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Accelerating discovery of bioactive ligands
with pharmacophore-informed
generative models

Weixin Xie1,6, Jianhang Zhang2,6, Qin Xie2, Chaojun Gong2, Yuhao Ren3, Jin Xie1,
Qi Sun 3,4,5, Youjun Xu 2 , Luhua Lai 1,3,4,5 & Jianfeng Pei 1,5

Deep generative models have advanced drug discovery but often generate
compounds with limited structural novelty, providing constrained inspiration
for medicinal chemists. To address this, we develop TransPharmer, a gen-
erative model that integrates ligand-based interpretable pharmacophore fin-
gerprints with a generative pre-training transformer (GPT)-based framework
for de novo molecule generation. TransPharmer excels in unconditioned dis-
tribution learning, de novo generation, and scaffold elaboration under phar-
macophoric constraints. Its unique exploration mode could enhance scaffold
hopping, producing structurally distinct but pharmaceutically related com-
pounds. Its efficacy is validated through two case studies involving the dopa-
mine receptor D2 (DRD2) and polo-like kinase 1 (PLK1). Notably, three out of
four synthesized PLK1-targeting compounds show submicromolar activities,
with themost potent, IIP0943, exhibiting a potency of 5.1 nM. Featuring a new
4-(benzo[b]thiophen-7-yloxy)pyrimidine scaffold, IIP0943 also has high PLK1
selectivity and submicromolar inhibitory activity in HCT116 cell proliferation.
TransPharmer offers a promising tool for discovering structurally novel and
bioactive ligands.

Identifying compounds with bioactivity against desired targets has
been one of the important objectives for rational drug discovery. Deep
learning-based generative models have emerged as currently pre-
dominant methodologies, demonstrating their efficacy in advancing
towards this objective1–13. One well-known instance is that scientists at
Insilico Medicine successfully employed their generative model,
GENTRL, to uncover nanomolar inhibitors for the DDR1 kinase within a
short timeline1. Beyond GENTRL, researchers exhibit a fervent interest
in exploring the potential of molecular generative models through
investigations of diverse combinations of model components, includ-
ing architectures14–19, molecular representations20–22, and optimization
algorithms23–26.

Effective as generative models are, their efficiency raises new
concerns: how does the creativity of generative models compare to
that of humans? Can the designs generated by these models inspire
human experts? In 2018, Bush et al. conducted an interesting experi-
ment—a Turing test involving three molecular generators27, including
RG2Smi, a deep learning-based generative model28. They found that it
was hard for RG2Smi to propose molecular designs that align with
those of human medicinal chemists or gain acceptance from them.
Moreover, the novelty of the bioactive compounds generated auto-
matically has constantly been under debate29–31. Moret et al. fine-tuned
their chemical language models (CLMs) using 46 highly active PI3Kγ
inhibitors before employing them to generate new inhibitors against
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PI3Kγ kinase. The chemical structures of the most potent ligands
designed or inspired byCLMs, namely compounds 18 and 22, exhibit a
high degree of similarity to knownPI3Kγ inhibitors2. Other studies that
applied transfer learning to bias molecular generators toward specific
protein targets often encounter varying degrees of novelty issues with
the bioactive compounds generated3–6. These results underscore the
urgent need for a deep understanding of the “correct recipes” for
generative models to produce compounds that are bioactive while
novel enough, in order to serve as useful copilots for humanmedicinal
chemists.

Pharmacophore-informed generative models present alternative
approaches to promote this understanding. The pharmacophore
model, rooted in pharmaceutical features, offers a coarse-grained
solution for molecular representation, facilitating scaffold hopping
among chemically diverse ligands32,33. Furthermore, pharmacophore
serves as a bridge linking molecular structure and bioactivity. Given
these advantages, there has been a recent surge in interest regarding
the utilization of pan-pharmacophore features for molecular
generation34–36. For instance, Imrie et al. introduced DEVELOP, a
pharmacophore-aware generative model employing 3D grids to
represent target pharmacophores, for linker design and scaffold
elaboration34. Their results demonstrated that generative models can
leverage pharmacophoric information to produce molecules with
distinct structures that maintain crucial non-bond interactions with
receptors. Similarly, LigDream encodes and decodes 3D voxels
representing five common types of pharmacophore features for de
novo molecular design35. Other pan-pharmacophore features have
been incorporated into generative models, including condition vec-
tors indicating the shortest bond distances, as well as the presence,
absence, or exact quantities of specific pharmacophoric features37,38.
Recently, Zhu et al. introduced PGMG, which employs a fully con-
nected graph containing selected pharmacophore features of a refer-
ence compound39. PGMG was able to generate drug-like molecules
with superior docking scores compared to known bioactive ligands
and showcased its capability of scaffold hopping from an initial EGFR
inhibitor. However, it is noteworthy that most novel molecules gen-
erated by pharmacophore-based generative models have not yet
undergone wet lab experimental testing to validate this methodology.

In this study, we present TransPharmer as an innovative
pharmacophore-aware generative model, which employs ligand-
based pharmacophore kernels to achieve structural abstraction
while preserving fine-grained topological information. The ligand-
based pharmacophore kernels are similar to those used in the pre-
vious studies for ligand-based virtual screening40,41. Our pharmaco-
phore kernels are encoded into multi-scale and interpretable
fingerprints, serving as prompts for TransPharmer. The architecture
of TransPharmer is reminiscent of a generative pre-training trans-
former (GPT)42, as illustrated in Fig. 1, establishing a connection
between pharmacophores and molecular structures represented by
the simplifiedmolecular-input line-entry system (SMILES)43. We posit
that equipping GPT with pharmacophore knowledge enables the
model to focus on the pharmaceutical aspects of the chemical
structures and generate drug-like molecules. During our evaluation,
TransPharmer demonstrated superior performance compared to
other baseline models in tasks involving de novo generation and
scaffold elaboration under pharmacophoric constraints. We also
highlight TransPharmer’s distinctmode in probing the local chemical
landscape surrounding a reference compound, rendering it highly
suitable for scaffold-hopping tasks in drug discovery. We further
validate the capability of TransPharmer to produce innovative and
bioactive ligands through two case studies involving DRD2 and PLK1.
Notably, we experimentally tested four generated compounds tar-
geting PLK1, which feature a new series of scaffolds. Among these,
three out of four compounds exhibit inhibitory activity below 1 μM,
with the most potent one, IIP0943, demonstrating a potency of

5.1 nM (4.8 nM for the reference PLK1 inhibitor). Furthermore,
IIP0943 exhibits high selectivity for PLK1 compared to other Plks and
submicromolar activity in cell proliferation against the HCT116 cell
line. TransPharmer thus represents a pharmacophore-based gen-
erative model successfully executing scaffold hopping to produce
unique compounds with potent bioactivity. The 4-(benzo[b]thio-
phen-7-yloxy)pyrimidine scaffold of IIP0943 may offer new insights
for obtaining improved PLK1 inhibitors.

Results
In this work, we developed a pharmacophore-based generative model
named TransPharmer, which leverages the topological pharmaco-
phore fingerprints of given ligands to guide molecule generation. The
workflow and model setups are shown in Fig. 1 and detailed in sub-
sections “Pharmacophore features and fingerprint extraction” and
“Model architecture”.

We observed that the pharmacophore fingerprints employed in
our study have the potential to establish connections between struc-
turally distinct ligands that exhibit activity towards the same target.
Additionally, these fingerprints demonstrate a notable relationship
with bioactivity, allowing for the distinction between active and inac-
tive ligands (Supplementary Notes subsection “Pharmacophore fin-
gerprints as fuzzy and interpretable representations”). The
unconditional version of TransPharmer demonstrates accurate mod-
eling of chemical space, achieving the top rank among established
methods in overall performance in the GuacaMol benchmark44, and
achieving top 2 ranks in six out of fifteen metrics benchmarked in
MOSES45 (Supplementary Notes subsection “Benchmarking the
unconditional TransPharmer and other evaluations”).

The results in this section are organized as follows: first, we
evaluate the performance of TransPharmer on two tasks involving
pharmacophore-constrained molecule generation. Secondly, we
compare the unique mode of chemical space exploration of Trans-
Pharmer with a previous method based on structure mutations.
Thirdly, we demonstrate the capability of TransPharmer to generate
active ligands through a retrospective case study of recalling known
DRD2 actives distinct from the ones seen during training. Lastly, we
highlight the potential of TransPharmer in a prospective case study for
discovering potent and highly selective PLK1 inhibitors with scaffolds
different from previous ones.

