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Ergodic seismic precursors and transfer
learning for short term eruption forecasting
at data scarce volcanoes

Alberto Ardid 1,18 , David Dempsey 1,18, Corentin Caudron 2,3,
Shane Cronin 4, Ben Kennedy 1, Társilo Girona 5, Diana Roman 6,
Craig Miller7, Sally Potter7, Oliver D. Lamb 7, Anto Martanto8,
Yesim Cubuk-Sabuncu9, Leoncio Cabrera 10, Sergio Ruiz11,
Rodrigo Contreras 12,13, Javier Pacheco14, Mauricio M. Mora 15 &
Silvio De Angelis 16,17

Seismic data recorded before volcanic eruptions provides important clues for
forecasting. However, limited monitoring histories and infrequent eruptions
restrict the data available for training forecasting models. We propose a
transfer machine learning approach that identifies eruption precursors—sig-
nals that consistently change before eruptions—across multiple volcanoes.
Using seismic data from 41 eruptions at 24 volcanoes over 73 years, our
approach forecasts eruptions at unobserved (out-of-sample) volcanoes. Tes-
ted without data from the target volcano, the model demonstrated accuracy
comparable to direct training on the target and exceeded benchmarks based
on seismic amplitude. These results indicate that eruption precursors exhibit
ergodicity, sharing common patterns that allow observations from one group
of volcanoes to approximate the behavior of others. This approach addresses
data limitations at individual sites and provides a useful tool to support
monitoring efforts at volcano observatories, improving the ability to forecast
eruptions and mitigate volcanic risks.

Volcanic eruptions areoneof themost spectacular natural phenomena
on Earth, but they can be deadly if not properly anticipated. Eruption
forecasting is the practice of estimating the likelihood, location, and
timing of eruptions1; and the type of hazards they can present2. Vol-
cano observatories are a key line of defense to ensure the safety and
welfare of the ~29million individuals who reside within 10 km of active

volcanoes3. Eruptions are also disruptive to air travel and transporta-
tion systems, regional air quality, food anddrinkingwater systems, and
even influence weather patterns4. Several recent eruptions have been
successfully forecasted due to effectivemonitoring and alert systems5,
including 1991Mount Pinatubo6 (Philippines, by PHIVOLCS andUSGS),
2009 Redoubt7 (Alaska, USA, by AVO), 2010 Merapi8 (Indonesia, by

Received: 15 February 2024

Accepted: 28 January 2025

Check for updates

1University of Canterbury, Christchurch, New Zealand. 2Université libre de Bruxelles, Brussels, Belgium. 3WEL Research Institute, Brussels, Belgium.
4University of Auckland, Auckland, New Zealand. 5Alaska Volcano Observatory, Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA.
6Carnegie Institution, Washington, DC, USA. 7Te Pū Ao | GNS Science, Taupo, New Zealand. 8Center for Volcanology and Geological Hazard Mitigation,
Bandung, Indonesia. 9Icelandic Met Office, Reykjavík, Iceland. 10Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de
Chile, Santiago, Chile. 11Departamento de Geofísica, Universidad de Chile, Santiago, Chile. 12Departamento de Geología, Universidad Católica de Temuco,
Temuco, Chile. 13Centro de Investigación en Evaluación de Riesgos y Mitigación de Peligros Geológicos, Geokimün, Facultad de Ingeniería, Universidad
Católica de Temuco, Temuco, Chile. 14National University of Costa Rica, Heredia, Costa Rica. 15Central American School of Geology, University of Costa Rica,
San Jose, Costa Rica. 16University of Liverpool, Liverpool, UK. 17Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italy. 18These authors contributed equally:
Alberto Ardid, David Dempsey. e-mail: aardids@gmail.com

