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Automated cytometric gating with human-
level performance using bivariate
segmentation
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Recent advances in cytometry have enabled high-throughput data collection
with multiple single-cell protein expression measurements. The significant
biological and technical variance in cytometry has posed a formidable chal-
lenge during the gating process, especially for the initial pre-gates which deal
with unpredictable events, such as debris and technical artifacts. To mitigate
the labor-intensivemanual gating process, we propose UNITO, a framework to
rigorously identify the hierarchical cytometric subpopulations. UNITO trans-
forms a cell-level classification task into an image-based segmentation pro-
blem. The framework is validated on three independent cohorts (two mass
cytometry and one flow cytometry datasets). We compare its results with
previous automatedmethods using the consensus of at least four experienced
immunologists. UNITO outperforms existing methods and deviates from
human consensus by nomore than any individual does. UNITO can reproduce
a similar contour compared to manual gating for post-hoc inspection, and it
also allows parallelization of samples for faster processing.

Cytometric analysis has gained tremendous attention in immunolo-
gical experiments, as a method that produces reliable, high-
throughput measurements of single cells. Flow cytometry, intro-
duced in the 1960s to separate and count immune cell subtypes,
underwent a critical evolution with increased speed and
parameters1–4. Mass cytometry, also known as cytometry by time-of-
flight, was developed in 2009 to include more parameters in the
analysis and avoid the difficulty of fluorescence compensation5–7.

Flow cytometry labels the antibodies with fluorophores, whose
emission spectra overlap to some extent, causing spillover of signal
between channels. In contrast, mass cytometry tags antibodies with
heavymetal ions, whose discrete atomicmasses can be distinguished
by mass spectrometry very precisely and with minimal spillover.
Although flow cytometry and mass cytometry aim for similar func-
tionality with labeled antibodies, they do not have similar strategies
to detect cell aggregates8.
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The most important and widely used method of subtyping cell
populations is referred to as gating, which is usually a boundary or
polygon defined on a bivariate density map of the entire cell popula-
tion (2D density map represented by two selected protein measure-
ments). Gating for different cell types is usually configured
hierarchically9, to mimic the biological hierarchy of immune cell dif-
ferentiation. Even though mass cytometry and flow cytometry rely on
different technologies, they both employ similar gating procedures for
cell type identification. However, manually defining boundaries for
each cell subtype and each sample can be time-consuming and labor-
intensive. Thus, algorithms have been developed that attempt to
automate this task, including unsupervised clustering to identify cell
subtypes10–13, supervised deep learning methods14–17, as well as some
density-based gating methods18,19. Although unsupervised methods
can target certain cell subpopulations effectively, their results often
contain some remaining cell clusters that are unrecognizable and/or
sometimes can fail to capture rare cell types making interpretation
challenging20. Such methods usually lack the ability to reproduce
cytometric gating from human experts, and it is hard for those
methods to adapt to existing domain knowledge to satisfactorily
explain the clustering results.

A typical manual analysis pipeline of this data first separates live,
viable single cells from unwanted events, then gates these into dif-
ferent cell populations. A major challenge is that methods, like those
described above, typically assume that single cells have been sepa-
rated fromdoublets, debris, andother unwanted events, a process that
we call “pre-gating”. Efficient open-source methods employing pre-
gating using adaptive approaches to define populations and account
for variability in signal intensity between samples, however, do not
exist. Indeed, current unsupervised clustering methods typically
require manual “pre-gating” before applying unsupervised analysis.
While manual pre-gating still requires much human labor to annotate
and draw polygons for the region of interest, existing bivariate pipe-
lines also need human input to pre-define the relevant parameters. For
example, those parameters include where the actual population is
located as well as the approximate percentage of the target cell
population. Currently, no software can configure a series of bivariate
pre-gating (and gating) tasks where gates are set in a hierarchical
order. Our goal is to automate the analysis process.

The application of deep learning has been effective in disen-
tangling complex relationships in different cytometric domains
including cell type identification and cell sorting in cytometric time
series data14–17. Most of the existing methods focus on providing a
global classification of different cell types in one step by using amulti-
channel dense neural network. Moreover, these methods also usually
assume pre-gated data as input, and they have not been validated for
complex pre-gating tasks. In particular, one of the major challenges in
performing automatic pre-gating is the technical and biological var-
iance across different subjects. Even if the experimental protocol and
the panel of measured proteins are held constant, differences in
sample preparation and even instrument variation, can cause fluctua-
tions in protein detection and precise population “shape” in the data.
In addition, only predicting terminal cell types (such as naïve T cells)
will prevent accurate gating of the intermediate cell types (such as
T cells or lymphocytes). In the bivariate setting from manual gating,
gates are configured in a tree-like structure, and at each level, the
parent cell population is split into smaller subpopulations so that
gating results for all intermediate cell types are obtained. The hier-
archy structure guarantees the interpretability of the target cell
populations. It also clearly defines some cells that are not included in
the subsequent gating but still belong to the current gating step (out-
of-boundary cells that are not included in any subsequent cell types).
The same strategy used for manual pre-gating can be easily extended
to downstream automatic gating of immune cell types, since cell-type
gates have a more stable and fixed bivariate boundary compared to

pre-gates. Therefore, we combined those two types of tasks and refer
to all of them, onward, as “gating”.

While existing methods are suboptimal to accommodate biolo-
gical variance within the protein expression data, deep neural net-
works with convolutional kernels have the ability to address such data
challenges, using the properties of translational invariance and
equivariance21,22. The convolutional architecture was originally
designed for image classification tasks. It can detect target objects
regardless of their positions in the image space and learn the general
features of each target object. This versatility led to their adaptation
for image segmentation tasks. The reasonmanual gating is challenging
for automated software is that human experts have a global view of the
cell density in certain protein measurement spaces so that they can
visually inspect and quantify the desired cell type. Therefore, to
address this challenge together with the biological and technical var-
iance, we propose and validate UNITO, a method employing image
segmentation for automated gating. UNITO converts the cytome-
trically derived protein expression into an imageof bivariate density to
enable a global identification of the cell population. Furthermore, with
the ability to perform pixel-level prediction, UNITO intuitively defines
the region of interest on the bivariate density maps for cytometric
gating. By validating UNITO on three independent study cohorts and
two cytometric modalities, we hypothesize that the framework can
learn any pre-gating and gating tasks from human annotation, and
then adaptively draw contours and assign labels to cells from inde-
pendent data. This ability to perform inference on unseen samples
without human supervision will enable applications to large-scale
immunology studies.

