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Mapping cellular organization in the developing brain presents significant
challenges due to the multidimensional nature of the data, characterized by
complex spatial patterns that are difficult to interpret without high-
throughput tools. Here, we present DeepCellMap, a deep-learning-assisted
tool that integrates multi-scale image processing with advanced spatial and
clustering statistics. This pipeline is designed to map microglial organization
during normal and pathological brain development and has the potential to be
adapted to any cell type. Using DeepCellMap, we capture the morphological
diversity of microglia, identify strong coupling between proliferative and
phagocytic phenotypes, and show that distinct spatial clusters rarely overlap
as human brain development progresses. Additionally, we uncover an asso-
ciation between microglia and blood vessels in fetal brains exposed to
maternal SARS-CoV-2. These findings offer insights into whether various
microglial phenotypes form networks in the developing brain to occupy space,
and in conditions involving haemorrhages, whether microglia respond to, or
influence changes in blood vessel integrity. DeepCellMap is available as an
open-source software and is a powerful tool for extracting spatial statistics and
analyzing cellular organization in large tissue sections, accommodating var-
ious imaging modalities. This platform opens new avenues for studying brain
development and related pathologies.

Recent advancements in digital pathology and multi-color fluores-
cence microscopy, including traditional techniques such as hae-
matoxylinand eosin (H&E) staining' and immunohistochemistry?, as
well as more sophisticated multiplex imaging approaches®*, have
transformed our ability to map cellular organization directly within
tissues. Coupled with automated image analysis, these methods
have provided invaluable insights into key biological processes,

spanning fields such as cancer biology, immunology, and develop-
mental neuroscience. While fluorescence and brightfield micro-
scopy have been widely employed, their potential is enhanced
when integrated with advanced spatiotemporal cell mapping
techniques, which enable the comprehensive analysis of cellular
organization, dynamics, and morphology in complex tissue
environments.
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Microglial cells, originating from extraembryonic yolk sac pro-
genitors, migrate into the developing brain from the 4th post-
conceptional week (pcw) and colonize the telencephalon through
migration and cycles of proliferation and apoptosis®. During this pro-
cess, microglia display marked morphological heterogeneity, reflec-
tive of their diverse roles in brain development and
neurodevelopmental topography establishment™’. Understanding
how various microglial morphologies are organized within the devel-
oping brain and the spatial relationships between their distinct
morphologies can provide critical insights into their functional roles.
Despite their importance, there is a lack of high-throughput, auto-
mated tools capable of mapping these interactions, limiting our ability
to fully characterize microglial organization during brain develop-
ment, particularly in humans. Microglial organization is known to be
disrupted in various pathological conditions™". For instance, hypoxic
conditions drive microglial proliferation, leading to altered spatial
distributions and cellular organization™. In addition, maternal infec-
tion with SARS-CoV-2 during pregnancy has been linked to fetal cor-
tical hemorrhages, where compromised blood vessel integrity may
disrupt microglial organization'. However, it remains unclear to what
extent microglial spatial dynamics are affected under these patholo-
gical conditions. Understanding how microglia respond to such per-
turbations may help elucidate their role in injury and repair
mechanisms, particularly in relation to blood vessel integrity.

Historically, the study of microglial morphology has been largely
descriptive, relying on manual quantification methods that are time-
intensive and prone to bias®>’. Automating the recognition of microglial
morphology and extracting spatial statistics to analyze their inter-
relationships allow for uncovering organizational patterns that are
otherwise missed by manual approaches. Recent developments in
automated image analysis, particularly with the advent of deep learn-
ing algorithms, have significantly improved the segmentation of cells
and tissue regions™'®. Both supervised and unsupervised machine
learning models have emerged as effective tools for whole-slide
detection of microglia, particularly in brightfield microscopy, where
segmentation accuracy is critical. While these advances have shown
great promise in mouse brain sections, their application to human
post-mortem tissues is still in the early stages""%.

Accurate cell segmentation is a critical first step in the meaningful
analysis of tissue organization. In fluorescence microscopy, where cell
types are often color-coded, segmentation alone can reveal cellular
distributions. However, in brightfield microscopy, an additional classi-
fication step is required, which must consider both morphological fea-
tures and spatial information related to the cell’s local neighborhood.
This is particularly important in developing tissues, where various cell
phenotypes, such as microglial cells, frequently intermingle. Current
methods, primarily designed for postnatal non-human tissues, face
scalability challenges due to small sample sizes and reliance on manual
segmentation. These approaches often struggle with the complexity and
diversity of cell morphologies encountered during development, where
there is significant interplay between different cell types®”.

To gain deeper insights into the spatial relationships between
distinct morphologies?**°, advanced spatial statistics can be leveraged
to uncover associations between different cell phenotypes and to
analyze their spatial distributions within the tissue. Traditionally, spa-
tial analyses in digital pathology have been limited to methods that
quantify the accumulation of specific cell types in regions (e.g., tumor
islets)”, or that evaluate cellular neighborhoods based on local cell
type stoichiometry®’. However, deeper spatial statistics that examine
cell type proximity (called cell-to-cell association or coupling see
Supplementary Material for specific definitions)® remain under
utilized**. These frameworks are often difficult to generalize to com-
plex cell shapes, like microglia, and to quantify the accumulation of
cells at an anatomical region’s boundary (that we call cell-region
association, see Supplementary Material). Moreover, these statistics

require careful tissue-specific considerations (e.g., cell density, regio-
nal boundaries) and statistical processing to ensure accurate biological
interpretation®.

A promising approach to characterize cell-to-cell and cell-to-
region spatial relationships involves a recent methodology called
levelset analysis that partitions the tissue into sub-regions with respect
to the distance to a given cell type or region. Then, the statistical
analysis of the number of a second population of cells (e.g., another
morphological type of microglia) in each sub-region enables the
robust characterization of how certain cell types accumulate around
others or in proximity to specific tissue regions”. However, such
analysis must also account for uncertainties arising from the deep
learning-based classification of cells.

In this work, we introduce DeepCellMap, a computational
approach compiled into an open-source Python package developed
for robust morphological cell classification using deep learning, cou-
pled with advanced statistical characterization of spatial relationships
between different cell morphologies/classes and their distribution
within tissues. DeepCellMap integrates a generalized Ripley’s method
that accounts for classification uncertainties in the deep neural net-
works, enabling a detailed analysis of cell distributions in tissues and
with respect to the boundary of a brain region. To further investigate
cell clusters, their organization, and the spatial dynamics of mixed
microglial phenotypes, this method also features an optimized
Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm?®, with a semi-automated parameter calibration. Compatible
with both brightfield and fluorescent microscopy images, we apply
DeepCellMap to histological brain images that we labeled with
immunohistochemistry and immunofluorescence from normal human
fetuses and fetuses whose mothers were exposed to SARS-CoV-2
during pregnancy**. By fusing machine learning with advanced spa-
tiotemporal statistics, this approach enables the characterization of
microglial organization over time in both healthy and diseased con-
ditions. The flexibility of this method also allows for its adaptation to
diverse datasets of dynamically changing tissues, offering a powerful
tool for broad applications in biomedical and clinical research.

Results

Cell morphology classification and advanced spatial statistics
with DeepCellMap

Cell segmentation. To map the distribution and spatial relationships
between various cell classes or morphologies in tissue samples,
derived from different imaging modalities such as brightfield immu-
nohistochemistry or high-resolution confocal microscopy, we devel-
oped DeepCellMap, a fully automated analysis pipeline processes
labeled images as input (Fig. 1A and Supplementary Fig. 1A). Given the
typically large size of these images (many Gigabytes), a pre-
segmentation step divides them into smaller, manageable tiles (Sup-
plementary Figs. 2 and 3). In each of these tiles, cell shapes are auto-
matically segmented (Supplementary Fig. 1B1) using image
thresholding and morphological operations, ensuring the precise
identification of cellular boundaries and features (Supplementary
Fig. 4 for method and Fig. 5 for validation).

Cell classification. Microglial cells display an array of morphologies in
homeostatic, pathological, and developmental conditions in humans
and rodents. Microglia have been described as amoeboid, migratory,
rod-shaped, phagocytic, ramified, intermediate/hyper-ramified, mul-
tinucleated, activated, reactive, dark, dystrophic, aggregated, bulbous,
and more®’****, Some of these morphologies evolve from one to the
next across developing tissues and are tied to function, as shown in
Fig. 6A. Some morphologies coupled with functional markers inform
us about what these cells are doing such as proliferative, dying and
phagocytic microglia. To detect these cells, position, local neighbor-
hood and shape are key parameters.
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Fig. 1| DeepCellMap principle. DeepCellMap is an open-source Python platform
that segments, and classifies cells, and extracts spatial patterns within tissues.

