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Transformer-generated atomic embeddings
to enhance prediction accuracy of crystal
properties with machine learning

Luozhijie Jin1,7, Zijian Du2,7, Le Shu1, Yan Cen2 , Yuanfeng Xu3,
Yongfeng Mei 4 & Hao Zhang 1,5,6

Accelerating the discovery of novel crystal materials by machine learning is
crucial for advancing various technologies from clean energy to information
processing. The machine-learning models for prediction of materials proper-
ties require embedding atomic information, while traditional methods have
limited effectiveness in enhancing prediction accuracy. Here, we proposed an
atomic embedding strategy called universal atomic embeddings (UAEs) for
their broad applicability as atomic fingerprints, and generated theUAE tensors
based on the proposed CrystalTransformer model. By performing experi-
ments onwidely-usedmaterials database, our CrystalTransformer-based UAEs
(ct-UAEs) are shown to accurately capture complex atomic features, leading to
a 14% improvement in prediction accuracy on CGCNN and 18% on ALIGNN
when using formation energies as the target, based on the Materials Project
database. We also demonstrated the good transferability of ct-UAEs across
various databases. Based on the clustering analysis for multi-task ct-UAEs, the
elements in the periodic table can be categorizedwith reasonable connections
between atomic features and targeted crystal properties. After applying
ct-UAEs to predict formation energy in hybrid perovskites database, we
realized an improvement in accuracy, with a 34% boost in MEGNET and 16%
in CGCNN, showcasing their potential as atomic fingerprints to address the
data scarcity challenges.

The development of deep learning (DL) andmachine learning (ML) has
created research methods for kinds of research fields1–4. In materials
science, this development is leading to discoveries of the material
properties, whichmay be a challenging task for traditionalmethods5–8.
Many DL algorithms and models have been proposed, such as the
Crystal Graph Convolutional Neural Network (CGCNN)9, MatErials
Graph Network (MEGNET)10, Atomistic Line Graph Neural Network
(ALIGNN)11, improved Crystal Graph Convolutional Neural Networks

(iCGCNN)12, OrbNet13, and so on14–24. They have achieved success in
kinds of applications, such as learning properties from multi-fidelity
data25, discovering stable lead-free hybrid organic-inorganic
perovskites26, mapping the crystal-structure phase27, designing mate-
rial microstructures28, and etc.

In the solid-state theory, the features and spatially topological
arrangements of the constituent atoms in crystals or other condensed
systems determine their properties, which are intricately encapsulated
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into the entity of “atomic embedding”29,30 in the DL algorithms. Spe-
cifically, the atomic embedding is the process of inputting the prop-
erties of atoms into crystal model digitally, and this idea is originated
from the natural language processing technique, in which the word
embeddings transform the way textual data is represented31–33. An
appropriate atomic embedding can accelerate the training of model,
improve the accuracy of prediction, and some explainable information
can be derived from it34–38. Currently, most attention in the field of
materials informatics has been focused on the designing of crystal
model architecture, for improving the accuracy of property predic-
tion,while the studies on the atomic embedding are rare. Typically, it is
common to simply adopt 0–1 embedding as the atomic embedding
algorithm9,10, which generally generates a sparse embedding matrix
not conducive to the information extraction of models.

In recent years, a large number of Transformer-based training
methods39 and predictivemodels, such as OrbNet40, 3D-Transformer41,
and so on, have been developed in the field of chemical molecular
property and structure prediction, which are believed to be able to
fully leverage the advantages of the Transformer architecture in pro-
cessing atomic interactions and capturing the three-dimensional
structures, enabling efficient representation of the complex interac-
tions between atoms. Motivated by these advancements, we devel-
oped the home-made CrystalTransformermodel to generate universal
atomic embeddings called ct-UAEs based on transformer architecture,
which learns a unique “fingerprint” for each atom, capturing the
essence of their roles and interactions within the materials. The
obtained embeddings are then transferred to different DL models.
After using the clustering method of the Uniform Manifold Approx-
imation andProjection (UMAP) clustering42, wecategorized atoms into
different groups, analyzing the connection between the embeddings
and the real atoms.

Results and discussions
Universal atomic embeddings
Generally, when predicting the properties such as formation energy
and bandgap of a material in deep-learning models, each atom is
first embedded as features. This embedding process is the intrinsic
process of GNNsmodels such as CGCNN, ALIGNN, andMEGNET. Then
the deeper feature extraction processes, including information

transmission and aggregation, node feature updating, etc., are con-
ducted to predict the crystal properties. In this context, these GNNs
are denoted as back-end models, while the methods for obtaining
atomic embeddings are denoted as front-end models. Essentially, the
parameter of atomic embeddings can be transferred using pretrained
parameters or constructed based on predefined properties, which is
realized in the front-end model of methods (I, II, III), as shown in
Fig. 1b, c.