Nature Communications |         (2025) 16:1758 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-8040-8193
http://orcid.org/0000-0001-8040-8193
http://orcid.org/0000-0001-8040-8193
http://orcid.org/0000-0001-8040-8193
http://orcid.org/0000-0001-8040-8193
http://orcid.org/0000-0003-2135-5129
http://orcid.org/0000-0003-2135-5129
http://orcid.org/0000-0003-2135-5129
http://orcid.org/0000-0003-2135-5129
http://orcid.org/0000-0003-2135-5129
http://orcid.org/0000-0002-3748-0007
http://orcid.org/0000-0002-3748-0007
http://orcid.org/0000-0002-3748-0007
http://orcid.org/0000-0002-3748-0007
http://orcid.org/0000-0002-3748-0007
http://orcid.org/0000-0001-7499-603X
http://orcid.org/0000-0001-7499-603X
http://orcid.org/0000-0001-7499-603X
http://orcid.org/0000-0001-7499-603X
http://orcid.org/0000-0001-7499-603X
http://orcid.org/0000-0001-7235-6493
http://orcid.org/0000-0001-7235-6493
http://orcid.org/0000-0001-7235-6493
http://orcid.org/0000-0001-7235-6493
http://orcid.org/0000-0001-7235-6493
http://orcid.org/0000-0001-6422-0422
http://orcid.org/0000-0001-6422-0422
http://orcid.org/0000-0001-6422-0422
http://orcid.org/0000-0001-6422-0422
http://orcid.org/0000-0001-6422-0422
http://orcid.org/0000-0003-1282-5803
http://orcid.org/0000-0003-1282-5803
http://orcid.org/0000-0003-1282-5803
http://orcid.org/0000-0003-1282-5803
http://orcid.org/0000-0003-1282-5803
http://orcid.org/0000-0002-2254-4258
http://orcid.org/0000-0002-2254-4258
http://orcid.org/0000-0002-2254-4258
http://orcid.org/0000-0002-2254-4258
http://orcid.org/0000-0002-2254-4258
http://orcid.org/0000-0001-9401-2608
http://orcid.org/0000-0001-9401-2608
http://orcid.org/0000-0001-9401-2608
http://orcid.org/0000-0001-9401-2608
http://orcid.org/0000-0001-9401-2608
http://orcid.org/0000-0003-2713-5397
http://orcid.org/0000-0003-2713-5397
http://orcid.org/0000-0003-2713-5397
http://orcid.org/0000-0003-2713-5397
http://orcid.org/0000-0003-2713-5397
http://orcid.org/0000-0001-7571-6749
http://orcid.org/0000-0001-7571-6749
http://orcid.org/0000-0001-7571-6749
http://orcid.org/0000-0001-7571-6749
http://orcid.org/0000-0001-7571-6749
http://orcid.org/0000-0003-2636-3056
http://orcid.org/0000-0003-2636-3056
http://orcid.org/0000-0003-2636-3056
http://orcid.org/0000-0003-2636-3056
http://orcid.org/0000-0003-2636-3056
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56689-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56689-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56689-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-56689-x&domain=pdf
mailto:aardids@gmail.com
www.nature.com/naturecommunications


CVGHM), 2014 Villarrica9 (Chile, byOVDAS), 2021 La Soufrière (in Saint
Vincent and the Grenadines, by UWI-SRC) and 2014 Bárðarbunga10

(Iceland, by NCIP) eruptions. These cases exemplify the primacy of
scientific monitoring and underscore the importance of historic data
for effective eruption forecasting.

Eruption forecasting frequently relies on the detection of mean-
ingful signals encoded in seismic data, i.e., eruption precursors. Seis-
mic amplitude filtered to informative frequency bands is often used,
e.g., real-time seismic amplitude measurement2,11, (RSAM) and dis-
placement seismic amplitude ratio12,13 (DSAR). Precursor signals14 are
thought to reflect fluid-rock interactions in magma plumbing and
hydrothermal systems12,13, induced oscillations in cracks and
conduits15,16, or accumulations of pressurized gas12,13—all physical pro-
cesses that may precede an eruption.

