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Spatial integration of multi-omics single-cell
data with SIMO

Penghui Yang1,2, Kaiyu Jin1, Yue Yao1, Lijun Jin1,2, Xin Shao 1,2, Chengyu Li 1,2,
Xiaoyan Lu 1,2,5 & Xiaohui Fan 1,2,3,4,5

Technical limitations in spatial and single-cell omics sequencing pose chal-
lenges for capturing and describing multimodal information at the spatial
scale. To address this, wedevelop SIMO, a computationalmethoddesigned for
the Spatial Integration of Multi-Omics datasets through probabilistic align-
ment. Unlike previous tools, SIMO not only integrates spatial transcriptomics
with single-cell RNA-seq but expands beyond, enabling integration across
multiple single-cell modalities, such as chromatin accessibility and DNA
methylation, which have not been co-profiled spatially before. We benchmark
SIMO on simulated datasets, demonstrating its high accuracy and robustness.
Further application on biological datasets reveals SIMO’s ability to detect
topological patterns of cells and their regulatorymodes acrossmultiple omics
layers. Through comprehensive analysis of real-world data, SIMO uncovers
multimodal spatial heterogeneity, offering deeper insights into the spatial
organization and regulation of biological molecules. These findings position
SIMO as a powerful tool for advancing spatial biology by revealing previously
inaccessible multimodal insights.

The evolution of spatial omics and single-cell sequencing technologies
has transformed our ability to study tissues and diseases at unprece-
dented resolution1–7. However, current spatial omics sequencing pri-
marily focuses on a single modality, mainly transcriptome and
proteome, making it challenging to characterize multiple modalities
on the same tissue section and achieve cellular-level resolution. On the
other hand, single-cell omics sequencing methods can provide
detailed snapshots of cellular identity and states across various mod-
alities, such as gene expression, chromatin accessibility, and DNA
methylation1–4,8. However, tissue dissociation steps lead to the loss of
spatial information, which is crucial for understanding cell states and
the cellular microenvironment6,9–11.

Current computational methods can integrate spatial tran-
scriptomics (ST) data with single-cell RNA sequencing (scRNA-seq)
data12–15, or map paired single-cell multi-omics data onto spatial
tissues16. By integrating these datasets, researchers can explore gene

expression profiles within the spatial context, uncovering the dis-
tribution and functional roles of specific cell types in tissues. Fur-
thermore, combining spatial transcriptomics with epigenetic data
enhances our understanding of spatial gene regulation, such as the
activation of regulatory elements during development. Additionally,
there are some tools that can achieve multi-omics integration to meet
theneedsofmulti-omics analysis of single-cell data17–19. However, these
methods either focus solely on transcriptomics, rely on paired data or
fail to effectively incorporate spatial information. As a result, there
remains a significant gap in tools that can map diverse single-cell data
across multiple modalities within a spatial context, hindering a com-
prehensive understanding of tissue biology.

To address these challenges, we introduce SIMO, a computational
tool for spatial transcriptomics with multiple non-spatial single-cell
omics data, such asRNA,ATAC, andDNAmethylation. SIMOuses these
data sets to perform precise spatial mapping of single-cell data in
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differentmodalities, construct detailed spatial patterns of cell clusters,
and conduct an in-depth analysis of gene regulatory networks in the
spatial dimension. We comprehensively benchmark SIMO using
simulated datasets containing complex spatial patterns as well as
multiple biological datasets, and further apply it to real-world data
ranging from mouse brains to human myocardial infarction cases,
aiming to reveal the organization’smultimodal spatial structure. These
results not only verify SIMO’s excellent performance on the task of
spatial integration ofmulti-omics single-cell data but also demonstrate
its potential as a powerful tool for analyzing tissue physiological and
pathological states.

Results
Overview of SIMO
SIMO is a state-of-the-art computational tool designed for spatial
mapping and integration of single-cell data from various modalities.
Specifically, SIMO addresses the challenge of spatial integration of
multi-omics data by breaking down the task into a sequential mapping
process for each modality (Fig. 1).

Initially, SIMO integrates ST data with transcriptomics data based
on the premise that these two data types originate from the same
modality, aiming to minimize the interference caused by modal dif-
ferences. This approach has been validated by prior research,
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Fig. 1 | Spatial integration of multi-omics single-cell data with SIMO. a SIMO
takes ST and multi-omics single-cell data as input. SIMO assigns individual cells
from various modalities to specific spots, refining the spatial coordinates of single
cells groundedon either the similarity of gene expressionor the congruenceof low-
dimensional embedding representations. This process yields a comprehensive
spatial multimodal dataset. By assigning coordinates to cells from different mod-
ality data, SIMO enables multidimensional deconvolution of spots and recon-
struction of spatial omics patterns. Moreover, the downstream functions of SIMO

can realize gene regulation analysis and spatial regulation analysis. b By leveraging
the fused Gromov-Wasserstein optimal transport algorithm and taking into con-
sideration the gene expression, as well as spatial and modal graphs constructed
through k-NN, SIMO computes a probabilistic alignment between cells and spots.
c For a secondmodality, SIMO integrates itwith the alreadymapped transcriptomic
data, utilizingUnbalancedOptimal Transport (UOT) to facilitate cluster-based label
transfer. Following this, SIMO calculates cell alignment using Gromov-Wasserstein
(GW) based on k-NN graphs.
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underscoring the importance of shared modalities in precise data
integration16. In the transcriptomics mapping step of SIMO, we bor-
rowed the computational strategy of the previously developed tool
SpaTrio. Specifically, the process uses the k-nearest neighbor (k-NN)
algorithm to construct a spatial graph (based on spatial coordinates)
and a modality map (based on low-dimensional embedding of
sequencing data), and uses the fused Gromov-Wasserstein optimal
transport to calculate the mapping relationship between cells and
spots. We retain the key hyperparameter α for balancing the sig-
nificance of transcriptomic differences and graph distances. We fine-
tune the cell coordinates based on the transcriptome similarity
between the mapped cells and their surrounding spots.

Next, SIMO targets the integration of non-transcriptomic single-
cell data, such as single-cell epigenetic data, through a new sequential
mapping process. For single-cell ATAC sequencing (scATAC-seq) data,
SIMO first preprocesses both mapped scRNA-seq and scATAC-seq
data, obtaining initial clusters via unsupervised clustering. To bridge
RNA and ATAC modalities, gene activity scores are used as a key
linkage point, calculated as a gene-level matrix based on chromatin
accessibility (Methods). SIMO calculates the average Pearson Corre-
lation Coefficients (PCCs) of gene activity scores between cell groups,
facilitating label transfer between modalities using an Unbalanced
Optimal Transport (UOT) algorithm. Subsequently, for cell groups
with identical labels, SIMO constructs modality-specific k-NN graphs
and calculates distance matrices, determining the alignment prob-
abilities between cells across different modal datasets through
Gromov-Wasserstein (GW) transport calculations. Finally, based on the
cell matching relationship, SIMO precisely allocates scATAC-seq data
to specific spatial locations (spots) and further adjusts cell coordinates
based on the modality similarity between the mapped cells and their
neighboring spots. This stepwise strategy enhances SIMO’s spatial
integration compatibility across omics data. By modifying the UOT
cost matrix construction, SIMO achieves spatial mapping of various
omics types, irrespective of their positive or negative biological rela-
tionship with the transcriptome.