A Input can either be brightfield (e.g., immunohistochemistry data from a human
developing brain) or multicolor fluorescent images (e.g., SARS-CoV-2 labeling).

B First series of functions is dedicated to cell segmentation. The classification of cell
morphologies in brightfield images uses a trained deep-learning network (U-Net),
while the classification in fluorescent images is based on color channel separation
(B1). To track the temporal changes of cellular distributions in different regions of
the tissue during development, DeepCellMap embeds algorithms to automatically

delineate specific tissue regions based on the global cell density (B2). From
extracted cell types/morphologies and positions within the tissue, DeepCellMap
computes spatial statistics to probe cell-to-cell and cell-to-region associations with
levelset-based analysis, and the overlap between the different cell clusters with
DBSCAN-based analysis (B3). C DeepCellMap provides detailed anatomical map-
ping of different cell types/shapes and enables the measurement of the accumu-
lation of cells in different anatomical regions of the tissue. The spatial statistics
allow the in-depth characterization of the association between different cell types
(cell-to-cell and cluster overlap) and the evolution of these metrics across time.

Following cell segmentation, DeepCellMap classifies microglia
into distinct morphological categories that likely reflect their types. In
fluorescence imaging, cell types correspond to specific labels and
color channels. For example, in our SARS-CoV-2 dataset, different cell
types are associated with specific (combinations of) color channels.
However, in brightfield imaging, identifying different cell types from
the segmented masks is less straightforward.

Although there have been some attempts to automatically
determine cell types using machine learning in well-defined imaging
conditions™, this process is still largely performed manually, particu-
larly in developmental stages where diverse morphological types
coexist within tissues”'’. DeepCellMap integrates a supervised deep
learning classifier based on a U-Net architecture (see “Methods”) to
classify microglia into 5 distinct types (see Supplementary Figs. 7, 8,
9, and 10). The classification relies primarily on morphological features
and information about the local cellular neighborhood in the tissue.
The classifier achieved an F1 score of 81% on the training dataset. More
specifically, the proportion of well-classified cells in each class were
proliferative: 85%, amoeboid: 85%, aggregated: 83%, phagocytic, 75%,
and ramified 75%.

Delineation of brain regions. Automatic classification enables the
collection of a large number of cells across different brain regions. The
third step in the DeepCellMap pipeline involves the automated deli-
neation of brain regions (Fig. 1B2). Distinct differences between cell
densities exist between regions, and we developed an automated
method based on the local density of detected cell nuclei (see
“Methods”). Cell nuclei segmentation was performed using the well-
established deep learning algorithm, CellPose', which facilitated
accurate mapping of cell density across the imaged tissue. By applying
automatic thresholding and morphological operations, we were able
to successfully reconstruct four primary anatomical regions within the

brain tissue: the striatum, neocortex, the ganglionic eminence, and the
cortical boundary.

Mapping cell-to-cell spatial association. To map the spatial rela-
tionships between the cell morphologies/classes identified by the deep
learning classifier (Fig. 1B3), as well as between cells and specific tissue
regions, we developed a statistical framework that accounts for the
local cell density and corrects for potential misclassifications from the
previous deep-learning algorithm. Many existing methods for analyz-
ing cell distribution in tissues focus on defining homogeneous cellular
neighborhoods and extracting statistics, such as the accumulation of
specific cell types within given regions?*>*°, However, few approaches
offer a statistical characterization of spatial relationships across vary-
ing distances between cells”. Here, we build on the Statistical Object
Distance Analysis (SODA) framework®**?, which corrects for the non-
significant spatial association of cell populations that may arise from
random distributions, providing key metrics such as the percentage
and mean distance between spatially associated cells. To examine the
spatial distribution of one cell morphology B relative to another A,
SODA employs a levelset method to map the spatial neighborhood of A
cells, where the O-level contour defines the boundary of A cells. The
surrounding area is partitioned into subregions (w;, i =1..N), and SODA
adjusts for cell density variations to control for random spatial proxi-
mity (null hypothesis). This enables robust quantification of significant
spatial associations between different cell types, or accumulation
around a given tissue region, offering a deeper understanding of cel-
lular organization and interactions.

Uncertainty in cell type classification can introduce errors that
propagate into the spatial association analysis. For instance, in a sce-
nario where type B is frequently misclassified as type C, any observed
association between types A and C would, in fact, reflect the true
association between A and B. To mitigate these effects, DeepCellMap
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incorporates classification uncertainty by weighing the cell counts in
each level set region based on the output probabilities from the deep
learning classifier (see “Methods”). Furthermore, we utilized the con-
fusion matrix from the training dataset as an a priori correction,
adjusting for potential misclassifications between cell types during the
cell-to-cell spatial association analysis.

To validate the ability of DeepCellMap to accurately measure the
level and distance of association between different cell types, while
accounting for potential classification errors, we designed synthetic
simulations (Supplementary Fig. 11). In these simulations, two cell
types B and C were spatially associated with a third cell type A across a
broad range of association parameters (level and distance). To model
potential misclassification between cells, we created three scenarios:
no confusion, intermediate confusion, and high confusion, where the
classification error between B and C was set to 0%, 30%, and 45%,
respectively (see “Methods”). The reconstruction errors, defined as the
absolute differences between the association level and distance esti-
mated by DeepCellMap (with and without correcting for mis-
classification) and the simulated parameters are presented in
Supplementary Fig. 12 for the three confusion scenarios.

Overall, applying DeepCellMap without correction of classifica-
tion errors leads to incorrect estimates of the association score (up to
40% error in case of intermediate confusion according to Supple-
mentary Fig. 13A and 45% in case of high confusion (Supplementary
Fig. 14C) and can lead to errors of up to 400 pixels for the evaluation of
the association distance in both scenarios (Fig. Supplementary 13B, D
and Supplementary Fig. 14B, D). We observed that the accuracy of
DeepCellMap decreases as the standard deviation of the association
distance increases, thus as associated cells are distributed across a
larger number of level set regions, performance declines slightly.
Nevertheless, while the algorithm tends to slightly underestimate the
level of association, it maintains high accuracy in estimating distances,
with an average error of less than 5% across the entire range of para-
meters tested. These results demonstrate that DeepCellMap reliably
characterizes spatial associations between different cell populations,
even in the presence of classification uncertainties and errors.

Cell cluster overlap. Level-set analysis is highly effective for probing
cell-to-cell and cell-to-region spatial associations, but it has limitations
in describing the relationships between the spatial territories occupied
by different cell types within tissues. To address this issue, DeepCell-
Map incorporates a semi-automatic DBSCAN-based algorithm, where
one of the key parameters is automatically optimized (see “Methods”).
To validate this function, we performed synthetic simulations where
we varied the percentage of points organized in clusters and measured
the performance of the optimized DBSCAN algorithm to retrieve the
simulated proportion of clustered points (Supplementary Fig. 15).
DeepCellMap was able to recover a large proportion of clustered
points, with a slight underestimation probably due to the difficulty of
taking into account points at the edge of Gaussian clusters.

Therefore, the present clustering analysis enables the robust
detection of cell clusters, and computes the proportion of cells dis-
tributed in clusters versus isolated. The method also quantifies the
degree of overlap over time and between different cell-type clusters.
Combined with brain region delineation based on relative cell densities
(as described above), this clustering analysis allows for spatiotemporal
tracking of the colonization of various cell types during develop-
ment (Fig. 1C).

Microglial colonization in the developing human brain

The colonization of the developing brain by different morphological
types of microglia cells remains difficult to evaluate and could benefit
from an automated identification of their spatial organization within
different regions of the brain®’. Using immunohistochemical labeling of
microglial cells and brightfield imaging of post-mortem brain tissue at

different developmental stages (“Methods”), we used DeepCellMap to
characterize distributions and spatial associations of different microglial
phenotypes (morphological and functional) in different brain regions.

Microglial quantification in distinct anatomical regions. Using
DeepCellMap, we automatically delineated and segmented the stria-
tum, neocortex, cortical boundary, and ganglionic eminence (Fig. 2A1,
A2) and extracted microglial counts by morphological class in each
region using a segmentation pipeline based on Cellpose and Otsu
methods (Supplementary Fig. 16 and Supplementary Fig.17). We found
(Fig. 2B) over three time points 17,19 and 20 pcw that the total number
of microglia was not continuously increasing over the covered time
period. For example in the neocortex (pink labeled), the number first
decreases from 10928 to 6926 and then increases to 14262. The
number of microglia in the other regions was increasing.