For many volcanoes, eruptions are infrequent events that punc-
tuate an otherwise calm state of repose. Although modern seismic
monitoring and data archiving were pioneered over the last half-cen-
tury, it has only proliferated in recent decades. Excluding persistently
active examples, e.g., Etna (Italy), Stromboli (Italy), Fuego (Guatemala),
most volcanoes have few or only one eruption on record. For example,
of the 24 volcanoes considered in this study, only 3 have more than 3
eruptions, and 11 have only one seismically recorded event. Here, we
define an eruption as a discrete period of volcanic activity character-
ized by the deposition of new volcanicmaterial outside the vent, which
may include lava, ash, or pyroclastic material. Emissions of gas alone
are considered precursory activity unless accompanied by the ejection
of other materials.

The relative scarcity of eruption data makes data-driven fore-
casting challenging, leading to the use of generalized forecasting
models that apply insights across multiple volcanoes. Such models
leverage the similarities between volcanoes, reducing the need for
extensive customization to each target volcano17–20. However, they
face challenges due to the varied types of volcanic systems and their
range of precursory behaviors. Unheralded eruptionswith subtle or no
known precursors2,21 further complicate forecasting efforts. Typical
approacheswithin generalized forecasting include analogmethods15,16,
heuristic elicitation methods22, physics-constraint methods23, and
inter-event models24,25. Analog approaches assess hazards by com-
paring less-documented volcanoes to better-studied analogs, though
they rely on expert judgment and may lack consistency across cases.
Heuristic elicitationmethods similarly draw on expert insight for rapid
assessment but remain inherently subjective. Inter-event models,
which use historical eruption intervals to estimate future eruption
likelihood, provide a quantitative basis but are often less effective for
volcanoes with irregular activity patterns. Also, catalog gaps—due to
data scarcity, limited investigation, or natural erosion of smaller
deposits—introduce uncertainty in recurrence estimates, especially for
smaller events.

In this context, machine learning (ML) has emerged as a tool for
extracting forecasting information from large and complex volcanic
datasets26–28. While it has the potential tomitigate human limitations in
assessing precursors22, it risks introducing its own biases via eruption
labeling, data curation, and algorithm selection29,30. Nevertheless, its
ability to integrate varied data types, including seismic31,32, gas33, and
geodetic data34, opens avenues for improved characterization of vol-
canic activity including forecasting.

In this work, we used transfer machine learning to identify sets of
precursor signals that are shared amongst groups of volcanoes and to
evaluate the predictive skill of these precursors in simple forecast
models. We used time series feature engineering22,28 to extract statis-
tically significant patterns in seismic data across multiple volcanoes.
Our dataset comprises 41 eruptions across 24 volcanoes (Fig. 1a) with a
combined seismic record length of ~73 years. Precursors are identified
a fix time window on their higher rate of recurrence prior to eruptions
and reduced frequency otherwise while implementing safeguards to

minimize false discovery. Precursors extracted from a volcano pool
were then used to train forecastingmodels, whichwere later tested on
unobserved target volcanoes outside that pool. We developed three
different generalized forecast models based on eruption type: (1) a
magmatic model, involving 9 volcanoes and 16 eruptions, (2)
a phreatic model, involving 6 volcanoes and 15 eruptions, and (3) a
global model, involving all volcanoes and eruptions (Fig. 1b). Random
forest models were trained with 48 h backward looking windows to be
especially sensitive to rapid volcano changes that requires responsive
monitoring. For a given instance in time, theoutput of amodel is a non-
probability value between 0 and 1, with higher values indicating an
increased likelihood of eruption based on the previous 48 h of seismic
data. All models were assessed in terms of their out-of-sample per-
formance, measured on data from test volcanoes that were withheld
during feature selection and training. This pseudo-prospective fore-
cast, which simulates real-time conditions by withholding target data
during training and testing it as unseen data, is not as rigorous as true
prospective forecasting that evaluates future, genuinely unseen data.
However, it is superior to hindcasting models in its ability to avoid
overfitting by not allowing the model to train on the same data it is
tested on, providing a more realistic assessment of the model’s
performance on unseen volcanoes. Forecasts were constructed for
the entire 73-year dataset, with each volcano taking its turn in the
test set.

