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Multi-modal framework for battery state of
health evaluation using open-source electric
vehicle data
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Yang Xie1, Ranglei Wu1 & Ziyou Song 4

Accurate, practical, and robust evaluation of the battery state of health is
crucial to the efficient and reliable operation of electric vehicles. However, the
limited availability of large-scale, high-quality field data hinders the develop-
ment of the batterymanagement system for state of health estimation, lifetime
prediction, and fault detection in various applications. In this work, to gain
insights into underlying factors limiting battery management system perfor-
mance in real-world vehicles, we analyze the operational data of 300 diverse
electric vehicles over three years to understand the disparities between field
data and laboratory battery test data and their effect on state of health esti-
mation. Furthermore, we propose a deep learning-based multi-modal frame-
work to effectively leverage historical vehicle data for efficient, accurate, and
cost-effective state of health estimation. The proposed paradigm exhibits
considerable potential for numerous applications in state estimation and
diagnostics in multi-sensor systems. Furthermore, we make the field data of
these electric vehicles publicly available aiming to promote further research
on the development of effective and reliable battery management systems for
real-world vehicles.

Lithium-ion batteries, with their high energy densities and long life-
spans, have emerged as a promising energy source, particularly in
electric vehicles (EVs)1,2, which are becoming increasingly popular.
However, the electrochemical mechanism of lithium batteries leads to
irreversible aging, which results in performance degradation in terms
of capacity reduction and internal resistance increase. The aging of
lithium-ion batteries can be attributed to the solid electrolyte interface
growth, loss of active materials, and lithium plating3,4. In an EV battery
system that consists of substantial individual cells, cell-to-cell variation
results in rapid degradation because of the barrel effect5. The state of
health (SOH) is widely used as a metric to measure battery degrada-
tion. SOH is defined as the current internal resistance of the battery
comparedwith that of a new battery. SOH is also defined as the ratio of

the current capacity to the initial capacity6. Accurate SOH estimation is
critical to the development of the next-generation battery manage-
ment system (BMS) to achieve superior safety and performance in
EVs7. Battery aging reduces the available capacity, which limits the
single-charge cruise range of EVs8. In practice, a battery reaches the
end of its life when its SOH decreases to 80% or 70%. During the
warranty period, manufacturers are responsible for repairing or
replacing batteries. Therefore, the accurate and efficient estimation of
SOH is a critical topicof research for EVmanufacturers and consumers.

High-quality, detailed, and informative data are essential for bat-
tery SOH estimation and lifetime forecasting. Battery aging tests are
lengthy and require hours of charging, resting, and discharging to
induce degradation. Hundreds of charging and discharging cycles are
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required to accurately delineate degradation patterns and character-
istics. Consequently, the availability of open-source battery datasets is
critical for advancing battery research. Many publicly accessible bat-
tery testing datasets have significantly contributed to progress in this
field. The CALCE team9 has provided extensive data from battery
cycling tests under various loads and temperatures, encompassing
18,650 cells, A123 systems, and CS2 batteries, among others.
Researchers from the University of Oxford10 have enriched the
research community with several datasets, encompassing three dis-
tinct sets focused on battery degradation. Zhang et al.11 compiled a
comprehensive dataset featuring over 20,000 electrochemical impe-
dance spectroscopy (EIS) spectra from commercial batteries across
various SOH, state of charge (SOC), and temperatures. Severson et al.12

contributed a dataset encompassing 124 commercial lithium-ion cells
cycling under rapidly changing conditions. Li et al.13 proposed a time-
series dataset comprising 48 cells aged under identical conditions and
provided valuable insights into battery aging processes. Lu et al.14 and
Weng et al.15 have curated datasets for researchers. Also, sponsored by
theU.S. Department of EnergyOffice of Electricity, a regularly updated
battery archive16 for the public is accessible. These repositories pro-
vide battery testing data under various conditions for use in battery
degradation studies.

In addition to datasets obtained from laboratory settings, field
data are crucial to advancing battery management studies in real-
world environments. On the one hand, battery is a nonlinear, time-
varying system, so limited lab testing will only generate a partial
understanding of batteries. These real-world operational conditions
may generate some extrapolation of battery characteristics obtained
from lab testing, thereby generating significant errors in real-world
BMS algorithms. On the other hand, constrained by experimental
settings, battery tests in laboratories are typically conducted at the
individual cell level, whereas the battery systems in EVs are complex
assemblies of multiple cells connected in series and parallel and
exhibit considerable individual cell inconsistencies. A multiplicity of
signal sources and a complex set of factors exist. Therefore, field data
are crucial for supporting BMS research. Researchers, automotive
companies, and third-party platforms have collaborated to provide
field data available to the public. Pozzato et al.17 obtained a dataset
from an EV in use for over a year to provide considerable empirical
evidence. Crucially, performance indicators closely linked to tem-
perature variations were derived using this field data to improve our
understanding of the environmental effect on battery health. Zhang
et al.18 obtained a comprehensive battery field dataset from 347 EVs
and used it to investigate the feasibility of detecting battery faults
accurately through deep learning techniques. Deng et al.19 provided a
dataset that includes the charging records of 20 EVs for more than
25 months. These publicly available datasets aid battery management
research, encompassing health evaluation, lifetime prediction, and
fault detection, among other areas.

