the molar gas constant,

F: Faraday’s constant.

When CF region is in low resistance state, a large amount of Joule
heat will be generated, so the influence of temperature on the elec-
trical conductivity (0,,) and thermal conductivity (k,,) of TaO4 and
HfOy region should be considered. With this, o and k is modeled
according to Egs. (8) and (9):

Oy =0¢po exp(*Eac/kB T) (8)
kep=kepo(L+A(T = Ty)) 9

kg: the Boltzmann constant,

T,: initial temperature,

A: thermal coefficient.

N,: the Avogadro’s constant.

In the Eq. (7), D and S are the function of 7, shown in Egs. (10-11):

D=0.5a%f exp(—E,/(kgT)) (10)

S=—E,/(kyT% 1

The boundary conditions applied in this model are shown in
Fig. S4a. The boundary conditions for the current continuity equation
are V=0V and V= Vpat the BE and TE, respectively. Besides, the rest of
the outer boundary is electrically insulated. The initial potential at
to=0sis V(ty) =0V inall regimes. The thermal boundary conditions at
the outermost boundaries of the device are defined by Dirichlet
boundary conditions in terms of a constant value for 7o =293.15K. The
initial value of the temperature is Ty in all regimes. For the V, drift-
diffusion, no flux was assumed at the TE/TaO, and HfO,/BE interfaces.
A uniform concentration of 1 x 10* cm™ was assumed within the CF and
TaOy layer as the initial state (i.e., the forming state). The material
parameters used in simulation are summarized in Table SI.

Figure S4b shows the measured and calculated /-V characteristics
during the set and reset processes. The stimulated /-V curves are
consistent with measured results. The reset transition starts at nega-
tive voltage of about -1.25V. The resistance gradually increases and
finally reaches a high resistance after reset. Similarly, the set transition
occurs at a positive voltage of near 1.4 V and recovers the original low
resistance state.

Figures S5 and Sé illustrate the distribution of n,. and the
temperature in the TaO, and HfO, regions during the set and reset
processes, respectively. As observed from Fig. S5, the highest tem-
perature is recorded in the conductive filament (CF) area, with peak
values of approximately 420 °C (Fig. S5b) and 430 °C (Fig. S5f) at the
edge of the reset and set points, respectively. As evident from Fig. S6,

during the reset process, a marked decrease of n,.. is observed near
the bottom electrode within the CF region at the edge of reset point
(Fig. Séb, corresponding to Point B in Fig. S4b), indicating the onset
of filament rupture, leading the device into a low-conductance state.
Conversely, during the set process, a sudden increase of . near the
bottom electrode within the CF region at the edge of set points
(Fig. Séf, corresponding to Point F in Fig. S4b) indicates the growth
of the CF, leading to the device transitioning to a high-
conductance state.

The connection between COMSOL simulations and Egs. (3) and
(4) lies in their description of different levels of physical phenomena,
but both involve the behavior of internal ions or defects (such as
oxygen vacancies, V) during the resistive switching process of the
device. Equations (3) and (4) describe a simplified model that captures
the fundamental dynamics of conductive filament (CF) growth and
rupture during resistive switching based on the highly idealized
assumptions of ohmic electron conduction, linear ion drift, linear
dopant distribution in the dopant region and uniform electric field.
These equations focus on the change in CF length w(¢) over time, where
y can be considered an alternative variable for w(), and x represents
the externally applied voltage or current. Equation (3) corresponds to
the SET process, while Eq. (4) corresponds to the RESET process. The
term Bx describes the drift motion of ions or defects, and the term%
reflects the diffusion effect. On the other hand, COMSOL simulations
employ a more detailed physical model. Equation (7) describes the
changes in the concentration of oxygen vacancies (n.), considering
diffusion, drift, and the inﬂuence of temperature gradients. Specifi-
cally, the term DVn,,. and z; zf FnV VV stand for Fick diffusion flux and
drift flux, respectlvely The term DSnV VT is the Soret diffusion flux.
Soret diffusion is the movement of molecules along a temperature
gradient. Equations (3) and (4), as well as the COMSOL simulation
model, both describe the drift and diffusion movements of ions or
vacancies within the memristor. However, Egs. (3) and (4) represent a
simplified model based on highly idealized assumptions, whereas the
COMSOL simulation model considers a wider range of practical fac-
tors, thus providing a more comprehensive and realistic representa-
tion of the device behavior.