Results
Forecast performance and benchmarks
In this research, a good forecasting model is one that outputs a strong
positive response (values approaching 1) in the 48-hours before an
eruption and a relatively depressed response (values closer to 0)
during the extended periods between eruptions. The discriminability
of these models is quantified by their Receiver Operator Character-
istics (ROC) curve and associated Area Under the Curve (AUC). AUC
values approaching 1 have a negligible false positive rate during
unrestful episodes35,36 and no missed eruptions.

ROC curves and AUC values for models constructed from the
three volcano pools are shown in Fig. 2a–c against a reference AUC of
0.5, which denotes no discrimination of eruptions. All three models
have AUC values of about 0.8, which indicates a modest ability to
discriminate eruptions from non-eruptive unrest at the unobserved
target volcanoes. However, as the acceptable range of model AUC
varies with context and application, it would be premature to claim
such amodel is good enough for operational use. Nevertheless, we can
benchmark this performance against other kinds of forecast model.

Direct measures of seismic amplitude (e.g., RSAM) are commonly
used for volcano monitoring due to their high sampling rate and
informativity on volcanic processes when combined with com-
plementarymetrics, observationaldata, and interpretativemodels that
provide context and insight into the underlying volcanic activity11.
Thus, RSAM is a good reference to benchmark the performance of the
ML models developed here, as it offers continuous, high-resolution
data. In contrast, other monitoring data, such as gas sampling or
geodetic observations, often have lower temporal resolution and are
scarcer, making them less suitable for direct, consistent comparison.
We find that simple RSAM triggering models generally underperform
compared to ML models (Fig. 2) even when the RSAM benchmark is
afforded the benefit of hindsight by fine-tuning its parameters for
maximum sensitivity (an advantage not granted to the ML models).
Seismic amplitude models are most sensitive to phreatic eruptions
(AUC=0.74, Fig. 2b), though less sensitive than the correspondingML
model (AUC =0.8). Average AUC values are depicted in Table 1. This
indicates that RSAM-based forecasting in our dataset shows some
dependence on eruptive style. However, it is important to clarify that
thesefindings are based on a limited number of case studieswithin our
dataset. The seismic model had negligible forecasting value on the
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magmatic pool (AUC =0.5, Fig. 2a). This comparison is not intended to
denigrate the value of RSAM in volcano monitoring, which is con-
sistently demonstrated at observatories around the world. Instead, we
argue that the latent patterns embedded within RSAM, and other
seismic intensities are more reliably extracted with a transfer machine
learning approach.

We also compared the performance of generalized MLmodels to
tailored alternatives, i.e., ML models trained exclusively on individual

volcanoes (Fig. 2d–f). This lets us assess the value of transferring
precursors between volcanoes, independent of the ML pipeline itself.
Bezymianny, Whakaari and Copahue volcanoes are three examples
with enough eruptions for ameaningful comparison. Both tailored and
generalized forecast models have comparable discriminability, as
indicated by similar AUC values. This provides further evidence that
seismic precursors can be transferred to unobserved target volcanoes
with minimal loss of forecasting skill.

Fig. 1 | Catalog of volcanoes, eruption groupings, and cross-validation stra-
tegies for forecasting models. a Map of volcanoes and eruptions used in this
study. b Sets of volcanoes grouped to train generalized eruption forecasting
models (pools). c Cross-validation testing strategies. Generalized forecasters leave

out an entire volcano’s record for later testing, whereas tailored forecasters leave
out only one eruption at a time. Further cross-validation details are given in
Methods.
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Ergodic characteristics of eruption precursors
The predictive skill of generalized forecasting models depends on
the number of volcanoes in their training pool. Models trained on
one or two volcanoes tend to have highly variable but relatively low
performance (Fig. 3) when making out-of-sample predictions
(0.35 < AUC < 0.65). Transfer learning is strengthened for at ensem-
ble sizes larger than three but appears to saturate for models with
more than twelve volcanoes. Performance does not increase sub-
stantially once an AUC of around 0.8 is reached, suggesting an upper
limit on the predictive skill. Thus, careful consideration should be
given to the relative costs and benefits associated with dataset
expansion, particularly when themarginal gains are diminishing over
time. Improvements to the way pre-eruptive information is dis-
criminated and used within themodel architecturemay be needed to
realize further scalability.