Pharmacophore-constrained molecule generation
One of the central objectives for pharmacophore-conditioned gen-
erative models is to generate molecules conforming to the desired
pharmacophores, which entails two aspects. Firstly, basic attributes of
the pharmacophores of the generated molecules should match those
of the target, such as the number of individual pharmacophoric fea-
tures. Generating molecules with the requisite number of pharmaco-
phoric features has been an essential objective37,38,46. Here, we
computed the averaged difference in the number of individual phar-
macophoric features of generatedmoleculeswith respect to the target
pharmacophores (referred to as Dcount, see definition in Section “Eva-
luation metrics”). Secondly, the targeted pharmacophore and the
generated molecule’s pharmacophore should have a high degree of
overall similarity. Similar to measuring molecular similarity using fin-
gerprints such as Morgan fingerprints47, pharmacophoric similarity
can be calculated by computing the Tanimoto coefficient of two
pharmacophoric fingerprints. Here, we adopt ErG fingerprints imple-
mented in RDKit48 to measure pharmacophoric similarity (referred to
as Spharma, see definition in Section “Evaluation metrics”) to avoid any
artificial positive results of our models. ErG fingerprints are another
pharmacophoric fingerprint introduced by researchers in Lilly and
have demonstrated potential applications for scaffold hopping32. ErG
fingerprints show a discernible correlation with the pharmacophoric
fingerprints utilized in TransPharmer (Supplementary Fig. 1).
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We compare our models with LigDream35, PGMG39, and
DEVELOP34 as baselines in both tasks of de novo generation and scaf-
fold elaboration. As pharmacophoric feature counts have been utilized
as explicit controls over the generated molecules37,38,46, we establish
another baseline by training a “TransPharmer-count” model that only
accepts the requirement of desired amounts of individual features.
Furthermore, to investigate the effect of the length of pharmacophoric
fingerprints used in our model, three variants of TransPharmer were
examined: “TransPharmer-72bit”, “TransPharmer-108bit” and “Trans-
Pharmer-1032bit”. These variants are conditioned on 72-bit, 108-bit,
and 1032-bit pharmacophoric fingerprints, respectively.

For the de novo generation task (Table 1), TransPharmer models
outperform the baseline models by generating molecules with higher
pharmacophoric similarity. It is noteworthy that the TransPharmer-
countmodel achieves the lowest deviation in feature counts, while the
TransPharmer-1032bitmodel ranks as the second lowest in this regard.
It is not directly comparable between PGMG and other methods since
PGMG is primarily designed to align with a specific subset of phar-
macophore features (specifically, 3–7 features), whereas models such

as TransPharmer aim to generate molecules that satisfy the entire set
of pharmacophore features of a reference compound. Consequently,
We re-evaluated TransPharmer based on the match score utilized in
PGMG and discovered that the match scores achieved by TransPhar-
mer are close to those of PGMG,with the smallest difference being less
than 10% of PGMG’s score (Supplementary Table 1). Meanwhile, it is
worth noting that PGMG is sensitive to the maximum number of input
pharmacophore features specified by users, which leads to a notable
deviation in molecular sizes compared to the desired targets, parti-
cularly when reference compounds possess flexible conformations
(Supplementary Table 2). Further discussion can be found in the Sup-
plementary Notes.

In the scaffold elaboration task, four TransPharmer models gen-
erated molecules with substantially higher pharmacophoric similarity
than those of DEVELOP. It seems that DEVELOP exhibits limitations in
adhering to the provided pharmacophore conditions, often resulting
in the generation of molecules unrelated to and much larger than the
reference compound (Supplementary Tables 3 and 4). Among the four
TransPharmer models evaluated, the TransPharmer-1032bit model

Fig. 1 | The schematic diagram of TransPharmer architecture. a The process of
pharmacophore fingerprint extraction. As an example, the chemical structure of
Aspirin is converted into a pharmacophoric topology graph with the shortest topo-
logical distance between each feature pair computed. All the two-point and three-
point pharmacophoric subgraphs are enumerated, and the topological distances are

discretized with specific distance bins. 72-bit and 108-bit pharmacophore fingerprints
are constructed from the two-point pharmacophores with different discretization
schemes, while 1032-bit pharmacophore fingerprints are the concatenation of fin-
gerprints of two-point and three-point pharmacophores. b The architecture of
TransPharmer as a pharmacophore fingerprints-driven GPT decoder.
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achieves the highest similarity score. The TransPharmer-count model
is slightly better than the TransPharmer-72bit model in the mean
pharmacophoric similarity, but the variance is larger. The deviation of
feature counts is similar to those in the de novo generation task.

These findings suggest the benefits of employing pharmaco-
phoric fingerprints that explicitly encode the topology of pharmaco-
phores. In comparison to the 3D voxels of pharmacophoric points
encoded by convolutional layers in LigDream or DEVELOP, pharma-
cophoric fingerprints offer more distinct instructions for molecule
generation and may avoid ambiguous guidance resulting from insuf-
ficient training of the convolutional neural networks. When compared
to simplified condition vectors like feature counts, pharmacophoric
fingerprints encompass comprehensive information regarding the
topology of pharmacophores, thereby providing superior guidance. In
contrast to the use of pharmacophore graphs of selected features in
PGMG, TransPharmer exhibits superior control over global molecular
properties, such as molecular weight and the number of heavy atoms,
resulting in improved sampling efficiency. An ablation study further
showed that the incorporation of topological distance information and
feature combinations into the pharmacophore fingerprint sub-
stantially contributes to TransPharmer’s overall performance (Sup-
plementary Notes “Ablation study” and Supplementary Table 15). For
the de novo generation task, removing the topological distance
information decreased the pharmacophore similarity score from 0.50
to 0.38, and removing both the topological distance information and
feature combinations further decreased it to 0.31. For the scaffold
elaboration task, removing both the topological distance information
and feature combinations decreased the pharmacophore similarity
score from 0.70 to 0.55.

Our analysis also reveals that TransPharmer models with longer
pharmacophoric fingerprints consistently generate molecules with
higher similarity to the target pharmacophore (Table 1), which con-
forms to our motivation to obtain fine-grained representations of
pharmacophore. Moreover, these models generated molecules that
were more similar to the conditioning compound in terms of topolo-
gical structure and had a relatively higher repetition rate (Supple-
mentary Table 5). Depending on specific needs, the flexibility of
TransPharmer allows users to choose whichmodel ismost suitable for
their intended applications. Overall, the excellent performance and

flexibility of TransPharmer make it a viable option for a wide range of
scenarios such as novel hits discovery or lead optimization.

Exploring local chemical space
Efficiently exploring the vast chemical space remains a challenging
task in drug discovery. One common approach is to start with a few
compounds and search their neighborhood but the exploring direc-
tion can be quite arbitrary. Molecular similarity-constrained explora-
tion/optimization is one of the widely adopted ways to identify
compounds with the desired similarity level to the starting
compound49–52. In the previous section, we demonstrated that Trans-
Pharmer can efficiently explore the local chemical space in a
pharmacophore-constrained fashion. Here, we compare the exploring
mode of TransPharmer with those of molecular similarity-constrained
methods, using a specific starting compound as a showcase, and
illustrate the significance of this exploring mode in drug discovery.

We used Onvansertib, a known inhibitor of PLK153, as the starting
compound to provide a target pharmacophore. STONED51, which can
perform molecular similarity-constrained exploration by altering the
given compound structure, was used for comparison. STONED can
rapidly traverse the target neighborhood in the chemical space by
mutating the characters of the SELFIES string of the starting com-
pound. Apart from the default setting, STONED can be tuned to pro-
duce highly similar structures to the starting compound by restricting
the mutation area to the terminal 10% interval of the SELFIES string.51

STONED in the default and tuned settings are referred to as “STONED”
and “STONED-focused”, respectively, and the details of each setting
can be found in Section “The settings of compared methods”. We
evaluated five models, including STONED in two settings and three
TransPharmer models (72-bit, 108-bit, and 1032-bit), by sampling
10,000 non-duplicate chemical structures and obtaining their phar-
macophoric similarity and molecular similarity distributions with
respect to the starting compound. Themolecular similarity is given by
the Tanimoto coefficient of Morgan fingerprints with a radius of 2
implemented by RDKit48.

Figure 2 shows that the molecular and pharmacophoric similarity
scores of the generatedmolecules from STONED tend to approach the
same endsof the scoring range,while those of TransPharmer-72-bit are
distributed near the opposite sides (Fig. 2b, e). In other words, mole-
cules generated by TransPharmer-72-bit can be topologically dissim-
ilar but pharmacophorically similar to the starting compound,whereas
molecules from STONED are either similar in bothmolecular structure
and pharmacophore to the starting compound, or dissimilar in both
aspects (see some examples in Fig. 2g). TransPharmer can also pro-
duce structurally and pharmacophorically similar structures by using
more fine-grained fingerprints (Fig. 2c, f).