As shown in Fig. 1a, for the front-end model, we used our pro-
posedCrystalTransformer to generate atomic embeddings (Method I).
Other pretrained atomic embeddings used GNN models (Method II
shown in Fig. 1b). While some used artificially constructed features
based on known atomic properties like the autoencoder-based
approach43(Method III shown in Fig. 1c). The CrystalTransformer
model learns atomic embeddings directly from chemical information
in crystal databases. Compared to Method III, which generates atomic
embeddings by processing on a predefined set of atomic properties,
our proposed ct-UAE can adapt to any desired material property
without relying on predefined atomic attributes.

To examine the atomic embeddings tensors obtained from dif-
ferent models, we usedMP andMP* dataset for formation energy (Ef)
and PBE bandgap (Eg), which are key properties for evaluating their
chemical stabilities and electronic performances. MP stands for the
2018.6.1 version for MP44 dataset, which contains 69,239 materials
with properties. MP* denotes the 2023.6.23 version, which contains
134,243 materials. For training, validation, and testing splits, we fol-
lowed the distribution of 60,000 (training), 5000 (validation), and
4239 (testing) for theMP dataset as used in previous works.While the
MP*44, and their properties are split into 80% training, 10% validation,
and 10% testing sets. It is worthy to note that, as discussed in Sup-
plementary 1, the gaps in the band structures of solids in materials
databases such as the MP, which are defined as the difference
between the eigenvalues of the conduction-band minimum (CBM)
and valence-band maximum (VBM), were obtained by solving the
Kohn-Sham (KS) equation with exchange-correlation (xc) in the
Perdew-Burke-Ernzerhof (PBE) parametrization45. In semiconductors
and insulators, these PBE bandgaps EPBE

g are not equal to their fun-
damental gaps EG, but differ by a term called derivative discontinuity
of the xc energy Δxc

46, leading to the substantial underestimation of

Deep learning methods (I, II)

One-Hot Input
based on

atomic number

Large Database CIF Files

Crystal PropertyOther Feature
Extractions

II. Trained by GNN models

I. Trained by CrystalTransformer

(b) Mainstream method (III)

0 1 0 0 0 0 0

0 0 0 0 0 0 0

1 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⋯

⋯

⋯

⋯

The property is mapped 
to a 0-1 vector space.

0 0 0 1 1 0 1 ⋯ 1 0 00

Artificially
vectorizing

III. Artificially 0-1 vectorized 

Gathering various
properties of elements

(c)

Atomic Embedding

Back -end Models

Message Aggregation

Nodes Update

Property Prediction

CGCNN ALIGNN MEGNet

Predicted Crystal Properties
(formation energy, bandgap, etc.)

1

3

2

4

Input 
Matrix

(a)

Front-end Model

Fig. 1 | Workflowofmodel with front- and back-end parts to predict properties
and different working principle of atomic embeddings. aThe workflow of
front-end and back-end model using atomic embeddings. Atomic Embedding is
derived from the front-end models while graph neural networks (GNN) serve as
back-end models trained for different properties. b The process and principles
of Method (I, II) which use deep learning to train on large database and

generate atomic embeddings. Method I uses Crystaltransformer to produce uni-
versial atomic embeddings (UAE), while Method II uses the traditional GNN
model to produce ordinary atomic embedding. c The process and principles of
Method III, which artificially constructs atomic embeddings using query databases
or mapping known atomic properties to a 0–1 vector or one-hot vector in
most cases.
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EPBE
g compared to EG as large as 40–50%47,48. However, since the KS

equation is constructed based on the kinetic energy and Coulomb
potentials between charged particles (electrons and ions), when
specific exchange-correlation functionals are used, the eigenvalues
of the KS equation should capture the major physical interactions
within the interacting systems. Therefore, if the PBE bandgaps are
used as target in the deep learning model, the derived atomic
embedding should involve the atomic properties and the structural
information, since EPBE

g s have involved such information when con-
structing the KS Hamiltonian using the PBE-type xc functional.

Front-end models as CrystalTransformer, CGCNN, ALIGNN, and
MEGNET are first pre-trained on the expanded MP* dataset, focusing
on the bandgap energy Eg and formation energy Ef predictive
tasks. Subsequently, the extracted atomic embeddings are integrated
into a CGCNN back-endmodel and trained on the original MP dataset,
which results in CT-CGCNN, CG-CGCNN, ALI-CGCNN, and so on.
Table 1 shows a comparative MAE analysis to evaluate the relative
performance enhancements attributable to the front-end atomic

embeddings, denoted as N-CGCNN in Table 1 (N means the front-end
model described above). As listed in Table 1, among the atomic
embeddings pre-trained by different models, those who use ct-UAEs
(CT-CGCNN) perform the best, with 14% and 7% reduction inMAE for Ef
and Eg, also outperforming the best GNN front-end embeddings (CG-
CGCNN in this context) by 4% and 5% for both properties, respectively.
The predicted formation energy versus target formation energy for
those models are listed in Fig. 2a–c.