SIMO’s downstream analysis capabilities encompass both gene
regulation analysis and spatial regulation analysis, collectively illumi-
nating the complexities of gene regulation. In gene regulation analysis,
depending on specific analytical needs, data are transformed into
matrices with gene names as features, such as motif activity matrices
calculated from ATAC data. Correlations and regulatory patterns
between different cell populations were analyzed by calculating PCCs
between fold changes in motif activity and gene expression. Spatial
regulation analysis involves integrating data from bothmodalities and
their spatial information. Applying a spatial smoothing algorithm to
reduce data noise and using cross-modal smoothing to supplement
information betweenmodalities, the ratio of feature pairs is calculated
as a regulatory score. A kernel matrix based on spatial location infor-
mation is further constructed, and featuremodules with similar spatial
regulation patterns are identified through weighted correlation ana-
lysis and Consensus Clustering (CC).

Evaluation on simulated datasets
We first used multi-omics data from the mouse cerebral cortex,
including both single-nucleus chromatin accessibility and mRNA
expression sequencing (SNARE-seq) and in situ sequencing hetero
RNA–DNA-hybrid after assay for transposase-accessible chromatin-
sequencing (ISSAAC-seq)2,20 to construct simulated spatial datasets
with varying degrees of spatial complexity, aiming to evaluate the
performance of the SIMO tool and optimize the key parameter α
(Supplementary Fig. 1a–c). The simulation of ST data involved sample
extraction, data merging, and coordinate allocation. At the same time,
we introduced pseudocount δ and resampled the readings to intro-
duce varying degrees of noise into the spatial transcriptomics data,
thereby assessing the robustness of the tool. To comprehensively

evaluate the accuracy of spatial mapping for each modality, we
employed several key evaluation metrics, including cell mapping
accuracy (the percentage of cells correctlymatched to their types), the
Root Mean Square Error (RMSE) of deconvoluted cell type propor-
tions, and two measures based on the Jensen-Shannon Distance (JSD):
JSD of spot and JSD of type. JSD of spot focuses on the accuracy of cell-
type distribution at spatial locations, evaluating by comparing the
differences between actual and expected distributions. JSD of type
assesses the accuracy of predicting proportions of each cell type
across the entire sample, determined by calculating the difference
between actual and expected proportions. These metrics were calcu-
lated for each modality and averaged to comprehensively reflect the
tool’s overall performance in handling multimodal data (Fig. 2 and
Supplementary Fig. 2).

In scenarios with simpler spatial distributions (Patterns 1 and 2),
SIMO (α = 0.1) demonstrated greater stability as δ increased. In con-
trast, relying solely on gene expression data (α =0) led to a faster
decline in performance. When predictions were based only on gra-
phical data (α = 1), only 21.0%-43.0% of cells in Pattern 1 were correctly
mapped. Even under conditions of high noise (δ = 5), SIMO (α =0.1)
was able to accurately recover the spatial positions ofmore than 91%of
cells in Pattern 1 and over 88% in Pattern 2, achieving the lowest RMSE,
JSD of spot, and JSD of type values. Furthermore, we also simulated
scenarios with more complex cell distributions. In Pattern 3, 15.4% of
spots containedmultiple cell types; this proportion increased to 67.8%
in Pattern 4. Even in the presence of significant noise, SIMO (α =0.1)
showed exceptional stability in these complex scenarios. Specifically,
Pattern 3 achieved 83%mapping accuracy, with an RMSE of 0.098, JSD
(spot) of 0.056, and JSD (type) of 0.131; in Pattern 4, the accuracy was
73.8%, with an RMSE of 0.205, JSD (spot) of 0.222, and JSD (type) of
0.279. The simulated data Patterns 5 and 6havemore cell types (10 cell
types). In Pattern 5, 61% of the spots contain multiple cell types, while
Pattern 6 is more complex, with 91% of the spots containing only
multiple cell types (Supplementary Fig. 1c). SIMO (α = 0.1) achieves
62.8% accuracy in Pattern 5, with an RMSEof 0.179, JSD (spot) of0.300,
and JSD (type) of 0.564, and 55.8% accuracy in Pattern 6, with an RMSE
of 0.182, JSD (spot) of 0.419, and JSD (type) of 0.607 in high noise
scenes. These results indicate that setting parameter α to 0.1 generally
yields the best performance.

Comparison with existing tools
To further highlight the advantages of SIMO, we compared it with
several other integration algorithms, including those specifically
designed for STdata, such asCARDandTangram, aswell as integration
methods for scRNA-seq, like Seurat, LIGER, and Scanorama14,17–19,21. In
addition to simulated data, we collected three sets of biological data-
sets, from which matched ST and multi-omics single-cell data were
prepared by splitting and merging, to test the tools11.

The results show that under noise-free conditions (pseudocount =
0), SIMO significantly outperformed other tools across all simulated
datasets (Patterns 1-6), achieving the lowest RMSE values (0.000, 0.152,
0.049, 0.112, 0.050, 0.061) and its JSD values were also significantly
lower than other methods (Fig. 3a). In tests on more complex real
datasets, SIMO also displayed superior performance (RMSE=0.156,
0.119, 0.123) (Fig. 3a and Supplementary Fig. 3), leading other methods
except for a slight underperformance in Dataset 2 compared to Tan-
gram (RMSE =0.101). When noise was introduced, SIMO’s advantages
became even more apparent, achieving the best results across all
testing indicators across all datasets (Fig. 3b and Supplementary Fig. 4).
In Dataset 1, SIMO reached an RMSE of 0.236, with JSD of spot and JSD
of type at 0.489 and 0.575, respectively. In Dataset 2, SIMO’s RMSE
decreased to 0.198, significantly outperforming the second-placed
LIGER (RMSE =0.232) and third-placed Tangram (RMSE =0.238). In
Dataset 3, SIMO led with an RMSE of 0.186, ahead of the second-placed
LIGER (RMSE=0.221), with a reduction in error of 15.84%.
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On the biological datasets, we further analyzed the capacity of all
tools to reconstruct cell-type spatial patterns under noise-free condi-
tions. It was observed that the tools generally performed well in the
spatial mapping of transcriptomic data but showed weaker perfor-
mance in the spatial mapping of epigenetic data. In contrast, SIMO’s
mapping results across each modality were relatively stable, particu-
larly excelling in the second modality over other tools (Fig. 3c and
Supplementary Figs. 5–7). For example, in reconstructing the spatial
distribution of A3 in Dataset 1 and C11 in Dataset 2, SIMO revealed a
clearer spatial distribution pattern (Supplementary Figs. 5, 6). Parti-
cularly noteworthy is SIMO’s performance in Dataset 3, which involves
H3K27me3 (repressing loci) data from the mouse brain, where tran-
scriptomic and epigenetic signals show opposite correlations. Unlike
other integration tools that only integrate spatial and non-spatial data
based on transcriptomic data similarity, thereby overlooking potential
inconsistencies in signal strength acrossmodalities, SIMOwas capable
of accurately merging transcriptomic and epigenetic data simulta-
neously (Fig. 3c and Supplementary Fig. 7). This underscores SIMO’s
advanced and unique capability in effectively identifying and recon-
ciling inter-modality differences when processing multimodal data.

In addition to comparing the same computational tools in each
mapping, we can also combine different methods (Supplementary
Fig. 8). Specifically, we applied spatial deconvolution tools (such as
Tangram and CARD) in the first mapping and data integration tools
(such as Seurat, LIGER, and Scanorama) in the second mapping,
comparing their results with those of SIMO. The results show that
across both simulated and biological datasets, SIMO outperforms
other approaches in all metrics.