The generalized models explored here exploit ergodicity in vol-
canic systems, specifically at a time series feature level (Fig. 4). Ergodi-
city implies that the distribution of volcano signals over time at a single

site can approximate the distribution of signals across a sufficiently
large ensemble of volcanoes. This characteristic allows observations
from multiple volcanoes to approximate the long-term behavior of
individual volcanoes. Without this ergodic property, the predictive
improvement observed with larger training ensembles would not be
expected. Such characteristics have been demonstrated for satellite-
basedmonitoring of deformation prior to eruptions at 540 volcanoes37.
However, geodetic data on its own has limitations, with no eruption
occurring at nearly half the deforming volcanoes37. Here, we estimate
that ensembles with as few as twelve volcanoes are likely capturing a
large proportion of the common seismic eruption precursors.

Practical challenges for operational forecasting
Demonstrating the forecasting skill of transferred eruption precursors
is a necessary but not sufficient step for their operational use. Volcano
monitoring scientists routinely integrate a wide range of seismic31,
thermal32, gas33, and geodetic data34 acrossdisparate time scales13,28,38,39

and use these to inform experts mental models of the evolving

Fig. 2 | Relative performance of generalized and tailored machine learning
forecasts on out-of-sample volcano data and benchmarked against seismic
intensity (RSAM)models.ROC=ReceiverOperatingCharacteristic curve andAUC
= Area Under the (ROC) Curve are metrics that quantify a model’s ability to dis-
criminate pre-eruptive signals from the non-eruptive background. Subplots (a–c)
show performance of the three generalized forecasters (magmatic, phreatic, and
world pools). Subplots (d–f) compare performance of tailored and generalized

forecasters for Bezymianny, Whakaari, and Copahue. Diagonal dashed lines show a
reference random model with no predictive skill. Models with higher AUC have
greater predictive skills. (g–i) Relative frequency of forecast values, distinguishing
between pre-eruptive and non-eruptive windows, over the 10-year record at Wha-
kaari (Fig. S2). A larger separation between distributions denotes improved pre-
dictive skill. j The same frequency plot as (g–i) but for 14 volcanoes in the
phreatic pool.
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volcanic hazard6–8,10. If they are to provide complementary input to this
process, forecasting models need to be interpretable on a real-time
time-series basis. Although this problem remains outstanding, a pre-
sentation of individual forecast characteristics is useful here to define
its challenging aspects.

The ultimate objective of generalized forecasters is to identify
eruption precursors with the same or higher confidence than corre-
sponding tailored models. This is exemplified in the case of the 2009
Bezymianny and 2016 Whakaari eruptions (Fig. 5a, b) with strengthen-
ing generalized forecast output prior to those eruptions. The latter
event has been particularly challenging to anticipate in prior studies28

that relied on tailored models, apparently confirming an advantage
of transferred eruptions precursors. In other cases, we confirm
that introduction of a generalized model has not compromised per-
formance of the tailored alternative, e.g., the 2019 Whakaari erup-
tion (Fig. 5c).

However, such improvements are not realized across all volca-
noes. For example, at Copahue (Fig. 5d), generalized models produce
consistently elevated outputs between closely spaced events (~weeks),
whereas the tailored models do not. Thus, a challenge remains that,
while generalized approaches may increase average forecasting skill,
they may in some instances produce worse accuracy than tailored
alternatives. At Copahue, we hypothesize that this arises because
training eruptions at other volcanoes were relatively large compared
to the locally reportedminor eruptions tested at Copahue40. Thus, this
volcano may benefit more from a model specially tailored.