Furthermore, as listed in Table 1, performances of GNN models
like CGCNN, MEGNET, and ALIGNN were enhanced by using the
CrystalTransformer-generated atomic embeddings (ct-UAEs) eval-
uated on the MP dataset. The CGCNN model transferred with
CrystalTransformer-generated embeddings (ct-UAEs), denoted by CT-
CGCNN in Table 1, shows a significant reduction in MAE values for
formation energy Ef, decreasing from 0.083 eV/atom to 0.071 eV/
atom, a reduction of 14%, and for bandgap Eg, decreasing from
0.384 eV to 0.359 eV, a reduction of 7%. A similar reduction can be
observed for MEGNET, denoted by CT-MEGNET in Table 1, with Ef

Table 1 | Performance comparison (MAE) of various models on different datasets and different pretrained models

Model \ Target MP-Ef MP-Eg MP*-Ef MP*-Eg JARVIS-Ef JARVIS-Eg MC3D-E

None-CrystalTransformer 0.097 0.563 0.152 0.395 - - -

None-CGCNN9 0.083 0.384 0.085 0.342 0.080 0.531 5.558

None-MEGNET10 0.051 0.324 0.054 0.291 0.070 0.493 5.029

None-ALIGNN11 0.022 0.276 0.056 0.152 0.044 0.562 3.706

CT-CGCNN9 0.071 0.359 - - 0.066 0.463 5.341

CT-MEGNET10 0.049 0.304 - - 0.068 0.443 4.687

CT-ALIGNN11 0.018 0.256 - - 0.043 0.536 3.705

CG-CGCNN9 0.074 0.378 - - - - -

MEG-CGCNN9 0.082 0.457 - - - - -

ALI-CGCNN9 0.077 0.386 - - - - -

Ef (eV/atom), Eg (eV) and E (eV) denote the formation energy, bandgap and total energy formaterials. A-B implies the front (A) and back (B) endmodels, andNonemeans trained from scratchwith no
front-end model. CT indicates CrystalTransformer as front-end model, and all front-end model is pretrained on the MP* dataset.

CT-CGCNN

None-CGCNN

MAE

CT-CGCNN: 0.073

None-CGCNN: 0.083

v

2

1

0

-1

-2

-3

-4

v 210-1-2-3-4

Target (eV/atom)

P
re

d
ic

te
d

 
(e

V
/a

to
m

)

3

-5

R2

0.986

0.982

Target (eV/atom)

P
re

d
ic

te
d

(e
V

/a
to

m
)

CT-ALIGNN

None-ALIGNN

Target (eV/atom)

P
re

d
ic

te
d

(e
V

/a
to

m
)

320-1-2-3-4-5 1

320-1-2-3-4-5 1

3

1

0

-1

-2

-3

-4

CT-MEGNET

None-MEGNET

-5

2

3

1

0

-1

-2

-3

-4

-5

2

v

2

3

1

0

-1

-2

-3

-4

v0 0.5

(e
V

/a
to

m
)

Distribution

-5

(a)

(c)

(b) (d)

Fig. 2 | Comparison of effects on whether applying CrystalTransformer-
generated universal atomic embeddings (ct-UAE) across different models and
the distribution for the entire dataset. Ef is the formation energy. MAE refers to
the Mean Absolute Error. R2 is the R-squared value in predicting each property.
None means trained from scratch with no front-end model, and CT indicates
CrystalTransformer or ct-UAE. a–c Plots of predicted formation energy versus
target formation energy for CGCNN9, MEGNET10, and ALIGNN11 models on the MP
dataset. The upper part and the right part denotes target and prediction data

distribution respectively. TheMAE and R2 for None-CGCNN are 0.083 eV/atom and
0.982, respectively, while for CT-CGCNN, the MAE and R2 are 0.073 eV/atom and
0.986 respectively. The MAE and R2 for None-MEGNET are 0.051 eV/atom and
0.994, respectively, while for CT-MEGNET, the MAE and R2 are 0.049 eV/atom and
0.994 respectively. TheMAE andR2 forNone-ALIGNNare0.022 eV/atomand0.997,
respectively, while for CT-CGCNN, the MAE and R2 are 0.018 eV/atom and 0.997
respectively. d The distribution curve for the formation energy across the entire
dataset. Source data are provided as a Source Data file.
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decreasing from0.051 eV/atom to 0.049 eV/atom, a 4% reduction, and
for bandgap Eg, decreasing from 0.324 eV to 0.304 eV, a reduction of
6%. ALIGNN also exhibits an improvement in Ef prediction accuracy,
denoted by CT-ALIGNN in Table 1, decreasing from 0.022 eV/atom to
0.018 eV/atom, a reduction of 18%, and for bandgap Eg, decreasing
from 0.276 eV to 0.256 eV, a 7% reduction.

Transferability of ct-UAEs
To further investigate the performance of the ct-UAEs on different
properties, task-generated embeddings are transferred to different
tasks. For example, Ef-task-generated atomic embeddings are applied
to bandgap prediction and Eg-task-generated embeddings to forma-
tion energy task. The results are listed in Table 2, denoted as CTEf -CG
and CTEg -CG. Embeddings trained onbandgap tasks, when transferred
to the formation task, lead to a measurable improvement in accuracy
with theMAEdecreasing from0.083 to0.078 eV/atom, a 6% reduction.
Further, although trained on a simple task such as formation energy,
the embedding reduces MAE on the more challenging bandgap pre-
diction by 0.2%.

