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% Check for updates Urinary proteomics is emerging as a potent tool for detecting sensitive and non-
invasive biomarkers. At present, the comparability of urinary proteomics data
across diverse liquid chromatography—mass spectrometry (LC-MS) platforms
remains an area that requires investigation. In this study, we conduct a com-
prehensive evaluation of urinary proteome across multiple LC-MS platforms. To
systematically analyze and assess the quality of large-scale urinary proteomics
data, we develop a comprehensive quality control (QC) system named MSCo-
hort, which extracted 81 metrics for individual experiment and the whole cohort
quality evaluation. Additionally, we present a standard operating procedure
(SOP) for high-throughput urinary proteome analysis based on MSCohort QC
system. Our study involves 20 LC-MS platforms and reveals that, when combined
with a comprehensive QC system and a unified SOP, the data generated by data-
independent acquisition (DIA) workflow in urine QC samples exhibit high
robustness, sensitivity, and reproducibility across multiple LC-MS platforms.
Furthermore, we apply this SOP to hybrid benchmarking samples and clinical
colorectal cancer (CRC) urinary proteome including 527 experiments. Across
three different LC-MS platforms, the analyses report high quantitative repro-
ducibility and consistent disease patterns. This work lays the groundwork for
large-scale clinical urinary proteomics studies spanning multiple platforms,
paving the way for precision medicine research.

Molecular biosignatures of altered proteomes in urine are promisingin  used to discover potential disease biomarkers across various diseases,
the diagnostic, prognostic, long-term disease progression, and treat- such as urological cancers’”’, colorectal cancer’, virus infection®’,
ment response monitoring of diseases for precision medicine studies, neurodegenerative disorders’, and many others'. Recent advances in
owing to the advantage of costs, time, and the noninvasive nature of mass spectrometry techniques and informatic pipelines have greatly
urine'™. Increasing numbers of urinary proteomic studies have been extended the research to large-scale clinical sample cohorts, to
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improve the statistical significance of the discovered biomarkers and
yield more valuable clinical insights®"*,

For large-scale cohort study, the assessment of reproducibility is
crucial owing to the data usually generated across instruments, plat-
forms, and laboratories™"*. Recent studies have demonstrated that
data-independent acquisition (DIA) proteomic data generated across
11 laboratories revealed high consistency and reproducibility of iden-
tification and quantitation results for cell and tissue samples™ ™. This
was achieved by employing harmonized mass spectrometry (MS)
instrument platforms and standard operating procedure (SOP)“™.
However, the unified SOP for bodily fluids, with higher complexity or
wider protein concentration dynamic range samples as represented by
urine have not been provided". Currently, each platform applied its
own experiment and data acquisition procedures, which results in a
large variation across instruments, platforms, and laboratories®*®*%,

For establishing and applying an SOP, there is still a lack of com-
prehensive quality control (QC) system to ensure reproducibility and
robustness during data generation and maximize the accessibility of
downstream data”. Over the years dozens of QC metrics have been
proposed**”, generated by a range of bioinformatics tools, which
contain NIST MSQC?°, QuaMeter?>*, RawBeans?*, DO-MS*?¢, PTXQC%,
QCloud®?’, QC-ART*°, MSstatsQC 2.0, QuiC¥, et al. However, these
QC tools and metrics mainly focus on data-independent acquisition
(DDA) experiments, and few of them were developed specifically for
DIA experiments. In addition, these tools only extract a limited number
of metrics and display them in the form of charts, without illustrating
the relationship between the metrics and identification results. Users
need to rely on expert experience to optimize parameters and locate
experimental problems step by step, which is time-consuming and
laborious®. Especially, for large-scale DIA experiments, a fully auto-
mated and comprehensive QC system with systematic evaluation and
optimization for the entire LC-MS workflow is in great demand, in the
case of evaluating the system performance, locating potential pro-
blems, detecting low-quality experiments, etc. These hindered the
application of large-scale urinary proteomics into clinical research.

In this work, we first summarize and integrate the metrics extracted
by existing QC software and introduce new metrics, striving to provide
the most comprehensive set of proteomics QC metrics. We develop the
MSCohort QC system to perform individual experiments and the whole
cohort data quality evaluation. Especially, we propose a scoring system
for individual DIA experiment evaluation and optimization. Based on this
comprehensive QC system, we develop a SOP for high-throughput
urinary proteome. We systematically investigate the consistency and
reproducibility of urinary proteome across 20 LC-MS platforms with and
without unified SOP, respectively. Then, benchmarking samples, con-
sisting of tryptic digests of human urine, yeast, and E. coli proteins in
defined proportions, are generated to mimic differential expressed
biological samples and investigate the performance in the quantitative
accuracy, precision, and robustness of the different platforms, as well as
the capability to detect differentially expressed proteins (DEPs) deemed
as biomarkers. Furthermore, the above SOP is applied to colorectal
cancer (CRC) urinary samples across 3 different LC-MS platforms to
further demonstrate the combination of a comprehensive QC system
and unified SOP could guarantee high consistency and reproducibility in
cohort clinical proteome analyses (Fig. 1). Taken together, our study
provides a comprehensive QC system and reference SOP for large-scale
urine proteomic analysis spanning different platforms, which could
benefit the applications of urinary proteomics to clinical disease
researches. The MSCohort software tool is accessible for download from
Github (https://github.com/BUAA-LiuLab/MSCohort).

Results

Design of MSCohort for comprehensive data quality control
We developed the MSCohort QC system, which provides more com-
prehensive quality control metrics (Supplementary Note 1) and

enhances more extensive quality control functionalities (Supplemen-
tary Note 2), compared to existing quality control software. It assists
users in assessing and optimizing individual experimental procedures,
evaluating system stability across multiple experiments, and identify-
ing outlier experiments (Fig. 2).

The primary phase of quality control involves the extraction of QC
Metrics. The MSCohort QC system summarizes and integrates metrics
extracted by existing quality control software and introduces 26
new metrics, totaling 81 QC metrics (Supplementary Note 1): (1) For
individual experiment data quality evaluation, we investigated the
QC metrics proposed by NIST MSQC?, QuaMeter”*, DO-MS*,
RawBeans?!, Spectronaut®, MSRefine®, and added 10 metrics for DIA
individual experiment. This comprehensive set, amounting to a total of
58 metrics, termed intra-experiment metrics in this study (Supple-
mentary Data 1A); (2) For evaluating data performance across experi-
ments, we investigated the QC metrics proposed by PTXQC¥,
QCloud®?’, QC-ART*, MSstatsQC 2.0*, QuiC*, and added 16 new
metrics. This yields a set of 23 metrics encompassing in precursor,
peptide, and protein group levels, termed inter-experiment metrics in
this study (Supplementary Data 1B). We strive to provide the most
comprehensive set of proteomics QC metrics. The quality control
software tool extracts relevant metrics tailored to specific data types
(e.g., DDA or DIA, individual experiments or cohort experiments), then
conducts the following quality evaluation, to generate detailed analy-
sis reports.

For individual experiments, MSCohort extracts comprehensive
metrics that map to the whole LC-MS workflow, illustrates the rela-
tionship between extracted metrics and identification results, scores
the metrics, and reports visual results, assisting users in evaluating the
workflow, and locating problems. We have previously proposed a
quality evaluation system for individual DDA experiments®, and here,
we developed a quality evaluation system for individual DIA experi-
ments. We designed a scoring formula to characterize different kinds
of DIA experiments:

N identified_precursors — N acquired _MS2 x QMSZ x (N precursor_per _MS2 / Rprecursor)

@

where Nigensified_precursors 1S the number of identified peptide pre-
cursors, N geayired sz is the number of acquired MS2 scans, Qs is the
identification rate of the MS2 scans, Npecyrsor _per_ms2 1S the spectra
complexity of MS2 scans, Ry,.rsor i the precursors duplicate identi-
fication rate, and N, ecursor_per_ms2 / Rprecursor iS the utilization rate of the
MS2 scans. MSCohort scores the relative metrics, reports metric-score
diagram, and flags the metrics with low scores to assist experimenters
in assessing the quality of data directly, enabling systematic evaluation
and optimization of individual DIA experiments (See Methods and
Supplementary Fig. 1 for details).

For the cohort proteomics data, it is imperative not only to conduct
meticulous quality control analysis on individual experiments but also to
perform longitudinal tracking to evaluate the performance over time for
the cohort experiments. MSCohort reports corresponding scores to
each of the inter-experiment metrics, and provides a heatmap overview,
which yields an assessment of the quality at a glance and facilitates
pinpointing the low-quality experiments (Supplementary Fig. 2).
MSCobhort also incorporates unsupervised machine learning algorithm
(isolation forest) to detect potential outlier experiments. Furthermore,
to guarantee the reliability of the subsequent statistical analyses, it
incorporates various normalization methods to remove systematic bias
in peptide/protein abundances that could mask true biological dis-
coveries or give rise to false conclusions® (See Methods for details).