Evaluation of biological data
To assess SIMO’s capability to map complex spatial cell arrangements
in real-world biological scenarios, we evaluated its performance on

real-world spatial multi-omics datasets. Specifically, we tested SIMO
across three distinct datasets: the Spatial ATAC-RNA-seq dataset from
mouse embryos (Dataset 1), the Spatial ATAC-RNA-seq dataset from
mouse brain tissue (Dataset 2), and the Spatial CUT&Tag-RNA-seq
dataset from mouse brain tissue (Dataset 3). In addition to SIMO’s
demonstrated ability to accurately reconstruct the spatial distribution
of multi-omics cell types, its precise reconstruction of various omics
featureswas alsonotable (Supplementary Figs. 9–13). InDataset 1, Six6,
a key gene involved in eye development, showed the highest gene
expression and accessibility in the eye region. Genes such as Sox2,
Myt1l, and Pax6, which are highly accessible in certain regions of the
embryonic brain, exhibited relatively low RNA expression. This
observation suggests that these genes may be involved in lineage
specification during embryonic brain development22. For Dataset 2,
multi-omics features in different mouse brain regions revealed high
signals corresponding to specific cell types: striatum (Pde10a,medium
spiny neurons), corpus callosum (Sox10, Mbp, and Tspan2, oligoden-
drocytes), cortex (Mef2c, Neurod6, and Cux2, excitatory neurons), and
lateral ventricle (Dlx1, ependymal/neural progenitor cells). Overall, the
spatial distribution patterns of gene expression and accessibility in
Dataset 2 were relatively consistent, whereas this was not the case in
Dataset 3. For instance, genes like Pde10a, Sox10, and Tspan2 showed
high gene expression in regions with lower H3K27me3 signaling. SIMO
accurately reconstructed the spatial distribution of multi-omics fea-
tures across all datasets, preserving biological relationships between
features, while other tools showed considerable errors, particularly in
Dataset 3.

We further analyzed Dataset 1 to measure the preservation of
biological relationships between different omics layers.We focused on
radial glia and postmitotic premature neurons, which are known to
have spatially graded differentiation relationships22. Cells in these
regions were divided into three main regions (Region 1, 2, and 3), and
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we calculated the signal correlation of different omics features across
these regions (Fig. 4a and Supplementary Fig 14a). Clustering based on
these correlations identified three categories: C1, C2, and C3, with C1
genes highly expressed in Region 3, C2 genes in Region 2, andC3 genes
in Region 1. All genes with high accessibility were found in C3 (Fig. 4b).
These spatial distribution differences reflect distinct spatial omics
regulation patterns. Gene Ontology (GO) pathway analysis of genes
across the three omics layers revealed associations with different
biological functions (Supplementary Fig 14c). For example, pathways
related to development and forebrain development were linked to C2
and C3, while C1 was associated with negative regulation of neuro-
genesis, aligning with its presence in the terminal differentiation
regions. SIMO’s accurate reconstruction of these spatial omics reg-
ulatory patterns, and the high correlation between reconstructed and
actual results, demonstrated its superior performance compared to
other methods (Fig. 4c and Supplementary Fig 14b).

In Dataset 3, the correlation between multi-omics features across
different regions was crucial. Strong anti-correlation between
H3K27me3 andRNAwas observed in the original sequencing data. Low
H3K27me3 levels in Mal, Mag, and Car2 corresponded to high RNA
expression (quadrant IV), while high H3K27me3 levels in Syt1, Grin2b,
and Mef2c were associated with low RNA expression (quadrant II).
SIMO effectively captured the correlations between these two omics
features, outperforming other methods that often showed errors or
omissions in correlation (Fig. 4d and Supplementary Fig 14d). Speci-
fically, SIMO reconstructed 611 feature associations, the highest
among all compared methods (Fig. 4e).

Spatial integration of the mouse cortex
First, we applied SIMO to a publicly available mouse brain multimodal
single-cell dataset. This dataset integrates gene expression, DNA
methylation, and 10x Visium ST data8,23 (Supplementary Fig. 15a–c).

Through preliminary analysis of single-cell transcriptomics data, we
discovered that SIMO accurately reconstructs the stratified character-
istics of excitatory neuron subtypes, arranged in the order of layers L2/
3, L5, and L6, perfectly aligning with existing prior knowledge of cor-
tical structure (Fig. 5a–c and Supplementary Fig. 15d, e). Additionally,
we delved into the spatial distribution patterns of specific marker
genes, for instance, finding Otof and Cux2 predominantly expressed in
the upper layers (L2/3), Rorb and Fezf2 mainly concentrated in the
middle layers, and Sulf2 and Foxp2 significantly distributed in the
deeper layers. The spatial distribution of DNA methylation data also
clearly reflected the stratification of layers L2/3, L4, L5, and L6, with
markers such as the methylation markers (mCH and mCG) of Cux2
being more pronounced in the deeper layers, while the signals of Fezf2
and Sulf2 were stronger in the superficial layers (Supplementary
Fig. 16a, b). Notably, compared to existing tools, SIMO demonstrated a
significant advantage in the spatial mapping capability of DNA
methylation signals (Supplementary Fig. 17a–d), emphasizing its
unique advantage in compatibility with multimodal integration.

Moreover, the integrative analysis facilitated by SIMO enriches
our insight into cell typing across various omics layers from a spatial
perspective. Notably, the Layer5a cell type spans a broad spatial extent
within the transcriptomics landscape. Our integrated assessment
reveals that these cells predominantly align with mL4 and mDL-2 cell
types identified in DNA methylation profiles. Unsupervised clustering
further uncovers the intrinsic heterogeneity within Layer5a cells
(Fig. 5d, e). Additionally, we examined the expression patterns of key
markers (including Cux2, Rorb, Rora, Sox5, Rbfox1, and Bcl11a)24–26

among Layer5a subtypes, observing expression variability across
modalities and distinctive regional distribution (Supplementary
Fig. 18a–d). These observations underscore SIMO’s robust capability in
elucidating the spatial heterogeneity inherent in multi-omics single-
cell datasets.
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Next, we combined gene expression andDNAmethylation data to
deeply explore the gene regulatory mechanism in the mouse cerebral
cortex. It is generally believed that DNA methylation has a profound
regulatory impact on gene activity, and it affects cell fate decisions
during aging and development by regulating gene expression4,9–11,27,28.
We explored the interaction between gene expression and corre-
sponding DNA methylation levels by analyzing population-level PCCs
between them (Fig. 6a). The results showed that among the gene-
methylation pairs with significant correlations, most genes showed
negative correlations with their DNA methylation marks, which is
consistent with previous research results. For example, when the Cux2
gene reaches its peak expression in the L2/3 layer, its DNAmethylation
level is relatively low; conversely, the high methylation level of the
Rorb gene is consistent with its distribution in low-expression regions
in the deeper layers (Supplementary Fig. 16a, b).