Apart from the data basis, SOH estimation methods have been
devised20–23. Data-driven machine learning methods exhibit consider-
able potential to solve the large-scale SOH estimation problem24–26.
Features for battery health evaluation indicate the input of the
machine learning models, which can be acquired from multiple sour-
ces, such as EIS analysis25,27, incremental capacity/differential voltage
(IC/DV) analysis28, differential thermal voltammetry analysis29, and
vehicle operating status17. Furthermore, numerous machine learning
algorithms30–32, such as Gaussian process regression (GPR)33, feedfor-
ward neural network (FNN)34, convolutional neural network (CNN)14,35,
recurrent neural networks (RNN)36, and long-short-term memory net-
work (LSTM, a modified RNN method)19,37,38 have been developed for
rapid SOH estimation and prediction. In these algorithms, deep neural
networks are constructed to realize automatic feature extraction. For
example, Jiang et al.39 proposed an extreme learning machine-based
method for SOH estimation and validated its performance on the

public dataset from NASA40, CALCE9, and MIT12. However, due to the
lack of available data, thismethod has not been validated on field data.
In addition, the model primarily investigated SOH estimation of bat-
tery cells using a series of point features as inputs, while failing to
consider the complex characteristics of real-world battery modules/
packs, such as inconsistencies among cells. Wang et al.41 proposed a
physics-informed neural network for accurate estimation of battery
SOH. The results indicated that features extracted from the current
and voltage data during the constant current-constant voltage process
before the battery is fully charged held promise for accurate SOH
estimation. However, it is important to note that the actual charging
process of EVs typically does not include constant voltage charging,
and there were also remarkable uncertainties in constant current
charging conditions, such as current fluctuations and measurement
noises in practice. Pozzato et al.17 analyzed field data from EVs’ battery
packs and extracted three performance indicators that were easy to
calculate and closely linked to battery performance. The analysis of the
field datawas very detailed, but themethod for SOH estimation in real-
world scenarios was not provided. Qi et al.42 extracted labeled capacity
and multiple health features from two EVs, and a CNN-BiGRU (Bidir-
ectional Gated Recurrent Unit)-based model was established to build
the relationship between capacities and features. This model attemp-
ted to address the issue of SOH estimation based on field data. How-
ever, it merely used traditional point features as inputs without fully
considering multi-modal information. Additionally, due to data lim-
itations, the model has not been extensively validated on large-scale
EVs with diverse driver behaviors. It should be noted that a significant
challenge in applying machine learning to real-world EVs is the limited
generalizability of algorithms across large numbers of vehicles, as
different operational conditions produce various features that may
significantly affect algorithm performance. Thus, it remains unclear
from existing studies whether machine learning methods can con-
sistently deliver reliable battery monitoring across a wide range of EVs
operating under diverse conditions. This is a critical gap in the field,
which this study aims to address comprehensively. Generally, regular
machine learning methods and FNN exhibit excellent performance
with point features that are acquired according to expertise and
experience, and CNN is used in two-dimensional (2D) picture proces-
sing. LSTMiswidely adopted inone-dimensional (1D) sequence feature
extraction and sequence prediction, such as SOC estimation43. The
gating mechanism of LSTM enables it to learn long-term data depen-
dencies and selectively retain useful information while ignoring irre-
levant details. As a result, LSTM can effectively address the gradient
vanishing problem and enhance generalization capabilities. However,
the gating mechanism in LSTM also increases the number of network
parameters, leading to issues such as being prone to overfitting, slow
inference speed, and gradient explosion. Therefore, a simple model
renders addressing the complexmulti-source information obtained by
EVBMS. Limited studies have focusedon SOHestimation for operating
EVs, especially under diverse, random driving conditions. Previous
studies were limited by the volume and quality of field data. Further-
more, the model performance of existing methods is restricted by a
single-modal input.

In this work, to address these challenges, we investigate the his-
torical data from 300 diverse EVs monitored over three years (Fig. 1a).
Based on the field data, we analyze the operational characteristics of
real-world EVs and summarize the bottlenecks in transferring theore-
tical methods of SOH estimation to engineering applications. Fur-
thermore, we detail factors influencing the accuracy of algorithms and
introduce a multi-modal deep learning framework to accurately esti-
mate the SOH of EV batteries using operational data. The promising
outcomes highlight the potential of the proposed framework to
revolutionize EV battery testing. The proposed method can con-
siderably reduce time, expenditures, and energy and promote the
development of intelligent BMS and cloud-based monitoring
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Fig. 1 | State of health (SOH) evaluation for electric vehicles (EVs) based on
historicalfielddata. aRawoperating data are uploaded to a cloud server fromEVs.
After data preprocessing, raw data are formulated into comma-separated values
files. b Challenges in real-world EV SOH estimation. c Multi-modal feature engi-
neering. Each SOH label is associated with one two-dimensional (2D) cell voltage

feature map, two one-dimensional (1D) feature sequences related to charge capa-
city and temperature, and fifteen feature points. d Multi-modal SOH estimation
framework. The multi-modal features are used as the input of the framework and
consist of a 2D processing domain, a 1D processing domain, and a point feature
processing domain.
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platforms to enhance EV utilization. To encourage the development of
battery management algorithms, this large volume of high-quality
vehicle data has been made publicly available. These data include
complete driving and charging records for EVs, providing an abundant
and robust data foundation for studying vehicle usage behaviors and
battery degradation prediction.

Results
Real-world EV battery data disclosure and analysis
Full charging and discharging tests of batteries are crucial for
designing an accurate SOH estimation method. In this test, the max-
imum available capacities of batteries are obtained by integrating the
charging or discharging current over time. However, full charging and
discharging do not occur during EV operation. By contrast, the bench
test for EVs is time-consuming and requires considerable energy (see
Supplementary Note 1 for the cost of offline SOH benchmark for EVs),
rendering the method impractical for large-scale deployment and
periodic, frequent SOH estimation for SOH tracking. A promising
approach is to estimate SOH based on historical big data of EVs under
real-world operations collected by BMS. In this study, we obtained
operating data from 300 EVs equipped with NCM lithium-ion batteries
over 3 years. The battery pack has a rated capacity of 155Ah and
consists of 96 cells connected in series. Theoperational conditions and
usage intensity of this fleet of EVs are very diverse. Specifically, the
driving data encompasses random charging and discharging patterns,
including high-current discharging during acceleration, low-current
discharging during cruising, and temporal charging during regen-
erative braking. The specific discharging conditions are determined by
the driver’s demands and the vehicle’s driving status, making them
inherently random. Furthermore, the charging data features two sce-
narios: high-rate multi-stage constant current fast charging, with
charging rates reaching up to 0.8C, and low-rate slow charging at
~0.15 C. For fast charging conditions, the current rate is controlled
jointly by the battery pack temperature, the highest cell voltage, and
the power limitation of the charging equipment. Unlike laboratory
data, field data lacks idle-time records as the BMS stops recording
when the EVs are turned off. These raw data include time stamps,

