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Disorder-induced enhancement of lithium-
ion transport in solid-state electrolytes

Zhimin Chen1, Tao Du 1,2 , N. M. Anoop Krishnan 3, Yuanzheng Yue 1 &
Morten M. Smedskjaer 1

Enhancing the ion conduction in solid electrolytes is critically important for
the development of high-performance all-solid-state lithium-ion batteries
(LIBs). Lithium thiophosphates are among the most promising solid electro-
lytes, as they exhibit superionic conductivity at room temperature. However,
the lack of comprehensive understanding of their ion conductionmechanism,
especially the effect of structural disorder on ionic conductivity, is a long-
standing problem that limits further innovations in all-solid-state LIBs. Here,
we address this challenge by establishing and employing a deep learning
potential to simulate Li3PS4 electrolyte systemswith varying levels of disorder.
The results show that disorder-driven diffusion dynamics significantly
enhances the room-temperature conductivity. We further establish bridges
between dynamical characteristics, local structural features, and atomic rear-
rangements by applying a machine learning-based structure fingerprint
termed “softness”. Thismetric allows the classification of the disorder-induced
“soft” hopping lithium ions. Our findings offer insights into ion conduction
mechanisms in complex disordered structures, thereby contributing to the
development of superior solid-state electrolytes for LIBs.

Lithium-ion batteries (LIBs) have revolutionized portable electronics
and play an increasingly important role in electric vehicles and grid
energy storage due to their high energy density and long cycle life1–3.
However, as demands for higher energy density, enhanced safety, and
faster charging continue to grow, traditional LIBs are rapidly
approaching their performance limits4–6, underscoring the urgent
need to explore new frontiers in battery technology. One of the most
promising avenues is thedevelopmentof solid-state batteries, inwhich
the liquidelectrolyte is replacedwith a solid electrolyte, enabling safer,
more efficient, and extended lifespan in energy storage solutions.
Unlike their liquid counterparts, solid electrolytes are non-flammable
and intrinsically safer7,mitigating the risk of thermal runaway events8,9,
leakage10, and chemical instability11. Glassy solid electrolytes are
interesting candidates for solid-state batteries, considering their var-
ious advantages over the crystalline counterparts such as isotropic ion
conduction12, lack of grain boundaries13, and ease of industrial

processing14. Among these solid-state electrolytes, lithium thiopho-
sphate based glasses and glass-ceramics are especially promising due
to their high ionic conductivity15–17, minimal ion transfer resistance at
the electrode interface, and cost-effective processing18.

The mechanism of ion conduction within solid-state electrolytes
is fundamentally different from that of liquid electrolytes. In liquid
electrolytes, ions move through the liquid medium and electrons are
separated19, while in solid-state electrolytes, ions diffuse along favor-
ablemigrationpathways in crystals7 or navigate adisordered structural
landscape20. Understanding the intricacies of ion conduction in solid-
state electrolytes is critical for optimizing battery performance. The
mechanisms of ion conduction in crystalline solid electrolytes include
vacancy-assisted migration, interstitial diffusion, and even tunneling7.
However, the mechanisms for the ion conduction in disordered or
glassy solid electrolytes have yet to be established7,19,21, primarily
because of the inherently irregular nature of the energy landscape in
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thesematerials20. Furthermore, the lack of a well-defined crystal lattice
makes it challenging to predict and control ion pathways accurately.
Additionally, the presence of defects and disorder-induced structural
heterogeneity further complicate theunderstandingof ion conduction
in these materials.

Beyond glassy solid electrolytes with disordered structures, glass-
ceramics are an important class of inorganic materials composed of
crystals dispersed in a glassmatrix22. This dual nature can combine the
advantages of glass with the unique properties of the crystalline phase,
as glass-ceramic electrolytes often outperform both pure glass and
fully crystalline electrolytes in terms of ionic conduction16,23–27. How-
ever, their complicated structures make revealing their ion transport
mechanisms more challenging. Additionally, analogous to grain
boundaries in polycrystallinematerials, interfaces are present between
the crystalline and glassy phases, which may be termed complexions,
as they are thermodynamically stable and physically distinct from the
neighboring phases28–30. These interfaces in solid electrolytes have
been found to play a crucial role in inhibiting lithiumdendrite growth30

and enhancing fracture resistance31. However, the definition of these
interfaces is in some cases ambiguous32 or defined to serve specific
properties31, and the understanding of ion dynamics at the interfaces
requires further investigations.

The use of large-scale molecular dynamics (MD) simulations
enables capturing the long-term (up to hundreds of nanoseconds)
dynamics of hopping ions. However, high accuracy and efficiency
potentials are required for simulating processes like the glass transi-
tion and phosphorus-sulfur (P-S) bond breaking in the important
family of lithium phosphorus sulfide (LiPS) systems. It is worth noting
that the recent classical potential proposed by Ariga et al.33 has certain
limitations, particularly with respect to accounting for bond breaking
and reactions (e.g., the interconversion between PS3�4 , P2S

4�
6 , and

P2S
4�
7 within the Li2S-P2S5 glasses). Similarly, the classical potential

proposed by Kim et al.32 not only prohibits bond breaking but is also
limited to γ-Li3PS4. To address this, we here train a machine learning-
based interatomic potential (MLIP)34 based on ab initio molecular
dynamics (AIMD) training data. As shown herein, this new potential
allows for the simulation of both crystalline and glassy forms of LiPS
with an accuracy comparable with AIMD simulations but at a much
lower computational cost.

With the objective to unravel the structural origins of disordered-
induced acceleration of lithium-ion migration, we use the MLIP to
construct glassy Li3PS4 electrolytes, as well as ordered β-Li3PS4 (Pnma)
and partially crystalline Li3PS4 glass-ceramics (i.e., three systems with
varying degree of disorder), and quantify structural descriptors for
order and disorder. Further, we compare the homogeneous dynamics
(mean-squared displacement, van Hove correlation functions) and
heterogeneous dynamics (non-Gaussian statistics) across the systems.
We then focus on the partially crystalline Li3PS4 electrolyte, quantify-
ing the dynamic distinctions between its internal ordered and dis-
ordered phases, including disordered interfaces. Finally, we employ
the classification-based structure fingerprint termed softness devel-
oped by Cubuk et al. (see Methods section)35–37 to identify disorder-
induced soft hopping ions. Taken as a whole, the present investigation
of hopping ions’ conduction mechanisms in solid-state electrolytes
reveals the origin of disorder-driven fast transport of lithium ions.
Notably, the combined approach involving molecular dynamics and
machine learning is broadly applicable to studying other types of solid-
state ion transport systems.

Results
Machine learning interatomic potential
To strike a balancebetween accuracy and computational efficiency, we
develop a MLIP for the LiPS system. The MLIP is trained using trajec-
tories obtained from density functional theory (DFT) level AIMD
simulations as the dataset (see Methods section for details). The

accuracy of the MLIP in reproducing structural information obtained
from AIMD is shown in Fig. 1a. The DeePMD based potential demon-
strates an almost DFT-level accuracy in reproducing short-range
structural features, closely matching the first and second coordina-
tion shell in the pair distribution function g(r). Moreover, compared to
MD simulations using a classical potential33, which also cannot capture
bond breaking and reaction events, the present MLIP-based simula-
tions consistently exhibit a better agreement with the AIMD results.