Results
Flow and mass cytometry rely on indirect reporters for protein
expression, which makes the distribution of the data susceptible to
noise from unavoidable variations in sample preparation. This source
of technical variation is one of the most important challenges for
automated analysis. In particular, taking mass cytometry as an exam-
ple, due to the high variability of channels such as DNA intercalator in
the Single-cell gate 1 and Single-cell gate 2 process, existing automated
methods usually require the data to be manually cleaned beforehand.
Similar situation also happens in the lymphocyte gate in the flow
cytometry gating process. Between different subjects, while the
coordinate system for the density map is fixed, the dense population
(singlets) not only moves dramatically, but the distribution also
changes (Fig. 1). The location and shape of the target cell population
can differ widely between samples, which makes automatic detection
over the tabular data challenging.With theUNITO framework, our goal
is to create the density plot and binary mask from the protein
expression matrix as input to the model and predict with an image-
based segmentation method. Each gate will be trained separately, and
the classifier will then be used for predicting the binary mask on
independent data. The final output of the UNITO framework is the cell
type label for each cell and a convex contour on the density map,
which resembles the manual gates.

UNITO framework overview
Instead of reading the numerical values of cytometric measurement
into the model to predict cell types, UNITO is designed to mimic the
process of manual gating, where the cell population of interest is
decided by drawing polygons on a bivariate density plot. UNITO uses
the bivariate density plot of the entire cell population as its training
data, while human annotation masks serve as the corresponding
training labels (Fig. 2A). In other words, the central goal of UNITO is to
draw polygons on the bivariate density map, and the cell annotation is
inferred from the output mask. Based on the selected measurement
and label, UNITO first contains a preprocessing step that will (1) nor-
malize the protein expression by min and max values to a range of
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[0,100], and (2) convert the normalized protein expression data to the
density plot. Subsequently, it leverages binary labels attributed to each
cell to generate an overlay mask atop the density plot. A convex hull
processing will fill any empty space within the binary mask to improve
the gating performance. The bivariatemaps andmasks are fed into the
model for learning the gating pattern. The prediction output from the
UNITO model is the binary mask for any independent data for valida-
tion, and the mask will undergo an additional post-processing step to
interpolate the pixel label back to the single-cell classification results
(Fig. 2B). The same procedure is repeated for each gate recursively
throughout the training process. When gating on a new cytometry
panel, training a newUNITOmodelmay be necessary, which requires a
set of 30–40 manually gated cytometry samples and a defined gating
hierarchy. Training a newmodel is also recommended when the panel
design or gating requirements are changed dramatically to ensure
model performance still aligns with human expectations.

UNITO overall evaluation
Manual gating is considered the gold standard in immunophenotyp-
ing, and the accuracy of automated methods is usually defined by
comparison to a human annotator. However, this approach is sensitive
to subjective choices made by one person. We consider a more robust
choice of ground truth, by building consensus gates based onmultiple
annotators. To validate the performanceofUNITO,weconstructed the
ground truth gating standard by taking the consensus of multiple
human annotators and compared the results with five other methods:
static gates, FlowDensity18, FlowSOM10, logistic regression, and
DeepCyTOF14. In addition, we also compared UNITO’s performance on
the singlet gatewith PeacoQC23, which is aflowcytometryQCsoftware.
While there are other data QC software such as flowAI24 or flowClean25,
none of them can handle singlet gating tasks. The static gates method
uses the idea of density plot and binary mask construction to perform
auto-gating, and every subject will get the exact same mask on the
normalized space by averaging the ground truth mask. The static

gating approach serves as a baseline for the proposed method. Flow-
Density is a semi-automated tool built in R to gate cytometric datawith
positional encoding and cell population percentage. FlowSOM uses
unsupervised clustering to find each cell population. Finally, logistic
regression as well as DeepCyTOF use cell-level prediction by machine
learning and neural network methods. Since some methods, like
FlowSOM, produce categorical group outputs, we applied a one-hot
encoding strategy across all gate types to standardize the prediction
results across methods. The final cell type assignment is based on the
relative expression on selected markers and conducted from bottom
to top in the hierarchical structure.

Overall, the UNITO gating for both mass cytometry data and flow
cytometry data showed high correlations with the gold standard
manual gating results (Fig. 3A; Fig. S6A). Among automated methods,
the UNITO prediction was most highly correlated with the consensus
gating, achieving an average correlation of 0.98 for mass cytometry
and 0.97 for flow cytometry (Tables S1, 2). Moreover, UNITO had
comparable, and sometimes higher, correlation coefficients than the
manual gating done by individual annotators (Fig. 3B; Fig. S6B). To
assess the performance of theUNITO framework, the average accuracy
score, recall, precision, and F1 score (harmonic mean of precision and
recall) were calculated across all subjects (Tables 1, 2). We also com-
paredUNITO’s performancewith a specific tool PeacoQC, designed for
flow cytometry data quality control (Table 3). Since PeacoQC can only
handle the singlet gate in flow cytometry, we used ground truth gating
for lymphocytes to filter out the non-lymphocyte cells for singlet
gating. The accuracy score measures the number of correct predic-
tions over all the data, the recall measures the number of true positive
predictions over all of the ground true positive data, and the precision
measures the number of true positive predictions over all predicted
positives. Additionally, the F1 score can further disclose a more com-
prehensive evaluation especially when the data is imbalanced. The
gating results from UNITO outperform other methods in F1 measure-
ments for all gating tasks, and its consistency over all gating tasks
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Fig. 1 | Biological and technical heterogeneity in mass cytometry across sub-
jects. Four examples demonstrate the heterogeneity across different subjects in
the first two pre-gating manual gating tasks using mass cytometry data. The top
rows are single cell gate 1 and the bottom rows are single cell gate 2. The event

length variable, which is the physical size of the ion cloud that results from
vaporizing the cell, is an integer data, resulting in a sparser representation in the
density plot. All protein markers are Arcsinh-transformed with a cofactor of 5.
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guarantees its robustness for applications in flow andmass cytometric
gating scenarios. In addition, UNITO uniquely performed lower-level
gating tasks with high accuracy. Overall results showcased that the
UNITO framework can accurately identify singlets in sequential pre-
gating settings and downstream cellular populations. For its extended
application in flow cytometry data, we also observed close-to-human
performance that outperforms other existing methods (Fig. S6B). To
evaluate the generalization ability of UNITO, we compared its perfor-
mance on in-batch and out-of-batch gating (Table S7). Specifically, we
randomly selected 5 samples each from the mass cytometry vaccine
dataset and the acute dataset for testing (see Fig. S11 for distribution
difference between two batches), while training the UNITO model on
the remaining samples from the vaccine dataset. The results show that
UNITO maintains comparable performance when predicting out-of-
batch samples,with someevaluationmetrics even higher than in-batch
results. This consistency across two independent datasets

demonstrates UNITO’s robustness and its strong generalization cap-
ability, as a reliable automation for gating on multiple data cohorts.