cumulative mileage, SOC, total current, pack voltage, highest/lowest
cell voltage, and cell voltage. These data were generated at a sampling
frequency of 0.1 Hz, and the information on the raw field data is pre-
sented in Supplementary Note 2.

Figure 2a displays the distribution of the total travelingmileage of
vehicles. Most of these vehicles have been driven for more than
10,000 km and have been serviced for more than 800 days, as dis-
played in Fig. 2b. After prolonged use and considerable mileage
accumulation, vehicle batteries exhibit notable degradation, providing
numerous samples for battery degradation research. Figure 2c illus-
trates various driving intensities of this fleet of EVs. Figure 2d displays
the given average driving speed. In contrast to the stable cycling
conditions and testing environments in laboratories, the diverse
driving styles of various users and road conditions result in consider-
able aging differences among vehicles. This diversity provides
researcherswith a broad, nondiscriminatory set of samples, and canbe
used to test the applicability and robustness of the developed algo-
rithms. For the charging behavior, as depicted in Fig. 2e and f, most
drivers tend to start charging the vehicles with the SOC under 50% and
stop charging until the battery is fully charged. By data cleansing, we
obtain the SOH labels of these vehicles with ampere-hour integration
and open circuit voltage (OCV)–SOC correction. Figure 2h displays the
SOH labels of these vehicles, and a general capacity decay pattern can
be noticed by a cubic spline fitting curve. The method for capacity
label calculation is elaborated comprehensively in the “Methods” and
Supplementary Note 3.

SOH estimation in field scenarios has numerous challenges, such
as complex and uncontrollable vehicle operating conditions, low
accuracy of BMS state estimation, and data quality deficiencies. By
randomly selecting the vehicle as an example, we investigated and
revealed that field data characteristics differed from those of labora-
tory testing and detailed how these variances affect SOH estimation or
other battery management tasks.

The complexity of real-world working conditions. The charging and
discharging loadof EVs almost entirely depends on the user’s decision-
making, and most users do not deplete their EVs’ battery completely.

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

dQ
/d

V 
(A

h/
V)

Fig. 2 | EV field data description. a Distribution of mileage. b Distribution of
duration. c Distribution of use intensity quantified by driving distance per day.
dDistribution of the average driving speed. eDistribution of charging start state of
charge (SOC). fDistribution of charging end SOC.g EV charging example. Charging
behaviors are randomly started and ended, with various partial charging capacities.

h State of health (SOH)degradationof the EVs. i SOCestimationerror of the battery
management system (BMS). j Incremental capacity analysis for EV charging pro-
cess. Extracting peak features from each charging process is difficult, and the
evolution of peak features with battery aging is not pronounced. Source data are
provided as a Source Data file.
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Therefore, acquiring the capacity labels through a full discharging—full
charging approach during usage is not possible. Figure 2g displays the
charging SOC intervals of users over a period and the corresponding
calculable partial charging capacity. Without a true capacity value to
refer to, assessing the level of capacity degradation in the vehicle
becomes difficult. Second, in addition to aging degradation, the SOH
of a battery is affected by factors such as temperatures and recent
charging and discharging conditions, leading to the fluctuation of the
calculated battery capacity. The involvement of multiple coupling
factors renders conventional empirical aging models inapplicable and
poses a challenge to the robustness of SOH estimation methods.
Therefore, influencing factors should be comprehensively considered
in SOH research on actual vehicles.

SOC estimation error of BMS. The accuracy of the state estimation of
the BMS is influenced by various factors, including battery aging, data
quality, and estimation algorithms. Among these factors, the estima-
tion error in SOC considerably affects SOH estimation, especially when
the vehicle does not undergo a full charging calibration for an exten-
ded period. Based on the stationary condition of the vehicle, we
compare the differences between theOCV-corrected SOCand theBMS
SOC, asdisplayed in Fig. 2i. The results indicate thatwith battery aging,
the BMS cannot timely update battery capacity information, which
results in frequent errors in SOC estimation. This phenomenon poses a
challenge to the application of SOH calculation methods based on
random local charging segments. To address this issue, SOC is cali-
brated by taking advantage of the rest period of vehicles to reduce the
impact of SOC errors on the extraction of SOH labels. In addition,
researchers have proposed a feedforward deep neural network
method to achieve accurate and continuous SOC estimation with data
noise interference44, which is expected to further improve SOH esti-
mation accuracy.