The plot of the local chemical space spanned by the two similarity
axes with the averaged scores of each model marked in the corre-
sponding places in Fig. 2 illustrates that TransPharmer and STONED
explore the chemical space indifferent directions and regions (Fig. 2d).
Molecular similarity constrained methods like STONED traverse along
the diagonal, while pharmacophore constrained methods like Trans-
Pharmer traverse along a line that is close to horizontal. In addition to
providing new directions to explore, TransPharmer models have a
unique potential to discover structurally distinct molecules while
maintaining high pharmacophoric similarity (at the bottom right cor-
ner in Fig. 2d), which is essential formolecularoptimization inpractice,
such as scaffold hopping.

Case study of DRD2
DRD2 is a well-studied target for whichmany active compounds have
been reported. Although ligands with known bioactivities exist, the
pursuit of novel ligands with improved characteristics, such as better
binding affinity or ADME/T properties, remains ongoing. Therefore,
it is essential for generative models to be able to discover active

Table 1 | Results of the pharmacophore-constrained de novo
generation task and scaffold elaboration task

Method De Novo generation Scaffold elaboration

Dcount Spharma Dcount Spharma

LigDream 4.1 ± 2.6 0.47 ± 0.14 n.a. n.a.

PGMG 9.4 ± 3.7 0.35 ± 0.13 n.a. n.a.

DEVELOP n.a. n.a. 13.0 ± 7.0 0.231 ± 0.160

TransPharmer-
count

0.3±0.4 0.48 ± 0.13 0.2 ±0.3 0.706 ±0.218

TransPharmer-
72bit

4.6 ± 2.6 0.50 ±0.14 3.0 ± 2.2 0.702 ±0.176

TransPharmer-
108bit

3.6 ± 2.6 0.58 ±0.15 2.3 ± 1.9 0.751 ± 0.167

TransPharmer-
1032bit

3.3 ± 2.0 0.60 ±0.14 2.1 ± 1.7 0.754±0.166

The evaluation of LigDream and PGMG only focused on the de novo generation task, while
DEVELOP was assessed solely on scaffold elaboration, which aligns with their original devel-
opment purposes. Therefore, n.a. (not applicable) is assigned to the performance of LigDream
and PGMG in scaffold elaboration and DEVELOP in de novo generation tasks, respectively.
Feature count deviation (Dcount) and pharmacophoric similarity (Spharma) scores were computed
with respect to the conditioning compounds. TransPharmer-count refers to the TransPharmer
model conditioned on the required number of eight types of pharmacophoric features. Trans-
Pharmer-72bit, TransPharmer-108bit, and TransPharmer-1032bit refer to the TransPharmer
models conditioned on pharmacophoric fingerprints of lengths 72, 108, and 1032, respectively.
The numbers in bold indicate the best values.
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ligands with novel structures, unrestricted by previously observed
ligands.

A retrospective experiment was conducted to assess TransPhar-
mer’s ability to discover distinct and active ligands. Known DRD2
active ligands were divided into two subsets using scaffold clustering
(see Section “Settings for DRD2 recall experiment”), with an average
molecular similarity across these subsets of around 0.2. One subset is
visible to TransPharmer during training, while the other subset is
excluded from the training set. Uponcompletionof the training, active
ligands in the training set were encoded into 72-bit pharmacophoric
fingerprints and used by TransPharmer as “active conditions” for
molecule generation. The retrieval of the reserved active ligands was
examined. This experimental setupmimics a common but challenging
scenario in drug discovery to uncover bioactive ligands possessing
novel scaffold series given the known active ligands. For comparison,
another set of unrelatedmolecules to DRD2 from the training set were
used as “baseline conditions” by TransPharmer (Fig. 3b). The com-
parison between using DRD2 actives as conditions (active conditions)

andusing baseline conditions aims to demonstrate the difficulty of this
task and the consistency of TransPharmer.

The performance of TransPharmer to retrieve active ligands in the
reserved subset was evaluated in two aspects. Firstly, the recall rate
was calculated for all generated molecules, demonstrating the max-
imumpotential of TransPharmer to discover active ligands under ideal
conditions. However, considering the limited budgets for experi-
mental testing, in reality, the precision of generative models is also
important. In this context, we assessed the (apparent) precision of
TransPharmerbyenumerating active ligands foundwithin a smaller set
of repeatedly generatedmolecules, specifically 4000molecules in this
experiment. These molecules were generated with a higher sampling
probability, indicating a greater confidence for TransPharmer to pro-
duce them during the initial sampling phase. The precision is apparent
because we only search for known active ligands within the generated
set, and the remaining portion likely contains potentially active
ligands. Note that 4000 was chosen to be comparable to the number
of active ligands unseen by TransPharmer.

Fig. 2 | Chemical space exploration around Onvansertib. a The 2D chemical
structure diagram with pharmacophoric features of Onvansertib. b, e Distributions
comparison of pharmacophoric similarity Spharma andmolecular similarity Sstruct for 72-
bit TransPharmer, STONED, and STONED-focused. c, f Distributions comparison of
pharmacophoric similarity Spharma andmolecular similarity Sstruct for 72, 108, and 1032-

bit TransPharmer models. d A schematic diagram of different exploration modes of
pharamcophore- and molecular topology-constrained approaches in the local chemi-
cal space spannedby Sstruct and Spharma. Crossmarkers label the relativepositionsof the
mean of score distributions for the 5models in (b, c, e, and f). Representative samples
from areas 1, 2, and 3 are shown in (g). Source data are provided as a Source Data file.
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Our model rediscovered 4.95% of the active ligands in the unseen
subset with sufficient sampling when conditioned on seen active
ligands, compared to 0.88%when using baseline conditions (Fig. 3c). If
generated molecules highly similar (Tanimoto similarity over 0.8) to
any of the active ligands in the unseen subset are considered suc-
cessful recalls as well, a recall rate of up to 12.1% is observed, con-
sistently higher than that of using baseline conditions (3.2%).
(Supplementary Table 6). As for the precision number, up to 15 active
ligands in the unseen subset were recalled with a molecular similarity
requirement of ≥0.8, which is 7-fold higher than that of using baseline
conditions (Supplementary Table 6). Upon inspecting some recalled
active ligands and their most similar counterparts in known active
ligands, we observed that in some cases TransPharmer appeared to
take shortcuts, such as borrowing subgraphs from seen molecules or
making modifications based on them. However, TransPharmer was
also able to rediscover ligands that are structurally distinct from any
active ligands it had seen (Fig. 3d).

As previously stated, our search is limited to known active
ligands within the generated set and the remaining portion likely
contains potentially active ligands. This approach provides a con-
servative estimate of the proportion of generated molecules that
exhibit activity towards DRD2. In order to obtain a more precise
estimation, we conducted a virtual screening experiment following
the DeepDrugCoder54. A DRD2 predictive model was established to
predict the probability of a generatedmolecule exhibiting bioactivity
towards DRD2 (more details in Section “DRD2 QSAR model”). We
then randomly sampled 100 known active compounds from the
reserved test set of the QSARmodel. These compounds were used as
conditions by TransPharmer to sample 256 times per active com-
pound. The fraction of 25,600 generated SMILES strings that are
valid, unique, and predicted to be active (with a predicted

probability ≥0.5) was then computed to compare with the results of
DeepDrugCoder.

We found that 27% of the generated molecules were predicted as
actives, while DeepDrugCoder’s physchem-based (PCB) model repor-
ted a fraction of 54%, and the fingerprint-based (FPB) model reported
19%. Since the PCB model was trained with the additional information
about prior predicted bioactivity from the sameQSARmodel, the high
ratio ofmolecules predicted to be active is not surprising. On the other
hand, our model outperforms the FPB model in terms of ratio by over
40%, emphasizing the importance of using pharmacophoric informa-
tion to identify active compounds. For molecules predicted to be
active but not previously identified as DRD2 actives, we assessed
structural similarities to their nearest DRD2 active neighbor. The
similarity score distribution peaks around 0.4, with 43% of the mole-
cules having a similarity score below 0.4, a commonly used threshold
for classifying dissimilar compounds (Supplementary Fig. 2). This
suggests a high degree of structural novelty among the generated
molecules compared to known DRD2 actives. Overall, these findings
highlight TransPharmer’s capability to both rediscover known active
ligands and to generate structurally distinct compoundswith potential
bioactivity.