We then quantified the proportion of the 5 classes of microglia in
the same regions (Fig. 2C) using the deep learning classification
approach integrated into DeepCellMap. We observed, from 17 to 20
pcw, an increase number of amoeboid microglia in the ganglionic
eminence and a net increased proportion of phagocytic cells (see also
Supplementary Fig. 18). The large proportion of amoeboid cells in the
ganglionic eminence aligns with their role in migrating to colonize
nearby structures such as the striatum. We also found that ramified
cells are dominant in the striatum, neocortex, and cortical boundary,
most likely because these regions are maturing at a faster rate than the
ganglionic eminence, which remains mostly populated by amoeboid
cells (Supplementary Fig. 19). Overall, DeepCellMap allows the classi-
fication of microglial classes according to morphology, the automated
segmentation of anatomical areas according to cell density and the
further characterization of the total and class-specific microglial cell
counts in the different brain regions during development.

Spatial associations between microglial phenotypes. To study the
spatial associations between microglial morphologies, we first applied
the level set algorithm in DeepCellMap after choosing a region of
interest and defining the states to be classified (Fig. 3A-C). Briefly, this
method allows us to map the spatial neighborhood of a given cell class
(morphological type) and extract the number of cells from another
given class in level-set-defined regions. Importantly, the DeepCellMap
implementation of level analysis corrects for the uncertainties in
classification and the expected accumulation of cells in different level-
sets for a random distribution (Fig. 3D).

First, we report here that all microglial morphologies are spatially
associated with one another but at different levels. In particular, three
microglial morphologies are most frequently associated with each
other (phagocytic, aggregated, and proliferative) whilst ramified and
amoeboid are less coupled with other cell morphologies. The level set
analysis also allowed an estimation of the mean distance between
associated single cells. For example, we found that the mean distances
weighted by the level set (see “Methods”) is 76 um for ramified versus
aggregated (Fig. 3E) in the striatum (Supplementary Figs. 20,
21, and 22). Interestingly the mean distance from all morphologies to
the aggregated class was ~-75.5um. The phagocytic class was the
closest on average to the aggregated class with a mean distance of
68 pum. When we performed this analysis on all groups, we found that
amoeboid, phagocytic, and ramified had mean distances to the other
groups of 18, 26, and 29 pm respectively. This is in contrast with pro-
liferative that were on average, at the largest distance of 143 pm from
all other classes (Fig. 3F).

Second, we estimated the mean distances between the 5 micro-
glial classes and the border of the brain region (Fig. 3G-1 and Sup-
plementary Fig. 23): we found that proliferative and aggregated
microglia were the closest to the border with a mean distance of
202 pm, the others being at a distance of the border of ~238 um on
average. At this stage, we concluded that the levelset analysis reveals a
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Fig. 2 | Tracking microglial colonization in different brain regions. A Detecting
cell nuclei performed by CellPose segmentation algorithm'®. Al- Image of a fetal
tissue section at 17 pcw. A2- Cropped regions (256 x 256) showing three different
densities (high, medium, and low), where we identified 82, 42, and 13 cells
respectively. A3 Nuclei density over the entire tissue (left color bar). This step is
followed by the Otsu-thresholding and morphological operation pipeline

(Supplementary Figs. 16 and 17). A4 Automatic delineation of four brain regions
based on nuclei density: striatum (blue), neocortex (pink), ganglionic eminence
(orange), and cortical boundary (green). B Percentage and the number of microglia
estimated from the deep learning algorithm for three pcws (17, 19, and 20) (n=3).
C Distribution of microglial morphologies in the ganglionic eminence. Source data
are provided as a Source Data file.

certain variability of coupling, that departs from a uniform distribu-
tion, but this variability depends on the morphological class. More-
over, in the ganglionic eminence, the average coupling distance
between amoeboid and phagocytic versus ramified (Fig. 3J1), was quite
stable across time, with a mean distance of 29 +4 p and 61+2pm
respectively. For other cell classes (proliferative and aggregated), the
coupling frequency was less than 5% for 1 and 2 time points respec-
tively, but when the frequency was higher, the coupling distances with
ramified cells were of the same order of magnitude between the
ganglionic eminence and the striatum for 17 pcw. However, the dis-
tance between the boundary of the ganglionic eminence and each
population was changing over time, but the coupling frequency
remained quite low, showing that this effect could be marginal (see
frequency of coupling tables inside Fig. 3J2).

To conclude, our key findings here suggest that three microglial
morphological classes are most frequently coupled with one another
(phagocytic, aggregated and proliferative) whereas ramified and
amoeboid are less coupled in general. Whilst the coupling distance
remained stable for the one-time point between the striatum and the
ganglionic eminence, it doubled when we considered the ganglionic
eminence border versus the cortical tissue border. Importantly, on
average, the cell-to-cell coupling distances were much smaller
(<100 pm) than the average cell-to-region border coupling distances
(200 pm on average and could reach 500 pum). In the context of our

knowledge of the rodent literature, microglial proliferation may be
associated with increased apoptosis which could explain the strong
coupling between our phagocytic and proliferative classes*. Microglia
are phagocytes, and it is precisely during these temporal windows that
we expect an increase in cell death as the brain prunes extranumerary
cells’. Dying cells influence the distribution of microglia®, and here, we
report the coupling association between proliferative and phagocytic
and aggregated microglia in humans. We also observe an overall
increase in phagocytosis genes as development progresses (Supple-
mentary Fig. 6B-D and Supplementary Table 1), which mirrors our
histology data. Aggregated and phagocytic microglia accumulate very
closely to the border and a drastic decrease of association at 20 pcw is
visible, possibly linked to distinct territories being colonized by the
different types. Finally a decreased accumulation from the ganglionic
eminence border may suggest that cells could be migrating from the
ganglionic eminence towards other regions of the brain.

Identifying distinct territories occupied by microglia during brain
colonization. To further assess whether microglial morphological
types could be non-uniformly distributed, we developed and applied
our semi-automatic DBSCAN clustering algorithm in DeepCellMap
(“Methods”). We obtained an ensemble of clusters for each morpho-
logical state delimited by their convex hull, as illustrated with the
ganglionic eminence (Fig. 4A, B).
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Fig. 3 | Microglial distributions according to levelset segmentation. A Choice of
2 regions: Striatum and tissue border in the fetal brain at 17 pcw. B Five microglial
morphologies: proliferative, aggregated, phagocytic, amoeboid, and ramified, 2 of
which are selected. C Choice of “aggregated" microglia as the center of levelset
construction vs “ramified.” D Ramified localization color-coded by probability
(right blue scale) in the level set representation of the aggregated cells (green),
obtained from a gradient distance. The distances are divided into 9 subregions
(wy, ..., Wo), color-coded (left scale). E Statistics of ramified cell accumulation in the
&~ where K is the generalized
Ripley function based on U-Net output probabilities (“Methods”) and the expected
mean p and the standard deviation o of ramified cells in each region w;. Statistical
threshold T4 = /2 log(n) (horizontal dashed line), where n is the number of level
sets: it is used to identify the w; regions where the microglial distribution deviates
from the uniform one. Mean coupling distance §a= 76 um between ramified and

aggregated measures the mean distance between two populations, with weights
accounting for the deviation w; in microglial distributions (“Methods”). F Coupling
result is shown as trees, where the root (level sets) is a chosen microglial mor-
phology, and the leaves (microglia distributed in the level set) are the 4 others,
quantified by the mean coupling distance in gm (above) in the striatum. The dis-
tance lines are color-coded by the frequency of association (left scale bar).

G Microglial cells in the level sets generated by the edge of the tissue or a region.
H Distribution of phagocytic cells in the level sets w;, with the same threshold as
above. I Coupling distances and association frequencies for each morphological
type with respect to the edge of the tissue. J Spatiotemporal coupling of four
microglia morphologies vs ramified (level set segmentation) in the ganglionic
eminence (interactions where coupling frequency is below 5% are discarded) (J1),
and coupling of 5 microglia shapes with respect to the edge (J2) across time. Source
data are provided as a Source Data file.

We observed significant variability in the percentage of cells
organized in clusters versus isolated between the different morpho-
logical types, with phagocytic and ramified cells being predominantly
organized in clusters with 65% and 64% of cells found in clusters
respectively (Fig. 4C, D) unlike amoeboid cells where the fraction of
cells organized in clusters drops to 46% (see also Supplementary
Fig. 24 for the other regions). We also investigated the changes over
time in the fraction of clustered cells (Fig. 4E) for the 5 microglia types
in the four identified anatomical regions (striatum, neocortex, cortical
boundary, ganglionic eminence): we found quite homogeneous frac-
tions of clustered cells in the ganglionic eminence (Fig. 4E), suggesting
that specific classes tend to group in specific territories.