Moreover, we also performed ablation studies to assess the
impact of each component in UNITO on the cell annotation. First of
all, we tested a range of image sizes between 26 and 701 pixels
(Fig. S10). We found that no other image sizes improved perfor-
mance, and 101 pixels provided the most intuitive visualization. We
also experimented with constructing a 3D volume instead of a
bivariate plot by adding an additional feature (Table S5). This sig-
nificantly decreased performance and greatly increased computa-
tional resource demands, as the larger image volume caused the cell
density representation to become more sparse. Furthermore, we
examined the performance of applying dimensionality reduction
before UNITO gating, as well as replacing semantic segmentation
with unsupervised clustering (Tables S4 and S6). However, none of
these configurations outperformed our default setup.
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are selected from the expression matrix (blue matrix) and used to construct the
density map, and the corresponding cell label (orange column) is used to map the

overlap mask. The density maps and binary masks for the desired cell cluster are
taken as training input. Prediction is performed on new density maps without
annotation, and the output is the binary mask and the mapping results for all cells.
The demonstration is only used for a single gate, multiple gates need to be cas-
caded to achieve the hierarchical gating structure.
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UNITO gating on mass cytometry data
We next asked whether UNITO’s density map with decision boundary
for the sequential gating task visually aligned with the contour from
human experts’ consensus (Fig. 4A; Fig. S2). Since different methods
may provide different in-gate cell populations, the whole cell density
for the visualization of the next gate may also vary across methods,
resulting indifferent backgroundcell population intensity. Theground
truth boundary derived from consensus gating is almost the same as
the contour predicted by UNITO in all gates. Since different gates
within the same gating hierarchy have the same coordinate space,
those gates are plotted together. The first two pre-gating steps in the
sequential prediction task are more complex than cell subpopulation
gating tasks because the presence of debris cells and doublet cells for
both gates usually differ in its distribution and position in the density
plot across samples. This challenge, if not addressed by manual or
automated data cleaning, may affect all subsequent gating results. The
gating output fromUNITO also showed a high correlation between the
proportion of predicted cells with manually gated cells as a nearly
straight line in combination with all gating results from UNITO
(Fig. 4B), indicating its high consistency with the consensus gating
results and ability to performgating tasks at a level similar to human. In
addition, UNITO also shows the lowest disparity with human gaters
compared with other automated gating methods (Fig. 4D) when
looking at the number of cells included in each gate, whereUNITO (red
dot) is always closest to the range of values defined by human gaters.

Another key feature of manual annotation is the ability of the
expert to identify cells not only by whether the cells that fall into a gate,
but also if they are excluded by a gate. UNITO framework mimics this
feature by excluding out-of-gate cells in gate 1 as input for the next

prediction gate. This pre-filtering step can also be visualized as the dif-
ference in the entire cell density plot between manual gating and
automatic gating. The decision boundary from UNITO provides a con-
vex hull that is similar to the human annotation process, which can offer
post-prediction adjustment based on the vertex of the convex hull
(Fig. 5A). If we visualize using cell-level prediction results, it will notmake
sense in the bivariate visualization. For image and density-based esti-
mation, all the cells within the boundaries are classified as the target cell
type, but when we visualize the results from previously published cell-
level prediction, not all cells within the gates are classified by the
methods (e.g., FlowDensity), or a simple convex hull over all labeleddata
may also include cells that are not classified as the target population
(e.g., DeepCyTOF). This becomes more apparent when we show the
binary distribution of all the cells classified as the target cell type in the
same coordinate space as the density map (Fig. 5B). We can see that for
both convex hull visualization and binary mask, the UNITO’s prediction
is the closest estimation approaching the manual consensus gating.

UNITO gating on flow cytometry data
The same visualization procedure was also repeated for the flow
cytometry gating (Fig. 6A; Fig. S3). For automatic gating on flow
cytometry, the UNITO framework still performs well in sequential
gating tasks with both quantitative evaluation and visual inspection.
The UNITO framework can accurately identify gates even when the
biaxialmap containsmultiple, highly dense cell clusters, like in the side
scatter-area (SSC-A) by foreword scatter-area (FSC-A) gate for lym-
phocytes (Fig. 6A, left). Because of the presence of a much denser
region of debris, the semi-supervised algorithms always require some
human-inspected hints tomanually eliminate a certain region and give
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Fig. 3 | Proportion of cells over the entire cell population captured by manual
gating versus human/automated gating in mass cytometry. A Comparison
between UNITO and human gators. B Comparison between UNITO and other
automated gating methods. Each dot in the plot represents a single subject (one
FCS file). The plot is separated by every single gate (including single cell gate 1,
single cell gate 2, granulocyte, mononuclear, neutrophil, eosinophil, T cell, B cell,

and non T non B cell), and within the same coordinate results from each method
were visualized by different colors. The dashed line represents a perfect correlation
with manual consensus gating, and the Pearson correlation coefficients are
reported in the supplementary Table S1. Source data are provided as a Source
Data file.
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an approximate position of where the actual lymphocyte cluster may
present. With limited data available, the UNITO framework can easily
overcome this limitation and automatically eliminate the debris, dis-
regard other clusters around, and only keep the lymphocytes cluster.
The consistency of close-to-manual performance on subsequent gat-
ing proves UNITO’s ability to learn gating patterns for different cyto-
metric data modalities. UNITO also maintains a good performance
when comparing theproportionof target cells in theUNITOgating and
manual gating (Fig. 6B), in which all Pearson correlation coefficients
are larger than 0.9. Similarly, UNITO also displayed the closest-to-
human gating performance compared with other methods based on
the number of gated cells (Fig. 6D).

UNITO is capable of handling strong batch effects
As an image segmentation method, UNITO identifies cell populations
based on their location relative to other populations, regardless of
changes in absolute location or shape of distribution. This makes
UNITO inherently robust to batch effects. For example, despite the
large technical variability in DNA intercalator channels for mass cyto-
metry data (Fig. 1), UNITO can gate these channels with significantly
higher accuracy than any other method (Table 1).

To test robustness to technical variability more formally, we
simulated a batch effect by randomly assigningmass cytometryfiles to
two equal-sized batches, then adding noise to all files in one batch.

Gamma-distributed noise was used because it is non-negative, so
adding it preserves the non-negative values measured in CyTOF. The
noise was added prior to arcsinh-transformation, causing the negative
peak of the transformedmarginal distributions to shift right, while the
positive peak was almost unaffected (Fig. 7A). By design, the noise
affected cell types differently, so that it cannot be removed by nor-
malizing the data. The batch effect was large enough to make affected
cells stand out from their original selves in protein space, but not so
large to make distinct cell types blend into each other (Fig. 7B, C).