Case study of PLK1
PLK1 plays a key role in mitosis progression and has been implicated
in various cellar pathways55–59. Targeting PLK1 has emerged as a
promising therapeutic strategy for cancer treatment, as the over-
expression of PLK1 has been associated with tumor development and
progression60,61. In this section, we exemplify the application of
TransPharmer in the generation of distinct and active PLK1 inhibitors
using the topological pharmacophore fingerprint derived from
Onvansertib, a potent and selective inhibitor to PLK1 currently

Fig. 3 | The retrospective experiment for DRD2. a A t-SNE plot of 108-bit phar-
macophore fingerprints of 7939 active and 7939 inactive ligands of DRD2. b Data
preparation in this experiment. “GuacaMol-DRD2 clean” refers to the subset of the
original GuacaMol dataset with every known active ligand of DRD2 excluded.
Baseline conditions consist of 3717 compounds randomly sampled from “Guaca-
Mol-DRD2clean''. DRD2activesweredivided into two subsets by scaffold clustering
(see Section “Settings for DRD2 recall experiment''). One subset consists of 3717
ligands of DRD2, which are visible to TransPharmer during training and used as

active conditions during generation,while the other subset contains 4222 actives to
be rediscovered. cThe recall rate andprecision count of generatedmolecules using
active and baseline conditions. d Some recalled active ligands and their most
similar counterparts TransPharmer has seen during training. An example of recal-
ling active ligands using shortcuts is shown on the top panel while an example of
recalling actives beyond any obvious shortcuts is shown at the bottom panel. The
molecular similarity between the recalled and seen ligand is shown. Source data are
provided as a Source Data file.
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undergoing clinical trials (e.g., ClinicalTrials.gov identifier
NCT03829410).

One million samples were generated by TransPharmer condi-
tioned on the 72-bit pharmacophore fingerprint of Onvansertib under
a low-temperature hyperparameter of 0.7. Subsequent to the removal
of invalid SMILES strings and duplicated molecules, a total of 178,103
unique molecules were obtained. To gain insights into the chemical
space covered by the training set, the generated molecules (both
conditionally and unconditionally), and the known PLK1 active ligands,
a t-distributed stochastic neighbor embedding (t-SNE) plot was gen-
erated. As shown in Fig. 4a, TransPharmer shifted from the broader
chemical space of the training set to the localized chemical space
surrounding Onvansertib, which appears as an “outlier”, drifting apart
from other PLK1 active ligands and the majority of training molecules.
The similarity distributions between the generated molecules and
Onvansertib also confirm the bias of TransPhamer towards the target
pharmacophore,with amedianpharmacophoric similarity of0.92, and
demonstrates the capability of TransPhamer to explore distinct
structures, with a median molecular similarity of 0.28 (Fig. 4b).

We then carried out virtual screening against the generated
compound library to identify drug-like hit compounds targeting PLK1.
First, molecules exhibiting pharmacophoric similarity to Ovansertib
below 0.85 were eliminated. Second, Lipinski’s rule of five62 with the
maximum allowed molecular weight set to 1000, and medicinal
chemistry filters45 were applied to retrieve drug-like generated mole-
cules. Third,molecules containing the same pyrazolo-quinazoline core
as Onvansertib were removed. While TransPharmer often produces
distinct structures, it also tends to generate the identical moieties of
the reference compound which best satisfy the conditional pharma-
cophore fingerprint. The remaining compounds were then docked
into the ATP-binding pocket of PLK1 using Glide in standard precision
mode63. Polar interaction (hydrogen bonds or salt bridges) between
ligands and residue Lys82, Cys133, Glu140, and Asp194 were examined
using PLIP64. Compounds with a docking score better than -9.0 kcal/
mol and forming polar interaction with at least two key residues
(where hinge region residue Cys133 is requisite) were kept. These
molecules then underwent a two-step clustering process. First, iden-
tical Bemis-Murcko scaffolds65 were grouped; second, the scaffolds
were clustered using theButina algorithm66, efficiently implemented in
chemfp67, with Morgan fingerprints47 (radius 2, 2048-bit) as molecular
descriptors and a distance threshold of 0.1. 2300 representative
members from each cluster with the best docking score and ligand
efficiency (docking score divided by molecular weight) were selected
and docked into PLK1 again using Glide in extra precision mode68.
Upon completion of the docking, themolecules were ranked based on
their overall performance, considering docking score, ligand effi-
ciency, and the binding mode of the No.1 pose.

We systematically inspected the top-ranked generated molecules
and selected 42 candidate compounds taking into account factors
such as synthesizability, novelty, and the diversity of the generated
compounds. The comprehensive listing of the molecular structure for
these 42 compounds is available in the Supplementary Information
(Supplementary Figs. 3 and 4). These compounds were classified into
five groups based on their core fragments that potentially bind to the
hinge region of the kinase domain of PLK1 (Fig. 4c). A detailed exam-
ination of the known PLK1 inhibitors sharing these cores revealed that
the majority of them exhibit low bioactivities, with the exception of
ligands featuring core 2, displaying moderate to high bioactivities.
Notably, 2/3 (28 out of 42) of our generated compounds carry core 1,
whereas only one known active ligand features this core. This under-
scores the novelty of the new scaffolds containing core 1 as potential
PLK1 inhibitors. Subsequently, these 42 compounds underwent bind-
ing free energy estimation using MM/GBSA69–72 and evaluation of
binding stability through 100 ns MD simulation. Among them, four
compounds were selected based on their estimated binding free

energies and consistent binding behavior within the pocket, of which
three compounds carried core 1 while one compound featured core 2.

These four compounds, namely lig-3, lig-182, lig-524, and lig-886,
were subjected to chemical synthesis. Several minor modifications
were made to the generated structures due to the intricacies of che-
mical synthesis and the need to address potentialmetabolic instability.
The finally synthesized structures largely adhered to the designed
structures by TransPharmer (Fig. 4d). To clarify, these synthesized
structures are referred to as IIP0942, IIP0943, IIP0944, and IIP0945,
corresponding to the original lig-3, lig-182, lig-886 and lig-524,
respectively. The chemical synthesis route of IIP0943 is shown in
Fig. 5a; detailed chemical syntheses of all identified compounds are
presented in the Supplementary Methods. The synthesis process for
IIP0943 starts with the reaction of 3-methoxy-2-nitrobenzaldehyde
(943-0) and methyl 2-mercaptoacetate to yield 943-1. Subsequent
removal of the methyl group resulted in 943-2. The reaction of 943-2
with 2,4-dichloro-5-methylpyrimidine produced 943-3. The formation
of intermediate B occurred through a Buchwald-Hartwig amination
reaction between 5-bromo-2-methoxyaniline and 1-methylpiperazine.
The intermediate B was then combined with 943-3 in another
Buchwald-Hartwig amination reaction, leading to the formation of
ester 943-4. Subsequent treatment with ammonia/methanol resulted
in the production of the final compound, IIP0943.

The obtained compounds were then tested for their inhibitory
activities against PLK1 kinase. Out of the four tested compounds,
three show activities with half maximal inhibitory concentration
(IC50) less than 1 μM (Fig. 5b, c). Notably, IIP0943 emerges as the
most potent among them, with an IC50 value of 5.1 ± 1.7 nM against
PLK1, while Onvansertib exhibits an IC50 of 4.8 ± 0.7 nM. The con-
fidence intervals of IC50 values can be found in Supplementary
Table 7. To investigate the selectivity of these compounds, the IC50

values against other Plks and FAK kinase were determined for the two
most potent compounds, namely IIP0943 and IIP0942. The inclusion
of FAK kinase was prompted by the identification of a potent FAK
inhibitor, BI-4464, which exhibits structural similarity to and forms a
comparable binding pose to IIP0943 (PDB ID: 6I8Z). This similarity
was revealed during our molecular novelty assessment, where we
searched for analogous compounds to IIP0943 in the ChEMBL
database (Section “Molecular novelty assessment” and Supplemen-
tary Fig. 8).

The results indicate that both IIP0942 and IIP0943 exhibit excel-
lent selectivity towards PLK1 within the PLK family (Table 2). IIP0943
also shows moderate inhibition against FAK, with an IC50 of
264 ± 32 nM, which is over 50-fold less potent than its inhibitory effect
against PLK1. IIP0942 also exhibits an IC50 of 87.4 ± 11.1 nM against
FAK,with an over two-fold selectivity for PLK1. These compoundswere
further tested on the HCT116 cell line and IIP0943 showed cell pro-
liferation inhibition with an IC50 of 0.22 ± 0.003 μM (Fig. 6a and Sup-
plementary Fig. 5).