Notably, MSCohort serves as a potent tool that offers compre-
hensive support for data originating from diverse vendor platforms,
including the Thermo Scientific Orbitrap, Bruker timsTOF, and SCIEX
ZenoTOF systems. This tool facilitates rigorous quality assessment and
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Fig.1| Overall study design and implementation. a The MSCohort quality control ~ comprehensive MSCohort QC system. Npercusor per ms2 iS the spectra complexity of

(QC) system extracts 81 metrics (58 intra-experiment metrics and 23 inter- MS2 scans, Rprecursor is the precursor duplicate identification rate. ¢ A 20 LC-MS
experiment metrics) and supports both intra-experiment analysis and inter- platforms analysis under a comprehensive quality control system of urinary pro-
experiment analysis, to facilitate the comprehensive quality evaluation of indivi- teomics was performed to analyze the variation and the consistency among dif-
dual experiments and cohort DIA datasets, and assists users in monitoring the ferent LC-MS platforms. d Benchmarking samples were prepared containing known

entire workflow performance, detecting potential problems, providing optimizing  ratios of peptide digestions from human, yeast and E. coli organisms, to mimic
direction, flagging low-quality experiments, and improving experimental outcomes  differential expressed biological samples and provide proof of the quantitative
for subsequent analyses. b The standard operating procedure (SOP) for urinary robustness and reproducibility of the different LC-MS platforms under unified SOP.
proteomics, which integrates the optimized strategies at each step, including the e Clinical colorectal cancer (CRC) urinary proteome datasets derived from 3 dif-
96DRA-Urine sample preparation strategy, a monolithic column with 30-min gra-  ferent LC-MS platforms were performed to analyze the performance of urinary
dient strategy, balance Npercusor per Ms2 @Nd Rprecursor DIA-based MS method, and proteomics from multi-platform in biomarker discovery.

optimization of both DDA and DIA experiments, as well as inter- high throughput, sensitivity, and reproducibility (See Fig.3a and Sup-
experimental quality control analysis across DDA, DIA, and PRM stu-  plementary Note 3 for details).
dies. MSCohort applies not only to urinary proteomics analysis but Herein, we underscore the importance of incorporating a data
also to the analyses of other samples (such as cell, tissue, blood, etc.).  quality control step in the development and implementation of the
The MSCohort software tool and the user manual are available from SOP. Previous studies have reported the SOPs for other proteomics
Github: https://github.com/BUAA-LiuLab/MSCohort. applications'®**, yet they primarily rely on manual inspection of
identification results and limited metrics to assess experimental
Optimization and establishment of SOP for urinary proteomics quality. Consequently, it becomes difficult to promptly identify and
with MSCohort QC system address issues or propose specific strategies for further experimental
To meet the demands of extensive clinical urinary proteomics analysis, refinement when identification results are not satisfactory. Supple-
we have developed an SOP for urinary proteomics that demonstrates mentary Note 4 showed how to use the comprehensive MSCohort QC
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Fig. 2 | The workflow of MSCohort. The LC-MS based proteomics workflow
includes multiple procedures: sample preparation, liquid chromatography, mass
spectrometry, and data analysis. MSCohort consists of two modules: Intra-
experiment analysis and inter-experiment analysis. Intra-experiment module
extracted 58 metrics over the whole LC-MS workflow, and divided them into
sample, chromatography, DIA windows, ion source, MS1 and MS2 signal, and

identification result categories. We established a metric-score system for individual
experiment quality evaluation and data optimization. Inter-experiment module
extracted 23 metrics in precursor, peptide, and protein groups level mapping to LC
-MS workflow, to facilitate the comprehensive quality evaluation for large cohort
data, flag potential outlier data, and correct data heterogeneity for subsequent
analyses.

system to optimize the LC-MS methods to establish the SOP for urinary
proteomics. Through the DIA scoring formula (1) and comprehensive
metrics analysis reports, MSCohort provides direct explanations for
the underlying causes of data results. By conducting a limited number
of experiments instead of iterating through all parameter combina-
tions, we could achieve the whole procedure optimization of urinary
proteomics, including sample (Figure S.Note 4.1), chromatography
(Figure S.Note 4.2), and mass spectrometry (Figure S.Note 4.3), and
established the SOP for urinary proteomics.

This SOP integrates the optimal strategies at each step,
including the 96DRA-Urine® (Direct reduction/alkylation in urine)
high-throughput sample preparation method, stable and efficient
chromatography system, highly sensitive and high throughput DIA-
based MS method', and comprehensive MSCohort QC system. As
illustrated in Supplementary Note 5, the adoption of this SOP yields
the following benefits: (i) Pretreating of nearly 200 samples in a
single day, meeting the demands of large-scale analysis; (ii) Identi-
fying over 3000 protein groups in a single sample within 30-min
gradient. Figure 3b demonstrates that the SOP increases protein
identification numbers per unit time by 3 to 90 times compared to
representative methods; (iii) Achieving excellent inter-experimental
stability with a retention time deviation of less than 0.2 minutes for
the same peptides over 7 days (Figure S.Note 4.2). To the best of our
knowledge, this SOP presents the deepest urinary proteome cover-
age for single-run analysis in short gradient, a promising basis
for the discovery of urinary biomarkers in large-scale sample
cohorts (Fig. 3b).

Comprehensive and comparative analysis of urinary proteome
data from multi-platform study
To validate the performance of this SOP across different LC-MS plat-
forms, we performed urinary proteomics experiments collected across
multiple LC-MS platforms including different types of mass spectro-
meters. We prepared a urine peptide QC sample and distributed ali-
quots to 20 LC-MS platforms, which were classified into two groups: 1)
Ten platforms employed the unified SOP developed above (numbered
U01-U10), termed with LC-SOP in this study (Supplementary Note 3). 2)
Another ten platforms without LC-SOP. These LC-MS platforms were
encouraged to use their individual optimized experimental para-
meters (numbered MO01-M10)*. The detailed data acquisition para-
meters were provided in Supplementary Data 2.

Firstly, the qualitative results showed clear difference among the
10 LC-MS platforms without LC-SOP (M01-M10), the number of iden-
tified proteins ranged from 2371 (M03) to 3695 (M07), with a relative
standard deviation (RSD) of 8% (Fig. 4a and Supplementary Data 3A).
Among them, four platforms (M03, M04, M06, and M09) showed
obviously lower identification results than the others. We investigated
the possible causes in detail based on MSCohort. As illustrated in
Supplementary Fig. 3 and Supplementary Data 4, the metric scores
related to the identification rate of MS2 scans were low for M0O3-E480*
(Exploris 480 with a High Field Asymmetric Waveform lon Mobility
Spectrometry (FAIMS)). Its peak intensities and peak counts of MS1
and MS2 were significantly lower than other instrument platforms,
resulting in a low MS2 identification rate (49%). Consequently, the final
identified protein number was also reduced. M04-E480F also showed a
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Fig. 3 | The developed standard operating procedure (SOP) for urinary pro-
teomics. a The SOP integrates the optimized strategies at each step, including the
96DRA-Urine sample preparation strategy, monolithic column with 30-min gra-
dient strategy, balance Npercusor per ms2 aNd Rprecursor DIA-based MS method, and
comprehensive MSCohort QC system. Npercusor per ms2 i the spectra complexity of

MS2 scans, Rprecursor is the precursors duplicate identification rate. b Summary of
key experimental parameters and results comparing urinary proteome analysis
data published in the last five years and data obtained using the unified SOP in this
study. The average identified proteins per minute increased by 3 (143/48) to 90
(143/1.5).

similar low identification rate of MS2 scan (64%). Additionally, the
chromatographic peak width and full width at half maximum (FWHM)
of M0O4 were significantly wider than other instrument platforms,
which also affects the LC separation efficiency and identification rate.
For MO6-Eclipse, the precursors duplicate identification rate was
higher than the complexity of the MS2 scans, which led to the low
utilization rate of the MS2 scans (Nprecursor_per_ms2 /Rprecursor = 0-74)-
MO6 also showed a short MS2 ion injection time and low signal-to-
noise ratio, which was correlated with its relatively low setting
threshold (50000) of AGC target. The chromatographic invalid
acquiring time (LC delay time) for M09-E240 (Exploris 240) was
12 minutes, leading to over 40% of spectra being wasted without
identifying precursors. Consequently, the overall identification rate
was only 50%. The above metric-score results demonstrated that

MSCohort can effectively and accurately locate potential problems
and provide clear insights for DIA optimization. Furthermore, we also
assessed the consistency of identification results among the 10
instrument platforms. Only 2045 proteins were found to overlap
across all platforms (Fig. 4b), constituting 55%-86% of the identified
proteins on individual instrument platforms, which indicates relatively
low consistency of identification results. After removing 4 platforms
with lower identification results, the overlap proteins increased to
2876, showing an improved qualitative consistency (Supplemen-
tary Fig. 4).

We also analyzed the precision and reproducibility of quantitative
results among the 10 platforms without LC-SOP using MSCohort. As
illustrated in Fig. 4c, d, the median coefficients of variation (CV) of
protein intensity for each LC-MS platform were below 20% and the
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Pearson correlation coefficients of protein intensity were greater than
0.96, demonstrating that DIA approaches achieved high quantitative
precision and reproducibility in the intra-instrument level. For inter-
instrument analysis, Pearson correlations of MO3 and M04 with other
LC-MS platforms were low (0.6-0.73). The Pearson correlation
between the other 6 Orbitrap instrument platforms was 0.9-0.94, and
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the Pearson correlation between timsTOF and Orbitrap instrument
was 0.83-0.89.