All methods were then evaluated on the dataset with simulated
batch effect. The supervised methods were trained on the same cross-
validation paradigm and evaluated on held-out files from both batches.
Allmethods haddecreasedperformanceon this noisy dataset compared
to the original one. But UNITO decreased the least, maintaining an F1
score of around 0.9 or above for all cell types except the comparatively
rare Eosinophils, and the highest F1 score overall (Fig. 7D). The gates
predicted by UNITO for files in the noisy batch automatically shifted
right to account for the change in data distribution,without any need for
manual adjustments or data alignment procedures (Fig. 7D).

UNITO identifies immune health signatures by subtyping cell
populations
Identifying similarities or differences among subjects in certain cell
subpopulations is a common goal with the task of manual gating. To

Table 1 | Evaluation matrices for cell-wise binary label classification using mass cytometry data

UNITO Static Gate

Accuracy Recall Precision F1 Accuracy Recall Precision F1

Single cell gate 1 0.987 0.997 0.987 0.992 0.829 0.892 0.918 0.859

Single cell gate 2 0.975 0.993 0.976 0.984 0.813 0.823 0.875 0.827

Granulocyte gate 0.986 0.985 0.980 0.982 0.885 0.824 0.894 0.833

Mononuclear gate 0.990 0.982 0.975 0.977 0.932 0.788 0.840 0.789

Neutrophil gate 0.987 0.982 0.983 0.981 0.883 0.813 0.911 0.827

Eosinophil gate 0.998 0.863 0.772 0.790 0.995 0.632 0.602 0.516

T cell gate 0.994 0.984 0.990 0.973 0.957 0.785 0.832 0.792

B cell gate 0.998 0.972 0.959 0.963 0.993 0.779 0.826 0.780

Non-T-non-B cell gate 0.996 0.967 0.971 0.966 0.980 0.792 0.844 0.789

FlowDensity FlowSOM

Accuracy Recall Precision F1 Accuracy Recall Precision F1

Single cell gate 1 0.845 0.901 0.928 0.903 0.935 0.946 0.976 0.960

Single cell gate 2 0.778 0.789 0.927 0.843 0.922 0.982 0.925 0.951

Granulocyte gate 0.800 0.604 0.923 0.705 0.950 0.967 0.925 0.944

Mononuclear gate 0.945 0.804 0.969 0.868 0.968 0.975 0.906 0.936

Neutrophil gate 0.641 0.251 0.918 0.354 0.956 0.993 0.919 0.953

Eosinophil gate 0.991 0.201 0.402 0.225 0.994 0.930 0.484 0.585

T cell gate 0.961 0.773 0.967 0.837 0.983 0.961 0.930 0.936

B cell gate 0.988 0.695 0.824 0.722 0.994 0.995 0.819 0.894

Non-T-non-B cell gate 0.978 0.684 0.949 0.767 0.989 0.979 0.874 0.921

Logistic Regression DeepCyTOF

Accuracy Recall Precision F1 Accuracy Recall Precision F1

Single cell gate 1 0.951 0.973 0.969 0.970 0.839 0.974 0.859 0.904

Single cell gate 2 0.910 0.977 0.915 0.944 0.776 0.968 0.793 0.863

Granulocyte gate 0.937 0.985 0.899 0.938 0.768 0.971 0.692 0.789

Mononuclear gate 0.962 0.964 0.896 0.922 0.875 0.702 0.776 0.727

Neutrophil gate 0.938 0.991 0.893 0.937 0.758 0.972 0.677 0.776

Eosinophil gate 0.994 0.503 0.514 0.424 0.992 0 0 0

T cell gate 0.980 0.991 0.903 0.943 0.975 0.992 0.870 0.924

B cell gate 0.995 0.975 0.861 0.910 0.972 0 0 0

Non-T-non-B cell gate 0.983 0.878 0.888 0.863 0.915 0.279 0.363 0.289
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test whether the UNITO framework could support a workflow inwhich
cell populations were compared between two groups, we analyzed
their statistical difference between peripheral blood from healthy
donors andpatientswith acuteCOVID-19using the auto-gated cell data
as well as the consensus-gated labels. An interesting property of
UNITO is its ability to gate cells in a sequentialmanner, so the statistical
tests canbe applied either to the endnodes of the gatinghierarchy tree
or the middle nodes. Here we selected 6 gates after the pre-gating
tasks to perform a t-test over the COVID population and healthy
population (Fig. 4C, Fig. S7). We found that there are significantly
different cell proportions between the two populations such as neu-
trophil, granulocyte, aswell as lymphocyte, whichagreeswithprevious
literature26–29. The results show that the UNITO output after the pre-
gating tasks can yield the same results among different cell sub-
population tests compared to manual gating. In addition, the UNITO
pipeline provided enough statistical power to distinguish group dis-
parity betweenCOVID and healthy subjects inmany gates that arewell-
known to be drastically increased when facing immune diseases.

In addition, with the flow cytometry data, we also have the subject
phenotype of young and old subjects (Fig. 6C, Fig. S8). While it ismore
difficult to observe the disparity among cell populations from young
and old people than between COVID-19 patients and healthy donors,
both UNITO (p-value 3.91e-6) and manual gating (p-value 9.98e-7)
observe a significantly higher proportion of CD8 naïve cells in young

donors as previously reported30,31. UNITO again provides enough sta-
tistical power aswell as an equivalent gating p-value, even for the other
cell types that were not significantly different between young and old
donors.

Discussion
The rapid development of single-cell technologies has enabled large-
scale and high throughput data collection, but at the same time raised
challenges for analyzing such large amounts of data. The size of data
not only increased within a single sample (number of cells), but we are
also accumulating more donors over time. In this study, we first
described a common challenge in cytometric pre-gating tasks due to
the high technical andbiological variability across subjects.Most state-
of-the-art unsupervised auto-gatingmethods typically assume the data
is already cleaned from the pre-gating stage and do not explicitly
handle events such as debris and doublets, which are unpredictable
and difficult tomodel. Other auto-gatingmethods such as FlowDensity
also require human prior knowledge as hints for the model to target
the position orpercentage of the desired cell subpopulation. There are
also supervised methods that predict cell types using deep neural
networks. However, treating every single cell as one data point will
require large computational resources to both train the model and
predict incoming data. The proposed framework UNITO transformed
the numerical classification of protein expression data into an

Table 2 | Evaluation matrices for cell-wise binary label classification using flow cytometry data