Further experiments focus on multi-task-generated embeddings
(MT). As listed in Table 2, the embeddings trained from two properties
(formation energy and bandgap), denoted as MT@2p, yield better
performance compared to single-task-generated embeddings. When
transferred to the CGCNN model (CTMT@2p-CGCNN), the model
achieves an MAE of 0.068 eV/atom for Ef and 0.357 eV for Eg, out-
performing the baseline CGCNN (by an 18% reduction in Ef and a 7%
reduction in Eg) as well as the CGCNN variants using single-task
embeddings, with a 4% reduction in Ef and 0.5% for bandgap.

Additional multi-task variants (MT@3p and MT@4p) incorporat-
ing total energy and total magnetization are introduced. When intro-
ducing MT@3p with an additional property of total energy, a 0.2%
reduction in bandgap MAE is achieved, with formation energy almost
unchanged. However, the introduction of magnetization in MT@4p
leads to a slight increase in theMAE for bandgap prediction from0.357
to 0.367 eV, which is probably due to the physical differences between
these two properties.

Then, different training strategies are used to evaluate the per-
formanceof themodel, and the results are listed inTable 3. TheCTfreeze-
CGCNN, which employs frozen pre-trained embeddings from the
CrystalTransformer or ct-UAEs, achieves an MAE of 0.073 eV/atom for
formation energy Ef and 0.358 eV for bandgap Eg. However, when
integrating the coordinate embeddings together with ct-UAEs (chem-
istry information) into the CGCNN framework (CTchem+coords-CGCNN),
the MAE increases from 0.071 eV/atom in the atom-embedding-only
model to 0.085 eV/atom. Similarly, the MAE worsens from 0.359 eV to
0.395 eV for bandgap Eg.

The ability and transferability of the universal atomic embedding
are further tested ondifferent databases and tasks. Each is cut into 8:1:1
for training, validation, and testing. Details on the dataset can be found
in Supplementary 2A. As for the Jarvis dataset49, the result is shown in
Table 1. The CT-CGCNN model demonstrates an improvement in
predicting both formation energy Ef and bandgap energy Eg. TheMAEs
for formation energy andbandgapare reduced from0.080 eV/atom to
0.066 eV/atom by 17.5% and from 0.531 eV to 0.463 eV by 12.8%,
respectively.

The embedding is further evaluated on the MC3D dataset. Prop-
erties such as total energy (E) are chosen as the task, and the result is
shown in Table 1. The MAE of CGCNN is reduced from 5.558 eV to
5.341 eV, indicating a 3.9% improvement. For the ALIGNN model, the
MAE remains nearly unchanged. While for the MEGNET model, the
MAE decreases from 5.029 eV to 4.687 eV, showing a 6.8%
improvement.

Additionally, we also investigated the suitability of ct-UAE on
energy-conserving interatomic potential (IAP) models, which are
trained based on the MPtrj dataset50. As demonstrated in Supple-
mentary 4, we trained ct-UAE on vectorial and scalar targets, i.e., force,
stress, and energy. To benchmark, we re-trained CHGNet50, M3GNet51,
and MACE52 models on the MP-RELAX dataset proposed by M3GNet51.
Remarkably, adding ct-UAEs to CHGNet resulted in a significant
reduction in force loss, from 0.284 to 0.242 (a 14.8% decrease), along
with a reduction in stress loss from 1.496 to 1.437 and a slight decrease
in energy loss from 0.460 to 0.457. For M3GNet, ct-UAE led to a slight
reduction in total loss (energy, force, stress) from 2.1236 to 2.1234 and
in energy loss from 0.3597 to 0.3595, indicating a minor performance
improvement. However, for MACE, the ct-UAE did not lead to a
reduction in loss.

Interpretability
This investigation leverages straightforward clustering algorithms to
conduct an in-depth analysis of ct-UAEs. Here, the UMAP clustering
method42 is employed to project these ct-UAEs into a two-
dimensional space, thereby offering a means to intuitively under-
stand atomic characteristics in a reduced dimensional setting. Con-
sequently, the dimensionality of the ct-UAEs is reduced from the
original 89 × 128 to 89 × 2, and through the application of
the K-means clustering method53 in the two-dimensional space,
atoms are further categorized into three distinct groups as shown in
Fig. 3a. The t-SNE clustering method54 is used as an additional sup-
plementary comparison, as shown in Fig. S1. Furthermore, the com-
munity detection method55 is also used to directly cluster ct-UAEs
into three categories without dimension reduction, as an additional
method to investigate the interpretability of ct-UAEs, which is shown
in Fig. S2.

To determine the best number of clusters for atoms, the elbow
plots56 and siltouette coefficient graphs56 are needed, with quantitative
analysis shown in Fig. 3b, c. Both elbow plot and silhouette coefficient
graph demonstrate that 3 or 4 clusters’ solution is the best choice for
the classification of atoms. In this work, the CrystalTransformermodel
can be trained with 2, 3 or 4 different properties, (but these atomic
embeddings all show the same best number of clusters of 3 or 4
clusters).