While, the qualitative and quantitative results showed higher
consistency and reproducibility among the 10 LC-MS platforms with
LC-SOP (U01-U10), the range of identified proteins was 3346-3752,
with RSD of the identified numbers less than 4% (Fig. 4e). Within
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Fig. 4 | The qualitative and quantitative performance across 20 LC-MS plat-
forms. The number of proteins identified (with 1% FDR) from the 10 platforms without
LC-SOP (a, orange) and with LC-SOP (e, blue). Three technical replicates were col-
lected in each platform. The average number was shown at the bottom of the bar, and
the individual data points were indicated by purple dot points (n =3), with error bars
representing +/— SD. Horizontal dashed lines were added at 3000, as a reference
value. b and f The upset plot showed the numbers of proteins co-identified across
various combinations of 10 platforms without LC-SOP (b) and with LC-SOP (f) (vertical
bars). The colored vertical bar reflected the number of proteins co-identified by all 10
platforms without LC-SOP (b, orange) and with LC-SOP (f, blue). The horizontal bars

reflected the number of proteins identified in total at each platform. ¢, g The dis-
tribution of the coefficients of variation (CV) obtained on the quantified protein
intensity across the three technical replicates was plotted for each platform. All box
plots indicated the median and the first and third quartiles as the box ends. Whiskers
were positioned 1.5-times in the interquartile range. Horizontal dashed lines were
added at 20% CV, as a reference value. The Pearson correlation matrix based on log2
protein intensity of the common proteins from 10 platforms without LC-SOP (d) and
with LC-SOP (h). The color-scale indicated the magnitude of the Pearson correlation
coefficient. 20 platforms arranged in chronological order based on the MS release
dates. Source data are provided as a Source Data file.

30 minutes, each LC-MS platform was able to identify more than 3300
proteins. Among them, 3080 proteins overlap across all platforms,
showing high qualitative consistency (Fig. 4f). In addition, MSCohort
analysis report among 10 platforms with LC-SOP also showed good
consistency (Fig. 4g and Supplementary Data 4). In particular, the
Pearson correlation of protein intensity between the 7 Orbitrap
instruments was 0.93-0.97, and the Pearson correlation between
timsTOF and Orbitrap instrument was 0.86-0.92 (Fig. 4h). Besides, the
average sequence coverage and the dynamic range of the proteins that
were identified among the 10 LC-MS platforms with LC-SOP also
improved than that in 10 LC-MS platforms without LC-SOP.

Furthermore, we sought to utilize data collected by multiple
Orbitrap instrument platforms to investigate the effects of different
LC and MS conditions on the reproducibility of results. We classified
different platforms into 3 groups based on the conditions, A (same
MS condition, same LC condition), B (different MS condition, same
LC condition), C (different MS condition, different LC condition)
(Supplementary Fig. 6) (M03, M04, M06, M09 were not included in
the group). The results displayed that the data collected with the
same LC condition (group A and B) outperformed data without LC-
SOP (group C), and group A with the same LC and MS conditions
showed the highest reproducibility. Furthermore, group B with the
same LC condition and different MS type also showed good quali-
tative and quantitative reproducibility, with RSD of qualitative data
<2% and Pearson correlation of quantitative data > 0.9. Above group
A and group B results were comparable to the previous inter-
instrument reproducibility results obtained from harmonized
instruments®.

Performance evaluation of proteome quantification and detec-
tion of differentially expressed proteins from multi-
platform study
To evaluate the quantitative accuracy, precision, and sensitivity of
urinary proteome from different platforms under the unified SOP, we
prepared benchmarking samples, with adding yeast and E. coli pep-
tides in specified distinct ratios to a complex urine peptide back-
ground. Sample A was 65% human urine peptides, 15% yeast, and 20% E.
coli, and Sample B was 65% human urine peptides, 30% yeast, and 5% E.
coli, similar to previous benchmarks?. We analyzed samples A and B in
technical triplicates on three LC-MS platforms, Orbitrap Fusion Lumos,
Orbitrap Exploris 480, and timsTOF Pro 2 (Lumos, E480, and TIMS for
short) based on the above with LC-SOP data acquisition methods.
Firstly, we conducted quality assessment for the data generated
from the three platforms using MSCohort. Three technical repetitions
within each platform demonstrated high qualitative and quantitative
repeatability, with RSD of the identified numbers less than 1% and
median CV of protein intensity below 15% (Supplementary Fig. 7a,b).
For inter-instrument analysis, within 30 minutes, the total identified
protein numbers were 4953, 5224, 6006 in Lumos, E480, and TIMS,
respectively. Among them, 4667 proteins overlap across 3 platforms,
showing high qualitative consistency (Supplementary Fig. 7c). The
Pearson correlation of protein intensity among the 3 LC-MS platforms
was 0.93-0.97, which was comparable with that in the above 10 plat-
forms with LC-SOP (Supplementary Fig. 7d).

Next, more precise assessment of quantitative performance was
performed based on benchmarking samples. The number of quantified
proteins from different species among 3 LC-MS platforms was shown
in Fig. 5a-c (Supplementary Data 5). Different species proteins corre-
spond to different theoretical quantitative ratios (1:1, 1:2, 4:1 and the
log2 ratio is 0, 1, 2 for human, yeast, and E. coli, respectively). As
illustrated in Fig. 5d-f, the median values of the log2 ratios were 0.02 -
0.07, (-0.86) - (-0.74), 1.65 - 1.91, and the medians of relative deviation
from theoretical ratio were 0.09 (0.05 - 0.11), 0.15 (0.11 - 0.2), 0.18
(0.15 - 0.18) for human, yeast and E. coli proteins, respectively. The
median CV values were typically below 15% for Lumos and E480 data
and below 10% for TIMS data (Fig. 5g-i). These results demonstrated
that excellent label-free quantitative accuracy and precision were
achieved in different LC-MS platforms.

As the ultimate goal of most proteomic analysis is to detect dif-
ferentially expressed proteins (DEPs) from different conditions, we
assessed the sensitivity and specificity of different LC-MS platforms in
DEP detection using our benchmarking data sets. DEPs were extracted
using the widely applied criteria of a fold change >1.5 and an adjusted
p-value < 0.05. In this condition, yeast and E. coli in urine could both be
considered as significantly different proteins, as their expected ratios
are 2-fold and 4-fold, respectively. Three LC-MS platforms showed high
sensitivity of DEP detection from Lumos data (67.5% for yeast and
94.5% for E. coli quantified proteins as DEPs), E480 data (74.7% for yeast
and 94.0% for E. coli quantified proteins as DEPs) and TIMS data (80.4%
for yeast and 96.0% for E. coli quantified proteins as DEPs) (Fig. 5j).
Moreover, in the pairwise comparison of human proteins with an
expected ratio of 1:1, three LC-MS platforms resulted in detection of
false DEPs at comparable rates (0.2%, 0.2%, 1.1% false DEPs rates for
Lumos, E480 and TIMS data, respectively) (Fig. 5j). Furthermore, we
assessed the robustness of DEP detection based on the receiver
operating characteristic (ROC) curve analysis, which led to the similar
conclusion (Fig. 5k). In summary, all three LC-MS platforms could
detect DEPs from the benchmarking dataset with high sensitivity and
specificity. In addition, we provided further proof by applying this
workflow to benchmark samples mixed with human HEK 293 cell,
yeast, and E. coli, labeled Sample A-H and Sample B-H (Supplemen-
tary Fig. 8).

Collectively, these results demonstrated that under the unified
SOP, most of the DEPs could be recalled accurately in complex samples
of mixed species with high quantitative accuracy and precision even in
different type of LC-MS platforms, which would broadly increase the
confidence in DIA-based urinary proteomics as a reproducible method
for large cohort protein quantification.

Analyses of cohort clinical proteomics from multi-

platform study

We further illustrated the generalization by applying the above urinary
proteomics SOP to clinical biomarker discovery research in different
platforms. Herein, we collected a clinical cohort comprising 80 urine
samples from colorectal cancer (CRC) patients and 80 samples from
matched healthy controls (HC) (The detailed clinical information is
shown in Supplementary Data 6). Based on the above SOP, LC-MS data
collection for these 160 samples was conducted on Lumos, E480, and
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Fig. 5 | Overall quantitative performance of benchmarking sample-A and
sample-B from 3 LC-MS platforms. Benchmarking samples A and B were prepared
containing known ratios of peptide digestions from human urine, yeast and E. coli,
resulting in expected peptide and protein ratios of 1:1 (A/B) for human, 1:2 for yeast
and 4:1 for E. coli proteins. The samples A and B were analyzed in three technical
replicates on three LC-MS platforms Orbitrap Fusion Lumos, Orbitrap Exploris 480,
and timsTOF Pro 2 (Lumos, E480, and TIMS for short), respectively. a-¢ The
number of proteins identified for each individual organism from sample-A and
sample-B in Lumos, E480, and TIMS, respectively. d, e Log-transformed ratios
(log2(A/B)) of proteins plotted over the log-transformed intensity of sample B in
Lumos, E480, and TIMS (proteins). Colored dashed lines represented the expected
log2(A/B) values for human (green), yeast (orange), and E. coli (purple) proteins. All

True Positive Rate

box plots indicated the median and the first and third quartiles as the box ends.
Whiskers were positioned 1.5-times the interquartile range. g-i The distribution of
the coefficients of variation (CV) obtained on the quantified protein intensity across
the three technical replicates was plotted for each individual organism. All box
plots indicated the median and the first and third quartiles as the box ends.
Whiskers were positioned 1.5-times the interquartile range. j Differentially expres-
sed protein (DEP) detection for three organisms from Lumos, E480, and TIMS,
respectively. Percentages of significantly changed proteins as DEPs over the total
number of quantified proteins in 1:2 and 4:1 condition were used to estimate the
sensitivity, while those in 1:1 condition were used to estimate the specificity.

k Sensitivity and specificity of the DEP analysis based on receiver operating char-
acteristic (ROC) curves. Source data are provided as a Source Data file.