We also compare the lattice parameters, activation energy, and
ionic conductivity obtained fromMLIP simulations with experimental
values and various DFT calculation values. The detailed comparison
can be found in Supplementary Table S1. For β-Li3PS4, the activation
energy of impedance spectroscopy is relatively low, typically ranging
between 0.30 and 0.50 eV38,39. Nuclear magnetic resonance studies
have determined the macroscopic diffusion activation energy of β-
Li3PS4 to be 0.40 eV40. Similar values have also been obtained in DFT
and MD simulations as shown in the table. The ionic conductivity and
activation energy of β-Li3PS4, glassy Li3PS4, and glass-ceramic Li3PS4
electrolytes obtained from our MLIP simulations are consistent with
DFT calculated values and comparable to the experimental values.
Regarding ionic conductivity, a previous study has shown that dis-
crepancies in conductivity between simulations and experiments are
due to grain boundaries41. Furthermore, although DFT calculations
with different basis yield varying lattice parameters, these differences
have little impact on the calculated diffusion coefficients42. Addition-
ally, we provide a comparative analysis with experimental scattering
data from Ref. 43. Supplementary Figure S1 shows the comparison
between MD simulation and neutron and X-ray scattering data
regarding the structure factor S(Q) for glassy Li3PS4. The Rχ factors in
Supplementary Fig. S1, as introduced by Wright44, are calculated,
confirming the agreement between the simulated and experimental
scattering results, demonstrating a good agreement for the
present MLIP.

Structure descriptors for order and disorder
Figure 1b presents the contrasting spatial distributions of Li+ and PS3�4
units within both crystalline β-Li3PS4 (top) and glassy Li3PS4 (bottom).
In the β-Li3PS4 crystal, the PS3�4 groups are arranged in an orderly
zigzag pattern. Adjacent PS3�4 groups construct tetrahedral lithium
sites (termed Li1) and octahedral lithium sites (termed Li2)45, as shown
in the bottom panel of Supplementary Figs. S2a, b, which also include
interstitial tetrahedral sites (termed Li3). These sites are mainly dis-
tributed in the ac-direction plane. There are two types of interstitials,
termed i2 and i3 (distorted octahedral site)46. Lithium diffusion in β-
Li3PS4 obtained from experiments and simulations is two-dimensional,
i.e., in theacplane, specifically the Li2-Li1-Li2path. Studies also suggest
that, due to the series of Li3 sites betweendifferent planes, lithium ions
can deviate from the path in the ac plane, that is, along the b direction
via the Li2-Li3-Li2 path46. Additionally, interstitial diffusion also occurs
in the ac and b direction, such as Li-i2-Li1 diffusion path through
interstitials between sites46. In contrast, the PS3�4 groups in glassy
Li3PS4 electrolytes, which feature isotropic ionic conduction19, exhibit
a disordered arrangement (as illustrated in the upper panel of Sup-
plementary Fig. S2c), making it difficult to define regular coordination
sites and symmetrical migration paths7. Unlike in crystalline phase, the
potential energy distribution of lithium-ions in glassy Li3PS4 is irre-
gular, with ions exploring larger spaces by overcoming higher energy
barriers20. The Gaussian density distribution projections of P and S
atoms in the 2D plane (Supplementary Fig. S3) clearly illustrate the
ordered arrangement of PS3�4 units in the crystal phase and their dis-
order in the glass phase.

Figure 1c shows snapshots of the glass-ceramic Li3PS4 (see Meth-
ods section for details on the construction of the glass-ceramic model
using MD simulations), and a visual representation of the amorphiza-
tion F(Z) distribution along the y-axis of simulation cell. F(Z) is
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calculated from the Gaussian density of the atomic arrangement
through the Fourier transform method (Eq. 6), as explained in the
Methods section and Ref. 30. The glass phase has a F(Z) value of
approximately 1, with a transition of the degree of disorder occurring
at the interface between the glass and crystal phases within the F(Z)
profile, that is, the transition zone where the curve exhibits a double-
minima. Distinguished from the crystalline and glass phases, the clear
definition of the interfacial region is derived from the numerical
derivative F(Z)′ of the calculated F(Z), as shown in Supplemen-
tary Fig. S4a, with the width of the interfaces quantified accordingly.
This width is self-limiting, indicating that it does not depend on the

crystalline and glass phase content in the model, as verified in Sup-
plementary Fig. S4b. The thermodynamically self-limited width of
interfaces has also been observed in LATP electrolytes
(Li1+xAlxTi2−x(PO4)3, a natrium superionic conductor-type solid
electrolytes)30. The corresponding profiles of element concentration
and density are depicted in Fig. 1d for the glass-ceramic Li3PS4 elec-
trolyte. We compute averages along the y-axis using specific bin values
derived from simulated boxes. The resulting profiles reveal the
homogeneity of the glassy phase, whereas elements in the crystalline
phase display a periodic distribution. Notably, the gray rectangle and
dashed line highlight the internal interface, where the ordered and
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Fig. 1 | Structural fingerprints in the transition from ordered to disordered
electrolytes. a Pair distribution function g(r) of β-Li3PS4 electrolytes simulated by
molecular dynamics simulations using machine learning interatomic potential
(MLIP), DFT-based ab initio molecular dynamics (AIMD) simulations, and classical
molecular dynamics (CMD) simulations33. b Atomic snapshots of β-Li3PS4 (top) and
glassy Li3PS4 (bottom) electrolyte configurations. c Atomic snapshot of the glass-
ceramic Li3PS4, depicting the amorphization distribution (Eq. 6) of the constructed
glass-ceramic along the y-axis at the top. d Element concentration and density

profiles for the glass-ceramic Li3PS4 from panel c. The gray rectangle and dashed
line highlight the internal interface between the ordered and disordered phases
and the exemplified crystalline plane. e Radial distribution function (RDF) of Li-S
pairs and integrated RDFs for glassy-, β-, and glass-ceramic Li3PS4. The RDFs are
shown as solid lines, while the integrated RDFs are represented by dashed lines.
f Angular distribution function of S-P-S. g Fractions of thiophosphate anions in
glassy-, β-, and glass-ceramic Li3PS4 system. Source data are provided as a Source
Data file.
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disordered phases coexist, and an exemplified crystalline plane,
respectively.