Table 2 | Single-task versus multi-task embeddings on mean
absolute error (MAE) for formation energy (eV/atom) and
bandgap (eV) and R2

Target None-
CG

CTEf -CG CTEg -CG CTMT@2p-
CG

CTMT@3p-
CG

CTMT@4p-
CG

MAE(Ef) 0.083 0.071 0.078 0.068 0.069 0.068

R2(Ef) 0.984 0.987 0.983 0.987 0.987 0.986

MAE(Eg) 0.384 0.383 0.359 0.357 0.356 0.367

R2(Eg) 0.845 0.845 0.850 0.849 0.851 0.847

CG indicates CGCNN. None means no embeddings are used, Ef and Eg denotes embeddings
trained on the corresponding target. MT@np demotes embeddings trained with multi-task
learning on n properties.

Table 3 | Various embedding approaches comparison on
mean absolute error (MAE) for formation energy (eV/atom)
and bandgap (eV) and R2

Target CT-CGCNN CTchem

+coords-CGCNN

CTfreeze-CGCNN

MAE(Ef) 0.071 0.085 0.073

R2(Ef) 0.987 0.983 0.986

MAE(Eg) 0.359 0.395 0.358

R2(Ef) 0.850 0.834 0.851

CT denotes embeddings trained on corresponding properties. CTchem+coords denotes atom and
coordinates embeddings, while CTfreeze denotes embeddings with zero grad when training the
back-end model.
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Based on the clustering results, most of the elements in the per-
iodic table can be categorized, as shown in Fig. 3a. This example
divides all elements into 3 classes, called as Class A (the green cluster),
Class B (the yellow cluster), and Class C (the blue cluster). And indi-
vidual elements that don’t appear in datasets are colored with gray.
Essentially, this clustering scheme based on ct-UAEs differs from the
traditional classification rules of elements in the periodic table arran-
ged based on the atomic number of elements, but for the clarity and
convenience, we also presented the results using the periodic table
scheme as well. The detailed result of the UMAP clustering shown in
the periodic-table scheme is demonstrated in Fig. S3 in
Supplementary 5.

To further interpret the element classification and without loss of
generality, we chose oxide compounds from the Materials Project,
which yielded a total of 62,068 retrieved materials. From these, we
filtered for those that contain data on formation energy, bandgap, and
total magnetization. We then categorized the filtered materials into
three groups according to the previously determined element classi-
fication Classes A, B, and C clustered by MT@4p embedding using
UMAP. Each group contains only elements from the corresponding
class andoxygen,with no inclusionof elements fromother classes.The

analysis resulted in 2197 compounds containing oxygen and Class A
elements, 2719 compounds containing oxygen and Class B elements,
and 7752 compounds containing oxygen and Class C elements. Violin
plots for each of the three properties are shown in Fig. 3d–f.

As illustrated in Fig. 3d, the formation energy of oxide compounds
for the three classes of elements shows significant differences. the
formation energy of Class A is concentrated between −2.5 eV/atomand
−4.0 eV/atom, indicating a relatively high chemical stability for oxides
containing A-class elements. Class B exhibits the widest range of for-
mation energies, from near 0 eV/atom to −4 eV/atom. The formation
energy of oxides containing C-class elements is concentrated between
−1.0 eV/atom and −2.5 eV/atom, also indicating their relatively good
chemical stability, albeit with generally lower stability compared to
Class A. Specifically, the Class A includes Group IIA, IIIB, and IVB ele-
ments, and their similar characteristics is the tendency that valence
electrons participate in metallic bonding, contributing to the more
compact lattice structure57–59. The Class B includes most of Groups VB
to VIIIB, with their d-orbital electrons possessing close energy levels,
whichdistinguishes them from themaingroupelements dominatedby
s-orbital electrons and lanthanides and actinides influencedby f-orbital
electrons. Previous studies reported that these elements can
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used to get averaged results. d–f The violin plots of formation energy, bandgap,
and total magnetization of oxide compounds and oxygen allotropes from the
Materials Project dataset, categorized into Classes A, B, and C using MT@4p
embeddingwith UMAP. The total numbers of samples for Class A, Class B and Class
C shown in (d–f) are 2197, 2719, and 7752, respectively. Parameters like outliers or
center for violin plots are listed in the Source data. Source data are provided as a
Source Data file.
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participate the formation of crystals with unique electrical and thermal
conductivity properties, as well as distinctive catalytic capabilities60–64.
The Class C includes Group IA, IB, and IIB elements, along with main
group metals and nonmetals. These elements show electronic
exchange and sharing abilities in solid states. Among them, the alkali
metals and halogen tend to participate in the electron sharing to form
themost stable structure. Group IBand IIBmetals have relatively stable
d-orbital electrons, but can provide additional electron density during
the formation of crystals, resulting in high melting points and good
electrical conductivity65.

As illustrated in Fig. 3e, the bandgap distribution of oxide com-
pounds for the three classes of elements also reveals distinct beha-
viors. The bandgaps of oxides containing A-class elements are
concentrated between 3 eV and 6 eV, indicating that they are primarily
wide-bandgap semiconductors. The bandgap for Class B is con-
centrated between 0.5 eV and 2.5 eV, reflecting narrow-bandgap
semiconducting behavior. The bandgap for Class C is concentrated
between 1 eV and 4 eV, which fall within the typical semi-
conductor range.