UNITO Static Gate

Accuracy Recall Precision F1 Accuracy Recall Precision F1

Lymphocyte gate 0.981 0.996 0.966 0.981 0.977 0.999 0.957 0.977

Single cell gate 0.975 0.997 0.952 0.974 0.955 0.967 0.937 0.946

CD3 gate 0.988 0.999 0.966 0.982 0.963 0.954 0.930 0.933

CD 4 gate 0.994 0.989 0.975 0.977 0.980 0.955 0.946 0.939

CD 4 naïve gate 0.991 0.986 0.924 0.945 0.982 0.950 0.877 0.897

CD 8 gate 0.994 0.998 0.944 0.968 0.989 0.944 0.912 0.919

CD 8 naïve gate 0.997 0.992 0.986 0.935 0.993 0.933 0.759 0.803

FlowDensity FlowSOM

Accuracy Recall Precision F1 Accuracy Recall Precision F1

Lymphocyte gate 0.695 0.900 0.650 0.743 0.927 0.900 0.950 0.924

Single cell gate 0.800 0.799 0.810 0.791 0.937 0.905 0.962 0.932

CD3 gate 0.914 0.783 0.981 0.860 0.980 0.978 0.961 0.969

CD 4 gate 0.946 0.796 0.981 0.870 0.989 0.992 0.956 0.973

CD 4 naïve gate 0.908 0.237 0.964 0.269 0.975 0.981 0.812 0.884

CD 8 gate 0.974 0.715 0.983 0.817 0.984 0.983 0.847 0.908

CD 8 naïve gate 0.990 0.702 0.851 0.719 0.996 0.913 0.870 0.887

Logistic Regression DeepCyTOF

Accuracy Recall Precision F1 Accuracy Recall Precision F1

Lymphocyte gate 0.897 0.868 0.917 0.890 0.173 0.280 0.228 0.240

Single cell gate 0.903 0.879 0.915 0.895 0.264 0.211 0.237 0.205

CD3 gate 0.959 0.936 0.941 0.938 0.656 0.095 0.080 0.086

CD 4 gate 0.981 0.976 0.937 0.956 0.767 0.100 0.071 0.082

CD 4 naïve gate 0.984 0.953 0.899 0.923 0.880 0.097 0.068 0.078

CD 8 gate 0.986 0.928 0.909 0.917 0.909 0.032 0.038 0.033

CD 8 naïve gate 0.996 0.925 0.859 0.886 0.977 0.006 0.023 0.008

Table 3 | Evaluation matrices comparing UNITO with PeacoQC on Lymphocyte gate in flow cytometry

UNITO PeacoQC

Accuracy Recall Precision F1 Accuracy Recall Precision F1

Singlet gate 0.981 0.996 0.966 0.981 0.977 0.999 0.957 0.977
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image-based semantic segmentation task. In this case, by using the
convolutional kernel to target the densest region in the cell density
plot, the UNITO framework guaranteed the translational invariance
property of cell clusters and a global view of the bivariate cell density

distribution. With such properties, the proposed method can be
applied and extended to any cytometric data including mass cyto-
metry and flow cytometry to automatically gate formultiple purposes,
such as removing debris, doublets, and gating other cell subtypes. By
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Fig. 4 | Comparison between UNITO automated gating and manual consensus
gating (mass cytometry). A Density map and target cell annotation for mass
cytometry data. The first row shows the ground truth annotation for one validation
subject in the sequential prediction task, and the second row shows the predicted
decision boundary from the reconstruction of the UNITO output. Each column
represents a single level in the gating hierarchy, and gates within the same level are
plotted together, such as granulocyte and mononuclear. B Visualization of the
proportion of cells from UNITO and manual consensus gating with all gating tasks
together. C Statistical comparison validated on the COVID-19 vs Healthy mass
cytometry data (Top row: Granulocyte, Lymphocyte, Neutrophil. Second row:
Eosinophil, T cell, B cell). The two-sided t-test between COVID-19 (12 samples) and
Healthy (11 samples) group was applied on selected gates and P-values were
reported for both manual gating and UNITO gating. The box plot in both panel C

and D display data distribution through its minima and maxima (extreme values
excluding outliers), center (median), bounds of the box (interquartile range from
the 25th to the 75th percentile), and whiskers (extending to the most extreme data
points within 1.5 times the interquartile range). For each gating, the plot is sepa-
rated by subjects’health conditionwhile the results frommanual gating andUNITO
for the same population are put next to each other for easier observation.
D Disparities between automated methods and human gaters. Each dot represents
the number of cells predicted to belong to a certain population by a givenmethod,
averaged across all samples, and the box plots summarize the distributionof values
coming frommanual gating (sample size of 5manual gaters). UNITO gating (red) is
consistent with the range of values provided by human gaters (black). Source data
for panels B, C, and D are provided as a Source Data file.
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converting the protein expression matrix to the density map, UNITO
further allows the incorporationofmore trainingdata and is capable of
learning the protein expression behavior in a systematic pattern across
subjects. One advantage of UNITO is that since the prediction is per-
formed in each single sample file by file, it can query a huge number of
samples parallelly with very low computational cost, even computing
with CPU is sufficient for prediction. In addition, the computing speed
of UNITO will also not be affected by the number of cells in each
sample, which guarantees its efficacy even if the throughput of the
cytometric experiments continues to grow in the future. Using UNITO
for immunophenotyping in different protein panels would require
separate training. However, cleanup gates such as Single cell gate 1 and
2 in CyTOF, and the Lymphocyte and Singlet gates in flow cytometry,
are the same in most experiments. Therefore, researchers can use the
models we already trained to perform cleaning on their own data.

We believe that unsupervised methods like clustering are extre-
mely useful for exploratory analysis, such as understanding how dif-
ferent cell types appearwhen profiledwith different cytometry panels,
or uncovering new cell states or unknown sources of variability in the
data. In contrast, a supervised method like UNITO is a better fit for
what could be called a production environment, rather than an
exploratory one. UNITO is intended for users who already understand
their panel well, and would like a supervised, automated computa-
tionalmethod that can label cell types in a consistent way acrossmany
experiments done with the same panel. For example, UNITO may be a
good fit for multi-site studies or clinical cytometry settings. Among
supervisedmethods, someofwhich are included in thismanuscript for
comparison, UNITO is distinguished by closely following the hierarchy
of cell types determined by manual gating, which facilitates inter-
pretation by immunologists. In summary, the strengths of UNITO are
robustness and interpretability, rather than discovery of new pheno-
types in an exploratory setting.