The glassy, crystalline, and glass-ceramic Li3PS4 are three solid-
state electrolytes with distinctly different structures, i.e., varying
degree of disorder. Their short-range order (SRO) and medium-range
order (MRO) structures are characterized by the radial distribution
function (RDF) g(r) and neutron structure factor SN(Q), respectively.
The RDF is defined as the probability density of finding another par-
ticle at a distance r, which can capture the local coordination of par-
ticles, structural periodicity, etc. RDFs of all the atom pairs are shown
in Supplementary Fig. S5, showcasing a comparable distribution of P-S
distances in the first peaks of both the disordered and ordered Li3PS4.
The first peak is located at approximately 2.07 Å, corresponding to the
length of P-S bonds47,48. We also discern a discernible periodicity in the
distribution of Li-Li distances within the β-Li3PS4 sample. The RDFs of
Li-S pairs presented in Fig. 1e provide the local coordination environ-
ment within the Li3PS4 systems, as quantified by the integrated RDFs.
Despite the structural transition from order to disorder, the distance
distributions of Li and S remain largely similar, with a coordination
number of approximately 4 for Li. In β-Li3PS4, Li is situated within both
tetrahedral (LiS4) and octahedral lithium sites (LiS6) among the S
atoms. Conversely, in the disordered structure, the Li atoms in the
four-coordinated configuration occupy a larger free volume (see
Supplementary Fig. S6). The atomic volume of lithium is here char-
acterized by the Voronoi tessellation method, which considers the
region of real space closer to that of central particle49–51.

The angular distribution function of S-P-S is shown in Fig. 1f,
revealing the tetrahedral PS3�4 motifs formed between sulfur and
phosphorous atoms. In glassy and glass-ceramic Li3PS4 electrolytes,
the emergence of the P-P peak around 2.3 Å (Supplementary Fig. S5) is
attributed to the formation of thermodynamically more stable P2S

4�
6

motifs during the melt-quenching process of the disordered
structure52,53.Wequantify the fractionof these units in various systems,
and as depicted in Fig. 1g, both P2S

4�
6 and P2S

4�
7 motifs are detected in

glassy and glass-ceramic Li3PS4. For Li2S-P2S5 glass electrolytes with
different compositions, we also analyze how the number of different
structural motifs varies with composition and pressure, as shown in
Supplementary Fig. S7. This confirms that our MLIP is able to capture
the reactions between PS3�4 units.

Since the scattering vector Q is the inverse distance in real space,
the low Q-values region of the S(Q) encompasses structural informa-
tion fromSRO toMRO.Generally, different peakpositions in the lowQ-
values region of S(Q) correspond to ordering at different length scales.
The first peak represents the arrangement of motifs in the medium
range, the second peak reflects the size of local network-forming
motifs, and the third peak provides information about nearest-
neighbor interactions54. The first peak in the low Q-values region of
S(Q) is also known as the first sharp diffraction peak (FSDP), whose
position is correlated with the size of the motif cluster with MRO
through Ehrenfest’s formula55, and intensity reflects the degree of
structural order54. As shown in Supplementary Fig. S8, a pronounced
FSDP (higher intensity) of neutron SN(Q) is observed in β-Li3PS4, indi-
cating a higher degree of structural order. Additionally, β-Li3PS4
exhibits FSDP at lower Q-values position compared to that in glassy
Li3PS4, signifying that its structural order extends over a longer length
scale as expected.

Dynamics of hopping ions
The impact of disorder on lithium-ion mobility and transport proper-
ties is investigated by analyzing the dynamic diffusion behavior of
hopping ions within the Li3PS4 systems. We first evaluate the time-
averaged mean-squared displacement (MSD, �r2ðtÞ� �

) of lithium ions
(Fig. 2a). The MSD quantifies the average distance that the ions travel
over time. The β-Li3PS4 electrolytes demonstrate the highest MSD at
900K (Fig. 2a) and 1000K (Supplementary Fig. S9a–c) for the same

time lag. Conversely, the glass-ceramic Li3PS4, comprising both glassy
and crystalline phases, exhibits a marginally reduced MSD compared
to the glassy Li3PS4. All Li3PS4 electrolytes feature diffusion dynamics
at 1000K, eventually reaching Fick’s limit (t1), as indicated by the
exponent of MSD in Supplementary Fig. S9d, e (β- Li3PS4 reaches t1 at
900K as shown in Supplementary Fig. S9d).

As the temperature decreases, the cumulative displacement dif-
ference of the hopping lithium ions between β-Li3PS4 and both the
glassy Li3PS4 and glass-ceramic Li3PS4 diminishes gradually. Specifi-
cally, the Li+ MSD for β-Li3PS4 decreases with decreasing temperature,
ultimately becoming smaller than that of both glassy andglass-ceramic
Li3PS4 at 700K (Supplementary Figs. S9a–c). Interestingly, the dis-
ordered structure exhibits the smaller decrease in MSD with decreas-
ing temperature compared to the more ordered structure. This is due
to the higher activation energy of diffusion in the crystal compared to
that in glass and glass-ceramics (as further discussed in the section
below). This means that the migration rate of lithium ions decreases
more rapidly as the temperature is lowered in the crystal. Owing to the
disordered structure, lithium-ion migration in glass and glass-ceramic
does not have preferred pathways, resulting in isotropic transport. The
diverse energy landscape20 provides more potential ion migration
paths, allowing for a higher number of mobile ions even as the tem-
perature decreases. In contrast, lithium migration in crystals follows
preferred pathways46. As the temperature decreases, the ionicmobility
weakens, and lattice vibrations diminish, causing the migration chan-
nels to becomemore fixed, which significantly reduces the number of
mobile ions.

Atomsmay exhibit a displacement distribution that deviates from
a Gaussian distribution, a phenomenon commonly referred to as
dynamic heterogeneity56. This illustrates the situation where atoms
within one domain exhibit notably faster movement compared to
those in neighboring domains, typically separated by a few nan-
ometers. The non-Gaussian parameter (NGP, α2(t)), or the fourth
cumulant of displacement, has proven to be a measure of diffusion
coefficient fluctuations and dynamic heterogeneity57. It characterizes
the degree of deviation from the Gaussian behavior in particle diffu-
sion. Specifically, the NGP calculated by Eq. 14 evolves over time, with
the time point at which the NGP peak appears corresponding to when
the system exhibits the maximum deviation from Gaussian behavior.
The intensity of the NGP peak is a measure of the extent of this
deviation, i.e., a higher peak intensity indicates a higher level of
dynamicheterogeneity. For instance, someatomsmove veryquickly (a
behavior known as “hopping”),while othersmove relatively slowly. It is
important to note that the room ionic conductivity is associated with
the static or structural heterogeneity, which is a frozen-in dynamic
heterogeneity from high temperature. The position of the NGP peak
(i.e., the time or displacement scale atwhich the peakoccurs) is related
to the timescale of non-Gaussian behavior in the system. For time-
dependent NGP, the peak position is commonly used to characterize
the timescales of different dynamic processes in the system, such as
the glass transition, the relaxation of microstructures, and the fluc-
tuations in the diffusion coefficient57–59. In this case, the displacement
distribution of the system exhibits a great deviation from a Gaussian
distribution.