To further study the mixing of different microglial classes, we
estimated the fraction of the clustered cells A in the intersecting area
formed by clusters from A and an other morphological category B by
the total area of these clusters (Fig. 4F). We then estimated in the
ganglionic eminence the fraction of cells from one type in the clusters of
the other types, as summarized in the matrix representation of Fig. 4G.
Interestingly, we found that 44% of proliferative territories (not isolated
cells) were mixed with aggregated territories (clusters). Also, there were
no clustered phagocytic and aggregated cells in proliferative clusters,
and no clustered aggregated in the ramified clusters. This suggests that
only certain morphological types, when distributed in clusters, can mix
but others do not, a situation that should be further explored.
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Fig. 4 | Overlapping of cell clusters in the ganglionic eminence. A DBSCAN
application to the (x,y) coordinates of the cells' center of mass. B Graph of Minsgmpie
versus € used to select the value of the radius € that maximizes the number of
clusters. C Schematic representation of the procedure to select stable clusters by
removing 10% of the cell located on the edges of the convex hull while the area of
the new convex hull remains >60% of the initial surface. D Clustering of the five
morphological states using DBSCAN algorithms, generating convex hulls around
each cluster. Color code is the same as microglial morphological types: pro-
liferative (pink), amoeboid (light blue), aggregated (green), phagocytic (yellow),

and ramified (dark blue). E Scheme of isolated vs clustered cells. F Percentage of
isolated vs clustered cells for the five populations at 17 pcw in the ganglionic
eminence. G Time-dependent clustering percentage at 17,19, and 20 pcw. H Scheme
of intersecting clusters from two different populations (type 1 vs type 2) and
associated metric. I Cluster mixing rate matrix between the 5 microglial morpho-
logical states in the ganglionic eminence at 17 pcw. J % of four microglia types vs
ramified cluster across time at 17,19 and 20 pcw. Source data are provided as a
Source Data file.

Finally, we explored the time evolution of mixing between the
different microglial types (Fig. 4H). This analysis allows us to follow in
time how cell clusters are overlapping. We chose ramified cells as a
reference and computed the fraction of the four other microglial types
located inside ramified clusters. We found that from pcw 17 to 20, the
percentage of all groups inside the cluster of ramified decays below
10% (this trend is similar for the striatum Supplementary Fig. 25, but
not for the neocortex Supplementary Fig. 26). In the cortical boundary,
this ratio is also around or less than 10% (Supplementary Fig. 27).

To summarize, in all 5 morphological classes and the 4 regions we
analyzed across time, our findings suggest that there is no strong
repulsion or attraction of clusters by other clusters. Furthermore, as
development progresses, the overlap between the different classes is
reduced so that each morphological group occupies a specific terri-
tory. This is consistent with brain development but not reported in
humans. As the structures mature, we report here the switch to a more
ramified microglia phenotype for example, and this is captured by our
single-cell data too (Fig. 6). From the mouse, we know that microglia
are driven to occupy the space during embryonic development by
proliferation but as the proliferative potential drops, contact inhibition

which refers to the physio-regulatory mechanism of arresting cell
division when two cells come into physical contact, may provide a
mechanism through which microglia occupy space with no overlap’.
This is consistent with the distinct morphologies occupying specific
niches in humans from our data. Furthermore, the underlying neuro-
developmental landscape may drive a specific phenotype where the
most striking separation between clusters is observed in more mature
structures (e.g., striatum) rather than transient ones (e.g., ganglionic
eminence) where there is more overlap between clusters.

Microglial classes correlate positively with proportions obtained
using scRNAseq analyses. We identified 10 clusters (Fig. 6C) and
annotated microglia and other cell types according to gene lists
obtained from published datasets (Supplementary Table 1). Our pur-
pose here was to demonstrate whether proportions obtained from
DeepCellMap within similar pcws correlated with single-cell obtained
proportions of the same classes of microglia. We, therefore, chose the
three most functionally distinct classes - homeostatic, phagocytic, and
proliferative. Amoeboid and aggregated microglia though morpholo-
gically distinct, may have dual functions - migratory or phagocytic/
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Fig. 5 | DeepCellMap applied to SARS-CoV-2 (COVID19) fetal human brain
confocal data. A 3 channels : Laminin (blood vessels), IBA1 (microglia/macro-
phages), and CD68 (Lysosomal marker). White scale bar =10 um. B Cells are clas-
sified according to the channels from which they are segmented. We segmented
four types of objects: blood vessels from channel Laminin (green), microglia from
channel IBA1 (white), lysosomal cells from CD68 channel (red) and phagocytic
microglia from the superposition of CD68 and IBA1 channels (n = 3) controls and

n=4 SARS-CoV-2 exposed sample. Error bars correspond to standard errors (all
values are available in Source Data). White scale bar =10 pm. C Coupling frequency
and mean distances. D Fraction of isolated vs clustered cells computed from the
DBSCAN algorithm. E Fraction of (A) cells having (B) cells as first neighbors. Dif-
ferences between control and SARS-CoV-2 are represented in the matrix. Source
data are provided as a Source Data file.

activated. Albeit it being a restricted temporal window, we are able to
show with Spearman’s correlation that the proportions of microglia
calculated by DeepCellMap in 3 classes (ramified/homeostatic, pha-
gocytic, and proliferative) in the forebrain correlate positively with
proportions of microglia calculated from our single-cell RNAseq data
(homeostatic, phagocytic and proliferative) matched for 3 pcws weeks
11,12 and 14 (r = 0.64, p = 0.06) (Fig. 6E). If we take the proliferative and
ramified/homeostatic, the correlation is even stronger (r=0.85). This
shows a good positive correlation between DeepCellMap and single-
cell-transcriptomic proportions in two independent datasets.

Robust association between microglia and blood vessels in
response to SARS-CoV-2 in human fetal cortex
To show the versatility of DeepCellMap, we used our pipeline in
fluorescence imaging of microglia in neocortical tissues of patients
infected with SARS-COV-2, labeled using antibodies against SARS-CoV-
2, microglia (IBA1), blood vessels (Laminin) and lysosomal cells (CD68)
(“Methods”). Using image processing tools (Methods), we detected
and classified four types of cells, to the channels from which they are
segmented: blood vessels from channel laminin (green), microglia
from channel IBA1 (white), lysosomal cells from CD68 channel (red)
and phagocytic microglia from the superposition of CD68 and IBA1
channels (Fig. 5A).

In fluorescence microscopy, the morphological diversity of
microglia is reduced from the classes we observed in brightfield during
normal neurodevelopment. IBA1 cells were mostly amoeboid/round

microglial cells consistently across multiple regions including the
neuroproliferative zones, the cortical plate, the subplate, and the
marginal zone of the telencephalic wall (Fig. 5B). We extracted cell
counts for each object identified above and normalized these to
tissue size to obtain a 2D density in cellsymm2. We found that in
SARS-CoV-2 samples, an increased blood vessel density, phagocytic
microglia/macrophages, and resting microglia compared to controls
which was consistent with figures obtained using manual counts in a
larger dataset (n=3 controls and n=4 SARS-CoV-2 exposed sam-
ples), as shown in Fig. 5B. Importantly, about 50% of microglia were
IBA1+CD68 + in SARS-CoV-2 samples, compared to 9% in con-
trols (Fig. 5B).

To test whether any of the identified cell organizations departed
from a uniform distribution, we then measured the spatial association
between the different cells (microglia, lysosomes CD68 + cells, and
lysosomal microglia) and blood vessels (Fig. 5C). We observed that the
distance between spatially associated cells, and between cells and
blood vessels was significantly reduced in SARS-CoV-2 samples com-
pared with controls. We then quantified the number and overlap
between the different cell clusters in SARS-CoV-2 (Fig. 5D). We mea-
sured an important decrease of CD68 + cells clustering in SARS-CoV-2
samples (49% of cells in clusters) compared with controls (73 %). We
also observed a substantial overlap between lysosomal microglia
(IBA1+CD68 +) clusters and blood vessels. Nearest-neighbor analyses
(see Methods) confirmed the tight association between lysosomal
microglia and blood vessels, in both SARS-CoV-2 and controls (Fig. 5E).
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Overall, the spatial statistics computed by DeepCellMap (spatial
association, clusters’ overlap and nearest-neighbor analysis) all point
to a stronger association of lysosomal microglia, with the vasculature
in SARS-CoV-2 samples, suggesting that these microglia could be
sending or receiving signals which may alter vessel integrity which has
yet to be probed further as a hypothesis. Overall, DeepCellMap is a
versatile tool that can be extended to fluorescence confocal images to
extract robust metrics about the spatial distribution of cells in control
and disease conditions.