To understand the potency and selectivity of IIP0943, IIP0943was
docked into the ATP-binding pocket of PLK1. The 4-(benzo[b]thio-
phen-7-yloxy)pyrimidine core of IIP0943 resides between Cys67 and
Phe183 (not depicted due to space constraints). The 5-methyl group in
the 2-aminopyrimidine is accommodated by a hydrophobic pocket
formed by Ala80, Val114, and Leu130 (Fig. 6c). Four hydrogen bonds
are formed: the 2-aminopyrimidinemoiety forms two hydrogen bonds
with the backbondNH and C=O groups of the hinge region Cys133; the
amide group forms one hydrogen bond with the side chain of Lys82,
and another hydrogen bond with Asp194 in the DFG motif. Under
physiological conditions, the 4-methylpiperazino moiety becomes
protonated, forming a salt bridge with Glu140. This interaction is
believed to contribute to the discernible PLK1 selectivity vs PLK 2–3,
since the same type of interaction is hampered in both PLK2 and PLK3
where Glu140 is replaced by histidine53,73,74. The superposition of the
docking pose of IIP0943 and the crystal pose ofOnvansertib revealed a
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Fig. 4 | Generation of a virtual compound library against PLK1 using Trans-
Pharmer and compound prioritization. a Illustration of the chemical space
coverage of the generated compounds. T-SNE plots depict the distribution of
molecules, with each 5000 randomly selected compounds from the training set,
the unconditionally generated set (Generated set (uc)) the conditionally generated
set, and 574 PLK1 active ligands. b Evaluation of pharmacophoric and molecular
similarities between the generated compounds and Onvansertib. c Categorization
of 42 candidate compounds based on the core fragment potentially binding to the
hinge region of the active site. Boxes on the right: the most bioactive known PLK1

ligands that carry the substructure of the corresponding category, as well as their
bioactivity recorded in the uniform expression of “pXC50” in the ExCAPE-DB
database (e.g., pIC50 = 9 correspoFnds to an IC50 value of 1 nM). The cores are
highlighted in blue shade. d Comparison of TransPharmer’s designed structures
(left) and the synthesized structureswith experimental validation (right). Structural
modifications are highlighted in blue. The estimated binding free energy, the root-
mean-square deviation (RMSD) of binding poses, and Morgan similarity scores to
Onvansertib are provided for the generated compounds. Source data are provided
as a Source Data file.
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noteworthy distinction in the orientation of IIP0943’s benzo[b]thio-
phene-2-carboxamide moiety (Fig. 6d). This moiety points towards
residues in the back cleft from a different angle, which could poten-
tially be compensated by the flexible side chain of Lys82.

Finally, we performed a comprehensive novelty assessment of the
identified hit compounds. By searching for structural analogs in public
databases, we confirmed the novelty of the designed PLK1 inhibitors,
particularly IIP0943, across three levels: within known PLK1 active
compounds, within reported bioactive ligands, and within patented
molecules (refer to Supplementary Notes “Molecular novelty assess-
ment of the discovered hits”). This evaluation highlights the capability
of TransPharmer tomakemeaningful contributions to real-world drug
discovery efforts.

Discussion
More on chemical space exploration
Yoshimori and colleagues discussed the distinction between structure-
and pharmacophore-steered molecular generation in their reinforce-
ment learning-based approach75. They compared two agent networks,
each guided by rewards based on either molecular similarity or phar-
macophoric similarity to a known ligand associated with the target of
interest. One notable observation was that the agent guided by the
molecular similarity reward successfully generated a larger number of
molecules exhibiting topological similarities to the reference ligand,

but essentially failed to produce any molecules with a satisfactory
pharmacophoric score. This finding implies the inherent limitations of
molecular similarity-constrained methods when it comes to exploring
the local chemical space.

In our study, we discovered that methods focused on generating
structurally analogous compounds could yield molecules that share
similarities in both topological structure and ligand pharmacophores.
This finding is rational since the concept of ligand pharmacophore is
rooted in molecular structure. Moreover, we made an intriguing
observation that these two modes of exploration can be com-
plementary, covering distinct regions within the local chemical space.
They can also overlap when a fine-grained pharmacophoric repre-
sentation is employed along with a high molecular similarity cutoff.

Potential biases in the case study of PLK1 inhibitors design
We think the following aspects might introduce biases that could
affect the current results in the case study of designing PLK1 inhibitors.

During molecule generation. (a) Input pharmacophore fingerprint/
reference compound. Since TransPharmer is a conditional generative
model, the choice of input condition (pharmacophore fingerprint of
the reference ligand) could be the largest source of bias in this work.
We selected Onvansertib as the reference ligand for its potency and
high selectivity towards PLK1, as well as its recent activity in clinical
trials. We also used its follow-up derivatives (compounds 13 and 25)76

as inputs for TransPharmer to generate compounds in our in-house
tests and observed slight variations in chemical space coverage
(visualized by t-SNE plots). We surmise that using pharmacophore
fingerprints from other unlike PLK1 inhibitors would result in sig-
nificant differences in generated compounds. (b) Model hyperpara-
meters. One key hyperparameter is the sampling temperature (t). This
parameter re-weights the multinomial distribution of each token in
generated SMILES strings, with lower temperatures increasing the
probability of the top-ranked tokens relatively. In our tests, a higher

Fig. 5 | The synthetic route and the enzymatic inhibition activities of the
designed compounds. a The chemical structure and synthetic route of IIP0943.
b Concentration-activity curves of IIP0942, IIP0943, and Onvansertib in the PLK1
kinase ADP-Glo assays, respectively. Data are presented as mean ± standard

deviation (n = 3 replicates). c Concentration-activity curves of IIP0944 and IIP0945
in the PLK1 kinase ADP-Glo assays, respectively. Data are presented as mean±
standard deviation (n = 3 replicates).

Table 2 | Enzymatic activity of IIP0942, IIP0943, and Onvan-
sertib against PLK1/2/3 and FAK, respectively

Compound IC50 (nM)

PLK1 PLK2 PLK3 FAK

IIP0942 37.6 >1000 >1000 87.4

IIP0943 5.1 >1000 >1000 264

Onvansertib 4.8 >1000 >1000 >1000
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sampling temperature (t = 1.2) improved diversity but also significantly
reduced the performance of top-ranked compounds compared to a
default lower temperature (t =0.7). We expect there are some balance
points to improve diversity without losing much performance. We
stuck to the sampling temperature at 0.7 in our work, but users may
explore this hyperparameter further in their own studies by adjusting
it in the configuration file.

During virtual screening. (a) Novelty filters. Although TransPharmer
can generate novel compounds, chemical structures that are highly
similar to the reference compound also appeared in the generated set
as they easily fulfilled the target pharmacophore condition. To avoid
the overrepresentation of these similar compounds among top-ranked
compounds, we used SMARTS patterns to retain structurally novel
compounds. In the PLK1 case study, we used the pattern c12ncncc1-
CC-[n,c]3:[n,c]:[n,c]:[n,c]:[n,c]32 to filter out molecules
with scaffolds similar to the pyrazolo-quinazoline core of Onvansertib.
This novelty filter was very effective, but a different SMARTS pattern
may significantly impact the results. (b) Target bindingmode. Sincewe
used Onvansertib to provide the input pharmacophore fingerprint, we
focused on four polar interactions between Onvansertib and PLK1:
hydrogen bondswith Cys133, Lys82, and Asp194, and a salt bridgewith
Glu140. Generated compounds were scored based on the occurrence
of these interactions in their docked complex with PLK1, with a man-
datory requirement for forming hydrogen bonds with Cys133. Differ-
ent scoring criteria might yield different outcomes.

Duringmanual inspection. After the virtual screening, a ranked list of
2300 generated compounds was cherrypicked to retain 42 promising
compounds for further evaluation. We specifically focused on some
aspects of Onvansertib during our visual inspection and cherry-
picking. These may constitute potential biases in the case study of
PLK1 as well. (a) Core region. One objective of the PLK1 case study
was to identify compounds with distinct scaffolds from the pyrazolo-
quinazoline core moiety of Onvansertib, which is patented (such as
WO2008074788). During the manual inspection of the generated

compounds, we prioritized novel scaffolds while tolerating those
containing Onvansertib’s 1-phenylpiperazine moiety. (b) 3D shape.
When inspecting the docking poses, we tended to select compounds
adopting a similar U-shape pose to Onvansertib (PDB ID: 2YAC),
although we also considered promising molecules with different
binding poses (e.g., L-shape).

Model controllability and interpretability
We conducted three conditional tests to examine the controllability
of our TransPharmer model under different conditions: (i) setting all
72-dimensional bits to 0; (ii) setting all 72-dimensional bits to 1; (iii)
setting one bit to 1 while keeping the other bits at 0, thereby gen-
erating 72 single-activated-bit fingerprints. These fingerprints were
then used as condition vectors to generate molecules. As expected,
the outcomes of conditions (i) and (ii) were random. For condition
(iii), we collected the frequency of each bit under the generation
conditions. The resulting heatmap is shown in Supplementary
Fig. 10. According to the results, our model can be effectively con-
trolled by single-activated-bit conditions, producing molecules that
are enriched in features corresponding to the high-frequency acti-
vated bits. The low-frequency activated bits, however, exhibited a
random activation pattern, indicating that the model struggles to
learn these less frequent features, which correspond to relatively
rare structural motifs, such as positively or negatively charged
groups, zinc-ion-binding moieties, and their combinations. This
limitation could potentially be addressed by further fine-tuning with
relevant datasets.