TIMS, respectively (see Methods). QC samples were randomly ana-
lyzed during the collection process for systematic evaluation of
reproducibility. In total, the three platforms generated 527 DIA
experiments including 47 QC experiments.

In the process of cohort experiments collection, an intra-
experiment analysis based on MSCohort QC system was performed
for each newly collected experiment to evaluate the individual data

quality. After the number of experiments collected exceeded 2 runs, an
inter-experiment analysis based on MSCohort QC system was per-
formed to evaluate the stability and reproducibility of the instrument
system. Finally, after all the samples have been collected on one
instrument platform, inter-experiment analysis based on MSCohort
QC system was performed to evaluate cohort data quality and detect
low-quality experiments.
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This cohort experiment is a time course study with at least five
consecutive days of acquisition on each instrument platform. We
analyzed the overall cohort data quality based on the MSCohort QC
system. First, the QC samples demonstrated good technical repeat-
ability, with median Pearson correlation of protein intensity > 0.94 for
each of the 3 LC-MS platforms (Supplementary Fig. 9a), indicating
good LC-MS system stability. The results showed that the overall
chromatographic retention time was stable (the average retention
time deviation <0.25 min) for 7 consecutive days (Figure S.Note 4.2 e).
In addition, MSCohort detected and reported low-performance
experiments based on isolation forest algorithm, as shown in Supple-
mentary Fig. 9b, 8 low-quality samples were reported in TIMS. Among
them, 7 and 6 samples were also reported in Lumos and E480,
respectively. The corresponding heatmap in MSCohort report indi-
cated that there were significant differences between these 8 samples
and other samples in multiple inter-experiment metrics (at least 7 of 23
metrics showed a variation more than two standard deviations (SD)
from its median). Among them, 5 samples (D943, D1116, D1412, H771,
D994) showed higher ratios of contaminants (erythrocytes, cellular
debris, or serum high abundance proteins) than the other samples,
whichresulted in the sample-to-sample variability compared to regular
urinary proteins (Methods). Another 3 samples (H349, D1036, D1069)
showed lower Pearson correlation, and higher robust standard devia-
tion at precursor, peptide, and protein groups intensity with the other
samples, indicating these samples were heterogeneous compared with
other samples (Supplementary Fig. 9c-e). Thus, these 8 experiments
were excluded from further analysis (Supplementary Fig. 9b).

A total of 6780, 7089, and 6620 protein groups were identified in
Lumos, E480, and TIMS, respectively. And 5227 proteins overlap across
the three LC-MS platforms (Fig. 6a, Supplementary Fig. 10a). Subse-
quently, we analyzed the quantitative consistency among the three LC-
MS platforms. The unsupervised learning t-Distributed Stochastic
Neighbor Embedding (t-SNE) results showed that the results from
three different LC-MS platforms for the same sample cluster together,
and no platform effect was observed (Fig. 6b, ¢, Supplementary
Fig. 10b). In the Orthogonal Projections to Latent Structures Dis-
criminant Analysis (OPLS-DA) model, the CRC and Control groups can
be clearly separated, and 100-fold cross-validation experiments indi-
cate that the model did not overfit (Supplementary Fig. 10c-f). These
results demonstrated the good consistency and reproducibility of the
3 LC-MS platforms.

Different expressed proteins analysis showed that a total of 455,
539, and 679 proteins were reported as DEPs (Benjamini-Hochberg
adjusted p-value<0.05) in Lumos, E480, and TIMS, respectively
(Fig. 6d and Supplementary Data 8). And 215 DEPs were overlapped
across 3 platforms. CRC/HC fold changes of these 215 proteins were
highly correlated with Pearson correlation coefficients at r=0.99,
r=0.95, and r=0.95 for the comparisons of E480 and Lumos, E480
and TIMS, and Lumos and TIMS, respectively (Fig. 6e-g). Above results
showed the high quantitative reproducibility of three platforms.

According to function annotation, the top enriched pathways for
DEPs of 3 LC-MS platforms showed a high degree of consistency, with
upregulation of cell proliferation, inflammatory response, and meta-
bolism pathways (actin cytoskeleton signaling, acute phase response
signaling, complement system, etc.) and downregulation of cell death-
and apoptosis-related pathways (FAK Signaling, FAT10 Cancer Signal-
ing Pathway, etc.) (Fig. 6h, Supplementary Data 9). These results were
consistent with the previous reports that tumor proliferation, migra-
tion, and metabolism modules were activated and cell death and
apoptosis were inhibited in CRC patients’. We also compared our
results with previous CRC tissue proteomics analysis study*’. GO
enrichment analysis (Supplementary Fig. 11) showed that extracellular
matrix proteins were both enriched in urine and tissue and ribosome
proteins were only enriched in tissue. The proteins involved in com-
plement activation, immune response, and cell growth/development

process were highly enriched in urine, and the proteins involved in
glucose metabolic, amino acid metabolic, and ribonucleotide meta-
bolic processes were highly enriched in tissue. In addition, the proteins
involved in cell adhesion, coagulation, and regulation of peptidase
activity were both enriched in urine and tissue. These results sug-
gested that urinary proteome changes could reflect not only the
changes of tissue’, but also the changes of body immune systems, etc.

Among them, the protein related to complement activation was
significantly upregulated and showed a high degree of consistency
(Supplementary Fig. 12). Complement is a key player in the innate
immune defense against pathogens and the maintenance of host
homeostasis”. In the tumor-immune interaction, complement-
associated proteins play a vital role whether directly or indirectly by
regulating tumorigenesis, development, and metastasis*’. In CRC,
tumor cells were found to produce Complement C3 (C3) component
thus leading to modulation of the response of macrophages and its
anti-tumor immunity, via the C3a-C3aR axis and PI3K signaling path-
ways. The complement C5a/C5aR pathway was found to induce cell
proliferation, motility, and invasiveness*’. Complement components
C5b, C6, C7, C8, and C9 form the membrane attack complex (MAC),
MAC accumulation on the cell membrane promotes cell proliferation
and differentiation, inhibits apoptosis, and protects cells against
complement-mediated lysis in a sublytic density*>**~*¢, Complement
factor H (CFH) and Complement factor I (CFI) modulated the funda-
mental processes of the tumor cell, promoting proliferation and tumor
progression when tested in animal models*’*%. Collectively, these
highlighted the value of the complement system in tumor progression,
especially that of CRC.

Next, we evaluated these 67 upregulated proteins of 215 proteins
as input variables and investigated the classification performance in
the CRC/HC stratification. The top 15 proteins with the highest area
under the curve (AUC) of each protein in 3 LC-MS platforms were
chosen as candidates (Supplementary Fig. 13a) and 8 common highly
ranked DEPs in 3 platforms were submitted to further machine learn-
ing model building (Supplementary Data 10). We compared six
machine learning classifiers and performed cross-validation by train-
ing the model on one platform and testing it on the other two plat-
forms. Finally, a 5-protein panel (C9, CFI, CFH, RELT, GDF15) showed
the highest and reproducible AUC values in 3 different LC-MS plat-
forms (Supplementary Fig. 13). On average, the Support Vector
Machines (SVM) model showed the highest AUC values of 0.88, 0.93,
and 0.89 for the classification of CRC and HC in Lumos, E480, and
TIMS, respectively (Fig.6i-I). A previous study reported that C9 was
significantly upregulated in colorectal cancer plasma*. Growth/dif-
ferentiation factor 15 (GDF15) is a divergent member of the trans-
forming growth factor-b (TGF-b) superfamily. Experimental evidence
shows that GDF15 enhances tumor growth, stimulates cell prolifera-
tion, and promotes distant metastases™. Previous blood and colorectal
tumor samples from 2 large studies also found high plasma levels of
GDF15 before diagnosis of CRC are associated with greater CRC spe-
cific mortality™.

Taken together, three different LC-MS platform data indicated
consistent and excellent performance for biomarker discovery and
patient stratification in CRC. These results demonstrated the general-
ization of urinary proteomics to support clinical discovery proteomics
research under the condition of a unified SOP and MSCohort QC
system.

Discussion

Large-scale cohort studies usually involve multi-center and long-term
experiments for which comprehensive QC system is needed to ensure
reproducibility and robustness during data generation and
integration'®*. In this study, we developed MSCohort QC system to
perform urinary individual DIA experiment and the whole cohort data
quality evaluation. MSCohort extracted 70 metrics covering the intra-
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Fig. 6 | Clinical colorectal cancer urinary proteomics analysis among three LC-
MS platforms. a Overlap of identified protein groups from Lumos, E480, and TIMS.
b, ¢ The unsupervised learning t-Distributed Stochastic Neighbor Embedding (t-
SNE) plot overview of urinary proteomics among Lumos, E480, and TIMS (b) and
colorectal cancer (CRC) and healthy control (HC) group. d The number of proteins
that significantly different (g-value < 0.05) in abundance by CRC and HC within
each platform. e-g Correlation of protein CRC/HC fold changes in pairwise com-
binations of three platforms. Combinations are E480 vs. Lumos (e), E480 vs. TIMS

(f), Lumos vs. TIMS (g). h Heatmap of the dysregulated canonical pathways
between CRC and HC in the three platforms depicted by IPA ingenuity pathway
analysis. Red: Z score > 0, activated; Blue: Z score <0, inhibited. i Receiver oper-
ating characteristic (ROC) curve for the Support Vector Machines (SVM)-based
model to classify CRC vs. HC individuals when trained on E480 data. j-1 Confusion
matrix showed the model performance for classifying CRC vs. HC individuals.
Source data are provided as a Source Data file.

and inter-experiment, as well as established a DIA scoring system to
provide the relationship between metrics and identification/quantifi-
cation results, assisting users in monitoring the LC-MS workflow per-
formance, detecting potential problems, providing optimizing
direction, detecting low-quality experiments, and facilitating the data
quality control and experimental standardization with large cohort
studies. This system could be applied not only to urinary proteomics
analysis but also to large-scale data analysis of other samples (such as
cell, tissue, blood, etc.).