Lastly, Fig. 3f shows the distribution of magnetization across the
three classes of elements. The magnetization of most elements across
all three classes is concentrated near 0μB, indicating that,most oxides
exhibit very low net magnetic moments, characteristic of para-
magnetic or diamagnetic materials. Specifically, the magnetization of
Class A is almost entirely centered at 0μB. For Class B, the distribution
of magnetization is broader, and a substantial number of elements
have magnetization values greater than 5μB, demonstrating notable
ferromagnetic behavior. Also, Fe and Co are in class B. The magneti-
zation of Class C is primarily distributed between 0 μB and 5μB.

To further investigate the intrinsic information of the embed-
dings, we conduct reverse training experiments, which involves taking
a series of important elemental properties, including atomic radius,
boiling temperature,melting temperature, electrical conductivity, first
ionization energy as training targets to train a Catboost model66. 80%
of atomic embeddings are selected randomly as training data, while
the rest serves as validation to calculate R2 (coefficient of determina-
tion). The R2 for the model in predicting each property is calculated,
with the best results listed in Table 4, which reveals that, the Catboost
model exhibits high values of R2 larger than 0.78. So even with small-
set data, the ct-UAEs are able to establish a robust connection with the
physical and chemical properties of atoms. We further employed the
SHAP67 algorithm to determine the most important dimensions con-
tributing to the final results. The outcome is averaged over multiple
random seeds to maintain stability. While the results shown in Table 4
reveal that certain properties correspond to specific dimensions,
which acts like genes. The calculated SHAP value is shown in Fig. S4.

To further understand the difference between embeddings
derived from different multi-tasks properties. We use the Dynamic
Time Warping (DTW)68 method to measure the similarity between
mean embedding from MT@2p, MT@3p and MT@4p. Averaging and
window smoothing of size 5 are first conducted to reduce noise
information and uncover the inner trends. The threshold of 0.013 is
used to distinguish periods of high similarity from those with diver-
gence,whichwas further shownby the inverseDTWdistance in Fig. 4b,
and the reference line at 0.26 × 103 is served as a benchmark to
underscore the distinction between embeddings. Our analysis
revealed apronounced alignment as shown in Fig. 4, suggesting similar
feature evolution despite the introduction of more tasks related to
total energy and total magnetization.

As shown in Fig. 4a, the blue region indicate that the corespond-
ing embeddings share some similarity, which also equals to the values
in Fig. 4b being above the threshold. The observation indicates that
although the target properties is diverse, the basic trends of the
embeddings remain largely the same. Of particular note is the high
similarity between the embeddings of the MT@3p and MT@2p mod-
els, which only differ by one total energy task. In contrast, the intro-
duction of magnetic properties in the MT@4p model led to al
disagreements but still contained relatively sufficient similarities. The
fact that the average standard deviation of each embedding is 0.0358,
0.0397, and0.0481 shows that the average varianceof the embeddings
are close to each other. Further, we calculate the variance of each

Table 4 | Most important feature dimensions for various
properties

Properties Important Feature Dimensions R2

Radius 98, 109 0.784

Boiling Temperature 63, 11 0.864

Melting Temperature 45, 91 0.856

Electrical Conductivity 126, 9 0.831

First Ionization Energy 85, 20 0.907

R2 is the R-squared value in predicting each property.
The bold type indicates the most important dimension.

(a) (b)

Dimension Index Dimension Index

In
v

er
se

 D
T

W
 D

is
ta

n
ce

 (
×
1
0
3
)

A
v
er

ag
e 

E
m

b
ed

d
in

g
 V

al
u
e

0 20 40 60 80 100 120 0 20 40 60 80 100 120

0.04

0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03

1.06

0.79

0.53

0.26

0.00

MT@2

MT@3

MT@4

Fig. 4 | The analysisof the similarityofCrystalTransformer-generateduniversal
atomic embeddings (ct-UAE) obtained from multi-task training with different
numbers of properties.MT@np demotes embeddings trained with muti-task
learning on n properties. MT@2p is trained using formation energy and bandgap,
while MT@3p adds total energy, andMT@4p further includes total magnetization.
DTW is the Dynamic TimeWarpinmethod. aMulti-task embedding comparison for
MT@2p, MT@3p, and MT@4p, highlighting DTW similarity regions (max

distance < 0.013). The average standard deviation ofMT@2p, MT@3p andMT@4p
across different dimensions are 0.0358, 0.0397, and 0.0481 respectively. Similar
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embeddings’ standard Deviation (std), the result is 0.016, 0.014, and
0.017, which implies that the std of the 128 dimensions is stable.

Application in hybrid organic-inorganic perovskite crystals
Hybrid organic-inorganic perovskite (HOIP) materials are gaining tre-
mendous attention for their outstanding optoelectronic properties.
However, studying on the HOIP materials is hindered due to the
scarcity of training data69,70. Contrary to other materials, HOIP crystals
lack a large and high-quality database because of their complex
synthesis. Such scarcity of data presents a significant challenge for
traditional deep learning models.

