Table 5

From: Automated cytometric gating with human-level performance using bivariate segmentation

Input:

\(\left\{{X}_{1},{X}_{2},{X}_{3},\ldots,{X}_{{n}_{{training}}}\right\}\in {{\mathbb{R}}}^{m*n}\) :protein expression matrices for all training subjects

\(\left\{{Y}_{1},{Y}_{2},{Y}_{3},\ldots,{Y}_{{n}_{{training}}}\right\}\in {{\mathbb{R}}}^{m*n}\) :cell type label for all training subjects

\(\left\{{X}_{1},{X}_{2},{X}_{3},\ldots,{X}_{{n}_{{testing}}}\right\}\in {{\mathbb{R}}}^{m*n}\) :protein expression matrices for all testing subjects

Output:

\(\left\{{Y}_{1},{Y}_{2},{Y}_{3},\ldots,{Y}_{{n}_{{testing}}}\right\}\in {{\mathbb{R}}}^{m*n}\) :predicted cell type label for all testing subjects

\(\left\{{H}_{1},{H}_{2},{H}_{3},\ldots,{H}_{{n}_{{testing}}}\right\}\) :target cell population convex hull with 3D density map

UNITO Training

for i=1:ntraining do

 

\(\bar{{X}_{i}},\,{Y}_{i}\leftarrow {Normalize}\left({X}_{i}\left[{channel}1,{channel}2,{gate}\right]\right)\triangleright\bar{{X}_{i}}\in {{\mathbb{R}}}^{m*2},\,{Y}_{i}\in {{\mathbb{R}}}^{m*1}\)

 

\({D}_{i},\,{M}_{i}\leftarrow {Image\; Construction}\left(\bar{{X}_{i}},\,{Y}_{i}\right)\triangleright\)Converting tabular data to density and mask image

End for

UNITO Classifier←UNITO Network(D, M)

UNITO Prediction

for j=1:ntesting do

 

\(\bar{{X}_{j}}\leftarrow {Normalize}\left({X}_{j}\left[{channel}1,{channel}2\right]\right)\triangleright\bar{{X}_{j}}\in {{\mathbb{R}}}^{m*2}\)

 

\({D}_{j}\leftarrow {Image\; Construction}\left(\bar{{X}_{j}}\right)\)

 

\({M}_{j}\leftarrow {UNITO\; Classifier}\left({D}_{j}\right)\)

 

\({Y}_{j}\leftarrow {Mask\; Interpolation}\left(\bar{{X}_{j}},\,{M}_{j}\right)\)

 

\({H}_{j}\leftarrow {UNITO\; Visualization}\left({X}_{j},\,{Y}_{j}\right)\)

End for

Return \({Y}_{{testing}},\,{H}_{{testing}}\)