The UNITO performance on the sequential pre-gating and gating
tasks for immune cells proved the similar-to-human boundaries of the

UNITO framework by visually comparing the boundaries of human
annotation and UNITO prediction on the density map. One of the
biggest advantages of the UNITO framework is that it also gives the
boundary of the target cell population, which enables the interpret-
ability of the gating results and allows inspection of intermediate
gating steps.While the cell-level prediction using logistic regression or
deep neural networks and unsupervised clustering also gives good
evaluation scores, the reliability of the gating results with biological
knowledge is still in debate. We visualized the gating results with an
example subject for the first two single-cell gates in the mass cyto-
metry data (Fig. 5), and we can clearly see that only UNITO has the
closest contour compared to themanual gating. The static gating has a
similar shape, but the position is off due to the biological variability of
the subject and the gating position is fixed. The idea of FlowDensity is
to segment the entire cell population into four quadrants and based on
the position parameter and percentage to draw the boundaries.
However, in reality the percentage can vary a lot across subjects
(Figs. S2, 3, 7, 8). Another alternative called flowLearn19 uses an algo-
rithm instead of a hyper-parameter to find the best cutoff and perform
the density-based gating. Nevertheless, the implementation of only
relying on peak separation and using one protein measurement at a
time makes automatic pre-gating difficult. While UNITO has the high-
est F1 score for all gates, FlowSOM and logistic regression also have
good performance. However, FlowSOM and logistic regression
directly label cells with their final cell types, whereas UNITO empha-
sizes the hierarchical nature of cell phenotypes. For example, UNITO
allows cells to be in the T cell gate, but not in the downstream CD4 or
CD8 gates. In contrast, FlowSOM may or may not capture separate
CD4-CD8- or CD4 +CD8+ clusters, and logistic regression requires
thesepopulations to be explicitlymodeled. Although not shown in this
article, UNITO’s hierarchical approach also allows cells to be in multi-
ple terminal gates: for example, a CD4 T cell can havememory subtype
“Effectormemory” and polarization “Th1”, capturingmultiple facets of
cell identity. The visualization of gating results on the density map for
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logistic regression and DeepCyTOF almost included the entire coor-
dinate space, indicating that cell-level predictions based on high
dimensional protein measurements are difficult to validate in the
bivariate setting familiar to immunologists. A similar situation also
happens in the FlowSOM clustering, where the convex hull included a
large region with a noisy pattern in the binary mask visualization
(Fig. 5). PeacoQC is a tool specifically designed for flow cytometry data

quality control and performs well on singlet gating. However, com-
pared to PeacoQC, UNITO not only achieves a higher F1 score but is
also more versatile across various gating tasks. A simple observation
we can draw from this comparison is that prediction over bivariate
image outperforms prediction on single-cell tabular data in both
accuracy and interpretability, and even static gating showed its capa-
city to provide a good gating prediction. If there are large batch effects
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decision boundary from the reconstruction of the UNITO output. Each column
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data points within 1.5 times the interquartile range). For each gating, the plot is
separated by subjects’ age condition while the results from manual gating and
UNITO for the same population are put next to each other for easier observation.
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for (B–D) are provided as a Source Data file.
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in thedata, theperformanceof static gatingwill decrease, butUNITO is
still robust to such variability.

While methods like FlowSOM and logistic regression are effective
approaches for identifying final cell types and have proven useful in
many analytical scenarios, they are not inherently designed to handle
batch effects. Their performance may be improved by applying batch
effect correction techniques such as CytoNorm32 or CyCombine33. In
contrast, UNITO’s robustness to variations and batch effects makes it
especially beneficial for large-scale cytometric data processing. Such
capacity to natively address batch variability without additional pre-
processing or alignment makes UNITO an efficient and robust choice
for high-throughput, non-exploratory, as well as production environ-
ment applications.

The key goal for all of thepre-gating andgating tasks is todiscover
the hidden information embedded in the cell subpopulations. The
downstream analysis usually reveals statistical differences either
among cell subtypes or subject groups. With prior knowledge of the
biological difference between COVID-19 patients and healthy donors,

as well as between young and old people, we can further use the sta-
tistical power of the gating results to validate the method’s perfor-
mance. The proportion of cell types selected by prior knowledge in
UNITO gating confirmed a significant increase in granulocytes and
neutrophils with a significant decrease in lymphocytes, T cells, and B
cells, therefore validating the efficacy of UNITO. The same experiment
on the flow cytometry data in CD8 naïve T cells also agreed with bio-
logical prior knowledge. This downstream analysis is not only used for
confirming the gating results from UNITO, but also serves as a func-
tionality to explore the group-level difference for scientific discovery
purposes.

There are certain limitations to this study. Themodel may not get
very good performance in certain cases where cells are extremely rare,
such as eosinophils in certain samples. Even though the UNITO fra-
mework still has the highest performance for eosinophil prediction,we
found one file in which there were almost no eosinophils. In this case,
even in the manual gating, eosinophils can barely be seen. For such
situation, one mitigation is to not only pre-filter the cells by the
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previous gating level, but also pre-filter the other cell types in the
current gating level. For instance, after we filtered out the non-
granulocyte cells, we can add additional steps to filter predicted neu-
trophil cells, leaving only eosinophil and non-neutrophil-non-
eosinophil cells in the data to segment the eosinophils. Moreover,
we only tuned hyperparameters for the learning rate and batch size
whendesigningUNITO;more advanceddeep learning techniques such
as adding self-attention blocks or using different image segmentation
backbones may improve the performance.

To summarize, we present a framework that can automatically
perform pre-gating and gating tasks for bothmass cytometry and flow
cytometry with close-to-manual performance. We validated that
autogating by bivariate images outperforms gating on cell-level pro-
tein expression data, and UNITO can further provide the convex
boundary on the densitymap for biological interpretation. In addition,
UNITO predictions are easy to use in downstream statistical analysis
for cell type-phenotype exploration, and yield results that are as sta-
tistically significant as those frommanual gating. We then showed that
the framework can be adapted to any subsequent gating tasks in a
sequential manner while still maintaining high performance. In order
to make the UNITO framework more accessible to a broader range of
users, there is no requirement to tune themodel or choose any format
of parameters in addition to the gate settings. The only input needed
for UNITO automatic gating is the measurement of two selected
cytometric channels. If the user wants to train a model by themselves,
they alsodonot have toworry aboutpreparing the trainingmask, since
all processes are automatic and within the UNITO framework. To
enhance the accessibility and user-friendliness of UNITO, our future
work includes the development of a web-based or software-based
iteration taking raw FCS files as input, which is in progress with the
Pennsieve Data Management Platform from the University of
Pennsylvania.