To further investigate what the models have learned, we analyzed
the attention maps across all transformer blocks and attention heads.
Though most attention maps appeared sparse, particularly in higher
layers (Supplementary Fig. 6a), we did observe meaningful patterns in
some densely activated maps. As exemplified in Supplementary
Fig. 6b, where the oxygen atom of the ligand, which is the only
hydrogen bond acceptor, activates all the corresponding acceptor-
related bits in the pharmacophore fingerprint. However, these obser-
vations were limited and did not capture all the relationships between

Fig. 6 | The cellular inhibition activity and the docking pose of the generated
compound IIP0943. a The concentration-activity curves of IIP0943 and Onvan-
sertib in the CellTiter-Glo assays on HCT116 cell lines. Data are presented as
mean ± standard deviation (n = 3 replicates). b Global view of PLK1 (PDB ID: 2YAC)
with the stick model of IIP0943 (in orange) docked into the active site of PLK1.

c Close-up view of the suggested binding pose of IIP0943 and the interactions
between IIP0943 and the PLK1 kinase domain (key residues are shown as pale cyan
sticks). d Superimposition of IIP0943 (in orange) and the co-crystallized Onvan-
sertib (in gray) in the active site of PLK1. Hydrogen bonds in the back cleft are
shown with dashed red lines.
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each fingerprint bit and the corresponding molecular features as one
might expect.

These may be caused by the following reasons: (1) The attention
maps may not capture all parts of a generated compound. The linker
atoms between pharmacophore features are not expected to activate
attention, which could explain the sparsity of the attention maps. The
knowledge required to generate proper linkers likely resides in the
auto-regressive probabilistic distribution learned by the decoder, but
this information cannot be revealed by attention maps. (2) The infor-
mation from different positions becomes increasinglymixed in higher
layers. This accounts for the distinctions observed in the attention
maps in the first couple of layers, while in the higher layers, the
attention weights tend to be more uniform. These observations are
consistent with findings from previous studies and could potentially
be addressed by techniques such as attention rollout or attention
flow77. However, currently, there are no universal methods for ana-
lyzing attention maps. Even in well-defined natural language proces-
sing tasks, a technique that works well for one task may fail for
another77. Therefore, fully understanding how generativemodels learn
requires further study.

On 3D pharmacophores
The complementary nature of protein-ligand interactions as 3D spatial
pharmacophores is widely recognized. Ligand-based pharmacophores
are analogous to a particular kind of negative image in the binding site.
The generated compounds by our model may satiate the actual 3D
binding pharmacophores given a predetermined 2D pharmacophore
fingerprint. Actually, by listing all potential pharmacophore topologies
in the measured Euclidean distances of two or three points, the 3D
spatial pharmacophores may be transformed into a variety of 2D
pharmacophore topologies. We think that it is doable to manually
design a desirable pharmacophore topology. As a result, it is simple to
discretize a set of appropriate pharmacophore topologies into bit
fingerprints that are numerous criteria to steer molecular generation.
Evenwhile ligand-based 3Dpharmacophores offer one option to guide
the generative model, it is still challenging to guarantee that active
ligand conformations are generated. To get around this issue, one
might predict active ligand conformations using other deep-learning
models78.

Toward more universal generative models
The pharmacophoric fingerprints utilized in TransPharmer serve as
valuable prompts, enabling the model to seamlessly transition
between designing ligands for different targets without requiring
additional fine-tuning. This capability was demonstrated in the case
studies on DRD2 and PLK1, showing that TransPharmer can be readily
applied in diverse scenarios.

Compared to other molecular generative models based on GPT-
like architectures18, TransPharmeroffers twoprimary contributions.By
prompting with pharmacophoric fingerprints, TransPharmer incor-
porates prior knowledge into the generation of pharmaceutically
relevant compounds, thereby aligning more closely with the goals of
medicinal chemists. This approach also paves the way to the devel-
opment of extensive pharmaceutical generative models that integrate
multimodal knowledge alongside basic chemical principles derived
frommolecular structures79. Additionally, TransPharmer leverages the
structural hopping properties of pharmacophores to aid in discover-
ing novel compounds with bioactivity against the same pharmaceu-
tical targets.

Nonetheless, several directions can be explored in the future to
enhance the model’s versatility and general applicability. First, addi-
tional generation modes, such as fragment-linking, should be incor-
porated alongside de novo generation and scaffold elaboration.
Advances in unordered chemical language modeling can directly
support these functionalities80. Second, generative models that

produce easily synthesizable molecules are preferable, as they can
accelerate the timeline for wet lab experimental validation81. Finally,
multi-objective optimization should be integrated into the generative
process to support more efficient design. Recent advances, such as
integrating Pareto optimization with generative models, may help
identify novel compounds with a balanced profile82.

Methods
Pharmacophore features and fingerprint extraction
The molecular graph is first converted into a fully connected graph of
pharmacophore features using the definition of ligand-based phar-
macophores from RDKit v2021.9 (BaseFeature. fdef)83. This definition
encompasses eight types of pharmacophore features, including
hydrogen-bond acceptors and donors, aromatic rings, moieties pos-
sessing positive or negative ionizability, hydrophobic entities, or those
associated with Zn ion binding. Detailed patterns for each type are
presented in Supplementary Table 8. To derive the pharmacophore
fingerprints utilized in TransPharmer, we obtained two-point and
three-point combinations of pharmacophore features, as well as the
shortest topological distances between each feature pair. The topo-
logical distances were discretized into 2-bin (the range for short dis-
tances as [0, 3) and for long distances as [3, 8)) or 3-bin (the range for
short distances as (0, 2), for medium distances as [2, 5) and for long
distances as [5, 8)) signals.When a distance falls within a specific range,
the corresponding bit is set to 1, otherwise 0; if the distance exceeds
the maximum considered distance, 8 in this study, there will be null
signals (00 or 000). For the two-point pharmacophoric features with
2-bin and 3-bin discretization schemes, the lengths of the binary
pharmacophore fingerprints obtained are 72 and 108, respectively. For
the combination of two- and three-point pharmacophoric features
with the 2-bin scheme, the lengths of the fingerprints are 1032. The
fingerprint extraction process was built based on the 2D pharmaco-
phore fingerprint modules implemented in RDKit48.

Model architecture
As illustrated in Fig. 1 and Supplementary Fig. 11, TransPharmer
receives the pairings of a SMILES string and its extracted pharmaco-
phore fingerprint as two-channel input during training. After seg-
mental encoding andpositional encoding, these input embeddings are
fed into the Transformer decoder with multi-head self-and-mixed
attention blocks to decode the SMILES tokens in the next position. The
segmental encoding aims to distinguish between tokens and condi-
tions by using explicit label vectors (0s for pharmacophore fingerprint
and 1s for SMILES token). The positional encoding adopts a rotary
positional encoding84 by multiplying the embedding vectors by the
rotation matrix as follows,

AttentionðQ,K ,V Þm =

PN
n= 1 ðRd

Θ,mϕðqmÞÞ
T ðRd

Θ,nφðknÞÞvnPN
n= 1 ϕðqmÞTφðknÞ

ð1Þ

where φ(*) and ϕ(*) are usually non-negative functions, Rd
Θ,m and Rd

Θ,n
are rotation matrix. This positional encoding was demonstrated to be
more compatible with the linear operation in the attention block and
to converge faster during training.84 A slim version of the GPT-3
model42 is utilized for the multi-head Transformer decoder. And self-
and-mixed attention blocks are adopted for adequate information
exchange in order to learn implicit associations.With the processing of
the Transformer decoder, the final layer outputs the probabilities of
the next SMILES tokens using linear transformation and softmax
operations. The hyperparameters of TransPharmer are shown in
Supplementary Table 9.

Data set setup
We use the GuacaMol dataset44, which is derived from the
ChEMBL24 database and is composed of about 1.6 million unique
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compounds. The sizes of the training, validation, and testing sets
are 1,273,104 (80%), 79,562 (5%), and 238,681 (15%), respectively, for
model development and evaluation, following the data splitting of
GuacaMol. All TransPharmer models in the pharmacophore-
constrained molecule generation tasks were trained on the Guaca-
Mol dataset.