For a more comprehensive understanding of the temporal
dynamical events involving lithium-ions, we therefore employ the
NGP descriptor to compare the dynamic heterogeneity within the
different Li3PS4 systems. As shown in Fig. 2b, the motion of lithium
ions exhibits non-Gaussian properties, indicating that it is not
entirely random. Red squares denote the NGP peak times, symbo-
lized as τngp, signifying the occurrence of non-Gaussian dynamics. An
increase in the degree of disorder leads to a delay in the emergence
of the NGP peaks and an increase in their peak heights. As illustrated
in Supplementary Fig. S10, both the NGP peak height and time
increase as the temperature decreases. We focus on the short-term
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(10 ps) variations in lithium-ion displacement by enhancing the
visualization of significant motions, as shown in Fig. 2c, where larger
atoms are used to emphasize displacement magnitudes exceeding
4 Å. In the disordered glassy phase, there is an excess of lithium ions
rapidly deviating from their initial vibrational positions, covering
longer displacements compared to those in the crystalline phase.

To further explore the correlation between particle mobility for
short-to-long termbehavior, Fig. 2d, e showcase the self-part vanHove
correlation function (Gs) of Li-Li for the different Li3PS4 system. Gs(r,t)
characterizes the Li-Li pair distance r at time t, and the quantity r2Gs(r,t)
describes the probability distribution of particle displacements39. As
seen from Fig. 2d, β-Li3PS4 has higher probability distributions for
long-distance displacements (>10Å) with increasing time. This can be
attributed to the extended displacements of hopping ions along spe-
cific transport pathways within the crystalline structure46. In contrast,
glassy Li3PS4 performs less favorably due to the convoluted migration
paths of ions within its disordered structure. When examining the
probability distribution over a fixed time interval between 1 and 10ps
(Fig. 2e), the glass-ceramic Li3PS4 displays a single, wide peak dis-
tribution, centered at approximately 1 Å. This distribution is pre-
dominantly influencedby the equilibriumvibrations andoccupationof
nearest-neighbor sites39. Notably, within a time interval of only 10 ps,β-
Li3PS4 undergoes a transition from a single peak to a double peak,
indicating that lithium ions depart from their initial equilibrium posi-
tions to initiate migration. A subtle shift of the r2Gs(r,t) distribution is
also observed in the glassy Li3PS4.

Ionic conductivity
Macroscopic ionic conduction is the result of the collective ion
migration dynamics within a system19, Such dynamics depends on the
structure of that system. In this context, here we illustrate the impact
of the transition from ordered to disordered structure on the mobility
of lithium ions and, consequently, on the derived ionic conductivity.
We begin with the diffusion coefficient D, which can be calculated as
the slope of the MSD-time curve. In Fig. 3a, the temperature depen-
dence of the diffusion coefficient is illustrated, following anArrhenius-
type behavior at high temperature, with the degree of disorder influ-
encing the temperature dependence. This is seen from the lower dif-
fusion activation energy (Ea, as determined from the slope of the plot)
in glassy andglass-ceramic Li3PS4 electrolytes as compared to that inβ-
Li3PS4. Below the glass transition temperature (Tg), glassy Li3PS4 gra-
dually deviates from the Arrhenius behavior. This sub-Tg non-
Arrhenius behavior originates from the frozen structure of the glassy
electrolytes and has been widely confirmed42,60,61.

It is important to note that as the temperature decreases, the
movement of lithium ions gradually shifts away from the diffusive
region, exhibiting sub-diffusion, i.e., deviation from Brownianmotion,
as shown inSupplementary Fig. S11a. Therefore, due to the fact that the
movement of particles under sub-diffusion is hindered by certain
mechanisms (such as energy barriers, viscosity, etc.), theMSD ( �r2ðtÞ� �

)
increases sub-linearly with time t (i.e., r2ðtÞ� � / tα , where α < 1). As a
result, the estimation of the diffusion coefficient is inaccurate. The
extrapolated room temperature conductivity from high temperature
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Fig. 2 | Disorder-driven fast lithium diffusion. a Time-averaged mean-squared
displacement (MSD, �r2ðtÞ� �

), and b non-Gaussian parameter (NGP, α2(t)) of lithium
ions forβ-Li3PS4, glassy Li3PS4, and glass-ceramic Li3PS4 systems, as functions of the
time lag, τ. The red squares represent the NGP peak times, τngp. c Short-term time-
averaged displacement of lithium ions for 10 ps. The displacement magnitudes

exceeding 4Å are highlighted with larger markers for better representation. d Self-
part van Hove correlation function for β-Li3PS4, glassy Li3PS4, and glass-ceramic
Li3PS4 systems at 900K. e Self-part van Hove correlation function for β-Li3PS4,
glassy Li3PS4, and glass-ceramic Li3PS4 systems forfixed timebetween 1 and 10ps at
900K. Source data are provided as a Source Data file.
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data is generally higher compared to simulations done at room tem-
perature, as shown in Supplementary Fig. S11b.

As illustrated in Fig. 3b, the glassy Li3PS4 electrolytes exhibit
notably high room-temperature ionic conductivity, i.e., higher than
that of β-Li3PS4 electrolytes. Interestingly, glass-ceramic Li3PS4 elec-
trolytes, which is characterized partially ordered structures, demon-
strate Ea and ionic conductivities comparable to, or even slightly
superior to, those of purely glassy Li3PS4. The enhancement of ionic
conductivity was also found in previous experimental work and cal-
culations for both Li3PS4 system16,62,63 and the Li2S-P2S5 and Li7P3S11
systems15,17,23,26,64. This enhancing effect consistently occurs in glass-
ceramic Li3PS4 samples (see Supplementary Fig. S12). Specifically, the
room-temperature ionic conductivities of glass-ceramic Li3PS4 elec-
trolytes, varying in crystal contents, exceed that of glassy Li3PS4 elec-
trolyte. Here, the crystallinity in SupplementaryFig. S12 is derived from
the volume fraction of crystal in glass-ceramics. Although glass com-
position and relaxation effects are present in glass-ceramics, the
influence of these effects is reduced due to the presence of crystalline
phases, which help stabilize the material. Furthermore, it is interesting
to note that the ionic conductivity of glass-ceramics Li3PS4 does not lie
between those of glassy and crystalline β-Li3PS4 electrolytes. This
arises from the interplay of glass-phase-induced and interfacial-phase-
induced (disordered structures) mechanisms in glass-ceramics, as
discussed in detail below. Figure 3b compares the room temperature
ionic conductivity of the present Li3PS4 systems, which is calculated by
means of the Nernst-Einstein equation (as described in the Methods
section), with that of other types of ordered and disordered electro-
lytes. The simulated ionic conductivities of Li3PS4with varying degrees
of disorder align closely with previously reported experimental
values38,65,66.