Discussion

To investigate the spatial distribution of cells in digital pathology and
extract organizational patterns, we developed a computational pipe-
line, available as the open-source platform DeepCellMap. This plat-
form integrates deep learning for cell classification with advanced
spatial statistics. DeepCellMap corrects for possible confusion
between cell morphotypes during automatic classification, and local
cell densities during statistical parameter estimations, ensuring robust
analysis. This pipeline was designed to map microglial organization
during normal and pathological brain development but has the
potential to be adapted to any cell type.

In the age of digital pathology, DeepCellMap allows the rapid
extraction of information about core inflammatory processes to probe
specific hypotheses. It can be adapted in clinical and scientific settings,
identifying basic counts in different classes of cells, statistical asso-
ciations between pairs, and cluster analyses which places it along the
continuum from a basic diagnosis based on an inflammatory profile to
a platform that allows the probing of robust patterns/characterization
of cell populations for scientific studies. Because of its dual potential
and our expanding it to fluorescent images, it can be widely used.

With DeepCellMap, we capture here the morphological diversity
of microglia during human brain development and establish a thor-
ough, and adaptable pipeline to group them into morphological clas-
ses. We know from the rodent that the exponential expansion phase of
microglia during murine development is largely postnatal and more
linear prenatally following the growth of the brain®*.. From our data,
although restricted by the temporal windows we had investigated, we
capture the decrease in proliferative microglia as development pro-
gresses. We also identify that whilst in some regions the numbers keep
increasing (the striatum, the ganglionic eminence), in others (e.g., the
neocortex), they undulate consistent with previous literature®’*? sug-
gesting that the trend of expansion and refinement of the population
will vary by anatomical region.

In terms of the occupation of space by microglia, as development
progresses, the overlap between the different classes is reduced so
that each morphological group occupies a specific territory. This is
consistent with brain development but not clearly reported in humans.
As anatomical structures mature, we report here the switch to ramified
microglia, for example and this is captured by our single-cell data as
well. From the mouse, we know that microglia are driven to occupy the
space during embryonic development by proliferation, but as the
proliferative potential drops, contact inhibition which refers to the
physio-regulatory mechanism of arresting cell division when two cells
come into physical contact, may provide a mechanism through which
microglia occupy space with no overlap®. This is consistent with the
distinct morphologies occupying specific niches in humans from our
data. Furthermore, the underlying neurodevelopmental landscape
may drive a specific phenotype where the most striking separation
between clusters is observed in more mature structures (e.g., striatum)
rather than transient ones (e.g., ganglionic eminence) where there is
more overlap between clusters.

The strong coupling association between morphotypes such as
proliferative and phagocytic or aggregated is in line with the rodent
literature that microglial proliferation may be associated with
increased apoptosis***. Microglia are phagocytes, and it is precisely

during these temporal windows that we expect an increase in cell
death as the brain prunes extranumerary cells. Dying cells influence
the distribution of microglia, and we report here the coupling asso-
ciation between proliferative phagocytic and aggregated microglia in
humans. We also observe an overall increase in phagocytosis genes as
development progresses (single-cell data), which mirrors our histology
data Figure S6B-D and Supplementary Table 1). Overall, DeepCellMap
provides new metrics that are informative regarding the overall orga-
nization of a very complex cell type during human development.

DeepCellMap revealed the association with blood vessels in SARS-
CoV-2 samples, and this is particularly significant for two reasons: first,
SARS-CoV-2 samples exhibited weakened blood vessels due to the loss
of claudin-5 tight junctions, and second, these samples contained
hemorrhages™. The increase in microglial numbers and their associa-
tion with blood vessels may suggest that microglia may either be
responding to or contributing to, changes in vascular integrity. This
raises important questions about the role of microglia in areas of
hemorrhage or in blood-brain barrier disruption in other diseases*.
Specifically, are microglia aiding in the repair of weakened vessels, or
are they contributing to the loss of claudin-5. This warrants further
investigation.

In terms of applications, DeepCellMap applied to neurodegen-
erative disease tissues can be used to characterize concomitant
pathology (alpha-synuclein, tau, TDP43)*® which can lead to better
quantification of associations between specific microglial classes and
neuronal pathology. This can lead to the potential targeting of a spe-
cific microglial class or the class with the strongest association with the
pathology for therapeutics. Furthermore, another layer may be added
for those diseases that look pathologically similar but are clinically
distinct, hence why a tool like DeepCellMap would be very valuable in
characterizing the inflammatory profile to distinguish between dis-
eases. From an imaging point-of-view, 3D reconstructions of microglia
in thicker tissue sections would provide valuable insights into the
migratory phenotype, which remains particularly challenging to define
in humans. This approach would allow us to better understand the role
of migration in microglial colonization during development and how
this process may be altered by SARS-CoV-2 infection, further enhan-
cing the capabilities of DeepCellMap.

By computing a wide range of statistics on the spatial relation-
ships between different cell states or types, it becomes possible to map
more complex cellular assemblies involving multiple cell types, similar
to approaches used for molecular assemblies in super-resolution
fluorescence microscopy®*’. The development of such multivariate
spatial analysis is especially relevant given the rise of spatial tran-
scriptomics and multiplex imaging techniques*®, such as multiplex
immunohistochemistry*’, imaging mass cytometry*®, and co-detection
by indexing®, which can identify dozens of cell types in situ. These
advanced imaging and mapping techniques will ultimately enable the
deconstruction of complex spatial networks of cell types within tis-
sues, providing robust and precise predictive models of clinical out-
comes or, more broadly, revealing the biological principles that govern
tissue organization.

Methods

Ethics statement and histological slides We labeled and selected high-
resolution histological slides across human development from the
10th pcw-term for this study. Inmunohistochemistry steps were con-
sistent with the methods below for tissue processing for a total of 31
cases (12F;14M;5n/k). All demographics are summarized in Supple-
mentary Table 2. The study was conducted according to the guidelines
of the Declaration of Helsinki and approved by the ethics committees
of the School of Medicine, University of Zagreb (protocol number 251-
59-10106-23-111/158) and the Oxford Brain Bank (Rec approval: 23/sc/
0241, South Central Oxford C). Part of the human fetal material for the
SARS-CoV-2 samples was provided by the Joint MRC/Wellcome Trust
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grant #099175/Z/12/Z Human Developmental Biology Resource. Ethi-
cal approval was granted by the Human Developmental Biology
Resource (HDBR) jointly funded by the MRC and Wellcome Trust (Rec
number (Newcastle): 23/NE/0135, Newcastle and North Tyneside ethics
committee and Rec number (London): 23/L0/0312, Fulham ethics
committee). Fetal scans, including the SARS-CoV-2 dataset summar-
ized below, are available upon request. Written informed consent was
obtained from all mothers for the use of these samples. Exclusion
criteria were congenital abnormalities, genetic disorders, brain
trauma, periventricular leukomalacia, and hypoxic ischaemic ence-
phalopathy, except for the SARS-CoV-2 samples that had haemor-
rhages described elsewhere (**. Additional exclusion criteria were
infection and brain trauma.

Anatomical areas

We focused on the forebrain along the frontal axis, which includes the
cortex, the striatum, border regions, and the ganglionic eminence. The
striatum’s development begins at the basal telencephalon as early as
the 7th pcw and spans the entire developmental period until 25-28
pcw™2, The ganglionic eminence by that stage resolves and after 30
pcw, the corpus striatum seems to have reached its mature form. Nissl
and PAS-AB labelings were used for the delineation of the anatomical
boundaries of these structures (Fig. 1 and Supplementary Fig. 1A).