The unified urinary proteome SOP was developed based on the
MSCohort QC system and applied in multiple laboratories. Analysis
results from 20 LC-MS platforms demonstrated the necessity of
establishing the SOP. Meanwhile, results from 10 platforms without

SOP indicated that these metrics showed lower scores, including the
identification rate of MS2 scans, the utilization rate of MS2 scans, peak
counts of MS2, peak intensities of MS2, and chromatographic invalid
acquiring time, etc. in experiments with fewer identification results
(Supplementary Fig. 3), which also indicated that we should pay
attention to above these metrics when conducting urinary proteomics
experiments. In particular, the identification rate of MS2 scans and the
utilization rate of MS2 scans in the DIA scoring formula play an
important role in the evaluation and optimization of individual
experiments.

We further applied the comprehensive QC system and unified SOP
to the analysis of the complex mixture of digests from human urine,
yeast, and E. coli, to investigate the ability to detect DEPs with the
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quantitative accuracy, precision, and robustness of the different plat-
forms. These results demonstrated that most of the DEPs could be
recalled accurately in complex urine backgrounds with high quanti-
tative accuracy and precision even in different types of LC-MS plat-
forms, which would broadly increase the confidence in DIA-based
urinary proteomics as a reproducible method for large cohort bio-
marker discovery research.

Moreover, the above workflow was applied to clinical large-cohort
colorectal cancer (CRC) urinary proteome with more than 500 pro-
teome experiments from three LC-MS platforms. More than 8000
proteins were reported from the three platforms. To the best of our
knowledge, this study presented the deepest urinary proteome cov-
erage, representing a promising basis for the discovery of biomarkers.
Three different LC-MS platform analyses reported consistent quanti-
tative precision and disease patterns. Interestingly, our data revealed
complement systems were significantly activated in CRC patients.
When combined with machine learning, the urinary proteome data
achieved an AUC > 0.9 to classify CRC and HC. These results validated
urinary proteomics as a valuable strategy for biomarker discovery and
patient classification in CRC.

The demand for precision medicine is driving the need to increase
throughput, improve consistency and accuracy, facilitate longitudinal
research, and make data obtained across laboratories more compar-
able. Previous studies have demonstrated the reproducibility and
quantitative performance of DIA proteomics with harmonized mass
spectrometry instrument platforms and standardized data acquisition
procedures in benchmark cell and tissue samples™®. Our study
expanded the technology to different types of mass spectrometers
from different vendors, and higher complexity urine samples. The
results showed that the highest reproducibility was achieved with the
same LC and MS condition, which was consistent with the previous
study” (Supplementary Fig. 4). Our study also found that different LC-
MS platforms (Lumos, E480, and TIMS) also achieved high consistency
under the same LC conditions and comprehensive QC system. Con-
sistent quantitative accuracy and the ability to discover biomarkers
were also validated in complex benchmarking samples and large-scale
cohort clinical samples. These results highlighted the robustness of
urinary proteomics under the combination of comprehensive QC
system and unified SOP to support both basic discovery proteomics
research and population-scale clinical sample analyses in a high-
throughput manner. This work also increased the confidence that
distributed urinary proteomics studies with hundreds to thousands of
samples and data integration between labs are becoming feasible.

Recent advances in mass spectrometry hardware have provided a
boost in the depth of standard analyses and enabled near-complete
model proteome quantification in minimal measuring time***>. Cou-
pled with the development of data processing software, and the
establishment of comprehensive quality control systems, urinary
proteomics based on DIA technology is poised to mature further,
showing potential for routine analysis of large clinical cohorts with the
necessary depth and sample size to support clinical decision-making
based on biomarker signatures.

Methods
Preparation and distribution of the quality control urine
samples
First-morning urine (midstream) samples were collected from ten
healthy individuals at Peking Union Medical College. Ten urine sam-
ples were combined and centrifuged at 3000 x g for 30 minutes at 4 °C
to remove cell debris. The supernatant was transferred into the 2 mL
EP tube (Corning, USA) and stored at =80 °C for further analysis.
The quality control (QC) urine samples were prepared at the Insti-
tute of Basic Medical Sciences Chinese Academy of Medical Sciences,
School of Basic Medicine Peking Union Medical College, and then the
urine peptide QC samples were distributed to 20 LC-MS platforms.

Urine peptides were prepared by the 96 DRA-Urine method by
following the same steps as in the previous work®. Briefly, a total of
400 mL of pooled urine mixture was processed. Urine (2 mL each tube)
was reduced with 20 mM dithiothreitol (DTT) for 5 min at 95 °C, and
then alkylated with 50 mM iodoacetamide (IAM) at room temperature
(RT) in the dark for 45 min, then urine proteins were pelleted using
6-fold volume precooled acetone, and centrifuged at 10,000 x g for
10 min at 4 °C. The protein precipitate was re-dissolved in 200 pL of
20 mM Tris(pH 8.0) and then combined. The concentration of pooled
urine proteins was quantified using Pierce™ BCA protein assay kit
(Thermo Fisher Scientific, USA) following the manufacturer’s protocol.
During protein precipitation and quantification, each well of the 96-
well PVDF plate (MSIPS4510, Millipore, Billerica, MA) was prewetted
with 150 pL of 70% ethanol and equilibrated with 300 pL of 20 mM
Tris. For each well, one hundred micrograms of proteins were trans-
ferred to the 96-well PVDF plate. The samples were then washed three
times with 200 pL of 20 mM Tris buffer (pH 8.0) and centrifugated.
Proteins were digested by adding 30 pL of 20 mM Tris buffer (pH 8.0)
with trypsin at a ratio of 50:1 (w:w) on the membrane. The samples
were subjected to microwave-assisted protein enzymatic digestion
twice in a water bath for 1 min under microwave irradiation** and then
at 37 °C water bath for 2 h. Subsequently, the resulting peptides were
collected by centrifugation at 3000 x g for 5 min. The eluted peptides
were combined together, and purified with Sep-Pak C18 Vac Cartridge
(Waters). The concentration of pooled peptides was determined by
using Pierce™ Quantitative Colorimetric Peptide Assay kit (Thermo
Scientific) following the manufacturer’s protocol. Then peptides were
aliquoted and lyophilized. Twenty micrograms of urinary peptides
were resolved in 0.1% formic acid (FA) to 1 pg/pL. Subsequently, eleven
non-naturally occurring synthetic peptides from the iRT kit (Biog-
nosys) were spiked into the sample at a ratio of 1:30 (v/v) to correct
relative retention times between acquisitions. Finally, samples were
shipped to the 20 LC-MS platforms.

Preparation of Cell, E. coli, and S. cerevisiae samples

HEK 293 cells were grown in Dulbecco’s modified eagle medium
(DMEM) supplemented with 10% fetal bovine serum (FBS) and peni-
cillin/streptomycin (1:1000) in 37 °C chamber supplied with 5% CO,.
Cells were lysed in buffer (50 mM Tris-HCI pH 8.0, 2 % sodium
dodecyl sulfate (SDS), Protease Inhibitor) and sonicated for
5 minutes with power on 4 seconds and off 3 seconds at 25% energy.
Proteins were pelleted by cold acetone, then resolved in 25 mM Tris-
HCI buffer (pH 8.0), and concentration was determined by the
bicinchoninic acid assay (BCA) kit (Thermo Scientific).

Escherichia coli DH5a was cultured in Luria Broth (LB) medium at
37 °C to mid-log phase, shaking at 240 rpm/min, in Luria Broth (LB). S.
cerevisiae CG1945 were grown at 30 °C to mid-log phase, shaking at
300 rpm/min in the yeast-peptone-dextrose (YPD) medium. Cells of E.
coli and S. cerevisiae were harvested by centrifugation at 4000 x g for
5 min and washed twice with ice-cold phosphate buffered saline (PBS).
Cell pellets were resuspended in lysis buffer (50 mM Tris-HCI pH 8.0,
2% SDS, Protease Inhibitor). Then sonicated for 10 minutes with power
on 4 seconds and off 3 seconds at 25% energy. Proteins were pelleted
by cold acetone, then resolved in 25 mM Tris-HCI buffer (pH 8.0) and
concentration was determined by the bicinchoninic acid assay (BCA)
kit (Thermo Scientific).