Methods
UNITO architecture
In this study, our UNITO frameworkwas adapted from the architecture
of the UNet model. UNet is a convolutional neural network (CNN)
architecture that was first introduced by Ronneberger et al.34. The
purpose of its original design was to perform semantic segmentation
of medical images, which is the task of assigning a label to each pixel
and thus defining the regionof interest. TheUNet architecture consists
of two parts: an encoder (the contracting path) and a decoder (the
expansive path). Both the pooling and up-sampling parts have a large
number of feature channels, which allow the network to propagate
context information to higher resolution layers which results in the
expanding part being symmetric to the contracting path and yields a
u-shaped architecture. The architecture of the encoder resembles that
of a traditional CNN, which consists of a series of convolutional and
pooling layers. The convolutional layers extract high-level features
from the input image and the pooling layers reduce its spatial reso-
lution. The decoder consists of a series of convolutional and trans-
posed convolutional layers. The transposed convolutional layers
upsample the featuremaps to a higher resolution, which is achievedby
interpolating the in-between pixels. The convolutional layers then
process the upsampled feature maps to extract high-level features. At
each decoding stage, the upsampled feature maps are concatenated
with the corresponding feature maps directly passed from the
encoding stage. These skip connections allow the decoder to use the
contextual information from the encoder, which helps recover the lost
spatial resolution.

We adapted the UNet architecture in our study to allow binary
classification of each gate, and the output bivariate mask was used to
produce the final segmentation image. Overall, the network consists of
convolutional layers with hidden sizes from 1, 64, 128, 256, 512, and
1024, and then the transposed convolution will upsample the image

back to the same size by following the same hidden size order but in
the opposite direction. The skip connections provide the decoder with
the original contextual information of the image, allowing U-Net to
produce highly accurate segmentation results. In addition, U-Net has
shownexcellent performance in handling small data sets, whichmakes
it particularly useful in medical applications, where the sample size is
often limited.

Cytometric gating structure
The main objective of UNITO is to achieve a similar boundary com-
pared to human annotationwith the ability to handle batch effects and
heterogeneity between different subjects. Since subsequent cell-type
gating tasks have the same setting as the pre-gating task, but with less
variability, the original application of pre-gating cytometric data can
be further extended to automatically gating cell subtypes in mass
cytometry, as well as to gating flow cytometry data. Figure S1A shows
all 5 levels of pre-gating and gating tasks (9 gates in total) of mass
cytometry gates validated using UNITO. Each level from the hierarchy
uses different pairs of channels from protein measurements, and each
gate will undergo separate training. Within the same hierarchy, the
cells are gated on the same space coordinate with the same pair of
protein expressions, such as granulocyte and mononuclear. UNITO is
validated by sequentially performing gating tasks on single cell gate 1,
single cell gate 2, granulocyte, mononuclear, neutrophil, eosinophil, T
cell, B cell, and Non T non B cell to achieve the pre-defined gating
hierarchy. In addition to mass cytometry gating, Figure S1B shows the
gating procedure for flow cytometry. Lymphocyte gate in flow cyto-
metry data is still difficult to automate due to its high density of debris
and noises from other cell populations. Thus, it usually requires
manual gating or prior knowledge such as input of a hard threshold
and approximate position based on the experiments. We validated the
performance of UNITO starting from the lymphocyte gate and exam-
ined all gates by sequence of lymphocyte, singlet, CD3, CD4, CD8, CD4
naïve, and CD8 naïve cells.

Construction of bivariate density map and mask
Here we define our cytometric data Xc = fX 1,X2,X3, . . . ,Xng where
each Xi represent a single subject. Let Xi = ½xuv� 2 Rm*n be the protein
expression matrix, where m is the number of cells in the experiments
and n is the number of channels collected. Usually, a specific cell dis-
tribution mostly varies among two protein measurements, and using
two channels for manual gating is easier to visualize and inspect.
Therefore, two selected cytometricmeasurements are normalized and
rounded as a constraint on the boundaries for the density map and
mask. The normalization process is defined that for each xuv in the
cytometric measurement X :

�xuv =
xuv �minðxvÞ

max xv

� ��minðxvÞ
ð1Þ

Density maps of the normalized cytometric data were created as
training images by counting the number of cells with the same pair of
normalized measurements and feeding the number into the corre-
sponding coordinate in the matrix space. In this case, the density
matrix has corresponding shape of 101 by 101 representing the nor-
malizedmeasurement. This transformation not onlymade the process
of creating density maps easier, but also allowed faster training and
prediction time because this step reduced the training input from a
data matrix of millions of entries to a 101 by 101 matrix. We also
experimented with different image sizes for UNITO input data gen-
eration (Fig. S10), and we found that in general larger image sizes
would decrease the performance. Even though a larger image will
provide a higher resolution of the bivariate density image, it will make
the density representation sparser, and thus make it more difficult to
recognize the target cell population. In addition, smaller image sizes
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tend to have relatively stable performance. With the 101 matrix size
having one of the best performance and straightforward concepts of
design, we set the default value of UNITO input to 101. The training
data also provides gating labels for each cell inferred from manual
annotation, and the corresponding binary masks were created from
themanual labels as the training labels. If the cells are identified as the
target population, the corresponding coordinate will be marked as 1,
creating a 101 by 101 binary image. In addition, a convex hull algorithm
was further applied on the binary mask to smooth the boundaries
using the ConvexHull function from the Python package SciPy35. To
provide flexibility in handling different feature shapes, we imple-
mented a true/false parameter for the convex function. When set to
“true,” the convex hull will be applied to smooth boundaries; when set
to “false,” only blank pixels within the mask will be filled, while the
original boundaries are preserved. This option allows users to adapt
the filling behavior based on the specific morphology of their data,
ensuring more accurate feature representation.

UNITO training and cell membership prediction
The UNITO was trained using the PyTorch framework in Python. We
searched hyperparameters learning rate and batch size for each gate,
and we also checked convergence during each training process.
Since UNITO follows a sequential gating process, each individual
sample requires its own prediction to prepare the training data (in-
gate cells) for the subsequent gate. To accommodate this, we
implemented a cross-validation approach that iteratively predicts
across n batches. In this paradigm, each batch is used in the training
data n-1 times and serves as the validation data once. Further details
on the cross-validation setup can be found in the supplementary
material. The Adaptive Moment Estimation Optimizer36 or in short,
ADAM optimizer is a popular optimization method that allows the
learning rate to adjust to the gradient change during the training
process adaptively. This along with the popular Binary Cross-Entropy
Loss function with Logits (BCEWithLogitsLoss) is used in the binary
classification of the pixels. The Binary cross-entropy Loss can provide
a good gradient calculation for optimization by combining the sig-
moid function and binary cross-entropy loss (BCELoss) into a single
function and is more numerically stable than using a plain sigmoid
followed by a BCELoss.