The 2010 eruption of Eyjafjallajökull (Fig. 5e) illustrates a chal-
lenge of eruption variety. Generalized forecasts were ambiguous
before the initial fissure events (reported as the main event in
Table S2), which could be due to the closed-conduit nature of the
eruption14. However, the forecasts did show improved sensitivity to
subsequent explosive events, which were open or semi-open conduit
eruptions14. While this accords with this study’s focus on training to

recognize explosive events at other volcanoes, it does highlight the
narrow skill of the resulting model. Future models might fine-tune on,
or exclusively train with, fissure-type events, or make use of an open/
closed conduit subclassification. However, this would necessitate
more training data and may require upstream model changes like
longer pre-eruptive windows to capture magma ascent processes.

We also report some genuine failures, where generalized models
are entirely insensitive to pre-eruptive processes, e.g., the 2011 Cordon
Caulle eruption (Fig. 5h), which was weakly signaled by geodetic
observations41, marked by a very small uplift prior to the eruption. This
highlights how generalizedmodels can only complement, not replace,
other monitoring activities and that weighing conflicting evidence is
likely to be an ongoing challenge for monitoring scientists. In this
particular case, the missed eruption could be due to the shortened
monitoring record that begins only 20 days prior and was hence
unable to establish a baseline, although we cannot exclude that its
precursors are genuinely distinct from all others in the training set.
Additionally, the station’s 10 km crater-station distance may have
impacted precursor detection.

Finally, Fig. 5f and g compare forecasts of our generalizedmodels
over nine-month periods centered on the 2014 Ontake and 2004
Mount St. Helens eruptions. The 2014 Ontake eruption was largely
unexpected42, as its phreatic nature provided limited precursory sig-
nals. The 2004 St. Helens eruption was partially anticipated43 due to
increased seismicity and gas emissions, which enabled early warning
and monitoring efforts. Our models predict both eruptions with
modest confidence; however, the Ontake forecast consistently issues
high values over extensive non-eruptive periods (Fig. 5g), indicating a
high rate of false positives. In contrast, the St. Helensmodel only shows
sporadically high values (Fig. 5f), suggesting greater sensitivity to
specific unrest and pre-eruptive conditions. Addressing and reducing
the high false-positive rate, particularly in cases like Ontake, remains a
key area for further refinement.

Discussion
The primary outcome of this study has been to establish the existence
of ergodicity in seismic precursors to volcanic eruptions. Ergodicity
implies that the ensemble distribution of volcanic signals across dif-
ferent volcanoes can serve as a proxy for temporal behavior at a single
volcano. This finding underpins transferability of eruption precursors,
offering a statistically consistent foundation for generalized forecast-
ing approaches. While the ultimate impact of this result may one day
be the improvement of forecasting skills, particularly at volcanoeswith
insufficient historical data, there remain several challenges to be
addressed. Additionally, while the model estimates eruption like-
lihood, it does not provide information on the potential magnitude of
the eruption—an area for further research.

Scarcity of eruption data at individual volcanoes is a consequence
of the infrequency of eruptions compared to the relatively brief length
of the instrumental era. This shortcoming is partially addressed within
the volcanic crisis response community through use of analog
volcanoes44,45 that provide a guide for hazard evolution. Generalized
forecastingmodels explored here adopt a similar approach, albeit with

Table 1 | AUC values for the forecastingmodels depicted in Fig. 3 (ML:Machine Learning; RSAM: Real Time Seismic Amplitude
Measurement for 6 h average)

AUC Whakaari Bezymianny Copahue Magmatic Phreatic World Mean

ML tailored 0.89 0.77 0.96 – – – 0.87

ML Generalized 0.96 0.75 0.93 0.81 0.80 0.80 0.84

RSAM 6h 0.86 0.70 0.76 0.50 0.74 0.58 0.69

Forecaster models include tailoredmodels for Whakaari, Bezymianny, Copahue, as well as Generalizedmodels for theMagmatic, Phreatic, andWorld pools. The “Mean” column is the average AUC
across all models.