Disorder-induced ion transport enhancement in glass-ceramic
structures
We now focus on ion hopping dynamics in the glass-ceramic Li3PS4
electrolyte, which consists of both the glassy and crystalline phases, as
well as the complex interface region. Figure 1 illustrates the interface
involving a disordered transition region of F(Z) and density variation
divisions. These three phases exhibit varying degree of disorder,which
can be quantified using the amorphization function F(Z), and in simple
terms, the degree of disorder follows the sequence: glass > interface >
crystalline. We first compare the MSD results ranging from 300K to
900K (in 200K intervals) of the three phases in the glass-ceramic
Li3PS4. As shown in Supplementary Fig. S13 and Fig. 4a, we find that

both the glass phase and the interface outperform the crystalline
phase significantly. The temperature sensitivity of the MSD in the
crystal phase reveals that as temperature decreases, the MSD sig-
nificantly drops as also observed for β-Li3PS4. The heterogeneous
dynamics of different phases within glass-ceramic is characterized by
NGP as presented in Fig. 4b. Combining with the NGP results of bulk β-
Li3PS4, glassy Li3PS4, and glass-ceramic Li3PS4 presented in Supple-
mentary Fig. S14, we infer that an increase in disorder degree is asso-
ciated with that in the NGP peak intensity, leading to a more
pronounced deviation of ion dynamics from a Gaussian distribution. It
is evident from Gs of Li-Li that in the glassy (Fig. 4c) and interfacial
(Supplementary Fig. S15a) regions of the glass-ceramicLi3PS4, there is a
significant long-range displacement of hopping ions over time at
900K. In contrast, the crystalline phase of the glass-ceramic does not
exhibit the probability distribution of β-Li3PS4. Instead, it demon-
strates a high probability of displacements within the range of 3–10 Å
throughout the entire simulation period (highlighted as the bright
regions in the bottom panel of Fig. 4c).

The above results indicate that, themobility of lithium ions within
the disordered structure of the glass-ceramic (including the glassy and
interfacial phases) is significantly superior to that in the crystalline
phase. We find that this mobility discrepancy facilitates lithium-ion
penetration, and the disordered structure enhances the dynamics
driving the diffusion towards the crystalline phase, thereby increasing
the content of mobile ions in the crystalline phase. The ionic con-
ductivity in glass-ceramic Li3PS4 electrolyte is more than two orders of
magnitude greater than that of β-Li3PS4. In the following, we further
analyze the lithium-ion exchange among the various phases within the
glass-ceramic Li3PS4. Figure 4d shows the time-concentration profiles
of lithium ions in the various phases within the glass-ceramic Li3PS4,
confirming that there is no significant enrichmentof lithium ions in any
phase during the diffusion process.

Figure 4e provides a visual representation of the trajectory of a
single lithium-ion, highlighting the migration pathways of the lithium
ions within the different phases of glass-ceramic Li3PS4. Specifically, in
the disordered structure, ions navigate through the disordered
potential-energy landscape20, resulting in their meandering trajec-
tories. Conversely, in the more ordered crystalline phase, distinct site-
to-site hopping trajectories are apparent. In our analysis of the MSD
within β-Li3PS4 electrolytes, we observe that the component along the
z-direction is superior to that along the y-direction and significantly
outperforms the x-direction (Supplementary Fig. S16). This phenom-
enon is consistent with the results reported in Ref. 46, where the

Fig. 3 | Temperature dependent ionic conductivity. a Temperature dependence
of the lithium diffusion coefficient. b Comparison of room temperature ionic
conductivity in Li3PS4 systemswith varying degree of disorder, aswell as results for

other lithium solid electrolytes, organic liquid electrolytes, and polymer
electrolytes17,38,65,66,94–99. Source data are provided as a Source Data file.
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lithium migration path in β-phase Li3PS4 crystals is found to primarily
occur in the ac plane, with additional migration paths existing in the b
direction as discussed above. In glass-ceramic Li3PS4 electrolytes, the
fraction of lithium ions in each phase changes significantly on a short
time scale, indicating ion penetration, and then stabilizes, reaching
dynamic equilibrium (Fig. 4d). The fact that theMSD component in the
y-direction for the glassy and interfacial phases is significantly higher
than the other components further supports thismigration preference
(Supplementary Fig. S17). The dynamics within the disordered struc-
ture induce the ability for lithium ions in the crystalline phase of the
glass-ceramic Li3PS4 to diffuse along the y-direction in the short term
(see inset of Fig. 4f), ultimately leading to lithium-ion exchange

between different phases. Over longer timescales, lithium-ion migra-
tion in the crystalline phase is promoted along the x and z directions
(Fig. 4f), i.e., the ac plane.

Based on these results, we propose that the high ionic con-
ductivity induced by the disordered phase arises from its facilitation of
lithium-ion exchange between the crystalline and disordered phases,
as well as the enhanced cooperative migration of lithium ions within
the crystalline phase. This cooperative migration is also evidenced by
the distinct-part of the van Hove correlation function (Gd(r,t)), which
characterizes the probability of finding all other lithium ions at a dis-
tance r from lithium-ion j over time t. As presented in Fig. 4g
and Supplementary Fig. S18, whether at high temperature or room
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Fig. 4 | Diffusion dynamics from order to disorder. a Time-averaged mean-
squared displacement (MSD) and b non-Gaussian parameter (NGP) of lithium ions
for glass-ceramic Li3PS4 system. c Self-part van Hove correlation function for glass-
ceramic Li3PS4 system. d Time profiles of lithium-ion fraction within each phase of
the glass-ceramic Li3PS4 system. e Atomic snapshots of lithium ions migration
trajectories within glass (left), crystalline (center), and interfacial (right) phases of
the glass-ceramic Li3PS4 system over a timespan of 1 ns. f Short-term MSD of

crystalline phase in glass-ceramic Li3PS4. g Distinct-part van Hove correlation
function for β-Li3PS4 (top) and crystalline phase in glass-ceramic Li3PS4 (bottom).
h Schematic diagram of lithium-ion hopping paths from different perspectives in
the crystalline phase, where the lithium-ions and the selected lithium hopping
trajectories are colored according to their depth in the b-direction. Source data are
provided as a Source Data file.
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temperature, the cooperative migration in the crystalline phase of the
glass-ceramic Li3PS4 is enhanced compared to that in the β-Li3PS4 and
glassy Li3PS4 electrolytes, further proving the disorder-driven effect.
Figure 4h visualizes the cooperative migration of lithium ions in the
crystalline phase of glass-ceramic Li3PS4 along the ac plane and the b
direction. It is important to note that the lithium migration dynamics
driven by disordered structures are less affected by crystal orientation.
As shown in Supplementary Fig. S19, this driving force enhances ion
exchangebetweendifferent phases, accelerating lithium-ionmigration
in the crystalline phase of glass-ceramics, including mechanisms such
as cooperative migration.

Identifying ion conducting dynamics in both ordered and dis-
ordered structures
In the case of crystals, ionic conductivity are related to the charge,
concentration, and mobility of conducting ions20. The mechanism
behind ion conduction can be explained through the hopping theory
of conducting ions. In disordered structures, the lack of traditional
coordination site and symmetric remote pathways7, and the necessity
for a percolating pathway of sites to minimize coordination
changes67,68, imply that the ion conduction is localized. That is, the ions
are hopping between different sites, which possess different local
environment. In both cases, the local coordination environment
strongly impacts the ionic conduction. Given the complexity of local
structures in disordered systems, it is impossible to identify all
potential descriptors. Machine learning greatly accelerates and sim-
plifies this process. Recently, the development of machine learning

algorithms has enabled the prediction of atomic dynamic properties
based solely on the local structure and rearrangement capability of
atoms from static structures36,69.