Immunohistochemistry. Paraffin-embedded blocks were cut into thin
sections of 10um on a microtome for immunohistochemistry.
Brightfield immunohistochemistry experiments were performed using
antibodies against microglia with the following dilutions: rabbit (019-
19741, Wako) or mouse (ab283319, Abcam); mouse anti-Ki67
(GA62661, Dako Omnis, Agilent), rabbit TMEM119 at 1:500 (ab185333,
Abcam, mouse PG-M1 at 1:400 (GA61361-2, Dako Omnis, Agilent),
mouse P2RY12 at 1:1000 (ab180366, Abcam) and rabbit SOX2 at 1:1000
(sc365823, Santa Cruz). The first step was deparaffinization of
formalin-fixed paraffin-embedded sections in xylol solution and rehy-
dration in descending concentrations of diluted ethanol (100%, 96%,
70%). Antigen retrieval was done by heat-induced epitope opening
using citric acid buffer (pH=6.2). Thereafter, sections were pre-
treated with methanol and hydrogen peroxide to block endogenous
peroxidase and phosphatase activity. Sections were blocked with a
solution of 5% Bovine serum albumin + Tween20 (0.1%) + normal horse
serum (5%) in 1X PBS and then incubated with primary antibodies
overnight. The next day, secondary antibodies were applied using
either the Immunopress duet kit (MP7724, Vector labs, UK) with anti-
mouse epitopes visualized with DAB chromogen in brown and anti-
rabbit epitopes visualized with alkaline phosphatase in magenta or the
Envision kit (mouse/rabbit) (K500711-2, Agilent, UK). Sections were
counterstained with haematoxylin or methyl green and coverslipped
with a permanent mounting medium before imaging.

Brightfield slide-scanning. Imaging was done using high-resolution
histological slide scanners: the Aperio Imagescope (Oxford, UK) and
Hamamatsu Nanozoomer (Zagreb, Croatia) 2.0 RS with a 40x objective
(numerical aperture of the lens=0.75) at 0.45um x 0.45um pixel
resolution.

Microglial morphologies selected. We sampled microglial morphol-
ogies based on published references during human
development®”?%2*% In brief, microglial morphologies described here
were proliferative, amoeboid, aggregated, phagocytic, and ramified
(Supplementary Fig. 1A).

For the coupling of morphology with function, we refer to the
representative examples provided in Supplementary Fig. 6A. The
dataset consists of a set of 24 histological images of human fetuses at
various stages of brain development. Images were processed coronally
through the frontal axis of the brain from 10 post-conceptional weeks

until term. All sections were histochemically labeled with haematoxylin
and eosin (H&E) according to standard methods and assessed by a
neuropathologist for histology.

Fluorescence data collection

Human tissues. We extended our brightfield pipeline to allow the
processing of human fetal images using fluorescence microscopy.
Demographics of the cases are provided in Supplementary Table 2.
Ethical approval was granted by the Human Developmental Biology
Resource (HDBR) jointly funded by the MRC and Wellcome Trust (Rec
number (Newcastle): 23/NE/0135, Newcastle and North Tyneside ethics
committee and Rec number (London): 23/L0/0312, Fullham ethics
committee).

The HDBR provided fresh tissue from fetuses aged 9-21 post-
conception weeks (pcw): we selected here from 26 haemorrhagic
samples, 7 samples with elective terminations (3 with no histological
abnormality recorded and 4 with cortical haemorrhages whose
mothers were positive for SARS-CoV-2) for the purposes of demon-
strating how DeepCellMap can be applied to these tissues. The pro-
cessing of these samples has been specified elsewhere'. Briefly, all
tissues were fixed for at least 24h at 4°C in 4% (wt/vol) paraf-
ormaldehyde (PFA) in 120 mM phosphate buffer (pH 7.4). Brains were
then sucrose-treated (15 and 30% sucrose solution sequentially for 24 h
each), OCT-embedded, and then 20 pum thick sections were cut using a
cryostat.

Immunofluorescence. Sections were then stained in a solution con-
taining 10% BSA and 0.1% Triton, using the primary antibodies CD68
(1:100 DAKO M0814), IBA-1 (1:100 Abcam ab5076), pan-laminin (1:100
Sigma L9393), rabbit IgG isotype control (1:50 Abcam ab172730
[EPR25A]), SARS-CoV-2 spike protein (1:100-250 Genentech
GTX632604 [1A9]) and SARS-CoV-2 nucleocapsid protein (1:50-150
Sino Biological 40143-R001). Life technologies secondary antibodies,
used at 1:1000, were donkey-anti-goat Alexa fluor 488 (A11055), anti-
mouse Alexa fluor 568 (A10037) and 555 (A31570), anti-rabbit Alexa
fluor 647 (A31573) and 488 (A21206), and goat anti-rat 555 (A21434).
Sections were all stained with DAPI (Sigma D9542) and mounted in
Mowiol (Merck Biosciences).

Fluorescence data and confocal imaging. Highly-resolved confocal
imaging was subsequently performed using a Zeiss LSM 800 inverted
microscope and a Zeiss Plan-Apochromat 20 x 0.8 objective, or a Zeiss
AxioScan slide scanner and a Zeiss Plan-Apochromat 20 x 0.8 M27
objective at 0.312 um/pixel as resolution. More details have been
specified elsewhere'. We illustrate our image processing pipeline
in Fig. 1.

Single-cell RNA-seq analysis of an independent dataset

We analyzed a total of 6584 microglial cell transcriptomes from the
forebrain, midbrain, and hindbrain and focused our analyses on the
forebrain, diencephalon, and telencephalon regions for the purposes
of this work. These data were derived from®*. The temporal windows
considered were 10-15 pcw or the late first/early second trimester
matching part of our histological temporal windows. Normalization
and dimensionality reduction were done using Sctransform (version
0.4.0) and the RunPCA function of the Seurat R package (version
4.1.4) with default parameters. To harmonize the data, we used the
harmony R package (version 1.0.3) to regress out the effect of each
sample with max;., set to 20 and the first 30 principle components.
The Uniform Manifold Approximation and Projection (UMAP) plots
were made using the RunUMAP function of the Seurat R package with
dimensions set to the first 20 and using the harmony-derived
dimensionality reduction. The number of dimensions for UMAP plots
were defined using the Elbowplot function implemented in the
Seurat R package. The scRNAseq clustering was done using
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FindNeighbors (k.param=15 and dims=1:20) and FindClusters
(resolution = 0.5, algorithm = 2) functions of Seurat R package. The
resolution was defined using the Clustree R package (version 0.5.0).
Annotation of clusters was done based on canonical and functional
markers from>°, see Supplementary Table 1. We then calculated the
proportions of 3 microglial classes extracted from our single-cell
analysis and correlated these with the proportions of the same
classes obtained using DeepCellMap matched for pcw(s) 10 to 14 (see
Supplementary Fig. 6B-D).

Image processing

Pre-processing. Images were manipulated at different scales. First,
tissue was extracted using Otsu thresholding and morphological
operations on the downscaled image (factor 1/32 for brightfield and 1
for fluorescence data). A subdivision of the original images into tiles of
size 1024 x 1024 pixels characterized by their row and column num-
bers allowed manipulation of the regions of interest at high resolution
(Supplementary Fig. 3). Thus, each region of interest is characterized
by its coordinates (top left tile and bottom right) in the image grid.
Cells are identified by the quadruplet (row, col, x, y) describing the tile
(row, col) to which their center of mass belongs and their coordinates
(x, y) in that tile.

Cell detection and segmentation. Given the arbitrary division of the
image into tiles and the possibility that cells may be present on
several tiles, the following procedure is applied to ensure that all
cells are taken into account and not counted more than once. During
the detection procedure on a tile, the 8 neighboring tiles are con-
sidered, and the segmentation algorithm is applied to the resulting
3 x 3 tile image. The centers of mass of detected cells with part of
their body in the central tile are calculated; if this center of mass is in
the central tile, then the cell belongs to this tile. The segmentation
algorithm proceeds in several steps, applied to each tile whose tissue
percentage exceeds 5% (Supplementary Fig. 4A). First, Image binar-
ization is performed with the Otsu adaptive thresholding from the
eosin color-deconvolution of the RGB image®. The algorithm evalu-
ates the histogram of the eosin image and finds two critical thresh-
olds, allowing it to separate three regions. Pixels belonging to the
third region are assigned a value of 1, while the others are set to O
(Supplementary Fig. 4B1). Small isolated fragments of the binary
mask are removed by using a disk of radius r=1. (Supplementary
Fig. 4B2). Then, a morphological dilation with a disk of radius r=3 is
applied to the binary mask to connect the different binary masks
belonging to the same cells (Supplementary Fig. 4B3). Holes in the
cell mask are filled by a background reconstruction (Supplementary
Fig. 4B4), and finally, a size filter is applied to cell masks, and cells
with a size smaller than a threshold 7=700pixels) are filtered out
(Supplementary Fig. 4B5).

During this segmentation procedure, two parameters can be
adjusted by the user: the radius r of the dilation disk (between 2 and 4),
and the maximum size of the cells, which depends mainly on the
resolution of the image.