After merging two distinct datasets of HOIP materials69,70, we
created amore diverse dataset containing 2103 HOIP crystals, which is
still small compared to other material databases such as the MP
dataset44. Figure 5a shows theworkflow for applying ct-UAEs to predict
properties of HOIP materials, with the results presented in Fig. 5. The
MAE of CGCNN model for predicting formation energy (Ef) of HOIP
materials was reduced significantly, from 0.054 eV/atom to 0.046 eV/
atom by a 16% improvement. Similarly the MAE of MEGNET reduces
from 0.032 eV/atom to 0.021 eV/atom, by nearly 34.38%. For ALIGNN,
the MAE values are not in the same magnitude as the aforementioned
models. Figure 5b, c shows the plot of predicted formation energy
versus the target formation energy for the MEGNET and CGCNN
models.

Methods
The crystaltransformer model
To construct universal atomic embeddings, the vanilla transformer
algorithm is introduced as the main part of the model, resulting in the
home-made model named CrystalTransformer, whose architecture is
shown in Fig. 6. When given an atom input in a batch of size batch for
N-atom with L features per atom (L denotes a one-hot encoding of the

atomic species) and the coordinate input with batch × N ×D size (Here
D indicates the spatial dimension (equals 3 in this context)), themodel
first topologically augments the coordinates input using translation
and rotation transformation. The details of the augmentation are
described in Supplementary 6. After that, both inputs are applied by
linear transformation to embed features to a dimension of C.

A0 =AWA + bA, ð1Þ

X 0 =XWX +bX , ð2Þ

where A denotes the one-hot initialization for atom input features, with
the dimension of batch × N × L. Tensor X denotes the atom position
coordinates, with the dimension of batch × N ×D.WA andWX denote the
weightmatrices for atom features andposition coordinates respectively,
while bA and bX denote their corresponding biases. A0 and X 0 have the
same dimension of batch × L × C. It should be noted that theWA and bA

matrix or the AWA + bA output (A is one-hot input) are the embedding
matrix of the atomic information, which is the most important part of
the CrystalTransformer model. The transformed atoms and position
features are then concatenated along the feature dimension by,

M = Concat ðA0, X0Þ, ð3Þ

where M is the concatenated feature matrix with the shape of
batch × N × 2C. Then, the Multihead Transformer’s encoder is applied
toM, which consists of multiple layers of multihead-self-attention and
feed-forward neural networks, written as,

Z ðlÞ = MultiheadTransformerEncoderLayer ðZ ðl�1ÞÞ, ð4Þ

Fig. 5 | Flowcharts and results comparison onusing ct-UAE trained on different
tasks or not for perovskite property prediction. Ef is the formation energy. MAE
is the Mean Absolute Error. R2 is the R-squared value in predicting each property.
The prefix None- denotes models that do not use ct-UAE. The prefix CT- indicates
models that use ct-UAE. The perfix CTMT@np is models that use ct-UAE trained by n
properties. a Schematic representation of the workflow for applying ct-UAEs to
predict properties of perovskitematerials. When the back-endmodel is MEGNET10,

the MAE for UAE-free case is 0.32 eV/atom. Using the transfer learning strategy
with ct-UAE results in an MAE of 0.030 eV/atom, while the MAE for the transfer
learning strategy with ct-UAE trained using multi-task learning is 0.021 eV/atom.
b, c Predicted formation energy versus target formation energy for the MEGNET10

and CGCNN9 models. The upper part and the right part denotes target and pre-
diction data distribution respectively.
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where Z(0) = M and l indexes the layer of the encoder. Each Multihead
Transformer encoder layer processes the input sequence and updates
it through multihead self-attention mechanisms and point-wise feed-
forward networks, as described in the Supplementary 2B section. After
processing the crystal structure features through the Transformer
encoder, theCrystalTransformermodel selects thefirst token fromthe
output sequence for downstream prediction tasks, which is passed
through a linear layer to produce the network’s predicted material
properties as,

ypred = LinearðZ ðLÞ
1 Þ, ð5Þ

where Z ðLÞ
1 denotes the first token of the final encoder layer’s output,

and ypred is the material properties predicted by the network.
TheTransformer’smultihead-self-attentionmechanisms allow the

model to learn representations that can capture the underlying
mechanisms formaterial properties. It not only processes the chemical
part, but also incorporates the coordinates part. To further investigate
the role of the coordinates part of CrystalTransformer in model per-
formance, an ablation study and qualitative analysis are conducted as
described in Supplementary 7, which shows that the coordinates part
encapsulates important geometric characteristics of crystal systems
and is important in training the embeddings. Without the coordinates
part, the training MAE will increase, with MAE from 0.395 eV to

0.458 eV when trained on the MP bandgap dataset. By comparison of
the definition of attention weights αij in Transformer as shown in Eq
(S16), and the general expression describing physical interaction
between atoms V(rij) as shown in Eq (S17), it is straightforward that the
attentionweightαij is analogous to thephysical interaction coefficients
between atomsV(rij),which suggests that the attentionmechanismcan
learn spatial relationships and interaction properties in real physical
systems.