To conduct further in-depth analysis of the Layer5a cell popula-
tion, we explored its multimodal spatial regulation pattern. Through
spatial module analysis of gene expression and DNA methylation sig-
nals,we identified twomainmodules, each exhibiting its unique spatial
distribution pattern (Fig. 6b, c). The first module is mainly located in
the outer layer of the cerebral cortex and covers genes such as Cux2,
Rorb, and Rora and their corresponding DNA methylation signals,
which is consistent with cluster 1 in the transcriptome data and DNA
methylation data. The mL4 class matched, showing high gene
expression and low DNA methylation levels in the outer region
(Fig. 6d–g and Supplementary Fig. 18a–d). The second module is
mainly distributed in the inner layer, including Sox5, Rbfox1, Bcl11a,
and other genes and their corresponding DNA methylation signals,
which is related to cluster 2 in the transcriptome data andmDL-2 class
in the DNA methylation data. Correspondingly, high gene expression
and low DNA methylation levels in the inner layer were demonstrated
(Fig. 6d–g and Supplementary Fig. 18a–d). These findings further
emphasize the heterogeneity of Layer5a cells at the multi-omics level
from the perspective of spatial regulation.

Spatial integration of the human myocardial infarction
We apply SIMO to datasets covering human myocardial infarction
events, including scRNA-seq, scATAC-seq data, and ST dataset29

(Supplementary Fig. 19a–f). The analysis results show that single cells
in both scRNA-seq and scATAC-seq data are successfully mapped to
spatial slices, involving key cell types such as cardiomyocytes (RYR2),
endothelial cells (PECAM1), fibroblasts (COL12A1)30, myeloid cells
(CD14), and vascular SmoothMuscle Cells (vSMCs) (MYH11). These cell
types exhibited similar spatial distribution characteristics in different
modalities (Fig. 7a and Supplementary Fig. 20a, b).We selectedmarker
genes specific to multiple cell types to calculate the abundance of
major cell types at each location in the ST data and compared these
data with cell type proportions plotted using the SIMO tool. From a
spatial distribution perspective, there is a clear consistency between
the abundance of cell types and their spatial distribution proportions,
and the spatial distribution calculated by cell differential genes is also
similar to the original data (Fig. 7b and Supplementary Fig. 20c).

Given the importance of cardiomyocytes among cell types, we
performed an in-depth analysis of them. Single-cell transcriptome data
revealed that cardiomyocytes are mainly divided into three unsu-
pervised clustering subpopulations: clusters 0, 1, and 7 (Fig. 7c and
Supplementary Fig. 21a). There are significant differences in the dis-
tance between these clusters and the myocardial infarction area
(Fig. 7d). Among them, cluster 7 is closest to the infarction area, and
cluster 0 is the farthest to the infarction area. Through pathway
enrichment analysis, we found that cluster 0 is mainly related to nor-
mal heart functions such as cardiac contraction, muscle contraction,
and blood circulation; cluster 1 is related to tissue morphology con-
struction; cluster 7 is associated with pathways involved in wound
healing, myofibril assembly, and the assembly of cell binding sites,
these pathways may be involved in cardiac repair and recovery after
myocardial infarction31,32 (Supplementary Fig. 21b–d). This suggests
that cardiomyocytes adjacent to the infarcted area exhibit character-
istics of post-infarction repair. At the same time, we also analyzed the
ATAC data of cardiomyocytes and divided all unsupervised clusters
into adjacent groups and distant groups according to the distance
from the infarct area,which are spatially different distributionpatterns
(Fig. 7e and Supplementary Fig. 21e). By calculating the scores of bio-
logical pathways, we found that the wound healing scores in adjacent
regions were significantly higher than those in distant regions, indi-
cating that cardiomyocytes in adjacent regions activated accessible
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regions of relevant genes (Fig. 7f). These findings reveal the spatial
heterogeneity of cardiomyocytes in function and gene regulation after
myocardial infarction, providing valuable clues for in-depth explora-
tion of the pathophysiological process of myocardial infarction.

Subsequently, by integrating gene expression data with motif
activity insights from ATAC sequencing, wemeticulously explored the
multimodal distribution patterns within cardiomyocytes (Supple-
mentary Fig. 22a). Our modularity analysis identified two principal
gene-motif modules with distinct spatial distributions: module 1 is
situated closer to the infarct zone, whereas module 2 proximates far-
ther (Fig. 8a, b). Spatial analysis underscored a negative correlation
between module 1 activity and the proximity to myeloid cells and the
infarct region, underscoring the potential significance of module
1-associated subgroups in the immunomodulatory processes of myo-
cardial infarction (Fig. 8c and Supplementary Fig. 22b). Utilizing the
disparity in module scores, we categorized cardiomyocytes into two
subgroups aligned with module 1 (high score group) and module 2
(low score group) (Supplementary Fig. 22c). By conducting Gene Set
Enrichment Analysis (GSEA) to delve into the functional characteristics
of these two subgroups, we discovered that module 1 is involved in
platelet function, intraplatelet calcium levels, and cytokine-related
pathways, whichmayplay a crucial role in the onset and progression of
myocardial infarction (Fig. 8d). Additionally, module 1 encompasses
several transcription factors intimately linked tomyocardial infarction;
for instance, ATF6 mitigates myocardial ischemia/reperfusion (I/R)
injuries by inducing genes associated with oxidative stress responses,
and IRF2 modulates apoptosis by activating the cell pyroptosis

pathway via Gasdermin-D (GSDMD)33,34 (Supplementary Fig. 22d).
These insights intimate that subgroups related to module 1 may be
pivotal in the development and progression of myocardial infarction.

Analysis of fibroblasts also yielded two main gene-motif mod-
ules, of which module 1 is closer to myeloid cells and module 2 is
located near the infarct area (Fig. 8e and Supplementary Fig. 22e, f).
The differential scores of these two modules further divided fibro-
blasts into twosubgroups (Fig.8g).GOpathwayenrichmentanalysis
showed thatmodule 2 is related to pathways related to cell junction
assembly and structural components of the extracellular matrix.
These pathways may play an important role in the repair of cardiac
tissue after injury35 (Fig. 8f). Transcription factors involved in mod-
ule 2, such as KLF15, OVOL2, RUNX1, SMAD3, etc., may play a reg-
ulatory role in cardiac fibrosis and tissue repair36–39. The
transcription factors involved in module 1, such as KLF2 and ZEB1,
are involved in the regulation of inflammatory and immune
responses40,41 (Supplementary Fig. 22h). Interestingly, RUNX1 and
RUNX2, as structurally similar transcription factors, belong to dif-
ferent modules, reflecting their different functions and biological
roles in cardiac tissue. Early studies have shown that the activity and
stability of ETV2 can be regulated through its interaction with
OVOL2, which has a significant impact on the methylation/deme-
thylation process of DNA and the expression of downstream target
genes37. Given the critical role of ETV2 in cardiovascular regenera-
tion and cardiac repair after myocardial infarction, these findings
highlight the possibility of OVOL2 as a potential target for the
treatment of myocardial infarction.
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Discussion
We introduced SIMO, a computational tool that utilizes optimal
transport algorithms to integrate single-cell data from various single
modalities through sequential spatial mapping, enabling spatial inte-
gration of multi-omics single-cell data. With its downstream analysis
capabilities, SIMO can accurately perform spatial analysis of gene
regulatory patterns. Compared to existing computational methods,
SIMO displays several advantages. First, it is one of themost advanced
tools available, capable of simultaneously reconstructing the spatial
distribution of data from multiple modalities, enabling spatial map-
ping of two or more types of omics data (Supplementary Fig. 23).
Second, SIMO excels in handling modal data with opposing biological
signals, demonstrating strong compatibility in multimodal integration
tasks. Furthermore, SIMO not only possesses gene regulation analysis
capabilities but also allows for in-depth exploration of complex gene
regulatory spatial patterns within tissues. Lastly, with the continuous
advancement of single-cell omics sequencing technologies, SIMO is
theoretically compatible with any omics data that can display features
associated with the transcriptome, providing more diversified and in-
depth omics insights for tissue studies.