Limited data quality. Data quality has critical importance for the
evaluation of battery health in vehicles. Although the data used in this
study includes abundant information about the vehicle, field data still
has limitations compared with the laboratory testing. The main lim-
itations include data noise interference, missing data issues, and a
relatively low sampling frequency. (1) Data noise interference: raw data
contain noise due to factors such as lower sensor accuracy, electro-
magnetic interference, and data transmission defects. For example,
during the charging process, the battery cell voltage, which should
increase monotonically, may exhibit random fluctuations. In some
cases, the battery voltage may suddenly drop to 0, even though the
battery itself does not have any actual problems. Potential solutions
include replacing the abnormal data through interpolation,monotonic
adjustment, orfilter-based smoothingmethods. (2)Datamissing: there
are two types of data missing. The first type involves the absence of
data associated with specific sensors, where the BMS fails to collect
data from a particular sensor. The second type is the entire data frame
being missing. Although the battery system is still operating, the cor-
responding data may not have been collected or recorded. Potential
solutions include supplementing themissingdatawith interpolation as
well as fitting methods, or considering the entire segment of data as
unreliable and subsequently skipping the calculations for that seg-
ment. (3) Lower sampling frequency: due to limitations in BMS per-
formance and data storage capacity, the sampling frequency of field
data is considerably lower than that under laboratory conditions. A
lower sampling frequency significantly impacts data analysis and cal-
culations under dynamic conditions, such as SOC estimation or capa-
city calculation based on coulomb counting during driving conditions.
In addition, because the BMS fails to capture the battery’s response,
some calculations that are sensitive to data accuracy, such as IC ana-
lysis, become difficult to perform. Potential solutions include
increasing thedata sampling frequencyor prioritizing analyses that are

less sensitive to sampling frequency under limited conditions, such as
converting IC analysis to charge capacity sequence analysis.

Furthermore, the charging profiles of EVs are typically limited by
various factors, such as the BMS, charging station protocols, voltage
levels, and temperatures. Although effective features45, such as IC
curves46 and incremental voltage difference47, can be extracted during
the charging process, as displayed in Fig. 2j, peak features cannot be
extracted from the IC curves of certain charging processes because of
the current switching of multi-stage constant current charging.
Moreover, peak features do not exhibit clear, regular changes with
battery aging because the charging profile varies under various char-
ging conditions. These factors hinder the applicationof somecommon
laboratory features, reducing the feasibility and accuracy of SOH
estimates based on these features.

The limited studies on SOH estimation using field data can be
attributed to the aforementioned reasons, and maintaining the esti-
mation accuracy achievable under laboratory conditions is difficult.
Under current conditions, we proposed an SOH estimation framework
to investigate the capability boundaries of SOH estimation algorithms
with field data. Given its performance in multi-modal feature extrac-
tion and integration, theproposed frameworkcanbe extended to state
estimation and diagnostics of multi-sensor systems. Furthermore, the
public availability of large volumes of high-value field data can facil-
itate refined, efficient, and robust battery management.

Extracting multi-modal battery health indicators
Because of the complexity and uncertainty of EV operational condi-
tions as well as the low sampling frequency, feature extraction based
on the charging process is a suitable solution. This study proposes a
multi-modal feature extraction method based on charging data to
extract comprehensive and effective health indicators (HIs) that reflect
the SOH of the battery for subsequent estimation.

First, the segment for HI extraction is determined by a fixed
charging voltage interval. The charging strategy of these vehicles is
multi-stage constant current charging in which the current is con-
trolled by voltage and temperature. In this study, the voltage interval
of [3900mV, 4050mV] is adopted, as displayed in Fig. 3a. This is the
constant current segment that covers the largest voltage interval,
ensuring that sufficient HIs can be obtained. This segment requires
approximately 100 sampling points (1000 s), and its corresponding
SOC interval is 71–84%, making it straightforward to capture specific
charging behaviors and extract HIs.

Based on domain knowledge of lithium-ion batteries, it is
observed that with battery decay, the battery voltage tends to rise
more when the same amount of electricity is charged. In other words,
within the same charging voltage range, the capacity charged into the
battery will gradually decrease as the battery ages12. Specifically, the
peak and position of the IC curve during the charging process change
under the coupled effect of loss of lithium inventory and loss of active
material. As the area under the ICcurve represents the charge capacity,
this area diminishes as the battery ages. Thus, the charge capacity,
reflected by the area under the IC curve, steadily decreases with bat-
tery degradation48. Considering the charge capacity sequence as a
function of voltage, a standardized feature sequence that indicates
battery degradation can be formed, and this has been widely adopted
in SOH estimation. As displayed in Fig. 3b, the charge capacity
sequencesQHI are extracted from thefixed charging voltage interval as
the first HI sequence.

Temperature is a vital indicator of battery SOH. The usable
capacity decreases significantly under coldworking environments49 on
account of reduced ionic conductivity of the electrolyte, leading to
slowed reaction kinetics of electrode materials, increased internal
resistance, and structural changes in electrodematerials. On the other
hand, the internal resistance increases with battery degradation,
leading to a variation in heat generation during charging, which can be
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captured by the temperature sensors of the battery system. Therefore,
we analyze the temperature increment in the voltage interval and
simultaneously extract the average temperature sequence of the bat-
tery as the second HI sequence. As illustrated in Fig. 3c, the two
sequences constitute the one-dimensional modal HIs corresponding
to an SOH label.

Second, considering the inconsistency of the cell voltage in the
charging process, the voltage data of 96 cells are extracted from raw
data. The cell inconsistency issue within a battery pack can be caused
by various factors, including manufacturing inconsistency, the design
of cooling structures, and balancing strategies, among others. Due to
the barrel effect, the capacity of the battery pack is determined by the
cell with the highest voltage during charging. Considering the incon-
sistency among cells, when one cell reaches the voltage limit, the
remaining cells are not yet fully charged, thus limiting the charge
intake of the battery pack. Furthermore, cell inconsistency leads to
local heat accumulation in the cells with higher internal resistance and

the risk of overcharging/discharging, thereby accelerating battery
aging. Therefore, it is necessary to consider cell inconsistency when
estimating thebattery health status50.With the interpolationmethod, a
96 × 96 two-dimensional pseudo-HI map presented in Fig. 3e is gen-
erated. The different cells are depicted from left to right, and the
voltage increases are depicted from top to bottom. This pseudo-HI
map effectively visualizes cell inconsistency and voltage changes
during the charging process, serving as a two-dimensional HI map.