A 108-token vocabulary was first constructed from the SMILES
strings from theGuacaMol dataset,which contains ’#’, ’%10’, ’%11’, ’%12’,
’(’, ’)’, ’-’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’<’, ’=’, ’B’, ’Br’, ’C’, ’Cl’, ’F’, ’I’, ’N’, ’O’,
’P’, ’S’, ’[B-]’, ’[BH-]’, ’[BH2-]’, ’[BH3-]’, ’[B]’, ’[Br-]’, ’[Br+2]’, ’[C+]’, ’[C-]’,
’[CH+]’, ’[CH-]’, ’[CH2+]’, ’[CH2]’, ’[CH]’, ’[Cl+]’, ’[Cl-]’, ’[Cl+3]’, ’[Cl+2]’,
’[F-]’, ’[F+]’, ’[H]’, ’[I+]’, ’[I+2]’, ’[I+3]’, ’[IH2]’, ’[IH]’, ’[I-]’, ’[N+]’, ’[N-]’, ’[NH
+]’, ’[NH-]’, ’[NH2+]’, ’[NH3+]’, ’[N]’, ’[O+]’, ’[O-]’, ’[OH+]’, ’[O]’, ’[P-]’, ’[P
+]’, ’[PH+]’, ’[PH2+]’, ’[PH]’, ’[S+]’, ’[S-]’, ’[SH+]’, ’[SH]’, ’[Se-]’, ’[Se+]’,
’[SeH+]’, ’[SeH]’, ’[Se]’, ’[SeH2]’, ’[Si-]’, ’[SiH-]’, ’[SiH2]’, ’[SiH]’, ’[Si]’, ’[SH-
]’, ’[b-]’, ’[bH-]’, ’[c+]’, ’[c-]’, ’[cH+]’, ’[cH-]’, ’[n+]’, ’[n-]’, ’[nH+]’, ’[nH]’, ’[o
+]’, ’[s+]’, ’[sH+]’, ’[se+]’, ’[se]’, ’b’, ’c’, ’n’, ’o’, ’p’ and ’s’. After removing
less frequent tokens (including ’[Br+2]’,’[Br-]’,’[Cl+2]’,’[Cl+3]’,’[Cl
+]’,’[Cl-]’,’[F-]’,’[I+2]’,’[I+3]’,’[I-]’,’[P-]’,’[SH-]’,’[Se-]’,’[SeH2]’), a 94-token
vocabulary is used to process SMILES strings from different sources.
Those containing tokens outside the vocabulary were removed.

8323DRD2 activeswere collected from the ExCAPE-DB85 and 7939
were left after the elimination of invalid SMILES strings (can not parsed
by RDKit) and duplicate structures (share the same canonical SMILES
strings). Over 40,000 DRD2 inactives were also downloaded from the
ExCAPE-DB and 7939 of themwere randomly sampled for visualization
and comparisonwith actives. TransPharmer in the recall experiment of
DRD2 actives was retrained on the merged dataset of GuacaMol and
DRD2 actives, described in Section “Settings for DRD2 recall
experiment”

3873 entries of PLK1 actives were also collected from the
ExCAPE-DB database and all of them have valid and non-duplicate
SMILES strings. Each entry contains the molecular structure in
SMILES format and the bioactivity record in the uniform expression
of “pXC50” (e.g., pIC50 or pEC50. pIC50 = 9 corresponds to an IC50

value of 1 nM).

Settings for pharmacophore-constrained molecule generation
Three-hundred compounds (referred to as conditioning compounds)
were randomly selected from the reserved test set, and each model
used their pharmacophoric information to guide the de novo gen-
eration of novel molecules. For the task of scaffold elaboration, each
conditioning compound is fragmented into two parts by breaking a
random acyclic single bond between two non-hydrogen atoms. One
fragment of the conditioning compound is chosen arbitrarily as the
core or starting fragment, while the other becomes a reference ela-
boration. Using the core fragments as starting points, each model
performs scaffold elaboration guided by the pharmacophoric infor-
mation of the reference fragments. For both tasks, each model
attempts to generate 600 molecules for every conditioning com-
pound, and invalid and duplicate molecules are filtered out before
further evaluation. Detailed parameter settings for the three external
baselinemodels can be found in the Section “The settings of compared
methods”.

The settings of compared methods
LigDream35. LigDream can generate novel molecules guided by the
three-dimensional shape and pharmacophoric features of a refer-
ence compound. LigDream contains a shape variational auto-
encoder (VAE), which encodes a voxelized 3D molecular structure
into its latent code and reconstructs the voxelized compound
representation from it, and a shape captioning recurrent neural
network (RNN), which decodes the voxelized representation to the
SMILES of a specific molecule. The LigDream authors found that the
VAE reparametrization factor λ and the RNN probabilistic sampling

can provide different sources of sampling variability. In this study,
we set the reparametrization factor λ to 1.0 and turned off the RNN
probabilistic sampling as suggested. The model weight was
obtained from their public repository (https://github.com/
compsciencelab/ligdream).

PGMG39. PGMG receives a fully connected graph containing selected
pharmacophore features. This graph is encoded using a Gated Graph
Convolutional Network to obtain an embedding vector, which is sub-
sequently decoded into SMILES strings using transformer encoder-
decoder blocks. In this study, following the training process of PGMG,
a pharmacophore hypothesis was constructed by randomly selecting
3–7 pharmacophore features for each test case molecule, and the 3D
coordinates for each feature were obtained from the molecular con-
formation embedded using the ETKDG86 method, as implemented in
RDKit. We utilized the pretrained PGMG (accessible at https://github.
com/CSUBioGroup/PGMG) to generate 600 samples for each phar-
macophore hypothesis. For other exploration settings and evaluation
of PGMG, please refer to Table S2 in the supplementary materials.

DEVELOP34. DEVELOP integrated pharmacophoric information of the
regions to be explored into the process of fragment linking or scaffold
elaboration and has shown broad potential in scenarios such as PRO-
TAC design or R-group optimization. We utilized the scripts provided
by the authors of DEVELOP to prepare the pharmcophore information
and index files and perform the required preprocessing for our testing
data. We loaded the pretrained model weights (accessible at https://
github.com/oxpig/DEVELOP) and adopted the default parameters
during generation following the instructions of the setting used to
generate molecules with the same number of atoms as the reference
molecule.

STONED51. Superfast traversal, optimization, novelty, exploration,
and discovery (STONED) is an algorithm that can perform local
chemical subspace exploration around a target molecule and other
functionalities. STONED achieves these by modifying the SELFIES21

string representation of the reference molecules. The amount and
location of the modified characters have different effects on the
similarity between the resultant structures and the original ones.
Basically, restricting the amount or the location of the SELFIES
changes to either the initial or the terminal region yields similar
mutated structures51.

In this study, we utilized this feature of STONED to explore the
local chemical space around a target molecule in two different modes.
The first one is the default mode ("STONED”) which allows the muta-
tion positions to be chosen randomly and the number ofmutations up
to 5. The “STONED” mode produces both similar and dissimilar
structures to the starting molecule. The second is the “STONED-
focused” mode that allows only 1 modification and restricts the
mutation position to the terminal 10% of the SELFIES. The “STONED-
focused” mode was set up intentionally to produce highly similar
mutated structures to the target one. For the “STONED” mode, we
sampled 10,000 times for each molecule, while for the “STONED-
focused” mode we sampled 100,000 times because the mutated
structures have a high probability of repeating themselves. Only the
non-duplicate parts of the generated molecules were retained by
examining their canonical SMILES strings output by RDKit48.

Evaluation metrics
In this study, we use Sstruct to represent the molecular similarity score
which is measured by the Tanimoto coefficient of 2048-bit Morgan
circular fingerprints with a radius of 2, and use Spharma to represent the
pharmacophoric similarity score which is measured by the Tanimoto
coefficient of ErG fingerprints32 implemented by RDKit. Molecules will
go through charge neutralization before similarity scoring.
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The deviation of pharmacophoric feature counts Dcount is for-
mulated as follows:

Dcount =
1
N

XN

i

Xm

j

jni
j � nref

j j ð2Þ

whereni
j is the number of jth pharmacophoric features in ith generated

molecule, nref
j is the number of jth pharmacophoric feature in the

reference molecule,m is the total number of pharmacophoric feature
types (m = 8 in this study) and N is the total number of generated
molecules.

The recall rate in the recall experiment of DRD2 actives is for-
mulated as follows:

Recall =
#Knownactives in the generated set
#Knownactives in the reserved set

ð3Þ

The apparent precision is the number of known actives unseen by
TransPharmer found within the set of 4000 generated molecules.
Thesemolecules were sampled more than once during the generation
process and continuously joined the generated set until the size of
4000 was reached.