Here, we employ a classification-based machine learning
approach, referred to as ‘softness’35–37, to establish a connection
between the dynamics of hopping ions and the degree of structural
order. Our previouswork70,71 hasdemonstrated the effectivenessof the
softness method in capturing the local structural features of glassy
electrolytes and establishing correlations between structure and the
dynamics of conducting ions. To calculate softness,wefirst analyze the
static structures and corresponding rearrangements of each lithium
ion at 300K. Subsequently, we employ logistic regression to establish
a hyperplane for distinguishing ‘mobile’ from ‘immobile’ lithium ions,
thereby determining their mobility characteristics, with softness (S)
being defined as the distance to the feature space hyperplane. The
mobility is analyzed using the non-affine square displacement (D2

min)
for each lithium ion, with the sum of rearrangements for each lithium
ion (Dcum) being used toquantify the extent of atomic rearrangements.
For more information, we refer to the Methods section.

We plot the distribution of lithium softness S values for β-Li3PS4,
glassy Li3PS4 and glass-ceramic Li3PS4 in Fig. 5a. Positive values of S
correspond to mobility, whereas negative values signify immobility.
The increase in disorder degree indeed shifts the softness distribution
towards greater mobility, consistent with the observations reported
above. The glass-ceramic Li3PS4 exhibits a bimodal distribution of S,
with each peak corresponding to the softness distribution of immobile
crystalline and mobile glassy phases, respectively, as illustrated in

Fig. 5 | Machine-learning classified softness parameter. a Distribution of lithium
softness S in β-, glassy-, and glass-ceramic Li3PS4 systems at 300K. B Radial dis-
tribution function (top panel) and weight function (bottom panel) of the Li-S pair
for glass-ceramic Li3PS4 system. c Atomic snapshots of softness distribution in β-,
glassy-, and glass-ceramic Li3PS4 systems. d Profiles of the averaged Steinhardt

order parameter �q6 and lithiumsoftness S along the y-direction in the glass-ceramic
Li3PS4 configuration. e Density distribution of lithium softness S and the averaged
Steinhardt order parameter �q6. f Correlation between the lithium softness S value
and �q6. Source data are provided as a Source Data file.
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Supplementary Fig. S20. This result is in line with the lower lithium-ion
diffusion capability observed in crystalline phases compared to the
glassy phases within glass-ceramic Li3PS4.

The classification of lithium-ion mobility relies solely on the radial
structure functions of Li-Li, Li-P, and Li-S pairs, achieving an accuracy of
approximately 80%. Among these pairs, the g(r) of Li-S for glass-ceramic
Li3PS4 is the key correlation function to reflect the local structural
environmentof lithium ions, andhencedominatesoverallmobility. This
aspect is illustrated in Fig. 5b, where W(r) corresponds to the impor-
tance of each feature of g(r). At the first peak of g(r), the Li-S distance is
at the equilibrium position, making it difficult for lithium ions to
undergo significant rearrangement. As the distance increases, the Li-S
separation starts to deviate from this equilibriumposition. The increase
inW(r) indicates that the lithium ions becomemore likely to rearrange,
reflecting a higher degree of ‘softness’. In addition, we can observe
positive values of W(r) within the range of 6–8Å, indicating that the
MRO structure also influences the lithium-ion mobility. By coloring the
lithium atoms based on their S values, we can visualize the spatial
softness distribution within the Li3PS4 structure (Fig. 5c), revealing a
strong correlation between high S values and structural disorder.

In the case of the glass-ceramic Li3PS4 electrolyte, we calculate the
evolution of S values within their structural landscape as the degree of
disorder varies. To this end,we calculate a local bond-order parameter,
known as the Steinhardt order parameter72. In detail, we employ the
global average �q6 parameter to characterize the structural order73,
which involves the first and the second shell. Figure 5d shows the
calculate profile, demonstrating a strong correlation between �q6 and S
values as the disorder-to-order transition occurs within the glass-
ceramic Li3PS4 structure, with an abrupt transition at the interface. The
wl order parameter, a variant Steinhardt order parameter, has also
been used for comparison. We find that the same degree of S values is
observed during the transition between ordered and disordered states
(Supplementary Fig. S21).

Figure 5e presents the density distribution of �q6 and softness
values, with density values color-coded according to themagnitude of
softness. High-softness regions are highlighted as areas with lower �q6

values, while ions with low S exhibit relatively higher �q6 values.
Therefore, we conclude that there exists a strong correlation between
the structural order and the S parameter, as quantified using the curve
in Fig. 5f. This negative correlation between the S values and the local
structural order corroborates the enhanced dynamical properties of
hopping ions in disordered environments. This approach is versatile
and applicable not only to glassy and crystalline β-Li3PS4 electrolytes,
as demonstrated in Fig. 5, but also to Li3PS4 systems with varying
crystal contents and different crystal orientations, as shown in Sup-
plementary Fig. S22 (cell parameters of β-Li3PS4 are shown in Supple-
mentary Fig. S23). Thismeans that we can use this approach to predict
the dynamic characteristics of the different phases solely based on
their static structures, effectively distinguishing various phases with
different degrees of softness.

Discussion
We have highlighted the enhancing effect of structural disorder on the
dynamics of hopping ions and the synergistic role of disordered glass
and interface phases in promoting ion conductivity. This holds sig-
nificant implications for the conductionmechanismsof ionic species in
solid-state electrolytes, as disordered solid-state electrolytes with
complex atomic structures are among the most promising ones.
However, due to the lack of long-range order, analyzing their structure
is challenging. In this study, we have trained a MLIP that balances high
accuracy and efficiency and captures both ordered and disordered
phases, allowing us to explore lithium-ion transport behavior on large
scales and over long timescales. Combined with the machine learning-
based classification method to uncover hidden structural information,
this approach provides a robust template for studying ion transport

behavior andmechanisms in other solid-state electrolytes, particularly
in disordered glassy and partially disordered glass-ceramic electro-
lytes, such as LATP glass-ceramics30. Thus, linking dynamical char-
acteristics with local structural information and atomic
rearrangements holdspromise in unraveling ion transportmechanisms
and discovering potential solid electrolytes for all-solid-state batteries.

Our work further indicates that disordered Li3PS4 solid-state
electrolytes exhibit non-Arrhenius behavior at low temperatures and
superior room-temperature conductivity compared to their crystalline
counterparts. The dynamic heterogeneity of lithium ions plays a cru-
cial role since the dynamic heterogeneity can be frozen-in upon
cooling, leading to static or structural heterogeneity that impacts the
room-temperature ionic conductivity. The partially disordered glass-
ceramic demonstrates the highest room-temperature conductivity.
From the atomic scale, we demonstrate that this superior ion con-
duction performance relative to the glass and crystalline electrolytes
originates from the disorder-driven diffusion dynamics. This
means that the dynamic interplay between disordered glass phases
and disordered interfaces enhances ion exchange between the crys-
talline phase and other phases, with lithium-ion migration in the
crystalline phase exhibiting enhanced cooperative diffusion.