Fig. 3 | Performance gain of generalized forecast models as the size of the
volcano ensemble is increased. Median and 33-67 percentile range of AUC for
models trained with ensemble sizes ranging from 1 to 20 volcanoes. Ensemble
membership is selected randomly from the world pool, whereupon a train a 25-
decision treemodel is trained and then tested on the remaining unselected (out-of-
sample) volcanoes in the pool. Performance appears to saturate at an AUC>0.8 for
ensembles sizes larger than 8 volcanoes.
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precursor selection and evaluation devolved to an algorithmic level.
Essentially, the approach we present here is a form of the analog
method; however, rather than relying on expert assessment to select
analogs, we use an objective evaluation of seismic patterns across
multiple volcanoes to address the issue of data scarcity. By directing
analog assessments toward a data-driven approach, we sacrifice some
of the expert-driven selection22,23 in favor of a more statistically con-
sistent process, allowing the model to generalize precursor patterns
across varied systems. While this affords certain advantages in speed,
recall, and objectivity, they are ultimately limited by their narrow focus
on seismic data and lack of human reasoning. Nevertheless, such
ergodic forecasting models may one day complement monitoring
activities at volcano observatories with limited resources or eruption
records, with their effectiveness further improved by a deeper con-
nection to the underlying physical processes.

We recognize that ergodicity is not a bottomless well. Simply
increasing the size of the training ensemble—includingmorevolcanoes
and broader behavior—can saturate performance (Fig. 3). In other
cases, a larger pool is detrimental, for instance,wherebetter predictive
performance is achieved using phreatic and magmatic pools (i.e.,
Fig. 5). Adding more data to the training pool can introduce noise that

diminishes model reliability. Variability in volcanic data, including
sensor limitations, environmental conditions, and data collection
errors, add further complexity to signal interpretation. Incorrectly
dated eruptions are likely to poison model training. Thus, data cura-
tion and ensemble selection are important—but they are also a source
of bias. Trade-offs between data diversity and model accuracy will
require careful consideration in any operational forecasting
application.

Similar ergodic paradigms are exploited in seismic hazard
assessment through analysis of large regional earthquake catalogs for
frequency-magnitude and ground motion patterns46,47, and also in
flood forecasting through regionalization approaches48. Those
experiences have foreshadowed similar challenges identified here,
including selection, curation, and completeness of the volcano
ensemble, and the identification of outlier volcanoes with large errors
relative to the ensemble average. These issues may in future be
addressed through new model architectures48, including non-seismic
monitoring data (e.g., gas data33, thermal imagery32), physics-informed
approaches23,49, or leveraging machine learning techniques integrated
with societal risk considerations to enhance decision-making during
volcanic crises49.

Fig. 4 | Illustration of precursor identification and transfer to out-of-sample
target volcano. a,b Example of two features identified as significant duringmodel
training due to their elevated strength prior to the (a) 2004 eruption of St Helen’s
and (b) 2019 eruption at Semisopochnoi: 40min (green) and 3 h (blue) high-
frequency (HF) oscillations. c A model trained on these and other features fore-
casting on the out-of-sample 2006 eruption atAugustine.dTheAugustine forecast
model strengthens at the same time that the features identified in (a) and (b)
reappear. Note: The ML models developed here exploit ergodicity at the time
series feature level. For example, High frequency (HF) seismic oscillations at
40min and 3 h are discriminated in pre-eruptive sequences from volcanoes in the

training ensemble (e.g., Mt St Helens and Semisopochnoi). Later, these same fea-
tures are seen to strengthen prior to an eruption at the unobserved target volcano
(Augustine). This demonstrates the functional basis of precursor transfer among
volcano pools. While ergodicity implies shared physical mechanisms for most
selected features, we do not advance a specific hypothesis for the underlying
physics of this particular feature. Instead, ergodicity provides a statistical foun-
dation for transferability, allowing ensemble-derived precursors to approximate
temporal behaviors at individual volcanoes. Nevertheless, we cannot exclude the
possibility of spurious correlations in this or other specific cases.
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Method
Machine learning pipeline (workflow)
We used continuous seismic data from 24 volcanoes, with one station
per volcano (as shown in Fig. 1a and listed in Supplement Table S2).
Where multiple stations were available, we selected the station that

had recorded themost eruptions and was closest to the eruptive vent.
Multiple station workflows are not preferred for this study as they
narrow the applicability of generalizedmodels to only those volcanoes
having similar network characteristics. The dataset used here includes
41 major eruptive episodes. The majority have been classified by the