The HEK 293 cells, Escherichia coli, and S. cerevisiae proteins were
delivered to digestion by Filter-aided sample preparation (FASP)
method. In brief, 100 pg of cell lysates were reduced with 20 mM DTT
at 95°C for 5minutes and alkylated with 50 mM IAM for 45 min at
room temperature with dark. Protein solutions were loaded into the 10
kD ultracentrifugation tube equivalented with 25 mM NH4HCO; buffer.
Then proteins were digested with trypsin (Promega) with a 50:1 ratio
(w/w) overnight at 37 °C in an ultracentrifugation tube. Peptides were
desalted by SPE column (Waters), aliquoted, and dried by SpeedVac.
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Peptides were resuspended at a concentration of 1ug/ul with HPLC-
grade water containing 0.1% (v/v) FA.

The pooled sample A was prepared by mixing human urine, S.
cerevisiae (yeast), and Escherichia coli (E. coli) peptides at 65%, 15%, and
20% w/w, respectively. The pooled sample B was prepared by mixing
human urine, yeast, and E. coli protein digests at 65%, 30%, and 5% w/w,
respectively. The pooled sample A-H was prepared by mixing human
(HEK 293), yeast (S. cerevisiae), and E. coli (Escherichia coli) peptides at
65%, 15%, and 20% w/w, respectively. The pooled sample B-H was
prepared by mixing human HEK 293, yeast, and E. coli protein digests
at 65%, 30%, and 5% w/w, respectively. The iRT kit (Biognosys) was
added to each of the pooled samples at a ratio of 1:30 (v/v). For LC-MS
analysis, 1 g of pooled sample was adopted.

Preparation of human colorectal cancer and healthy control
samples

A total of 80 CRC patients (48 males and 32 females; median age 57
years, min-max: 42-69 years) were recruited from the Cancer Hospital,
Chinese Academy of Medical Sciences. All patients were pathologically
diagnosed by two senior pathologists, and first-morning midstream
urine samples were collected before surgical operations or che-
motherapy/radiotherapy. In addition, 80 urine samples from healthy
control (HC) (52 males and 28 females; median age 55 years, min-max:
40-68 years) were obtained from the Health Medical Center of the
Cancer Hospital. The enrollment criteria for HC subjects were as fol-
lows: (1) the absence of benign or malignant tumors; (2) a qualified
physical examination finding no dysfunction of vital organs and (3)
normal renal function and without albuminuria. Supplementary Data 6
lists the demographic and clinical characteristics of the 80 CRC
patients and 80 HCs.

CRC and HC samples urine protein preparation and digestion
were performed in the same way as the quality control urine samples
by the 96 DRA-Urine method. In addition, each 96-well plate contains 3
Quality Assurance (QA) samples (pooled urine samples of equal pro-
tein amount from each sample) to monitor the reproducibility of the
sample preparation. The resulting urine peptides from each sample
were equally divided into triplicates for data acquisition on three LC-
MS platforms, respectively.

Data acquisition of urinary proteome from 20 LC-MS platforms
The 20 participant platforms used 3 different types of mass spectro-
meters, including Orbitrap (ThermoFisher Scientific), timsTOF (Bruker
Daltonik), and ZenoTOF (SCIEX). To systematically analyze the varia-
tion among different LC-MS platforms and the main influencing fac-
tors, we divided 20 platforms into 2 groups. Ten of these platforms
used the procedures and parameters they routinely used (number
MO01-M10), and the other 10 LC-MS platforms employed a unified LC
condition (the same type of column and same gradient) and consistent
MS parameters for the same type of instrument (number U01-U10).
The detailed LC and MS acquisition parameters are provided in Sup-
plementary Data 2, and the data acquisition was performed according
to the SOP for urinary proteomics (Supplementary Note 3). All parti-
cipant LC-MS platforms collected 1 pure iRT (Biognosys) data, 3 DDA
data, 3 DIA data, and 1 blank to assess carry-over. The acquisition time
was 30 min. The performance of DDA data acquired across multi-
platform was investigated and provided in Supplementary Fig. 15.

Data processing of urinary proteome from 20 LC-MS platforms
Data-independent acquisition data from the 20 LC-MS platforms
dataset were processed with Spectronaut v.18.0 performing the
directDIA analysis. All searches were performed against the human
SwissProt database (Homo sapiens, 20386 reviewed entries, 2022_06
version), concatenated with iRT peptide.fasta file (downloaded from
the Biognosys webpage). Briefly, the specific enzyme used Trypsin/P,
peptide length from 7 to 52, max missed cleavages was set 2, toggle

N-terminal M turned on, Carbamidomethyl on C was set as fixed
modification, and Oxidation on M as variable modification. The
extraction of data used dynamic MS1 and MS2 mass tolerances, a
dynamic window for extracted ion current extraction window, and a
non-linear iRT calibration strategy. The identification was carried out
using a kernel density estimator and Qvalue cut-off of 0.01 at precursor
and protein levels. The top N (min:1; max:3) precursors per peptide
and peptide per protein were used for quantification. Peptide intensity
was calculated by the mean precursor intensity. Cross-run normal-
ization was turned off. Additional DDA data collected under the same
conditions as DIA data were added to create a hybrid library. The data
processing results were exported using customized reports for further
data analysis using MSCohort. The customized reports required in
MSCohort were provided in Supplementary Data 1C. According to the
different DIA methods of different LC-MS platforms, PG.MS2Quantity
results were chosen for conventional DIA method, and PG.MS1Quan-
tity results were chosen for HRMSI-DIA methods for subsequent
quantitative analysis.

Data acquisition of pooled samples A and B

Equivalent amounts of pooled sample A, sample B, sample A-H, and
sample B-H were shipped to three LC-MS platforms (U02-Lumos, U06-
E480, and UO08-timsPro 2). Samples were resuspended to final con-
centrations of 1 pg/uL in 0.1% FA with iRT and analyzed in three tech-
nical replicates using the DIA method provided in SOP on each LC-MS
platform.

Data processing of pooled samples A and B

Data-independent acquisition spectra in the 3 participant platforms
dataset were analyzed with Spectronaut v.18.0 performing the direct-
DIA analysis. All searches were performed against the Uniprot database
for human (organism ID 9606, 20386 reviewed entries, 2022_06 ver-
sion), yeast (organism ID 559292, 6727 entries, 2023_02 version), E. coli
(organism ID 83333, 4634 entries, 2023_02 version) taxonomies, con-
catenated with iRT peptide.fasta file (dlownloaded from the Biognosys
webpage). Default settings were used unless otherwise noted. Cross-
run normalization was turned off. Carbamidomethyl on C was set as
fixed modification, and Oxidation on M as variable modification.

Data acquisition of CRC and HC proteomes
Equivalent amounts of urine peptides were shipped to three LC-MS
platforms (U02-Lumos, U06-E480, and U08-timsPro 2). Samples were
resuspended to final concentrations of 1 pg/ uL in 0.1% FA with iRT and
analyzed using the DIA method provided in SOP. QC samples were
analyzed in triplicate before CRC and HC samples analyses and a single
QC sample analysis was performed midway through the overall ana-
lysis. The acquisition of samples was randomized to avoid bias.

LC-MS analysis of generating dataset for three different LC-MS
platforms was collected by Orbitrap Fusion Lumos coupled with an
EASY-nLC 1000 system, an Orbitrap Exploris 480 mass spectrometer
coupled with Vanquish Neo UHPLC system (Thermo Fisher Scientific),
and a timsTOF Pro 2 mass spectrometer (Bruker) coupled with an
UltiMate 3000 UHPLC system. All three LC-MS platforms were oper-
ated in DIA mode over a 30-minute total gradient. For three LC sys-
tems, peptides ware separated at a constant flow rate of 500 nL/min by
the same type of analytical column (50 cm x 50 pm monolithic silica
capillary column (Beijing Uritech Biotech)). LC mobile phases A and B
were 100% H,0 with 0.1% FA (v/v) and 80% ACN / 20% H,0 with 0.1% FA
(v/v), respectively. In 30 min experiments, the gradient of mobile
phase B increased from 5% to 20% over 22 min and then increased to
30% over 3 min, a further 1 min plateau phase at 90% B, and a 4 min
wash phase of 1% B.

Data acquisition on Orbitrap Fusion Lumos was performed in DIA
mode using 80 variable windows covering a mass range of
350-1200 m/z. The resolution was set to 120,000 for MS1 and 30,000
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for MS2. The Normalized AGC Target was 300% for MS1 and 200% for
MS2, with a maximum injection time of 50 ms in MS1 and 50 ms in MS2.
HCD Normalized Collision Energies was set to 32%.

Data acquisition on Orbitrap Exploris 480 was performed in DIA
mode using 80 variable windows covering a mass range of
350-1200 m/z. The resolution was set to 120,000 for MS1 and 30,000
for MS2. The Normalized AGC Target was 300% for MS1 and 200% for
MS2, with a maximum injection time of 50 ms in MS1 and 50 ms in MS2.
HCD Normalized Collision Energies was set to 30%.

Data acquisition on timsTOF Pro 2 was performed in diaPASEF
mode using 50 windows. The MS spectra were acquired from 100 to
1700 m/z. The ion mobility was scanned from 0.75 to 1.3 Vs/cm?”. The
ramp time was set to 100 ms. The collision energy was ramped linearly
as a function of the mobility from 59 eV at 1/KO = 1.6 Vs/cm?* to 20 eV at
1/KO = 0.6Vs/cm?. Isolation windows of a 16 m/z width were set to
cover the mass range of 350 to 1200 m/z in diaPASEF.