Initially, we conducted benchmark tests on SIMO using simulated
datasets to assess its accuracy and robustness across different spatial
patterns, noise levels, and hyperparameter settings, ultimately deter-
mining the optimal hyperparameters. Compared to other integration
tools, SIMO demonstrated superior performance, especially in inte-
grating non-transcriptomic data, where it significantly outperformed
other tools. We then applied SIMO to two real datasets. In the analysis
of mouse cerebral cortex data, SIMO not only accurately identified
different cortical layers but also revealed multimodal gene regulatory
relationships at a spatial resolution. Additionally, SIMO resolved high-
resolution substructures of cell populations and specific modal spatial
heterogeneities. In studies of human myocardial infarction, SIMO,
through spatial regulation analysis, revealed multimodal

heterogeneity between cardiomyocytes and fibroblasts. Based on
spatial regulatory analysis, SIMO also proposed potential therapeutic
targets for the diagnosis and treatment of myocardial infarction.

As single-cell omics sequencing technology continues to evolve,
we will be able to understand the complex biological states of indivi-
dual cells from a more detailed omics perspective. By efficiently inte-
grating key gene regulatory data, SIMO could provide a more
comprehensive landscape of gene regulatory networks.

Currently, single-cell analysis has entered a new era centered on
multi-omics, with single-cell omics and ST technologies becoming
foundational to biological research. Therefore, as these technologies
merge and innovate, we expect SIMO to become an important tool for
exploring the physiological and pathological states of tissues in the
future. It has the potential to assist scientists in examining spatio-
temporal dynamics and whole-genome gene regulation mechanisms
within tissue environments, and it may play a crucial role in building
disease models and precisely analyzing pathological states, providing
scientific bases for discovering new therapeutic targets and develop-
ing treatment strategies.

Methods
SIMO toolkit
Alignment of modality1. The input scRNA-seq and ST data were used
for the first integration and processed before calculating the optimal
probabilistic alignment and integration. We recommend using the top
100 genes per cell type/cluster shared between the two datasets for
subsequent analysis under default parameters. Gene expression matri-
ces were normalized and scaled in preparation for analysis. Com-
plementary representations were used to capture the distinct
characteristics of each dataset to facilitate integration. For scRNA-seq,
the datawere summarized as X 2 Rp×n, capturing the expression levels
of p genes in n cells, and E 2 Rh ×n, a reduced-dimensional repre-
sentation that highlights critical cellular features using techniques like
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PCA. For spatial transcriptomics, the data were represented by
Y 2 Rp×m, which captures the expression levels of p genes in m
spots, and Z 2 R2 ×m, which retains the spatial location of spots. To
address the inherent differences between the dimensionally reduced
embedding representations E and the spatial coordinates Z , we
adopted a graph-based strategy to harmonize their scales. Specifi-
cally, we constructed a k-NN graph for each dataset, leveraging the
local neighborhood relationships within the embedding space and
spatial domain. Distances between nodes were refined using type- or
region-specific adjustments to reflect biological and spatial hetero-
geneity. Unconnected nodes were assigned the graph’s maximum
distance to ensure completeness. The entire matrix was subse-
quently normalized to make spatial and embedding distances com-
parable across datasets. These resulting distance matrices,
representing the relationships among cells and spots respectively,
are defined as G 2 Rn×n and G0 2 Rm×m.

To integrate scRNA-seq and ST data, we adopted the previous
algorithm strategy16, describing input datasets as triplets X ,G,wð Þ and
Y ,G0,w0ð Þ.Here, X 2 Rp×n and Y 2 Rp×m are gene expressionmatrices
for n cells and m spots, G 2 Rn×n and G0 2 Rm×m are pairwise graph
distance matrices, and w=w0 are distributions over cells and spots,
which can be user-defined based on biological priors or set to uniform
by default. The alignment is represented by a mapping matrix

Π= ½πij � 2 Rn ×m
+ , whereπij indicates theprobability ofmapping cell i to

spot j. The alignment is achieved by minimizing a composite cost
function FðΠÞ, which combines two key objectives:
1. Expression similarity cost: This term quantifies the overall dis-

similarity between the gene expression profiles of cells and spots,
defined as Cexp =

P
i, jdðx�i, y�jÞπij , where d is the expression cost

function and dðx�i, y�jÞ quantifies the expression-level divergence
between cell i and spot j.

2. Graph pairwise distance cost: Quantifies the difference in pairwise
graphdistances defined asCgraph =

P
i, j, k, lðgik � g 0

jlÞ2πijπkl , where
gik represents the graph pairwise distance between cell i and k,
and g 0

jl represents the graph pairwise distance between spot j and
l. This term ensures that the pairwise relationships within the
spatial and embeddinggraphs arepreservedduring the alignment
process.

The overall objective function is a weighted combination of these
two components:

FðΠ;X ,G,Y ,G0,d,αÞ= ð1� αÞCexp +αCgraph ð1Þ

where α 2 ½0, 1� is a tunable parameter that determines the relative
importance of gene expression similarity versus distance preservation
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Fig. 8 | SIMO reveals spatial regulation patterns in human myocardial infarc-
tion. a Spatial regulation modules of cardiomyocyte cells were identified using
SIMO. b SIMO maps of the activity score of gene-motif pairs within modules of
cardiomyocytes. c The activity scores of gene-motif pairs withinmodule 1 and their
correlation with the distance to the infarct area (left) and myeloid cells (right).
Statistical analysis was performed using a two-sided linear regression model
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ment. e SIMO maps of the activity score of gene-motif pairs within modules of
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Process (BP) and Molecular Function (MF) categories. The BH method was applied
for multiple comparison adjustment.

Article https://doi.org/10.1038/s41467-025-56523-4

Nature Communications |         (2025) 16:1265 10

www.nature.com/naturecommunications


in the alignment, a higher α emphasizes spatial consistency, while a
lower α prioritizes expression similarity.

To determine the cell composition of each spot, we first rank cells
based on their mapping probabilities, excluding those with zero
probability. The top-ranked cells are selected as potential candidates
for further analysis. Using the Non-Negative Least Squares (NNLS)
method, we deconvolved the cell types contributing to each spot.
Candidate cells that align with the deconvolution outcomes are
prioritized, while any remaining gaps in the expected number of
mapped cells are filled by selecting additional cells with the highest
probabilities.

Coordinates assignment of modality1. The spatial coordinates of
cells are assigned through a two-step process. Initially, cells are posi-
tioned based on the spatial location of the spot they belong to. These
initial coordinates are then refined by accounting for the correlation
between the cell’s gene expression and the expression profiles of
nearby spots. For example, consider a spot j with coordinates ðxj, yjÞ,
surrounded by neighboring spots j1,…, jn. The similarity between cell i
in spot j and its neighboring spots is defined as p1,…, pn, which are the
PCCs of gene expression scaled to the range ½0, 1�. Using these simi-
larity scores, the coordinates of cell i in spot j are computed as follows:

xi, yi
� �

= xj +

Pn
k = 1ðxk�xjÞpk

n
, yj +

Pn
k = 1ðyk�yjÞpk

n

 !
ð2Þ

To cope with the insufficient number of adjacent spots, we added
pseudo spot jpseudo, which inherits the gene expression profile of spot
j, and is assigned spatial coordinates calculated as:

xpseudo, ypseudo
� �

= xj n + 1ð Þ �
Xn
k = 1

xk , yj n+ 1ð Þ �
Xn
k = 1

yk

 !
ð3Þ

The pseudo-spot will participate in the coordinate correction
process as a nearby spot. To ensure cells remain within the boundaries
of their respective spots, we adjust their distances from the spot
center. This scaling ensures that the farthest cells are positioned
exactly at the edge of the spot, maintaining their spatial distribution
within the defined spot area.