Curve fitting

The experimental /-V curves are fitted by Eq. (4) (assuming the alpha
and beta are all nonnegative). The fitting is a nonlinear least squares
problem. The minimization of the difference between experimental
data and simulations is performed by the trust-region-reflective
algorithm®. Before fitting, the experimental data is normalized to a
range from O to 1. The upper and lower boundaries for alpha and beta
are set to 0 and 1, respectively. The initial guess values of alpha and
beta are random values in the range from O to 1.

Backpropagation-based feature learning
DDK networks rely on the backpropagation algorithm to execute the
process of parameter updates and optimization during training. The
training process is presented in the following. Firstly, the preprocessed
input data is propagated forward through each layer of the network to
obtain the predicted output. Then, the loss between the prediction and
the actual target is calculated. Next, the gradients of the loss function
with respect to « and f in the DDK layer, as well as each weight in the
classification layer, are computed using the chain rule. Finally, the
computed gradients are used to update a and S in the DDK layer and
the weights in the classification layer, aiming to minimize the loss
function. The specific methods for preprocessing the data, forward
propagation, backward propagation, and parameter updating are as
follows.

1. Input data pre-processing

Each utterance or vector from the raw dataset is normalized
to [0, 1].
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2. Forward pass

1) DDK layer
Z'(0)=[1,1,1---1] (12)
fort=1to T, do
1 - |
ZO=2-D* ;¢ i t 5 — Bx(t — 13)
a'=z' (14)

end for.

Tis the total length of utterance or vector. () is the output of the
kth layer (the first layer is the DDK layer) at input index t. a' is the
neuron output of the DDK layer.

2) Hidden layers:

for k=2to L-1do

ZF =W<ak-! 15)
=0(z") (16)
end for.
3) Output layer:
7' =Wal! 17)
al =SoftMax(z") 18)

L is the total number of layers in the network. ¢ is an activation
function. W¥ is the weight matrix of the kth layer.

3. Backward pass

1) Output layer

a. Calculate the gradient of W in output layer:

oC(a, W) -1 19
—aw =@ -ya 19
b. Update W:
_9C@a,BW) 20
AW= —p. W (20)
y is truth label, n is learning rate, C(a,5,W) is loss function.
2) Hidden layer
a. Calculate the error 6 and gradient of W in the kth layer:
& =Wk1gk1 o /(2 (21
BC(a ﬁ W) k k 1 22
b. Update W:
__, @B W -
3) DDK layer

a. Calculate the gradient of a and :

aZ\() _ 1

da _zl(t D’ t=1
] : . (24)
5;;0 = zl(tl,l) af]z(t(t)l azél) y 2 <t< T
0= X1, =1
25
- xe-ve LR, 2scsr )
0C(@ A W) _ g1 y-22'0) 20
oa —~ oa
aC(a, BW) _ 1~ ~0ZX(0)
—ag 9% 27
B ; B 27)
b. Update a and B
,BW
Aa=—n- % (28)
E)C a, W
AB= — ¢ a//; ) (29)

This process ensures that the DDK network, like other neural
networks, can effectively learn and adjust its parameters through the
backpropagation algorithm. In our approach, the data transformation
is performed by the differential equation that is defined by two para-
meters a and B. While in the competing approaches, such as attention
mechanism, convolution and recurrent connections, this transforma-
tion is defined by a set of weight matrices. Consequently, our approach
can achieve minimal computational complexity, as evidenced by a
limited number of trainable parameters and computational
operations.

In hardware implementation, the backpropagation is performed
on CPU using experimentally measured device conductance and cur-
rent. The gradient of the loss function with respect to the conductance
of the RRAM devices is calculated as follows:

8 =611 o g/(zh) (30)

& Lis the error in the (k+ I)th layer, which is transmitted back to
the (k + I)th layer by the gradient of the loss function to softmax. GK**
is value of the conductance of the synaptic weight mapping in the
(k+I)th layer. 0’(z¥) is the derivative of the activation function with
respect to output current in the kth layer. The calculation of gradient
of the loss function with respect to the conductance of the RRAM
devices as follow:

oC@, BW) _ ok 41 a1
3G =8“a (31
a*~lis the output in the (k-I)th layer. Specifically, it is the value of
the output current of the (k-I)th layer after it has been processed by
the activation function. The activation function is imple-
mented on CPU.

Data availability
All other data are available from the corresponding authors on
request. Source data are provided with this paper.
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Code availability

The codes are available at github®®.
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