Data processing and analysis of CRC and HC proteomes

The DIA data from 3 LC-MS platforms were analyzed separately with
Spectronaut v.18.0 performing the directDIA analysis. Default settings
were used unless otherwise noted. Cross-run normalization was turned
off. Carbamidomethyl on C was set as fixed modification, and Oxidation
on M as variable modification. All searches were performed against the
human SwissProt database (Homo sapiens, 20,386 reviewed entries,
2022 _06 version), concatenated with iRT peptide.fasta file.

The data processing results were exported using customized
reports for further data analysis using MSCohort. The low-quality data
analyzed by MSCohort was excluded. Then log2 transform and
directLFQ> normalization were performed for all samples. Proteins
with missing values < 50% of the samples in each group were retained
for further analysis. Missing values were imputed based on the
sequential k-nearest neighbor (Seq-KNN) method using NAguideR>.

Statistical analyses

Differentially expressed proteins analysis was performed using the
LIMMA® package (version 3.58) in R (version 4.3) with the expectation
that proteins significantly altered between CRC and HC exhibited
Benjamini & Hochberg-adjusted p < 0.05. Pathway analysis of protein
alterations was performed using Ingenuity Pathway Analysis (Qiagen).
The correlation, t-SNE, and heatmap plots were performed using
Corrplot (version 0.92), Rtsne (version 0.16), and ComplexHeatmap
(version 2.16.0) packages in R (version 4.3). Pattern recognition ana-
lysis (OPLS-DA) was performed using SIMCA 14.0 (Umetrics, Sweden)
software. Six machine learning models (Logistic Regression, K-Nearest
Neighbor, Gaussian Naive Bayes, Support Vector Machines, Random
Forest, Gradient Boosting Decision Tree) were performed using scikit-
learn®® modules (version 0.23) in Python (version 3.7). The UniProtKB/
Swiss-Prot public database was used to map the gene names of DEPs,
and enrich GO terms and KEGG pathways was performed using
clusterProfiler*® (v.4.8.3) in R (version 4.3). Protein—protein interaction
(PPI) plot was performed using STRING (v.11.0) and Cytoscape (v.3.7.2).

MSCohort system
The workflow of MSCohort consists of two modules: Intra-experiment
analysis and inter-experiment analysis.

(1) Intra-experiment analysis enables the systematic evaluation
and optimization of individual experiment. We have developed
the quality control software tool MSRefine to evaluate and
optimize the performance of individual DDA experiment in
previous study®. MSCohort integrated the metrics and function
of MSRefine, and established a quality control system for indi-
vidual DIA experiment. Here, we mainly focus on introducing
the metrics and steps for evaluation and optimization of indi-
vidual DIA experiment in MSCohort. The QC metrics for DIA
experiments are divided into six categories: sample,

chromatography, DIA windows, ion source, MS1 and MS2 signal,
and identification result. We established a metric-score system
for individual experiment quality evaluation and data optimiza-
tion (Supplementary Fig. 1a). A detailed description of the
metrics is provided in Supplementary Data 1A. The workflow for
intra-experiment analysis consists of three steps: reading.raw/
.d/.wiff files and identification/quantitation results, extracting
metrics and scoring, and generating a visual report.

Step 1: Reading the.raw/.d/.wiff files and identification/
quantitation results. The.raw/.d/.wiff files can be converted
to.msl/.ms2 files using pXtract, timsTOFExtract, and wiffExtract,
respectively. For processing of timsTOF data, timsTOFExtract
used TimsPy®® to convert the proprietary format (Bruker Tims
data format (TDF)) to the textual.msl/.ms2 files. All three in-
house tools were embedded in MSCohort. Besides, the
identification and quantification results were extracted from
Spectronaut®, and the customized reports required in MSCo-
hort were provided in Supplementary Data 1C.

Step 2: Extracting metrics and scoring. This module
carries out two tasks: (1) extraction of metrics and (2) calcula-
tion of the first-level and second-level scores.

To represent the experimental conditions of DIA with a
mathematical model, we designed a quality scoring system for
DIA data based on our previous DDA data quality scoring
system™,

The DDA scoring formula is expressed as:

N identified precursors N acquired MS2 x QMSZ xP MS2per precursor (2)

Where Nigensified precursors 1S the number of identified peptide
precursors, Nocqired_ms2 iS the number of acquired MS2 scans,
Qus; is the identification rate of the MS2 scans (the number of
identified MS2 scans/ the number of acquired MS2 scans), and
Prisa_per_precursor 1S the utilization rate of the MS2 scans (the
number of unique peptide precursors/ the number of identified
MS2 scans).
The DIA scoring formula is expressed as:

N identified_precursors = N acquired _MS2 x QMSZ x (N precursor_per _MS2 / Rprecursur)

©)

where Nigencified precursors 1S the number of identified peptide
precursors, Nycquireq_us i the number of acquired MS2 scans,
Qys;, is the identification rate of the MS2 scans (the number of
identified MS2 scans/ the number of acquired MS2 scans),
Noprecursor_per_ms2 1S the spectra complexity of MS2 scans (the
number of redundant identified precursors/ the number of
identified MS2 scans), R,cusr IS the precursors
duplicate identification rate (the number of redundant identi-
fied precursors/ the number of identified precursors), and
(N precursor_per_ms2/Rprecursor 18 the utilization rate of the
MS2 scans (the number of unique peptide precursors/ the
number of identified MS2 scans).

This DIA scoring formula was designed based on the DDA
scoring formula, the utilization rate of the MS2 scans was divi-
ded into the spectra complexity of MS2 scans and the precursors
duplicate identification rate. Since the DIA method was to frag-
ment all the parent ions in the isolation window to obtain a
mixture MS2 spectrum, theoretically an MS2 scan can be iden-
tified to multiple precursors. Therefore, we established a spectra
complexity index to represent the number of precursors that
can be identified by an average MS2 spectrum/scan. The spectra
complexity depends on the DIA windows number and the win-
dow size. For example, in Supplementary Note 3, when we set 80
MS2 windows per cycle, the average window size was 6 Da, the
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spectra complexity (Redundant identified precursors/ Identified
scan rate) was 2.27, and the precursors duplicate identification
rate (Redundant identified precursors/ Identified precursors
rate) was 1.58. Therefore, the utilization rate of the MS2 scans of
80 MS2 windows was 1.44 (2.27/1.58 = 1.44); When the number of
MS2 windows was set to 22 windows per cycle, the average
window size was 26 Da, and the spectra complexity was increa-
ses to 4.1. However, the corresponding precursors duplicate
identification rate was 4.07, so the utilization rate of MS2 scans
was 1.01 (4.1/4.07=1.01). Therefore, balancing spectra com-
plexity and precursors duplicate identification rate was the key
to improve the utilization rate of MS2 scans. Formula (3) was a
naive formula but can be extended and used to characterize
different kinds of DIA experiments.

Step 2.1 Extraction of metrics. MSCohort read.ms1/.ms2
files, extracting and calculating MS1- or MS2-related metrics,
including cycle time, ion injection time, peaks intensity, peak
counts, and scans number of MS1 or MS2. At the same time,
MSCohort extracted peptide features® from MSI1 scans, analyz-
ing how many features are detectable by high-resolution MS and
how many of them are identified by search engine. After data
processing, MSCohort obtained more metrics according to the
Spectronaut report, including the number of identified pre-
cursors, peptides, and proteins. In addition, the data processing
results also included missed cleavages of peptides, peak width,
FWHM, mass accuracy, precursors intensity, and protein group
intensity-related metrics. MSCohort also calculated the spectra
complexity of MS2 scans and the precursors duplicate identifi-
cation rate to analyze whether the MS2 scans were fully utilized
for peptide precursors. We provided a detailed introduction to
all the metrics proposed by MSCohort in Supplementary Data 1A,
including their specific meanings and extraction processes.

Step 2.2 Calculation of the first-level and second-level
scores.

It is not convenient for users to comprehensively evaluate
the data if only display the values of each metric. Therefore, we
assigned scores to each metric and established a first-level and
second-level scoring system (Supplementary Fig. 1la, 1b).
MSCohort computes a quality score for each of the QC metrics
using a score function (see below), and these QC metrics quality
scores were defined as second-level scores. These five categories
in Formula (3) were defined as first-level scores, including the
number of identified peptide precursors, the number of
acquired MS2 scans, the identification rate of MS2 scans, the
spectra complexity of the MS2 scans, and the precursors
duplicate identification rate.

Each metric was scored on a scale of one to five, with “5
points” being excellent and “1 point” indicating plenty of room
for improvement. Taking the metric M12. Median of MSI1 raw
mass accuracy (The median of delta mass between the mono-
isotopic theoretical and the measured m/z of precursors) as an
example, for Thermo Orbitrap instrument, the median of MS1
raw mass accuracy <1 ppm was 5 points. The median of MSI raw
mass accuracy = 5 ppm was 1 point. For the median of MSI raw
mass accuracy between > 1 ppm and <5 ppm, a linear scoring
algorithm is applied.

Due to the diversity of experimental methods and instru-
ments, scoring standards are often not fixed and uniform in
practice. In this study, the scoring standards for each metric
were set based on the data of urinary proteomic optimization
experiments collected under different parameter conditions
and the data of urine QC samples collected on 20 platforms.
Users can adjust scoring define standards according to the
actual situation. After determining the scoring standards, each
of the metrics is assigned an individual score. We provided the

detailed instructions for users to adjust the scoring standards in
the user manual of MSCohort (https://github.com/BUAA-
LiuLab/MSCohort). As shown in Supplementary Fig. 1a, differ-
ent scores are represented in different colors. Users can directly
determine which metric is low-performance based on the colors.