Lastly, as listed in Table 1 andpresented in Fig. 3f, a set ofHI points
is obtained from the vehicle operation data based on engineering
intuition, experimental experience, and literature review. Since all
energy required for these EVs’operation comes from thebattery, there
is a strong correlation between the vehicle’s cumulative mileage and
the battery’s degradation state, as shown in Fig. 2h. Therefore, the
vehicle’s cumulativemileage is selected as the first HI point. In termsof
HIs related to battery electrochemical reactions, the average tem-
perature during the charging process is extracted as an HI point from
the second HI sequence. Furthermore, various statistical metrics—
mean, median, standard deviation, and range—are extracted fromQHI,
enriching the model’s understanding of battery aging mechanisms. As
batteries age, charge capacity curves within a fixed voltage range
progressively shift downward, leading to corresponding changes in
the mean, median, standard deviation, and range of QHI as the SOH
deteriorates51. To further characterize cell inconsistencies during
charging, statistical metrics such as the mean, median, standard
deviation, and range of the cell voltage range sequence (dV) are
extracted as Fig. 3d shows. Moreover, charging power is constrained
by the maximum cell voltage to prevent overcharging of the battery.
Also, charging power is constrained by temperature to avoid thermal
runaway at high temperatures and lithium plating during high-rate
charging at low temperatures. Since inconsistent charging behaviors
can significantly impact the understanding of battery aging char-
acteristics, it is necessary to consider HIs related to charging condi-
tions. Hence, themean andmaximumcharging currents, theminimum
temperature, and the mean of the minimum temperature sequence
during chargingwere adopted as HI points. In addition, EVs sometimes
stop charging at various upper voltages, and a decreasing upper vol-
tage limits the total energy that the battery can store since the battery
may not be fully charged. To account for this variability, the charge-
ending voltage is adopted as an HI point. These fifteen HI points can
effectively reflect battery degradation.

Table 1 | HI points

Index HI points Illustration

1 Mileage Accumulated driving mileage (km)

2 Tave The average temperature of the battery system during
the charging process (°C)

3 Qave Average value of QHI (Ah)

4 Qmed Median value of QHI (Ah)

5 Qstd Standard deviation of QHI (Ah)

6 Qran Range of QHI (Ah)

7 dVave Average value of dV (mV)

8 dVmed Median value of dV (mV)

9 dVstd Standard deviation of dV (mV)

10 dVran Range of dV (mV)

11 Cmax Maximum charging current (A)

12 Cave Average charging current (A)

13 Vend Maximum charge-ending voltage (V)

14 Tmin Minimum temperature of the battery system during
charging process (°C)

15 Tmin_ave Average value of the minimum temperature during the
charging process (°C)

QHI the charge capacity sequence, dV the cell voltage range sequence.

Start 
charging Current

switch

Segment
for feature
extraction

(a) (b) (c)

(d) (e) (f)

#1 #99

Fig. 3 | Multi-modal health indicators (HIs) extraction. a Voltage segment for HI
extraction. b Charge capacity curves of various SOH samples. c HI sequences
including temperature sequence and charge capacity sequence. d Maximum and

minimum cell voltage and cell voltage range during the charging process. e Cell
voltage HI map. f Distribution of HI points after normalization. Source data are
provided as a Source Data file.
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Thus, for eachSOH label,wematch twoHI sequences, oneHImap,
and fifteen HI points, consisting of a multi-modal HIs-label sample for
model training. Typically, the nonlinear relationship betweenHI points
and SOH can be characterized through machine learning methods
such as support vector machine regression (SVR), random forest
regression (RFR), GPR, and neural network. Although deep learning
methods such as CNN and LSTM are suitable for extracting features
from 1D and 2D inputs, existing studies do not effectively utilizemulti-
modal HIs with single-modal models, especially when addressing the
SOH estimation problem in a complex scenario with multi-source
information. Hence, we propose a multi-modal deep learning-based
SOH estimation framework to enable the effective utilization of multi-
modal HIs.

Multi-modal deep learning framework
Themulti-modal framework, as illustrated in Fig. 1d, comprises a 2DHI
map processing domain, a 1D HI sequence processing domain, and an
HI point processing domain. In the 1D and 2D processing domains,
deep residual convolutional neural networks (ResNets) are used for
extracting high-dimensional features, and the HI points domain con-
sists of several fully connected layers with nonlinear activation func-
tions for performing nonlinear regression calculations of HI points. As
a variant of CNNs, ResNet integrates shortcut methods to combine
input data with post-convolution data, which effectively avoids the
vanishing gradient problem and allows network depth increment, thus
maximizing high-dimensional feature extraction. Finally, three
domains are followed by fully connected layers for SOH regression
estimation. The structure of the multi-modal framework is illustrated
in Fig. 1d and Supplementary Note 4.

SOH estimation based on the multi-modal deep learning
framework
To validate the performance of the proposedmulti-modal framework,
we randomly split the samples into the training and testing sets. Here,
80% of the samples are adopted as the training set for model tuning,
and 20% of the samples are used as testing sets to examine estimation
accuracy. In each epoch of the training process, 20% of the training
samples are randomly selected as the validation sets to demonstrate
the accuracy and improve model applicability. The estimation accu-
racy may be influenced by the randomness in test data partitioning,
model initialization, and parameter iteration optimization. To ensure

the model’s consistency and reliability, tests for different models are
repeated ten times. To verify the advancement of the proposed fra-
mework, model performance is compared with three popular non-
linear regression machine learning (ML) methods that use HI points.
The tests are conducted on a laptop with an Intel i7-12700H central
processing unit. All neural network-based models are trained on an
Nvidia GeForce RTX 3060 graphics processing unit with Python 3.8 as
well as Tensorflow 2.10, and other ML methods are supported by
Scikit-learn packages. Themean absolute percentage error (MAPE) and
rootmeansquared error (RMSE)werecalculated as follows to illustrate
the estimation accuracy:

MAPE =
1
n

Xn
i = 1

jyi � ŷij
yi

*100% ð1Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i= 1

ðyi � ŷiÞ2
vuut ð2Þ

As displayed in Fig. 4, the proposed framework achieves superior
estimation accuracy than that of the other three existing methods,
whose average estimation MAPE is 2.83%. The SVR model ranks fourth
among the three methods, and its average MAPE is 3.34%. The RFR
model is the second-best method with a MAPE of 3.10%. However, its
estimation performance for lower SOH label samples is weak. The error
distribution of the four methods is presented in Fig. 4e. Existing ML
methods exhibit a disadvantage in lower SOH estimation, which is cru-
cial for EV battery evaluation after a period of degradation. Therefore,
we focused on the estimation result for SOH samples that were lower
than 85%. The estimation MAPE for the proposed framework is 4.69%,
which is 23.7% lower than the MAPE of the RFRmodel. TheMAPE of the
three ML models for low SOH samples are 6.07%, 6.15%, and 6.12%.

To investigate the influence of the network structure and mod-
alities, we add six comparative models. The 2-modalities model
removes the input of a 2D HI map and the corresponding domain. The
1-modality model removes the input of the 2D HI map and the 1D HI
sequences simultaneously. The CNNmodel retains all threemodalities
of HIs as the input but replaces the ResNet structure with regular
convolutional networks. In addition, we also replace the network
structure of the 1-dimensional modal processing domain with RNN,

(a) (b) (c)

(d) (e)

Fig. 4 | SOH estimation result compared with other machine learning (ML)
methods.The SOHestimation results based ona themulti-modal framework,b the
support vector machine regression (SVR), c the random forest regression (RFR),

and d the Gaussian process regression (GPR). e The error distribution of various
methods. Source data are provided as a Source Data file.
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LSTM52, and feedforward neural network53 (FNN) to verify the impact
of network structure on themodel. To ensure repeatability and equity,
the same learning rate strategy is set for the training processes of all
seven models.

Figure 5 displays the testing set estimation results for seven
models. The proposed multi-modal model achieves the best estima-
tion accuracy. To evaluate the performance, the MAPE, RMSE, and the
maximum estimation error of various models are given in Table 2. By
using the 1D HI sequence in the 1-modality model, MAPE is reduced by
18.2%, and RMSE is reduced by 15.2%. Further adding the 2D HI map to
the 2-modalities model results in a reduction of 25.7% and 21.3% in
MAPE and RMSE, respectively. By contrast, replacing the CNN with
ResNet reduces the MAPE and RMSE by 24.7% and 21.1%, respectively.
Replacing the 2D processing domain with RNN, LSTM, and FNN may
also lead to estimation accuracy decreases. A comparison of the esti-
mation performance of various models is also presented in Table 2.
The existingMLmethods achieve superior results than that of thedeep
learningmodelwhenusing the same inputs that only containHI points.
However, with the participation of multi-modal HIs, the proposed
framework exhibits superior accuracy. We used the same framework
to conduct SOH evaluation on another batch of vehicles. These vehi-
cles are equipped with LiFePO₄ batteries, and the test results are pre-
sented in Supplementary Note 5. The results indicate that the
proposed framework can be adapted to different electrochemical
systems of batteries and can accurately estimate the SOH of various
types of batteries.

Discussion
To develop the SOH evaluationmethod for real-world EV batteries, we
investigate the historical data from 300 EVs monitored over three

years. Based on the field data, we analyze the characteristics of EV
operation and summarize the bottlenecks in transferring the theore-
tical methods of SOH estimation to engineering applications as well as
the factors influencing the accuracy of algorithms, these factors
include the complex and uncontrollable vehicle operating conditions,
low accuracy of the BMS state estimation, unstable charging profiles,
and the data quality deficiencies. Furthermore, we investigate a multi-
modal deep learning framework to accurately predict the SOH of
batteries in EVs leveraging operational data. The approach involves the
extraction of multi-modal HIs from a consistent voltage range
observed during the charging process of the battery. To use these
multi-modal inputs, we pioneer a multi-modal deep learning frame-
work, enrichedwith 2.9million trainable parameters, and fortified it by
an underlying residual network architecture. By using a dynamic
learning rate strategy, the framework achieves remarkably accurate
SOH estimations for EV batteries. The MAPE of the SOH estimation
results is 2.83%. This result illuminates the potential of the proposed
framework for large-scale EV battery evaluation. Themethodpromises
not just remarkable reductions in time, economic outlay, and energy
consumption but also advancements in intelligent BMS and cloud-
based monitoring platforms for improved EV use. Finally, to catalyze
advancements in battery management algorithms, we release a sub-
stantial collection of high-quality EV battery dataset to the public. This
dataset encompasses comprehensive driving and charging logs for EVs
to provide a solid dataset pivotal for analyzing vehicle usage patterns
and forecasting battery degradation.

While the results of this study are promising, there are certain
limitations that warrant further investigation. The proposed multi-
modal framework generally provides reliable SOH estimation results.
However, unlike the laboratorydata, in real-world EVs, sudden changes

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 5 | SOHestimation results comparedwith differentdeep learningmethods.
SOH estimation results based on a 3-modalities framework, b 2-modalities frame-
work, c 1-modality framework, d 3-modalities framework with the convolutional
neural network (CNN) structure, e 3-modalities framework with the recurrent

neural networks (RNN) structure, f 3-modalities framework with the long-short-
term memory network (LSTM) structure, and g 3-modalities framework with the
feedforward neural network (FNN)structure. h The error distribution of various
methods. Source data are provided as a Source Data file.
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in battery conditions and data sampling errors can lead to incorrect
feature calculations, resulting in abnormal feature inputs. Conse-
quently, the model may generate erroneous results in some corner
scenarios. In addition, the dominant aging mechanisms vary among
different vehicles. For some, calendar aging is the primary factor, while
for others, driving-related degradation is more significant. Further-
more, manufacturing inconsistencies due to mass production can
cause inconsistencies among battery cells, leading to markedly dif-
ferent degradation patterns between some vehicles. To mitigate these
issues, it is necessary to expand the trainingdata to cover awider range
of scenarios.