BCEWithLogitsLoss = � y � log pð Þ+ 1� yð Þ � log 1� pð Þð Þ ð2Þ

Once we have the trained model, we can use the pipeline to
predict the binary labels for each cell. Given a target subject, we first
use its normalized cytometric data to create its density map corre-
sponding to its gate. This density map also has a resolution of 101 by
101 and is obtained using the above-described procedure. It is then
passed into the trainedmodel to generate the predictedmask for the
assigned gate. This binary mask is then interpolated with the protein
measurement to generate the binary label for each cell. Specifically,
each cell corresponds to a pixel on the binary mask; if a pixel is
predicted as in-gate, all the cells corresponding to the selected
measurements will be designated as in-gate, and vice versa. Next, we
filter out all the cells that are not predicted to be in this gate, and we
use the remaining data (in-gate cells for the current gate) to create
the density map corresponding to the next gate. Again, the pre-
processing and training procedure will be repeated for the next gate
using the filtered cytometric data. While all gates are trained and all
subjects are predicted, we evaluated the performance of each gate
and visually inspected the bivariate polygons on the density map. We
can also use intermediate or final gate results to perform down-
stream statistical analysis. The details of the UNITO algorithm are
summarized in Algorithm 1.

One advantage of UNITO in automatic gating is that it does not
require any human input after training. The framework will take

ungated files as input, and convert the cytometric data into bivariate
plots. The prediction stage only takes the density image as input and
outputs a corresponding mask. Then the post-processing step in
UNITO will interpolate the mask back to the cell type outcome as the
final output of UNITO. In addition, the training process for UNITO is
also straightforward and automatic, the framework handles all the
image conversion and interpolation. The only difference between the
input of training and prediction is that the training data has to
include an additional column of binary labels, indicating the in-gate
and out-of-gate status for each cell. These binary labels can be
obtained from the output of manual gating platforms, and we also
provided an example script to retrieve the output from the Omiq
platform. As shown in Supplementary Table S3, even though UNITO
does not have the fastest run time per gate, it requires only seconds
to compute each gate, which is competitive with the fastestmethods.
Moreover, a significant advantage of UNITO is that it operates on
each sample independently, making it highly amenable to paralleli-
zation. This means that, in practice, the total runtime can be sub-
stantially reduced by distributing samples acrossmultiple processors
or computational nodes, enabling efficient processing even for high-
throughput applications.

Statistics and reproducibility
No statistical method was used during the gating process. T-test was
applied to evaluate the group difference between Covid (12 samples)
andHealthy (11 samples) formass cytometry data, and between Young
(49 samples) and Old (48 samples) for flow cytometry data. Only
baseline samples from the dataset were selected to avoid data leakage
during the training process. After the baseline samples were selected,
no other data were excluded from the analyses.

Mass cytometry data collection and processing
Human subjects were enrolled with approval of the University of
Pennsylvania Institutional Review Board (COVID-19 Vaccine study IRB
no. 844642; Acute COVID-19 study IRB no. 808542). All participants or
their surrogates provided informed consent in accordance with pro-
tocols approved by the regional ethical research boards and the
Declaration of Helsinki.

We used two independent datasets consisting of single-cell pro-
tein expression data profiled by mass cytometry (Table 4). Both
datasets were collected by the Institute for Immunology and Immune
Health at the Perelman School of Medicine. For the first (“COVID
Vaccine”) dataset, whole blood was obtained from 40 healthy subjects
at four timepoints during the course of two-dose mRNA vaccination
against COVID-19 and cryopreserved. (T1 = baseline, T2 = one week
after the first dose, T3 = prior to the second dose, T4 = one week after
the second dose). Only the baseline sample was used, in order to avoid
information leaks across training. For the second (“Acute”) dataset,
whole bloodwasobtained from23 subjects, amongwhom12hadacute
COVID-19 symptomsand 11were healthy donors. Samples collected for
the COVID-19/healthy dataset were used fresh.

Both the fresh samples from the Acute dataset and the frozen
samples from the Vaccine dataset were stained with theMaxpar Direct
Immunophenotyping Assay (MDIPA) and run on a CyTOF2 instrument.
MDIPA is a single-tube cocktail manufactured by Standard BioTools,
which uses standardized clones and dilutions performed by the man-
ufacturer. No additional conjugation or titration is necessary. Samples
were stained, stored, and prepared for acquisition as previously
described37. MDIPA measures a panel of 30 proteins used for broad
characterization of immune phenotypes in whole blood, alongside
other channels for control and data cleaning. Raw CyTOF data was
transformed using an asinh transformation with a cofactor of 5. Fur-
ther, a standard data cleaning procedure by manual gating was per-
formed using the OMIQ platform, to remove beads, dead cells,
platelets, debris, and other anomalous events, followed by manual
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gating on the subsequent cell type to generate the cell type labels for
this study.

Flow cytometry data collection and processing
The young/old dataset was created by Rochester Human Immunology
Center, David H. Smith Center for Vaccine Biology and Immunology,
Rochester, NY (USA)38. The purpose was to use SWIFT’s competitive
clustering assignment method to measure the differences between
PBMC sub-populations in Old/Young subjects. The Young/Old dataset
contains 136 data files in total, with 97 unique subjects; similarly to the
COVID Vaccine dataset, only one file from each subject was used, to
avoid information leaks. Within those subjects, there are 49 samples
from young donors (average age of 39) and 48 samples from old
donors (average age of 67). The dataset was downloaded from the
publicly available repository (https://flowrepository.org/id/FR-FCM-
ZZGS). Thedata cleaning and labeling bymanual gatingwere alsodone
using the OMIQ platform.

Manual gating and consensus
Themass cytometry andflowcytometrydataweremanually gatedby 5
and 4 independent annotators, respectively (see Fig. S4 for mass
cytometry data and Fig. S5 for flow cytometry data). The final version
of the label used for training and validation was generated by the
consensus (majority vote) of the gating output from all annotators.
Specifically, for each cell, we calculated the highest frequency of the
cell type assignment from the different labels and saved the results as
our final consensus voting label. Figure 1 and Fig. S6 show the corre-
lation between consensus voting labels with manual gating from each
annotator.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available and have been
uploaded to the Pennsieve platform (https://doi.org/10.26275/864r-
dv00), and all relevant source data are provided with the paper. In
addition, themass cytometrydata used in this study are available in the
FlowRepository database under accession code FR-FCM-Z8XU. The
flow cytometry data used in this study are available in the Flow-
Repository database under accession code FR-FCM-Z8P9. This
includes both mass cytometry and flow cytometry data, along with
manual gating results from each individual annotator and the con-
sensus gating outcomes. All data can be accessed via the provided
link. Source data are provided with this paper.

Code availability
The code for data preprocessing, UNITO training, and inference is
available at (https://github.com/KyleeCJ/UNITO, https://doi.org/10.
5281/zenodo.1447419739). The GitHub repository also includes a Jupy-
ter notebook that guides users through each step of the UNITO
workflow, along with a user-friendly interface for those preferring a
non-coding approach to interact with UNITO.
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