Alignment ofmodality2. The data of scRNA-seq and anothermodality
(taking scATAC-seq data as anexample) all go through apreprocessing
process, using the corresponding modality low-dimensional repre-
sentation to build a proximity network, and using the Leiden algorithm
to assign initial cell cluster labels. Next, we use the gene-level matrix
(gene activity score for ATAC) for subsequent analysis. The gene-level
matrix can be calculated using the ArchR package or the Signac
package. The top 10 differential genes of each cluster were used for
subsequent label migration. Specifically, for each modality, we iden-
tified the top 10 genes with the highest differential expression in each
cluster, thereby capturing the key marker genes that distinguish
clusters. We then retained the intersection of key genes between dif-
ferentmodalities. Datasets containmatrix X and Y , where X represents
the gene expression level, and Y gene activity score. We generate
expression profile for each cell population based on the cell label,
denoted asX 0, where x0

i represent the average expressionprofile of i th
cell population. Similarly, we create an average activity profile Y 0, with
y0 j representing the average activity profile of the j th cell population.
We then calculated the PCC between x0

i and y0 j , storing the results in
the correlation matrix M:

Mi, j =PCC x0
i, y

0
j

� �
ð4Þ

To facilitate the next step of label transfer, we scaled all correla-
tion coefficients to a range of 0 to 1 and calculated the difference from

1, resulting in the correlation-based distance matrix, which is used for
the next step of label transfer. If two modalities display opposite bio-
logical activity trends, such as transcriptional activity versus inhibitory
epigenomic signals, we instead use the original correlation matrix M
directly in the label transfer step.

We assign each cell population a weight greater than zero in each
modality. By default, we apply a uniform distribution and normalize
these weights. We define the alignment matrix between clusters as
Π= ½πjl � 2 Rc1 × c2

+ where c1 and c2 mean the cluster number of mod-
alities. Given marginal relaxation term regm use the following cost to
find a mapping:

FðΠ;M, regm, g, g
0Þ

=
X
j, l

Mjlπjl + regm �
X
j

π�j log
π�j
gj

 !
+ regm �

X
l

π�l log
π�l
g 0

l

� � ð5Þ

The obtained probability map is subjected to threshold proces-
sing to obtain the transfer relationship between cell populations.

For cell populations from two data sets that are successfully
paired, we extract their low-dimensional embedding representation
and use the previous method to construct a k-NN graph and calculate
the distance matrix. Finally, the Gromov-Wasserstein transport was
used to calculate the pairing probability between cells and determine
the pairing relationship between cells based on the probability.

Cordinates assignment of modality2. After obtaining the matching
relationship between cells between modality1 and 2, we allocate the
cells ofmodality2 to the corresponding spot based on the information
about the spot where the cells in modality are located and correct the
coordinates. The correction process is similar to the previousmethod.
The difference is that gene expression is no longer used for PCC cal-
culations. Instead, low-dimensional embedding representation and
cosine similarity are used to measure the relationship between cells
and surrounding spots.

Gene regulation analysis. Gene regulation analysis integrates infor-
mation from both modality 1 and modality 242. Before this, data from
modality 2must be converted into amatrix formatwith gene names as
features and different types of data are selected according to analysis
requirements. For instance, the RunChromVAR function in Signac43

(version 1.9.0), based on the JASPAR2020 database44, can estimate
transcription factor activity as an input for analysis. For DNA methy-
lation data, the average signal value of different DNAmethylation sites
of the samegene is calculated as an input for the analysis. TakingATAC
data as an example, the FindMarkers function calculates the fold
change in transcription factor activity and gene expression, with a false
discovery rate (FDR) threshold set to less than 0.05. Then, the PCCs
between the activity of transcription factors and the fold change in
corresponding gene expression is used to assess the correlation
between the two modalities. Based on the strength and direction of
these correlations, transcription factors are categorized into three
groups. Those showing a strong positive correlation are inferred to act
as transcriptional activators, enhancing gene expression. Conversely,
transcription factorswith negative correlations are likely to function as
transcriptional repressors, reducing gene expression. For transcrip-
tion factors with negligible or no correlation, their regulatory roles
remain uncertain.

Spatial regulation analysis. Spatial regulation analysis integrates data
frommodality 1 and modality 2 along with their corresponding spatial
location information. Initially, expression data and spatial information
are extracted from both datasets. To reduce measurement noise and
prepare for subsequent modular analysis, spatial smoothing is applied
to the data within each dataset45. Essentially, this means that the
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expression data for each cell is adjusted based on the average
expression of its surrounding neighboring cells. Moreover, cross-
modal smoothing is performed to complementmissing information in
one modality, revealing potential interactions between the two data-
sets. Specifically, for a cell in modality 1, we use information from
neighboring cells in modality 2 to estimate its missing data. The
smoothed expression data are thenmerged to create a comprehensive
data framework encompassing both modalities and minimum-
maximum normalization ensures data consistency. Subsequently, for
each feature pair (gene) across the two datasets, we calculate the
expression ratio, defined as the expression level of the feature in
dataset 2 divided by that in dataset 1. This ratio serves as the regulatory
score to assess the strength of gene regulation between the features.
To facilitate weighted correlation analysis, we construct a kernel
matrix based on spatial location information. This matrix reflects the
spatial proximity of cells, calculated by determining the pairwise
Euclidean distances between cells and applying a Gaussian function to
convert these distances into weights:

K i, jð Þ= exp � dij

2σ2

� �
ð6Þ

Where dij represents the distance between cell i and j, and σ is a
parameter that controls the smoothness of the kernel. The resulting
kernel matrix is crucial for capturing the influence of spatial relation-
ships during the weighted correlation analysis. CC is applied to the
weighted correlation matrix to categorize feature pairs into groups,
identifying sets of features with similar regulatory patterns46. The
results are further refinedby setting specific criteria (suchasupper and
lower limits for feature numbers, average connectivity strength, and
average correlation threshold).Module scores are calculated using the
score_genes function in Scanpy47. In summary, this analysis, by mer-
ging and comparing data from two modalities along with their spatial
information and through detailed preprocessing and analysis of the
data, can identify feature pairs with significant regulatory roles at the
spatial level. This provides important perspectives and tools for a
deeper understanding of spatial biology.

Simulation data
To comprehensively evaluate the performance of SIMO, we adopted
the simulation strategy used in our previous research16, which is based
on SNARE-seq data from the mouse cerebral cortex to construct
simulated datasets. The gene activity matrix was computed using the
GeneActivity function within Signac (v1.9.0). After preprocessing and
annotating cell types, we identified three key subgroups: L2/3 IT, L4,
and L5 IT, labeled as Cell types 1, 2, and 3. From each type, 250 cells
were randomly selected, divided into 50 groups representing spatial
locations, and their average expression levels were calculated for each
location. After assigning spatial coordinates to these locations, we
created an ST dataset that includes the transcriptome and epigenome
information for each spatial position to test the performance of SIMO.
The original single-cell multi-omics data were split into two sets of
single-omics data and input into the SIMO algorithm along with the
constructed ST data. Patterns 5 and 6, which contain the 10 most
important cell types in the ISSAAC-seq brain cortex data, are used to
construct simulated data.