Therefore, based on all the above, future research will focus on
utilizing more advanced models, such as large language models, once
sufficient real-world operational data becomes available, despite this
will require time. Moreover, efforts will be made to enhance BMS by
integrating more sensors into the battery system, such as individual
temperature sensors for each cell and internal temperature and strain
sensors inside the cells to improve the battery monitoring perfor-
mance. Future research will also explore data-driven strategies that
incorporate accurate physical information, thereby furnishing models
with greater mechanistic understanding and boundary conditions.
Due to the framework’s ability to handlemulti-modal data inputs,more
physics-based features, such as information about loss of lithium
inventory and loss of activematerial, can be potentially integrated into
the multi-modal framework to improve the estimation performance.
Lastly, it will be beneficial to utilize historical data and computational
strengths by developing an efficient Cloud BMS, enabling precise
monitoring of SOH degradation across extensive vehicle fleets.

Methods
EV data processing
The SOH labels of this study are obtained from the raw EV data with a
working condition filtering strategy, SOC correction method, and
ampere-hour integral method. First, the rest conditions are extracted
from raw data, and determined by the timestamp gap between two
coterminous data frames. If the time gap exceeds 1 h, the waking-up
moment is set to ts. After an hour of resting, the terminal voltage
approximates the OCV because of the depolarization, and the battery
SOC can be calibrated by themaximum cell voltage and the OCV–SOC
look-up table. In this study, we use the cell with the maximum voltage
to calibrate SOCs because it typically represents the worst cell in the
batterypack. If the calibrated SOCs is higher than0.6, this rest segment
is skipped to ensure the candidate capacity calculation segment
crosses a wide SOC interval to improve SOH calculation accuracy. We
continue the search forward until the SOC reaches 1 and set the
moment as te. The EVs stop charging when the maximum cell voltage

reaches 4.25 V to prevent the worst cell from being overcharged, with
the BMS SOC jumping to 1 and the charging current cutting off. At this
moment, the battery pack is fully charged and stores the maximum
energy. Thus, we obtain the capacity calculation segment (Segca).
Using the ampere-hour integral, the capacity and the SOH label of one
segment can be calculated and recorded with Segca. Detailed infor-
mation about the SOH label calculation can be found in Supplemen-
tary Note 3.

Multi-modal health indicators extraction
Compared to vehicle driving conditions, the charging conditions of
EVs are relatively stable. As mentioned, data from the EV’s charging
segments are utilized when calculating SOH labels. These charging
behaviors start at random SOC levels and end with the battery being
fully charged. Based on a series of data cleaning and feature extraction
methods, HIs are extracted corresponding to the SOH labels.

First, a target voltage sequenceVHIwith afixed voltage interval for
HI extraction is set,

VHI = ½3900, 3901, :::, 4050�, ð3Þ

whose corresponding SOC scope is 71–84%. For a piece of charging
process raw data extracted from Segca, an HI extraction segment can
be obtained as follows:

DataHI = ½Datat1,Datat2, :::, Datatn�, ð4Þ

where t1 and tn are the moments in which the maximum cell voltage
reaches 3900mV and 4050mV, respectively. Here, Datati is the data
frame sampled in ti. For various charging processes, the length of
DataHI is different because of diverse charging conditions, different
charge starting SOC, various battery health states, and other factors.
Subsequently, the HI sequences and planes should be standardized.
The EV battery pack adopted in this study contains 96 cells, and their
voltages are inconsistent during the charging process. To capture
inconsistency, a 96 × 96 call voltage featurematrixVc is extracted from
DataHI through uniform sampling as follows:

Vc =

V 1, 1 V 1, 2 ::: V 1, 96

V 2, 1 ::: ::: :::

V 3, 1 ::: Vi, j :::

V4, 1 ::: ::: V96, 96

2
6664

3
7775, ð5Þ

where Vi,j represents the ith sampling voltage of the jth cell. Thus, the
voltage inconsistency of cells in various charging processes is stan-
dardized with the same shape, and Vc is adopted as a 2D HI map.

Table 2 | SOH estimation performance with various methods

Model MAPE (%) RMSE (%) Max error (%) Training
time (s)

Average Std. Average Std. Average Std.

3 modalities with ResNet 2.83 0.093 3.26 0.090 17.15 2.186 580

SVR model 3.34 0.114 3.74 0.145 16.557 2.000 0.5

RFR model 3.10 0.264 3.54 0.193 16.00 1.279 10

GPR model 3.11 0.129 3.47 0.139 16.33 1.791 28

2 modalities with ResNet 3.81 0.170 4.14 0.215 30.81 4.459 93

1 modality with ResNet 4.66 0.498 4.88 0.491 28.83 0.942 31

3 modalities with CNN 3.76 0.388 4.13 0.273 26.41 4.120 280

3 modalities with RNN 3.09 0.197 3.89 0.911 34.33 27.78 770

3 modalities with LSTM 3.29 0.395 4.04 0.972 30.34 24.36 977

3 modalities with FNN 3.21 0.204 3.80 0.536 27.51 19.98 900

Std standard deviation.
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Second, the maximum cell voltage sequence Vmax = ½Vmax t1,
Vmax t2, :::,Vmax tn� is extracted from the DataHI, and the charge capa-
city sequence Qt = ½Qt1,Qt2, :::,Qtn� of each frame is calculated as fol-
lows:

Qti =
Z ti

t1
Idt, ð6Þ

where I refers to the charging current. Because of the variable-length
DataHI,Qt should be standardized through interpolation according to
VHI as follows:

Qt

Vmax

� �
=

Qt1,Qt2, :::,Qtn

Vmax t1,Vmax t2, :::,Vmax tn

� �
) QHI

VHI

� �
=

Q1,Q2, :::,Q151

3900, 3901, :::, 4050

� �
:

ð7Þ

The temperature variation during the charging process is con-
sidered. The average temperature sequence is extracted from DataHI
and is compressed THI = ½T 1,T2, :::,T 151� by uniform sampling. Thus,
QHI and THI are obtained as two 1D HI sequences.