Settings for DRD2 recall experiment
The Bemis-Murcko scaffolds of the 7939 DRD2 actives were extracted
and clustered using Butina algorithm66 implemented in RDKit48, with
Morgan fingerprints47 (radius 2, 2048-bit) asmolecular descriptors and
a distance threshold of 0.4. Then, scaffold clusters were sorted by size
in descending order and 3717 ligandswith scaffolds in the odd-indexed
clusters were added into the training set of TransPharmer, while 4222
ligands with scaffolds in the even-indexed clusters were actives to be
recalled. During generation, active ligands in the training set were
encoded into 72-bit pharmacophoric fingerprints and used as prompts
of TransPharmer to generate 1000 SMILES per condition, yielding a
total of 3,717,000 generated samples. 3717 unrelated molecules to
DRD2 randomly drawn from the training set (Fig. 3b) were also enco-
ded into 72-bit pharmacophoric fingerprints for TransPharmer to
generate 1000 SMILES per condition.

DRD2 QSAR model
A classification model employing a Support Vector Machine (SVM) for
the prediction of bioactivity was developed following
DeepDrugCoder54. The standard implementation of SVM from the
scikit-learn v0.20.347 Python package was used, with the radial basis
function as the kernel function. Themodel was trained to discriminate
active compounds from inactive ones based on their 2048-bit-radius 2
Morgan fingerprint representations. Model weights and optimized
hyperparameters were loaded from https://github.com/pcko1/Deep-
Drug-Coder/tree/master/models. The model outputs the probability
of a compound being active against DRD2.

t-distributed stochastic neighbor embedding (t-SNE)
To visualize the chemical space encompassed by the generated
molecules, the training set, and the known PLK1 active ligands, we
constructed t-SNE plots. The 108-bit pharmacophorefingerprints were
used as themolecular descriptors. The perplexity parameterwas set to
50. A subset of known PLK1 active ligands was constructed by
removing ligands with a pXC50 value lower than 6. Employing the
Barnes-Hut implementation of the t-SNE algorithm87, we obtained two-
dimensional representations for 574 PLK1 active ligands and each
5,000 randomly selected molecules from the training set and two
generated sets (both conditionally and unconditionally).

Molecular docking
The receptor structure was taken from the Protein Data Bank (PDB)88

(PDB ID: 2YAC) and prepared using the Schrodinger Protein Prepara-
tion Wizard89 with default parameters, i.e., we added hydrogens, pro-
tonated non-residue molecules at pH 7 ± 2 using Epik90, removed
waters, ions and crystallization artifacts (e.g., tartaric acid), optimized
hydrogen bond assignment at pH 7 using PROPKA91 andminimized the
structure using the OPLS3e force field92. A grid was defined using the
centroid of the co-crystallized ligand Ovansertib as the center. Before
the docking procedure, the generated ligands were prepared using
LigPrep93 to enumerate unspecified stereocentres, tautomers, and
protonation states and perform minimization using the OPLS3e force
field. Each molecule along with any respective variants was then
docked using Glide63. We performed a redocking of Onvansertib into
the ATP pocket of PLK1 to validate our docking protocol. Onvansertib
was favorably scored by Glide with docking scores lower than −11 kcal/
mol and the RMSD of its No.1 docking pose and the co-crystal pose is
less than 0.5Å.

Molecular dynamics (MD) simulation
MD simulationwas carried out on the systems of PLK1 in complex with
generated ligands. The systems were first minimized through steepest
descent minimization until the termination condition, i.e., the max-
imum force below 10.0 kJ/mol, was satisfied. After minimization, the
systems were heated to 300K over 100 picoseconds (ps) using the
NVT ensemble with a restraint of 1000 kJ/mol nm−2 on both the kinase
and ligands, followedby an additional 100ps of NVTequilibrationwith
a restraint solely on the protein. Next, 100ps of NPT equilibration was
conducted. Finally, either a 4-nanosecond (ns) production run for
estimating binding free energy or a 100 ns run for evaluating binding
stability was conducted. The long-range electrostatics were accounted
for bymeans of the particlemesh Ewald (PME)method,with a cutoff of
12 Å applied uniformly across all the MD simulations. All hydrogen-
heavy atom bonds were constrained by the LINCS method, and
simulations were executed with a time step of 2 femtoseconds. Tem-
perature coupling utilized the V-rescalemethod. To assess the stability
of the simulated systems, the root-mean-square deviation (RMSD) was
computed based on the last 20 ns of the trajectory after performing
the alignment of protein structures. We validated our MD simulation
protocol by carrying out a 100ns run for the system of PLK1 in a
complex with Onvansertib. The last 20 ns RMSD is 1.71Å, indicating
high binding stability of Onvansertib in the ATP pocket of PLK1.

Molecular mechanics with generalized Born and surface area
solvation (MM/GBSA)
TheMM/GBSA calculations were conducted employing gmx_MMPBSA
v1.694, a tool derived fromAMBER’sMMPBSA.py. TheGBOBC2 (igb = 5)
model was utilized in this study, with a salt concentration set at 0.15M.
For the kinase, the ff14SB force field was employed, while the General
Amber Force Field was applied to the generated ligands. Other default
parameters for MM/GBSA calculations were applied.

Chemical synthesis
We assessed the synthesizability using the Synthetic Accessibility (SA)
score95 to estimate the ease of synthesis of the designed compounds,
supplemented by manual inspection by medicinal chemistry experts.
The primary synthetic data are available in the Supplementary
Methods.

In vitro kinase activity assays
In vitro kinase activity assays were conducted through ADP-Glo assay
services provided by Conradbio (Conradbio, China). The protocol for
the PLK1 assay is described as follows (protocols for other kinases are
very similar). Enzyme, substrate, ATP, and compounds were diluted in
a Kinase Buffer composed of 40mM Tris (pH 7.5), 20mM MgCl2,
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0.1mg/ml BSA, and 50μM DTT. In a 384-well low-volume plate, 1 μl of
the compound or 5% dimethyl sulfoxide (DMSO), 2 μl of PLK1 enzyme
(15 ng/well), and 2 μl of substrate/ATP mix (final concentration: 20 μM
ATP, 0.2 μg/μl Casein) were added to each well. The plate was then
incubated at 25 °C for 60min to allow for kinase activity. Following the
enzymatic reaction, 5 μl of ADP-GloTM Reagent was added to each well,
and the plate was incubated at 25 °C for an additional 40min. Subse-
quently, 10 μl of Kinase Detection Reagent was added, and the plate
was incubated for a final 30min at 25 °C. Luminescence was recorded
with an integration time of 0.5 s.

IC50 values were calculated using Prism 8 by fitting the following
equation:

Y =Bottom+ ðTop� BottomÞ=ð1 + 10ðlogIC50�X Þ ×HillSlopeÞ, ð4Þ

where X is a log of concentration, Y is a response, and top and bottom
are the responses of controls. Each assay was repeated at least three
times, and we computed the mean and standard deviation for the
values.

Cell viability assays
Cell viability assays were conducted through CellTiter-Glo assay ser-
vices provided by Conradbio (Conradbio, China). The protocol is
briefly described as follows. Firstly, when the cell confluence reaches
80%, cells are collected and counted. Subsequently, a cell suspension is
diluted, and 80 μl of the suspension is seeded into each well of a 96-
well U-bottom plate. The plate is then placed in a 37 °C, 5% CO2 incu-
bator for optimal cell growth. After 24 h of incubation, a 20 μl aliquot
of a diluted compound solution is added to specific wells on the plate,
0.5% dimethyl sulfoxide (DMSO) is used as a negative control. Fol-
lowing the compound addition, the plate is returned to the incubator
for an additional day. Upon completion of the incubation period, the
CellTiter-Glo assay (Promega) is performed according to the manu-
facturer’smanual. This assay is designed tomeasure cell viability based
on luminescence, providing insights into the impactof the compounds
on cellular health. Finally, data calculation is carried out to analyze the
results of the CTG assay using Prism 8.

Molecular novelty assessment
A molecular novelty assessment of the designed compounds exhibit-
ing IC50 below 1 μM, namely IIP0942, IIP0943, and IIP0945, was per-
formed within the ExCAPE-DB and ChEMBL databases and using
SciFinder. The settings and results can be found in the Supplemen-
tary Notes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper as a Source Data file. Sup-
plementary data in this study are provided in the Supplementary
Information. The generatedmolecules in the case studies of DRD2 and
PLK1 in this study have been deposited at Zenodo via https://doi.org/
10.5281/zenodo.1422782196. The crystal structure of PLK1 used in this
study is available in the RCSB PDB database under accession code
2YAC [https://doi.org/10.2210/pdb2YAC/pdb]. Source data are pro-
vided with this paper.

Code availability
The source codes of TransPharmer is available at https://github.com/
iipharma/transpharmer-repo and Zenodo (https://doi.org/10.5281/
zenodo.14228119)97.
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