To increase the realism of the data and simulate the noise intro-
duced by technical limitations, we introduced a pseudocount para-
meter δ. Specifically, before mapping cells to specific locations, new
transcript counts were generated based on the total count at each
location using a negative binomial distribution and then adjusted
using a multinomial distribution for individual gene counts, thereby
simulating randomness and adding a level of noise to the data.
Moreover, to eliminate the potential impact of tissue slice angles, we
randomly rotated the slices before aligning the data.

Biological data
To comprehensively evaluate the effectiveness of SIMO, we utilized
three biological datasets as benchmarks: mouse embryonic Spatial
ATAC-RNA-seq data, mouse brain Spatial ATAC-RNA-seq data, and
mouse brain Spatial CUT&Tag–RNA-seq (H3K27me3) data. These
datasets, derived from sequencing experiments, provide a realistic
foundation for assessing the performance of tools. We use the gene
activity score and chromatin silencing score in the original data as part
of the input data.

Mouse Embryonic Spatial ATAC-RNA-seq Dataset (Dataset 1). By
merging every four adjacent pixels into one, we preserved the spatial
transcriptomics data for input into the ST dataset while removing the
original positional information and segmenting the data to create
multi-omics single-cell datasets for input. The final scRNA-seq data
included 2187 cells and 17058 genes; the scATAC-seq data comprised
2187 cells and 32437 peaks, corresponding to 24017 genes’ activity
scores. The resultant ST dataset contained 576 spots and 17058 genes.
We retained only the highly variable genes common between the
expression data and gene activity scores, and the input datasets were
subject to standard preprocessing steps, including normalization, PCA
analysis (for RNA assay), LSI analysis (for ATAC assay), and nonlinear
dimension reduction using UMAP. The original data’s clustering
information was used as a basis for grouping in specific computational
steps, and the omics data formapping spotswereobtainedbymerging
the contained single-cell data. We manually delineated the primary
regions of radial glia and postmitotic premature neurons and divided
these into three regions (Region 1, 2, and 3) based on the distance
between cells and radial glia. Subsequently, we selected differential
features from the RNA andATAC assays for comparison.We calculated
the average gene expression levels and average gene activity scores for
these three regions, normalizing them to a 0-1 scale. We then com-
puted the Spearman correlation of the same features between differ-
ent omics (RNA-ATAC) to summarize their multi-omics regulatory
patterns. Using the correlation of each feature, we performed Hier-
archical clustering, resulting in three distinct clusters. We computed
spatial distribution scores for each feature cluster using AddModule-
Score. To evaluate the accuracy of tools, we compared the recon-
structed multi-omics regulatory patterns with the actual data.
Specifically, we calculated the Spearman correlations between differ-
ent omics features for each tool and then assessed these correlations
against the true results using Pearson correlation.

Mouse Brain Spatial ATAC-RNA-seq Dataset (Dataset 2). Following
the same pixel merging strategy as with the embryonic dataset, we
obtained scRNA-seq data containing 9215 cells and 22914 genes;
scATAC-seq data included 9215 cells and 121068 peaks, corresponding
to 24027 genes’ activity scores. The corresponding ST dataset con-
tained 2315 spots and 22914 genes. All preprocessing steps were con-
sistent with those mentioned for the embryonic dataset, and all
computational steps of SIMO were executed with default parameters.

The Mouse Brain Spatial CUT&Tag–RNA-seq (H3K27me3) Dataset
(Dataset 3). After data segmentation and merging, the scRNA-seq
portion includes 9752 cells and 25881 genes; the scATAC-seq segment
covers 9752 cells with 70470 peaks, and the corresponding gene-cell
chromatin silencing score matrix encompasses 24023 genes. The ST
dataset contains 2441 spatial spots and 25881 genes. The preproces-
sing methods are consistent with those applied to the previous data-
sets. When integrating the second modality (CUT&Tag) data, the
alignment_2 function’s modality2_type parameter is set to “neg”. We
used transcriptomic clusters to define regional groupings, and based
on these regional groupings, we calculated the log2(fold change) for
features using FindAllMarkers function across two omics (RNA and
H3K27me3) as the basis for final visualization. For the tool-generated
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mapping data, each cell’s regional groupingwas assigned based on the
location. We then applied the same calculations and processing steps.
We classified omics log2 (fold change) values as either positive or
negative relationships, depending on whether the signs were the same
(positive correlation) or different (negative correlation). We then
counted the number of correctly constructed feature relationships
across all tools to assess their performance.

Performance evaluation
Mapping accuracy. The precision of cell mapping was evaluated by
determining the percentage of cells accurately placed within their
corresponding regions. For a given spot j, where n cells were allocated
and n0 of those cells shared the same cell type as that of spot j, the
precision of cell placement was quantified as the ratio of n0 to n. To
compute the overall allocation precision A for a slice containing m
spots, we used the formula below:

A=
1
m

Xm
j = 1

n0
j

nj
ð7Þ

RMSE. TheRMSEwas calculated to assess thediscrepancy between the
deconvolved proportions and the actual proportions of precise labels
for each spot within the ST dataset. Specifically, for each spot, the
RMSE is computed as the square root of the average of the squared
differences between the deconvolved proportions and the actual
proportions across all cell types. The calculation is performed using
the equation:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
j = 1

XN
n = 1

y0n, j � yn, j
� �2 !vuut ð8Þ

Here, M represents the total number of spots, N represents the total
number of cell types, y0n, j denotes the deconvolved proportion of cell
type n within the spot j, and yn, j indicates the actual proportion of cell
type n within spot j.

JSD. The calculation process of JSD between cell type proportions and
reference proportions in ST data can be performed for two different
metrics: “spot” and “type”.

For the “spot”metric, JSD calculations are performed across spots
to assess the similarity between cell type distributions within each
spot, comparing observed cell ratios to a reference standard. For each
spot j, the JSD is caculated as follows:

JSD Pj k Qj

� �
=
1
2
DKL Pj k Mj

� �
+
1
2
DKL Qj k Mj

� �
ð9Þ

Where Pj represents the observed cell type proportions in spot j, Qj

represents the reference cell type proportions in spot j,Mj =
1
2 ðPj +QjÞ

is the average of the two distributions and DKL is the Kullback-Leibler
divergence.

In the case of the “type” metric, the JSD calculation across cell
types measures the consistency of the overall distribution of each cell
type at all spots, comparing the deconvoluted proportions to the true
proportions in the reference data. For each cell type k, the JSD is
caculated as follows:

JSD Pk k Qk

� �
=
1
2
DKL Pk k Mk

� �
+
1
2
DKL Qk k Mk

� � ð10Þ

Where Pk represents the observed cell type proportions across all
spots for cell type k, Qk represents the summed reference cell type
proportions across all spots for cell type k and Mk =

1
2 Pk +Qk

� �
is the

average of the two distributions.