Finally, fifteen HI points are derived from the operating data and
the other twomodal HIs, considering the vehicle aging conditions, cell
inconsistency, and charging behaviors. A detailed illustration is pre-
sented in Table 1. With the HIs, a SOH training-testing sample can be
defined as follows:

Sample = ½output�j½input�= ½SOH�j
HImap

HIsequences
HIpoints

2
64

3
75 = ½SOH�j

Vc

QHI ,THI

HI1,HI2, :::, HI15

2
64

3
75

ð8Þ

Residual network architecture
The multi-modal framework comprises a 2D HI map processing
domain, a 1D HI sequence processing domain, and an HI point pro-
cessing domain. As illustrated in Fig. 6, the 2D HI map processing
domain adopts the residual network architecture54, which consists of
an input convolutional layer, a batch normalization layer, a max
pooling layer, and four residual blocks. Here, a global average pooling
layer and three full connection layers are adopted to obtain the output
of the 2D HI map processing domain. Compared with the regular CNN
network, the ResNet mitigates the vanishing gradient problem by
adding a shortcut connection that bypasses one or more layers. These
shortcut connections enable the gradient to flow easily through the
network during training and allow the neural network to go deeper
without accuracy degradation.

Each residual block involves two basic blocks, in which the output
can be defined as follows:

HðxÞ= FðxÞ+ x, ð9Þ

where H(x) is the output of the basic block, and F(x) is the character-
istic mapping for input x extracted by several hidden layers. The basic
block consists of convolutional layers, batch normalization layers, and
rectified linear unit (ReLU) activation functions. For a 2D basic block,
given an input Conin∈RM*N and a convolutional filter w∈RU*V, the in-
between layers can be formulated as follows:

Conoutði, jÞ=
XU
u= 1

XV
v= 1

½wðu, vÞ � Coninði+u� 1, j + v� 1Þ�+b, ð10Þ

where Conout(i, j) is the output element in the location (i, j) of the
output matrix, and b is the bias of the convolutional layer. The batch

X
Convolutional

layer

Batch normalization 
layer

Max pooling layer

Residual block 1

Residual block 2

Residual block 3

Residual block 4

Global average 
pooling layer

Full connection 
layer 1

Full connection 
layer 2

Full connection 
layer 3

Basic
Block 1

Basic
Block 2

Convolutional layer

Batch normalization
layer

Relu activation

Convolutional layer

Batch normalization 
layer

Add layer
 H(x)=F(x)+x

Xb

F(x)

SOH

Fig. 6 | ResNet structure diagram for two-dimensional HI map and one-dimensional HI sequence processing domain. The processing domain consists of an input
Convolutional layer, a Batch normalization layer, a Max pooling layer, and four Residual blocks. Each Residual block is composed of two Basic Blocks that follow the
convolutional residual networkarchitecture. Following this, a global averagepooling layer and three fully connected layers are employed to generate thepredictedState of
Health (SOH).
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normalization layer can be formulated as follows:

BNout =
BNin � μffiffiffiffiffiffiffiffiffiffiffiffi

σ2 + ε
p

� �
*γ + β, ð11Þ

where BNout is the output, BNin is the input, μ and σ are the average
valueof BNin, ε is a small number for numerical stability, and γ andβ are
two network trainable parameters. ReLU activation was used to pro-
mise the sparsity for the network,mitigate the gradient disappearance,
and boost network training. ReLU is one of the most used activation
functions and is expressed as follows:

y= maxð0, xÞ: ð12Þ

Based on a substantial number of comparative trials, the optimal
hyperparameters for the model are determined, which is illustrated in
Supplementary Note 4.

During training, the warm-up technique is used to allow the model
to investigate a wide parameter space in the early stages and achieve
global optimization. The learning rate starts at a low initial value and
gradually increases to a target learning rate in the first ten epochs (the
warm-up period). After the warm-up period, an exponential decline
learning rate schedule is adopted to search for optimal parameters.
Detailed information about the warm-up method can be found in Sup-
plementary Note 6. After training the model with SOH labels and multi-
modal HIs, the structure and parameters of the multi-modal network
can be saved. In real-world applications, SOH estimation can be con-
ducted through the following three steps. First, capture the charging
behaviors from the historical operational data of EVs and perform data
preprocessing, such as outlier handling and removal of low-quality data
segments. Second, multi-modal HIs that effectively reflect the battery’s
aging state can be extracted as long as the charging process completely
spans the voltage range [3900mV, 4050mV]. Lastly, use the pre-trained
model to estimate SOH based on these HIs as inputs.

Data availability
The EV field data are available at the following link: http://ivstskl.
changan.com.cn/?p = 2697. The source data generated in this study
have been deposited at https://github.com/HoraceLiu1010/Multi-
modal-SOH-estimation-framework. Source data are provided with
this paper.

Code availability
Code for thiswork is available at the following link: https://github.com/
HoraceLiu1010/Multi-modal-SOH-estimation-framework.
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