The QC metrics in the DIA LC - MS workflow would affect
the first-level scores. For example, high missed cleavage, long
chromatographic invalid acquiring time, and lower peaks
intensity of MS2 would result in low MS2 identification rate.
The metrics that affect first-level scoring are measured by
second-level scores. MSCohort calculates the second-level
scores, then averages them to obtain the corresponding first-
level scores, and subsequently applies a similar process to
calculate the total score. The final scoring results will be visually
presented in various forms.

Step 3: Generating a visual report.

MSCohort generates a report with comprehensive tables
and charts. We use suitable graphs or tables, such as graphs
showing the accumulated number of MS2 scans or precursors,
to give a global view of the performance of the LC-MS workflow.
More details are complemented by various graphs, such as a
histogram showing the peptide eluting width, a statistical bar
graph showing the number of precursors identified by one
MS2 scan, or a scatter graph showing the peak counts of each
MSI1 or MS2 Scan. The outputs are also exported to simple tab-
delimited text files, so visualization or analysis can also be
performed using external tools or code scripts.

(2) Inter-experiment analysis. This module incorporates an addi-
tional 23 inter-experiment metrics for inter-experiment compar-
isons and low-quality experiments detection. The workflow for
inter-experiment analysis consists of three steps: reading intra-
experiment data and identification/quantitation results, extract-
ing inter-experiment metrics and scoring, and generating a
visual report.

Step 1: Reading intra-experiment analysis results.

For the submitted cohort data, MSCohort first conducted the
intra-experiment analysis on each original data to generate the intra-
experiment metrics value and score result for each data. The scores are
collated to create an overview chart (heatmap) that displays metric
scores per Raw file for a comprehensive overview of the whole cohort.

Step 2: Extracting inter-experiment metrics and scoring. This
module carries out two tasks: extraction of metrics and calculation of
quality scores.

Step 2.1 Extraction of metrics

MSCohort inter-experiment metrics can be assigned to five cate-
gories (Sample Preparation, Liquid Chromatography, and Precursor-
level, Peptide-level, and Protein group-level Quantification Results)
according to the experimental workflow and quantification results. We
provided a detailed description to all the inter-experiment metrics
proposed by MSCohort in Supplementary Data 1B. The key metrics are
listed below.

Metrics SP1-SP3: Customizable contaminant search
Pre-analytical variation caused by contaminations during sample col-
lection or inconsistent sample processing can have an impact on the
results and may cause the reporting of incorrect biomarkers®’.
MSCohort offers configurable lists of custom protein contaminants to
help users assess each sample for potential quality issues.

For urine sample quality control, we used three urine-specific
quality marker panels to assess the degree of contamination of the
samples. Firstly, we used two previously reported quality marker
panels to determine the degree of contamination with erythrocytes®>*
and cellular debris®. Contamination of erythrocytes occurs during
urine collection due to hematuria or hemolysis caused by kidney
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function issues or systemic disorders, leading to a high sample-to-
sample variability compared to regularly secreted urinary proteins®>®,
Insufficient removal of cells and cellular debris from urine will lead to
increased detection of intracellular proteins with a high sample-to-
sample variability compared to regularly secreted urinary proteins®*. In
addition, proteinuria occurs due to abnormalities in kidney function or
systemic disorders, resulting in the leakage of serum proteins into the
urine. This can lead to increased detection of serum proteins with high
sample-to-sample variability®>. We generate the third urine-specific
quality marker panel to asses of contamination with serum high
abundant protein.

MSCohort reports the proportion of the summed contaminant
protein intensity/ the sum intensity of all proteins for each sample. For
each metric, we initially defined potentially contaminated samples as
those with a value more than two standard deviations above the
median.

Metrics LC1 and LC2: Retention time deviation

The retention time (RT) of each analyte in MS data usually has shifts for
multiple reasons, including matrix effects and instrument perfor-
mances, especially for large cohort studies®. MSCohort extracts the
retention time (RT) and deltaRT of precursors from the Spectronaut
report. MSCohort also calculates the mean-square error (MSE)
between any two LC-MS experiments.

1 n
MSE="% (Y, ~Y)} *
i=1

Where n is the number of LC-MS experiments, Y is the RT array of the
retention times of the same precursors identified in both two
experiments. MSE is calculated for precursors RT between all LC-MS
experiments (i=1,...,n;j=1,...,n).

Metrics MS1 - MS18: Precursor-level, Peptide-level, and Protein
group-level quantification results

Six statistical metrics were chosen to describe the distribution of
precursor/ peptide/ protein abundance across all experiments. These
metrics include the number of identifications, the median intensity
distribution, the interquartile range (IQR), robust standard deviation®’,
Pearson correlation, and the normalization factor of the intensity at
the precursor, peptide, and protein levels. Currently, MSCohort offers
three commonly used normalization algorithms, directLFQ>,
maxLFQ®, and quantile®®°,

Step 2.2 Calculation of cohort quality scores

For each inter-experiment metric, quality control scores are cal-
culated based on statistical assessment of the median and standard
deviations for all experiments. We exploit the assumption that the
majority of the proteome typically does not change between any two
conditions so that the median behavior could be used as a relative
standard®®, The values of more than two standard deviations (SD) from
its median indicating heterogeneity with other experiments.

We initially defined potentially low-quality data as those with a
value more than two standard deviations from the median. Each score
is scored on a scale of one to five, with “5 points” when the parameter is
close to or above the overall median and “1 point” when the parameter
is more than two standard deviations (SD) from its median indicating
plenty of room for improvement. This setup enables automated non-
subjective inter-experiment or instrument performance evaluation.
Taking the median of protein intensity as an example, the median of
protein intensity close to or above the overall median is 5 points, less
than the overall median minus two standard deviations is 1 point. Due
to the diversity of experimental conditions and sample type, scoring
standards are often not fixed and uniform in practice. Users can adjust
scoring and define standards according to the actual situation.

Step 2.3 Identify outlier LC-MS experiment(s) using the isola-
tion forest algorithm

Previous studies have shown that the LC-MS experimental
process is complex, with numerous factors influencing LC-MS data,
and these factors are not independent but may affect each other.
Therefore, for high-dimensional and complex LC-MS data, super-
vised classifiers heavily rely on training data. Data from different
instruments, laboratories, and sample types require re-labeling and
retraining, leading to poor generalization. Consequently, unsu-
pervised machine learning algorithms are commonly used for out-
lier data analysis®*”".

Here, we applied an excellent unsupervised and online outlier
detection algorithm, Isolation forest (iForest), to distinguish outlier
experiments. iForest achieves outstanding success in most scenarios
by taking advantage of the anomalous nature of “few and different”’%. It
has unique advantages in dealing with large datasets due to its low-
computational complexity”>”*.

As mentioned in the original iForest paper, the unsupervised and
online outlier detection algorithm is a two-stage process. The first
(training) stage builds isolation trees using sub-samples of the training
set. The second (testing) stage passes the test instances through iso-
lation trees to obtain an anomaly score for each instance. This algo-
rithm does not require a labeled dataset or pre-training of offline
models, it can dynamically construct isolation trees online for any
batch of data.

First, the 23 inter-experiment metrics value for each experiment in
the cohort were integrated into a two-dimensional matrix. Then, the
outlier experiments detection were performed using iForest algorithm
with two-stage process:

(1) Training stage: iForest randomly selects subsamples from the
cohort, then a feature (metric) is randomly selected, and a
separation value is randomly generated within the selected
feature value range to “isolate” the sample point. Then iForest
recursively selects different features and values from the child
subset to split the child into smaller subsamples. iTrees are
constructed by recursively partitioning the given training set
until instances (samples) are isolated or a specific tree height is
reached of which results a partial model. Many iTrees will make
up the iForest. Thus, we can get the average path length of all
iTrees in the iForest.

(2) Evaluating stage: iForest passes the samples through isolation
trees to obtain an anomaly score for each sample. Outliers
are those samples which have short average path lengths
on the iTrees and low anomaly score. The iForest was
implemented using scikit-learn*® python library (version
0.23) module sklearn.ensemble.lsolationForest with default
parameters.

Step 3: Generating a visual report

MSCohort generates a report with comprehensive tables and
charts. The scores are collated to create an overview heatmap that
displays the metrics scores per experiment for a compressed over-
view of the whole cohort. The user can subsequently follow up on
detailed quality metric plots of interest in the remainder of the
report. In summary, quality control metrics offer a visual guide to
users to judge the data quality, whereas scores computed from the
underlying data represent a mathematically more rigid way to
automatically flag data sets as failed or successful. In addition, the
underlying metrics values and scores are automatically exported to
a text file and can be readily used for manual comparison and
annotation of data sets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

The mass spectrometry proteomics data, search results, and detailed
analysis report from MSCohort have been deposited to the Proteo-
meXchange Consortium via the iProX partner repository”>”® with the
dataset identifier PXD050291 and IPX0008194000. Source data are
provided with this paper.

Code availability

MSCohort is developed in Python and is freely available. The latest
software version and the user manual can be downloaded from GitHub
(https://github.com/BUAA-LiuLab/MSCohort).
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