Methods
General methods
We employed the Python packages NumPy74, Pandas75, and SciPy76 for
data processing and calculations, and utilized Matplotlib77 and Ovito78

for graph generation and the creation of renderable structural
visualizations.

Ab initio simulations
The initial datasets for training the MLIP were generated from the
trajectories of ab initio molecular dynamics (AIMD) simulations. To
increase the generalizability of the MLIP, series of systems containing
Li, P, and S elements were covered in the datasets, including both the
crystalline and disordered structures of elementary substances and
compounds, such as Li, P, S, Li2P2S6, β-Li3PS4, and γ-Li3PS4, as well as
xLi2S-(100-x)P2S5 (x = 67, 70, 75, and 80) glasses. Detailed information
on the included systems can be found in the Supplementary Table S2.
The AIMD calculations were carried out at the DFT level79 using the
Quickstepmodule of the CP2K package80 with the hybridGaussian and
plane wave method (GPW)81. To ensure computational accuracy, the
basis functions weremapped onto amulti-grid systemwith the default
number of four different grids with a plane-wave cutoff for the elec-
tronic density of 500Ry and a relative cutoff of 50 Ry. We performed
the convergence test on the employed basis sets. The accuracy of the
DFT calculations thus heavily relied on the grid size, which is defined
by the planewave cutoff (cutoff) and the relative cutoff at which a
Gaussian is mapped (Rel_cutoff). These two cutoff values should be
high enough to achieve an accurate calculation. To this end, we sys-
tematically investigated the dependence of total energy of β-Li3PS4 on
these two values. As shown in Supplementary Fig. S24, the plane-wave
cutoff of 500Ry and relative cutoff of 50Ry ensures the accuracy of
the DFT calculations.

The AIMD trajectories at 3000K were obtained in the NVT
ensemble with a timestep of 0.5 fs for 2.5 ps. The temperature selec-
tion of 3000K enabled the sampling of the melting process within the
short time scale, which can be used for simulating both the crystal and
glass structure afterwards. The temperature was controlled using the
Nosé–Hoover thermostat82. The exchange-correlation energy was cal-
culated using the Perdew-Burke-Ernzerhof (PBE) approximation83, and
the dispersion interactions were handled by utilizing the empirical
dispersion correction (D3) from Grimme84. The pseudopotential GTH-
PBE combined with the corresponding basis sets was employed to
describe the valence electrons of Li (DZVP-MOLOPT-SR-GTH), P (TZVP-
MOLOPT-GTH), and S (TZVP-MOLOPT-GTH), respectively85.
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MLIP training and validation
The MLIP was developed using the DeePMD-kit34 software combined
with the active machine learning method implemented in the DP-GEN
package86. The training process follows our previous work on zeolitic
imidazolate framework glasses87. The training dataset consisted of two
parts: (1) the initial training data from the trajectories of AIMD simu-
lations on various Li, P, and S-containing systems at 3000K for 2.5 ps,
which allows the exploration of the energy landscape in an efficient
manner; and (2) the expanded dataset realized by single energy cal-
culation of different xLi2S-(100-x)P2S5 (x = 67, 70, 75) glasses using the
active machine learning method implemented in the DP-GEN
package86. The detailed information of the two datasets can be
found in the Supplementary Tables S2 and S3, respectively. The net-
work structure used for training the MLIP also consisted of two parts:
(1) the embedding network with 3 layers of neurons (25, 50, 100); and
(2) the fitting network with 3 layers of neurons (240, 240, 240). The
local environment of the individual atoms was described using the
descriptor containing both radial and angular information within a
cutoff of 6.5 Å. The two training processes were adopted to increase
the accuracy of theMLIP, i.e., the initial training and final training both
included 6,000,000 steps of iterations. The energy, force, and virial
terms were included in the loss function, which enabled the MLIP to
work for both the structure andmechanical simulations. For the initial
training, the learning rate dynamically changed from 1e–3 to 1e–9. The
atomic interactions beyond 0.9 Åwere treated using the ZBL repulsive
interactions to avoid the collapse of atoms at high temperatures. The
prefactors of the energy, force, and virial terms dynamically changed
from0.02 to 2, 1000 to 1, and 0.02 to 0.2, respectively. During the final
training, the ZBL interaction was removed and the prefactors of all
terms were set to 1 as the learning rate changed from 1e–5 to 1e–8. The
performance of the MLIPmodel on different Li3PS4 phases (α, β, and γ
phases) is shown in Supplementary Fig. S25, providing compelling
evidence of its ability to accurately describe interatomic interactions.
Our MLIP also contains the information regarding crystal-to-
amorphous transition (Supplementary Fig. S26), which can predict
the interfacial structure of β-Li3PS4.

MD simulations
MD simulations were performed using the Large-scale Atomic/Mole-
cular Massively Parallel Simulator (LAMMPS)88. The neural network
potential trained using the DeePMD method, as described above, was
employed to accurately describe the interatomic potentials. The
temperature and pressure were controlled using Nosé-Hoover82 ther-
mostat/barostat methods. β-Li3PS4 with the Pnma space group was
annealed from 500K and relaxed for 1 ns at 300K using the NPT
ensemble. The preparation of glassy Li3PS4 was done using melt-
quenching by initially raising the system to 1500K, holding it for
100ps, and subsequently cooling it down to 300K at a rate of 2.5 K/ps
before relaxation, all under theNPT ensemble. A time step of 0.5 fs was
employed for precise and stable structural simulations throughout.
The glass-ceramic Li3PS4 was made analogously to the glass, with a
melt-quenching process under the NVT ensemble, during which the
crystalline region was frozen (with all force components set to zero),
followed by relaxation for glass and crystalline region under the NPT
ensemble.

Structural descriptors
The partial radial distribution functions gij(r) define the probability of
finding a particle j at distance r +Δr given that there is a particle i,

gijðrÞ=
nijðrÞ

4πr2drρj
ð1Þ

where nij is the number of j-type atoms found in a spherical shell of
radius r and thickness Δr, with the centra i-type atom. ρj is the number

density of j-type atoms. The running coordination n(r) is obtained by
integrating gij(r) between r1 and r2 as,

nðrÞ=
Z r2

r1

4πr2ρjgijðrÞdr ð2Þ

The theoretical partial structure factor Sij(Q) was calculated using
the Faber Ziman formalism89 as,

SijðQÞ � 1 =ρ
Z 1

0
4πr2 gijðrÞ � 1

� � sinQr
Qr

dr ð3Þ

where Q is the scattering vector, and the X-ray scattering structure
factor Sx(Q) was calculated as,

SX ðQÞ=
X
i

X
j = i

cicjf iðQÞf jðQÞ SijðQÞ � 1
� �

ð4Þ

Here, ci and cj are the atomic fractions, fi(Q) and fj(Q) refer to the
Q-dependent X-ray scattering coefficients of type I and j atoms,
respectively. By considering the coherent scattering length I and �bj of
atoms, the neutron scattering structure factor SN(Q) was calculated as,