The output is a binary mask of segmented cells over the back-
ground. Five parameters are associated with each segmented cell: row
and column of the corresponding tile, coordinates (x, y) of the cell
center of mass, and cell size (sum of mask pixels equal to 1). For
brightfield images, the result of the DL classification into the different
types of microglial cells is also listed.

Validation of cell detection. To validate how DeepCellMap detects
microglial cells in brightfield imaging, we randomly selected N=20
tiles of size 3000 x 3000 from the dataset. For each tile N, a certified
expert counted the number n¢ of microglial cells. This number was
then compared to the number n¢ of cells automatically detected by
DeepCellMap (Supplementary Fig. 5. We computed the overall error by

the following formula:

1N

e d
e= = n—-n
N

e
n;

, @

and obtained an overall error €04, = 15 < with std error e5,; = 2.4 < over
N=20 annotated tiles.

Since the detection algorithm is sensitive to size filtering of
detected cells, the ‘Laboratory cell segmentation” notebook has been
created to calibrate this critical value as best as possible according to
the dataset.

Deep learning classification of microglial cells

To ensure that the training database of annotations in each class
covers a maximum of the inter-class spectrum, cells are randomly
selected from images at different times: further several tiles are also
randomly selected, cells are detected on a tile, and a fraction of these
cells is added to a database of unlabeled cells. Cells are patches (size
256%) whose center is the cell’s center of mass.

An ergonomic annotation tool allowed the expert to label each
cell belonging to one of the five morphological states. This made
possible to build up a base of annotations in each class. We illustrated
in Supplementary Fig. 28 this dataset using the ramified microglia
cell type.

The RGB images of the cells and the labels assigned to the cells
were given as input to the UMAP dimension reduction algorithm in
order to visualize the inter-class heterogeneity of the cells in the
training database and to manually correct annotation errors (Supple-
mentary Fig. 8). After the training set has been built up, the masks
contained only one cell in the center, but other cells may be present in
the periphery. These cells were added to the mask with an “other” label
(Supplementary Fig. 9) to prevent them from being considered as
background by the model. RGB images and completed masks were
then shuffled and split into training (75%), validation (15%), and test
(15%) sets. The test set was used for the evaluation of the final model.

During training, images belonging to the training set were sub-
mitted to image augmentation procedures (brightness changes, flips,
crops, and rotations) and were applied to each image to expand data
diversity and make the model more robust®.

A convolutional neural network (CNN) based on U-Net archi-
tecture was selected for cell classification. The network consisted of a
contracting and an expansive path. The contracting path consists of
three applications of the following steps : two 3 x 3 convolutions (with
zero padding), each followed by a rectified linear unit (ReLU), and a
2 x2 max pooling operation with stride 2 for downsampling. For the
fourth layer of the contracting path, a dropout of rate 0.5 was added
between the 2 convolutions and the max pooling operation to con-
strain the fully connected layers and to reduce overfitting. Then two
3 x 3 convolutions (same configuration with ReLu activation and zero
padding) are applied before a dropout (rate 0.5) that ends the con-
tracting path. Every step in the expansive path consists of a 2 x 2 up-
sampling of the feature map followed by a 2x2 convolution (“up-
convolution”) that halves the number of feature channels, a con-
catenation with the correspondingly cropped feature map from the
contracting path, and two 3 x 3 convolutions, each followed by a ReLU
activation. At the final layer, a 1 x 1 convolution is used to map each 64-
component feature vector to the classes we identified: background,
proliferative, amoeboid, aggregated, phagocytic, ramified, and
detected.

"Adam" optimizer was used for optimization, the initial learning
rate was set to 0.003, batch size was set to 3. The CNN was trained on
an off-the-shelf NVIDIA GeForce GTX 1080 with 8 GB GPU memory, for
40 epochs, training time took about 10 h.

For each pixel of the image, the output of the CNN algorithm is the
probability that this pixel belongs to one of the 5 pre-defined classes of
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microglial cells (Supplementary Fig. 10B3). The overall probabilities of
segmented cells were obtained by averaging the probabilities of the
mask’s pixels. There are some aggregated cells (<1%) whose cell body
was larger than the patch, in this case, the mask probabilities of the cell
in the patch were assigned to the full mask of the cell. Finally, micro-
glial morphology was assigned by selecting the label for which the
maximum probability was achieved.

Automatic delineation of tissue regions

To identify the components of the tissue with similar nuclei densities,
we first segmented automatically cells’ nuclei. In fluorescence micro-
scopy, we used the color channel corresponding to nuclei labeling. In
brightfield microscopy, the identification of nuclei is less obvious, and
we tuned the CellPose algorithm'®) to segment the nuclei contours in
different types of images (Fig. 2A). The output of the algorithm is the
number of nuclei present in each image patch of size 256 x 256,
allowing to reconstruct the heatmap of the underlying tissue density.
We focused on 4 regions: striatum, neocortex, ganglionic eminence,
and the cortical boundary (Supplementary Figs. 16 and 17).

For each tissue, the histogram of nuclei densities was then sepa-
rated into 3 or 4 regions using the Otsu-multi-thresholding algorithm,
which optimizes the choice of thresholds. The different tissue classes
obtained with Otsu thresholding then underwent several elementary
morphological operations to distinguish each of the physiological
regions identified in the images: striatum, neocortex, ganglionic emi-
nence, and the cortical boundary (Supplementary Fig. 29). The cortical
boundary and the neocortex (which cover regions several hundred
thousand pixels wide in the images), were subdivided into 4 sub-
regions in which the calculations were carried out and recombined by
weighting the results as described in Supplementary Fig. 29.

Level-set analysis of cell-to-cell spatial association

To measure the spatial association between different populations of
cells (or cells to regions) and account for the uncertainties associated
with the deep-learning classification of cell types, we implemented a
generalized version of the statistical approach developed in ref. 38.

The method can be described as follows: we first specify K cell
types A={A,, ..., A;, ... Ax. During the deep learning classification,
each cell type A, (1<k<K) is classified as type A; with probability pj.
We highlight that these classification probabilities can be estimated
from the results of the deep-learning classification on the training
dataset.

To compute the potential accumulation of A,, cells around A, cells,
we first select the cells with a maximum classification probability in the
type A;and map the domain of interest Q (typically a predefined region
of interest within the tissue slide) around the population A; with a
series of levelset regions | Ji<i<,@; With w;={x € Q|r;<|x — 0A) <ru1}
which is the region of Q that contains points x at a distance comprised
between r;and ri; (n=0<r;<... <rp) from the contour 04, of A, cells.

To measure the spatial association of type A,, of cells to type A, we

use the ensemble of cell coupling (center of mass typically) {uj}lsjs e

with N=Zf:1|Ak| the total number of cells, and the probabilities
{O<i);"sl} of being classified as a A,, type, and measure the total
number of A, points within the levelset w; according to the estimator:

Tl (Am) = ii)}"xi (), @

Jj=1

where the indicator function x;(4) =1if u; € w; and O otherwise.

Correcting for cell misclassification. Automatic cell classification
leads to potential errors, and a correction of the statistical analysis of
cell-to-cell association is thus needed to account for misclassification:
indeed, in the worst case scenario where cells of type A,, would be

misclassified as type A,, the association of A,, cells to A, cells would
actually reflects the association of A, cells to A, cells.

To derive the correction term, we consider the K x K confusion
probability matrix P, with elements (pny), ., <« the probabilities for
an A, cell to be classified as an A,, cell Since each A,,, cell within the level
set w; has a probability p,,, to be classified as an A, cell, the measured
accumulation r}i,i (A,,) of A™ cells within w; around A, cells is equal to

K
i
o, (Am) =D Prukllly,(Ar). 3)
k=1
with tzf,,i (Ay) the ground-truth accumulation of A cells in w; around 4,
cells. Note that we have ! (wi(A)) =0 because we are estimating the
association tolA’ cells.
If H, = [ﬁw,- (Ak)]lsksK and Hfu,- = [’Tfu,- (Ak)]lsksK are res.pe.ctively the
vectors of measured and ground-truth number of cells within levelset
w; around A, cells, we can rewrite the equation in a matrix form as:

H,, =PH,, . )

and we can invert the ground truth which can be estimated from the
measured accumulation of cells based on the relation

H, =P 'H,,. )

Based on the previous estimation of the accumulation of the different
cell types in levelsets around a given population A, of cells, we aimed at
determining the cell types that significantly accumulate in each level
set. Such estimation will allow us to characterize the spatial association
between the different types of cells.