Baseline methods processing
To assess the performance of SIMO, we compared it against several
existing integration tools, including CARD (v1.0), Tangram (v1.0.4),
Seurat (v4.3.0), LIGER (v1.0.1), and Scanorama (v1.7.3). Before inte-
gration, ST data were randomly rotated and supplemented with a
predetermined amount of pseudo-counts to simulate data variability
in real-world applications. Using CARD, we inferred single-cell resolu-
tion gene expression for each spatial position. With Tangram, we
executed cell-to-spot mapping using default parameters to determine
the alignment probabilities between spots and cells. Data were inte-
grated using Seurat’s IntegrateData function, and distance matrices
between spots and cells were computed using PCA embedding, then
inverted and divided by the maximum value to obtain the alignment
matrix. The optimizeALS function of LIGER was utilized for data inte-
gration, calculating distance matrices between spots and cells based
on Nonnegative Matrix Factorization (NMF) embedding. Scanorama
integrated datasets to calculate the matching relationships between
spots and cells. The resulting matching matrix was then inputted into
the assign_coord_2 function to allocate cells to their respective spots.
Finally, we compared the performance of these tools using themetrics
mentioned above. In performing multimodal spatial integration, we
followed SIMO’s strategy of sequentially mapping multiple single-
omics data, using gene activity scores or transformed gene-cell signal
matrices as input for non-transcriptomic modalities.

Mouse cerebral cortex data analysis
Single-cell transcriptomic data of the mouse cerebral cortex, mea-
sured through Drop-seq technology, revealed 8 major cell types. The
single-cell DNA methylation data of the same region, obtained using
snmC-seq technology, displayed 16major cell types. For the 10xVisium
ST data, only spots located in the cortical layers were retained, and
based on the transcriptomic data’s heterogeneity, the brain sections
were divided into five areas corresponding to the five main cortical
layers (Astro, L2/3, L4, L5, L6, and Oligo). Data were processed using
SIMO’s preprocessing workflow. Differential genes calculated using
unsupervised clustering information from ST data and cell type labels
from single-cell transcriptomic data were retained for further analysis,
with only genes common to both kept. Five single cells were allocated
to each spot for this analysis. When mapping DNA methylation data,
differential genes were identified using unsupervised clustering
information frommapped single-cell transcriptomic data and cell type
labels from single-cell DNA methylation data, with common genes
retained for further analysis. The alignment_2 function’s mod-
ality2_type parameterwas set to “neg” for integratingDNAmethylation
data, with three single cells allocated to each spot. Gene regulation
analysis was conducted using default settings, and spatial regulation
analysis only retained gene-DNA methylation features with significant
correlation, with parameters set to sigma = 140, mink = 2, maxK = 8,
avg_con_min = 0.5, avg_cor_min = 0.5, min_feature = 20,
max_feature = 200.

Human myocardial infarction data analysis
Gene expression matrices and 10x Visium data (patient_region_id:
RZ_P3) were downloaded from https://cellxgene.cziscience.com/
collections/8191c283-0816-424b-9b61-c3e1d6258a77, while peak
count matrices were obtained from https://zenodo.org/records/
6578553 and https://zenodo.org/record/6578617. Following the origi-
nal study’s protocol, we processed the scATAC-seq data to derive gene
activity scores. To enhance processing efficiency, we randomly selec-
ted scRNA-seq and scATAC-seq data for 20,000 cells. The data were
processed using SIMO’s standardized preprocessing workflow. Dif-
ferential genes shared between the original annotations of ST data and
unsupervised clustering labels from single-cell transcriptomic data
were calculated and retained. Up to three cells were allocated per spot.
For mapping ATAC data, unsupervised clustering information from

Article https://doi.org/10.1038/s41467-025-56523-4

Nature Communications |         (2025) 16:1265 13

https://cellxgene.cziscience.com/collections/8191c283-0816-424b-9b61-c3e1d6258a77
https://cellxgene.cziscience.com/collections/8191c283-0816-424b-9b61-c3e1d6258a77
https://zenodo.org/records/6578553
https://zenodo.org/records/6578553
https://zenodo.org/record/6578617
www.nature.com/naturecommunications


bothmapped single-cell transcriptomic data and scATAC-seq data was
used to identify differential genes, with three cells allocated per spot.
According to the stainingmap and the spatial distribution of cell types
(Fig. 6 and Supplementary Fig. 12a), we took the location of vSMCwith
an ordinate greater than 0.5 as the core of the infarct area. The gene
regulation analysis was conducted with default parameters. Spatial
regulation analysis for cardiomyocytes was set with parameters sigma
= 140, mink = 2, maxK = 8, avg_con_min = 0.5, avg_cor_min = 0.5,
min_feature = 20, max_feature = 200, while for fibroblasts, parameters
were adjusted to avg_con_min = 0.6 and avg_cor_min = 0.6.

Pathway and biological process enrichment analysis
To identify pathwayswithingene clusters, the clusterProfiler package48

(version 4.6.2) in R was utilized for conducting enrichment analysis on
genes from each cluster. The analysis focused on the BP and MF
categories, selecting results that surpassed a predefined significance
level (q-value cutoff = 0.05). For analyzing pathway enrichment among
different cell groups, the FindAllMarkers function was employed to
identify differentially expressed genes (DEGs) in each cell group rela-
tive to the others, applying criteria (only.pos = TRUE, min.pct = 0.2,
logfc.threshold = 0.2) to filter for genes with an adjusted p-value (via
theWilcoxon test) below 0.05. Additionally, GSEA49 was carried out on
a ranked list of genes to uncover significantly enriched pathways and
biological processes, drawing upon gene sets from the Molecular
Signatures Database (MSigDB, http://www.gsea-msigdb.org/gsea/
msigdb) to interpret the gene signatures linked to these pathways
and processes.

Scoring of biological processes
We generated scores for individual cells based on gene signatures
representing biological functions, with the scores for biological pro-
cesses defined as the average normalized expression of the associated
genes. These functional signatures were collected from the GO data-
base, comprising differentially expressed genes identified with an
adjusted p-value cutoff of 0.05 using the Wilcoxon test. For the
“Wound Healing” pathway (GO:0042060), scores were calculated
based on the genes enriched in the corresponding pathway.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are avail-
able within the article and its Supplementary Information files. The
original data used in this paper can be accessed through the fol-
lowing links: (1) Mouse cerebral cortex SNARE-seq data: GEO acces-
sion: GSE126074; (2) ISSAAC-seq data of mouse brain cortex: https://
www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11264 (3)
Spatial ATAC–RNA-seq data of mouse embryo and brain, Spatial
CUT&Tag–RNA-seq (H3K27me3) data of mouse brain: https://web.
atlasxomics.com/visualization/Fan; (4) Mouse cerebral cortex Drop-
seq data: http://dropviz.org/; (5) Mouse cerebral cortex snmC-seq
data: https://brainome.ucsd.edu/annoj/brain_single_nuclei/; (6)
Mouse cerebral cortex 10x Visium data: https://satijalab.org/seurat/
articles/spatial_vignette; (7) Human myocardial infarction scRNA-
seq, scATAC-seq and 10x Visium data: https://cellxgene.cziscience.
com/collections/8191c283-0816-424b-9b61-c3e1d6258a77, https://
zenodo.org/record/6578553 and https://zenodo.org/record/
6578617. Source data are provided with this paper.

Code availability
The SIMO toolkit is available at GitHub: https://github.com/
ZJUFanLab/SIMO under GPL-3.0 license. It is also deposited at
Zenodo: https://doi.org/10.5281/zenodo.1449825750.
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