The CrystalTransformermethod exhibits a theoretical complexity
primarily driven by the self-attention mechanism in its Transformer
layers. For a crystal with n atoms, the self-attention mechanism com-
putes pairwise correlations with a complexity of Oðn2 � dÞ, where d is
the dimensionality of atomic features. Traditional Graph Neural Net-
works (GNNs), by contrast, typically operate with a lower theoretical
complexity ofOðn � d2Þ due to their localized edge-based interactions.
Despite this, the manageable scale of n in conventional crystal struc-
tures results in a feasible runtime for both approaches. Real runtime
experiments show CrystalTransformer required 21 seconds for 100
batches with 512 crystals per batch, while CGCNN needed 10 seconds,
which is evenly matched. Further details are available in
Supplementary 3.

In order to test the CrystalTransformer model’s performance on
crystal datasets, we conducted performance assessments against
established graph neural network models. These models were

Chemical
Information
Extraction

Linear Layer

Atomic Embedding

Linear Layer 

Topological Data

augmentation

Coordinates
Information
Extraction

Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

Crystal properties

Matrix Matrix

Input Input(a) (b)

(c)

Fig. 6 | The structure of the CrystalTransformer model. a The main part of
CrystalTransformer model. InputA and InputX denote atom (chemistry) and struc-
ture (coordinates) information respectively. After passing through the information
extraction layers, the inputs are transformed into the Amatrix and Xmatrix. These
twomatrices are then concatenated and processed through the Transformer layers

which include multi-head self-attention, feedforward layers, and other compo-
nents, to produce the output target. b Chemical information extraction layer.
InputA is first passed through an embedding layer, followed by a linear transfor-
mation. c Coordinates information extraction layer. InputX undergoes data aug-
mentation followed by a linear transformation.
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evaluated on theMP andMP* dataset for formation energy (Ef) and PBE
bandgap (Eg), As listed in Table 1, the None-CrystalTransformer, None-
CGCNN, None-MEGNET, None-ALIGNN, denote the models trained
from scratch without any front-end model, which is the traditional
method. It is clear that, despite lacking the prior inputs of atomic
features and edge information of crystals, the None-
CrystalTransformer demonstrates competitive accuracy in predicting
material properties, i.e., only 1–4 times larger in Ef and 1–3 times larger
in Eg compared to the traditional GNNs models on MP/MP* datasets.
The increase in MAE is partly because it does not strictly rely on pre-
defined graph structures and inductive bias. The lack of certain
inductive biases compels the model to acquire this knowledge inde-
pendently. Although diminishing its predictive capabilities, it does
encourage the model’s parameters to assimilate additional informa-
tion, leading tomore informative embeddings, as described in Table 1.

Crystal-symmetry restrictions and data augmentation
The ct-UAE method accounts for the rotational and translational
invariance through its architecture and data augmentation strategy
as described in Supplementary 6. While the ct-UAE front-end indeed
does not explicitly enforce rotational and translational invariance,
the back-end GNN model is designed to ensure this restriction of
symmetries. Actually, the front-end model can easily learn and
maintain symmetries through data augmentation. To validate this
assertion, firstly we used a stronger data augmentation method to
train the MT@3pmodel on the MP* dataset. Then a group of crystals
are randomly selected, and subjected to random augmentations
through rotations and translations. The consistency of the output
vectors from these augmented samples was assessed using pairwise
cosine similarity and Euclidean distance. The trained MT@3p model
achieved an average cosine similarity of 0.998 and an average
Euclidean distance of 0.275, indicating that the output vectors were
nearly identical across augmentations. Notably, a recent study
employing a similar method of data augmentation demonstrated
that, unconstrained model architectures like transformers can be
trained to achieve a high degree of invariance such as rotational
invariance by learning these symmetries from data71, and this
unconstrained architecture can, in fact, lead to improved perfor-
mance, which is essentially consistent with the rationale behind our
proposed front-end model of CrystalTransformer.

Multi-task learning method
MTL72–74 (multi-task learning) is a learning method. The model is
trained simultaneously on different tasks, while the parameter is
optimized toward the trend that all tasks improve. This training
method enhances generalization. In the context of Crystal-
Transformer, MTL stands for different properties for materials. The
loss function is a weighted sum of the loss for each task:

LMTL =
X

i

wi � Lossiðypred, i, ytarget, iÞ, ð6Þ

where Lossi could beMSEorMAE,wi are the taskweights, and i indexes
the task. MTL is capable of ensuring the universality of atomic
embeddings, rather than developing anUAE that is specially optimized
on a single task.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The embeddings generated by our ct-UAEs are available on Github
(https://github.com/fduabinitio/ct-UAE) under MIT license. ct-
UAEv1.075(https://doi.org/10.5281/zenodo.14557908) contains all the

embeddings used in this work. Source data are provided with this
paper as a Source Data file. Source data are provided with this paper.

Code availability
The ct-UAE source code used in this study is publicly available on
GitHub (https://github.com/fduabinitio/ct-UAE) under MIT license. ct-
UAEv1.075 (https://doi.org/10.5281/zenodo.14557908) was used to
generate all embeddings in this work.
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