SNðQÞ=
X
i

X
j = i

cicj
�bi
�bj SijðQÞ � 1
� �

ð5Þ

The degree of disorder was quantified using the function F(Z). We
followed a procedure similar to that in Ref. 30, beginning with a 3D
Gaussian density distribution of the atomic positions. After mapping
thesepositions onto a 3Dgrid,we createddensity slabs along the y-axis
of the simulation boxwith awidthofΔy andprojected them into 2D. By
summing the intensities, which were obtained through a 2D discrete
Fourier Transform with the zero-frequency component shifted to the
center, we calculated F(Z), which was then normalized to its maximum
value,

FðzÞ=
P

xz I2D�FFTðyÞP
xz Imax

ð6Þ

Todistinguish betweenordered crystalline phases anddisordered
glassy phases, we introduced an average local bond order parameter,
or the average Steinhardt order parameter. The local rotationally
invariant ql or wl order parameter described by Steinhardt were
implemented as follows. First, based on the spherical harmonic algo-
rithm, a complex vector for a particle can be defined as qlm (Eq. 7),
where Nb is the number of nearest neighbors for particle i, and Ylm
represents spherical harmonics,

qlmðiÞ=
1
Nb

XNb

j = 1

Y lmðθð~rijÞ,ϕð~rijÞÞ ð7Þ

The Steinhardt order parameters72 are defined as,

qlðiÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π
2l + 1

Xl

m=�l

qlmðiÞ
�� ��2

vuut ð8Þ

The contributions of each neighbor are weighted based on Vor-
onoi tessellation:

q0
lm
ðiÞ= 1PNb

j = 1wij

XNb

j = 1

wijY lmðθð~rijÞ,ϕð~rijÞÞ ð9Þ
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Thus, all qlm calculations are replaced by the weighted q’ lm. Here,
we performed a second averaging over the first shell of particles,
implicitly incorporating information from the second shell73, which
was computed by replacing qlm(i) with �qlmðiÞ. The average value of
qlm(i) over all the Nb neighbors k of particle i, including particle i itself,
was calculated as,

�qlmðiÞ=
1
Nb

XNb

k =0

qlmðkÞ ð10Þ

We also calculated thewl order parameter72, which is defined as a
weighted average over the qlm(i) values using Wigner 3-j symbols
(related to Clebsch-Gordan coefficients). The resulting combination is
rotationally invariant:

wlðiÞ=
X

m1 +m2 +m3 =0

l l l

m1 m2 m3

� 	
qlm1

ðiÞqlm2
ðiÞqlm3

ðiÞ ð11Þ

The wl was normalized as:

wlðiÞ=
P

m1
+m2 +m3 =0ð l

m1

l
m2

l
m3
Þqlm1

ðiÞqlm2
ðiÞqlm3

ðPl
m=�l jqlmðiÞj2Þ

3=2 ð12Þ

Lithium transport dynamics
The mean-squared displacement (MSD) and non-Gaussian parameter
were calculated from long-time lag (t) trajectory as,

r2ðtÞ� �
=Δr2ðtÞ= r tð Þ � r 0ð Þð Þ2

D E
ð13Þ

α2ðtÞ=
d ðrðtÞ � rð0ÞÞ4
D E

ðd +2Þ ðrðtÞ � rð0ÞÞ2
D E2 � 1 ð14Þ

where the angular brackets denote an ensemble-averaged over the
total conduction atoms, i.e., Li ions, and d is the dimension of the
simulation box, where d = 3 for all simulations. The self-part of the van
Hove correlation function Gs for Li-Li pair was calculated as,

Gs r, tð Þ= 1
4πr2N

XN
i = 1

δ r � ri t0

 �� ri t + t0


 ��� ��� 
* +
t0

ð15Þ

where Gs(r,t) characterizes the Li-Li pair distance r at time t, and the
quantity r2Gs(r,t) describes the probability distribution of displace-
ments. The distinct-part of van Hove correlation function Gd(r,t)
characterized the real-space radial distribution function of distinct
particles over time twith respect to the initial reference particle.Gd(r,t)
is crucial for studying cooperativemigration90, and itwas calculated as,

Gd r, tð Þ= 1
4πr2ρN

XN
i≠j

δ r � ri t0

 �� rj t + t0


 ���� ���h i* +
t0

ð16Þ

The self-diffusion coefficient D was estimated from the MSD and
hence the activation energy Ea was calculated by fitting an Arrhenius
function as,

D =
1
2d

lim
t!1

dhMSDi
dt

ð17Þ

D=D0 exp �Ea=kBT

 � ð18Þ

where kB is the Boltzmann constant, T is the temperature, andD0 is the
self-diffusion coefficient at an infinite temperature. Finally, by means
of Nernst-Einstein equation using the elementary charge e, the ionic
conductivity σ was calculated,

σ =
N
V
ðZeÞ2
kBT

D ð19Þ

Machine learning classification
We calculated the ‘softness’ metric35–37 based on classification-based
machine learning, following the procedure outlined in Refs. 70,71.
Unlike the original concept of softness, the computation of softness
here relies on a logistic regression classifier insteadof a support vector
machine due to its higher classification accuracy and training
efficiency70,71,91. Softness is defined as the distance to the feature space
hyperplane, with radial order parameters chosen as the features for
constructing the hyperplane. The hyperplane created by logistic
regression can then be expressed as a function of each feature,

X
r

W ðrÞGði; rÞ � b=0 ð20Þ

where the feature G(i, r) represents the standardized radial order
parameters, being a function of pairwise distance r. Here, W(r) and b
are the weight coefficients and bias of the logistic regression model,
respectively. The hyperplane is a linear combination of input features,
allowing softness to be determined based on different features. In
otherwords, the absolute value ofW(r) indicates the importanceof the
corresponding feature G(i, r), with positive and negative signs sig-
nifying that an increase in the value ofG(i, r) will, respectively, increase
or decrease the softness value.

The logistic regression model’s output results were chosen based
on the Dcum metric for each lithium atom to analyze ion conduction
behavior. The Dcum is the sum of square-root of the incremental non-
affine squared displacement D2

min, which has been widely used to
describe atomic rearrangement processes35,92. We optimized the
intervals (dr) and cutoff radius (Rcutoff) of the radial order parameters
based on their classification accuracy, as illustrated in Supplemen-
tary Fig. S27. By employing dr of 0.2Å and Rcutoff of 10 Å, we estab-
lished structural features that yielded prediction accuracy exceeding
0.78 for the test set. Regularization parameters C and the threshold for
Dcum were also determined based on classification accuracy, as shown
in Supplementary Fig. S28. Both the training and test sets achieved
accuracies exceeding 80%. With these adjustments, we have con-
structed a framework capable of predicting the ionic conductivity
dynamics based on the softness properties.

Data availability
The templates to generate glass and glass-ceramic structures and to
run simulations, and neural network potential file are available at
https://github.com/OxideGlassGroupAAU/LiPS93. Source data are
provided with this paper.

Code availability
LAMMPS and DeePMD-kit are free and open-source codes available at
https://lammps.sandia.gov and https://github.com/deepmodeling/
deepmd-kit, respectively.
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