To assess whether or not the accumulation of A4, cells in levelsets
w;, 1< i< n around A cells is significant, we followed the methodology
given in®® and computed the n-dimensional Ripley vector

K'A,,)= [KQ,I(A,,,), ...,Kfv"(Am)} . ©6)
with
QO
KL (A= 12 (A, @)
i |Am| i
that we rewrite
! 10 &,
Ka)-(Am) = 7ij Xi(uj)r (8)
‘ WAml £

where pitis the probability that cell position u; belongs to the A,
population of cells. It can be computed from the classification prob-

abilities {i’/"(}1<k</( and the confusion matrix P:

K
P =" pimb}- )
k=1

The estimated total number of A cells is given by

N
Anl=>_ Pl (10)
j=1
When cells A4, are coupled to cells A4, we expect a significant accu-
mulation of the A,, cells’ positions in the neighborhood of A4, i.e. in a
subset of the levelset regions w; for 1<i<n. To rule out a fortuitous
accumulation of B cells due to chance, it is necessary to characterize
the distribution of K'(4,,,) under the null hypothesis of complete spatial
randomness where the A, cell coordinates would be randomly and
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uniformly distributed over Q according to the Homogeneous Poisson
law. Under the null hypothesis of A, randomness, each function
K., (A,,) is normally distributed™

Kb (Am) =N (4, 0f). an
To compute the mean z} and standard deviation o, we highlight that, if

A, cells are randomly distributed, x(u) is a Bernoulli variable with
mean

(1o
and variance
2_ |;|
U heg'l]
(o) =T (1 \m) )
Therefore, we obtained that the mean is given
= 1] : -
) Z "E i) =1y (14)
and the variance is given by
2_ 0P YL
! m j=1Fj 7 R
(of) =1 22 Z o Var x| = =25 C (01~ 0d) 15
Under the null hypothesis, the vector K'(4,,) is Gaussian:
K'@A,) M, Sh, (16)
with the mean M'=[--. ! ...]’, and the covariance matrix is
2
Z=diag{~~<0,’-> } 17)

The accumulation of cells within the levelset region w; is statistically
significant when the mean exceeds a threshold
K., (A) > pi + T(n)o, (18)
where 7(n)=+/2logn is the universal statistical threshold used for
determining the relevant signal in a vector containing Gaussian noise®*.
From previous statistical thresholding (eq. (18)), we can now
estimate the subset of level set regions {w;} where the observed
accumulation of A,, cells is statistically significant.
To quantitatively describe the association of the set of cells A4, to
the set A, we computed the number {rza(Am)} of spatially associated
A, cells inside each level set w;:

{akian}, =12

which corresponds to the significant overcount of A,, cells inside w;
above the expected number of randomly distributed cells. We then
defined a probabilistic association index p-ASI which corresponds to
the ratio of A,, cells that are spatially associated to A, cells:

1K, (> s+ ol (K ) = ). 09)

We also derived the probability-weighted coupling distance

wi

BalAuAm)= (- lZZ )y

Jj=1i=

> G —0Al, (1)

{ﬂa m }u,

where the ratio is the proportion of A,, cells within w; that are

spatially associated to A;cells. It is the probability that cell u; is spatially
associated and not randomly distributed, and |u; — 94/ is the Euclidean
distance of u; to A, cells’ contours. Finally, the association p-value is
given by

LA y—yl
Ko, (Ap) H,)r @)

p—l}alu€=l—([)" <SUD1<i<n 1

o

l

where ¢(.) is the cumulative density function of a normalized Gaussian
random variable.

Validation levelset analysis with synthetic simulations

To validate the accuracy of DeepCellMap in characterizing the spatial
association between two cell types, we generated synthetic simula-
tions with various spatial distributions. For the sake of simplicity, we
considered three cell types: A, B, and C, and cells were reduced to
points. Positions were uniformly distributed in a square domain Q.
Among the B and C positions, a part nf@@m=p,x (1 — Cg) (resp.
nfandom = p . x (1 — C.)) of cells are randomly distributed in Q, while the
remaining part n§®ssian =ng x Cy (resp. ngassian=pn . xC.) are posi-
tioned around A cells with a Gaussian association distance d ~
N(ug,0p) (resp. d ~ N'(uc,0.). To efficiently sample the coupled B
and C cells, the distance transform from A cells is computed across the
entire image, a random association distance d is drawn from N'(u, 0),
and a coordinate in the distance map at distance d from A cells is
randomly selected (Supplementary Fig. 11). To assess the capability of
DeepCellMap to handle cell misclassification, we used three different
confusion scenarios: scenario P1 (no confusion), there are no classifi-
cation errors, which allows the validation of the analysis of spatial
association in a setting where there is no ambiguity in cell types; sce-
nario P2 (intermediate) were 30% of B cells are classified as C cells and
vice-versa; scenario P3 (high) where classification errors reach 45% of
classification errors between types B and C. Parameters used for the
simulations are summarized in the Supplementary Material.

The accuracy of DeepCellMap was measured by comparing the
estimated association with (C?) and without (C;) correcting for mis-
classification, with ground truth C; between cells of type i € [B, C] and
cells A. The estimated association distances &; and ¢ were compared
to u;.

Characterizing cell clustering and overlap with a generalized
DBSCAN algorithm

To measure the rate of clustering of the different cell types, and the
overlap between the domains occupied by the different cell popula-
tions, we developed an improved and automatically-calibrated density-
based spatial clustering of applications with noise (DBSCAN)
algorithm?. This widely used clustering algorithm contains two user-
defined parameters: the radius € to define the neighborhood of each
cell and the number Mingsgmpe which defines the minimum number of
neighboring cells (points) in this neighborhood in order to consider
the cell as belonging to a cluster. We used the DBSCAN algorithm with
cell coordinates (x, y) for each microglial state (Fig. 4A) and auto-

PASI (A, A,) = ’Za(Am) c[0:1], (20) matically compute € to maximize the number of clusters (Fig. 4B):
T=A #clust . 23
with 75(A,) =7 {1 (A}, the total number of associated A, cells. € =Argmax.(#cluster(s)) )
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We observed empirically that the number of clusters #cluster(¢) has a
single maximum (Fig. 4C), ensuring that our selection procedure
converges. We fixed the minimum number MinSample =4 of points
inside a cell neighborhood (disk) to classify it as clustered.

To ensure the stability of computed clusters, we defined the fol-
lowing criteria: after removing 10% of the cells located on the cluster’s
convex hull®, we computed the ratio between the area of the
remaining cluster and the initial one and kept the cluster if this ratio
exceeds a threshold ¢=60% (average over 100 realizations). After
having sorted each cell as part of a cluster or not (isolated) we com-
puted several metrics to quantify cell clustering and the relative
overlap between the clusters from different types: the fraction of
clustered cells (versus isolated) (Fig. 4F), the mixing proportion @4/
between clusters of cells from type A and B. This mixing proportion is
computed as the fraction of A clustered cells belonging to the convex
hull of B clusters (Fig. 4H):

1
Pup= n_cZXB(Ce”i)' (24)
A1

where n§ is the number of A clustered cells and yg(cell) =1 if cell; € B
clusters convex hull and O otherwise.

Cell neighbors analysis

DeepCellMap allows for a traditional quantification of the relationships
between each cell’s neighbors. We used various parameters to estimate
the relative position of different cell populations in a region of interest:

1. For cells of type A, we define the first neighbor distance as

PR N
di==N"d, (25)
=g Z:,
where ny is the total number of cells A and di are the distances
to the first neighbors of cell i (regardless of neighbor type).
2. For A cells, we define the distance to the first B neighbor as

4 _ LK
dp.= de3,1r (26)
Ai=1
where dg’l is the distance to the first B neighbor of cell i. This
distance d’;yl can be interpreted as the average distance from
one population to another. For these last two metrics, Deep-
CellMap includes the possibility to calculate df and dg,k,vk.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Most of the cases are part of the Oxford Brain Bank and Zagreb Brain
Bank digital archives and will be made accessible for research under a
cost recovery model, contact david.menassa@ndcn.ox.ac.uk to
arrange access. HDBR cases can be requested directly by contacting
katie.long@kcl.ac.uk. Requests for access will be dealt with immedi-
ately and fulfilled within 2 weeks. Source data are provided in
this paper.

Code availability

Codes are available in Zenodo of the Holcman’s lab DOI with URL
https://doi.org/10.5281/zenodo.14003597and GitHub (https://github.
com/holcman-lab/DeepCellMap) and also Bionewmetrics for a
description at www.Bionewmetrics.org,.
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