Fig. 5 | Out-of-sample forecasts from different models prior to eruptions at
seven volcanoes. The figure shows forecasts for (a) Bezymianny, (b) Whakaari
(2016 eruption), (c) Whakaari (2019 eruption), (d) Copahue, (e) Eyjafjallajökull, (f)
St. Helens, (g) Ontake, and (h) CordonCaulle. Pools are indicated in the legend, and
eruption times aremarked by black dashed lines. Themodel consensus (solid lines)

is presented as a 2-day rolling 90th percentile of the model output. These cases
highlight various practical challenges in applying forecast models, such as differ-
ences in eruption style, pre-eruptive patterns, and false-positive rates. Similar plots
for additional eruptions are provided in the Supplementary Material (Figs. S4–S7).
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Global VolcanismProgram, 2023.We excludedminor eruptive activity,
such as geysering and passive ash emissions, as our focus was on the
initial abrupt, impulsive (phreatic and magmatic) onset of eruption.
We also excluded effusive eruptive episodes, whose different char-
acteristics might be addressed in future work. The machine learning
pipeline28,50 is summarized below.

Data preprocessing
Weuse the vertical velocity component time series at each stationwith
the instrument response removed. We processed the time series from
each station to generate four separate data streams, each consisting of
its own time series sampled at 10-minute intervals22,28. Three data
streams are generated by bandpass filtering to three frequency ranges,
which captures different parts of the volcano-seismic signal. Filtering
between 2 to 5Hz focuses on a tremor signal of frequent volcanic
originwhile excluding ocean noise at lower frequencies (mainly <1 Hz).
This filtered time series was incremented into 10-min, non-overlapping
windowswith the average absolute velocity computed for thewindow.
We refer to this as Real-time Seismic Amplitude Measurement (RSAM)
although we acknowledge that RSAM is sometimes computed on the
unfiltered or very loosely filtered trace, e.g., 0.5–20Hz to exclude
microseism/anthropogenic contributions. We compute Median Fre-
quency (MF) andHigh Frequency (HF) data streams in the sameway as
RSAM but instead filtering in the range of 4.5 to 8Hz and 8 to 16Hz,
respectively. These two data streams focus on signal attenuation
effects above the frequency range from which tremor energy is com-
monly radiated16. Finally, Displacement Seismic Amplitude Ratio
(DSAR) is calculated as the ratio of the integrals of the MF and HF
signals22. High values of DSARhave been inferred to correlatewith high
gas levels in the edifice, suggesting either reduced fluidmotion and/or
trapping that has led to a gas-accumulation38,51. Time series gaps were
imputed by linear interpolation and because these gaps occur in
noneruptive periods, a later step of downsampling reduces their
impact on the models50.

Regional earthquake filtering
To isolate continuous volcanic signals, we removed signatures from
regional and volcano-tectonic (VT) earthquakes. Wave trains from
earthquakes perturb time-averaged station velocity above the
background, which then confusesML algorithms that don’t have the
context of human operators. To identify and remove earthquake
effects, we applied outlier detection to the raw waveform data
before bandpass filtering28. We extracted a 2min envelope from the
original velocity trace whenever its value surpassed three standard
deviations above the mean within a 10min window. This action
effectively eliminated signal interference caused by the majority of
brief events. However, interference from prolonged teleseismic
waves resulting from significant subduction earthquakes persisted,
necessitating the application of a two-window (20min) moving
minimum to filter out this remaining contamination from the data
stream28.

Data normalization
We used z-score normalization applied in log space to eliminate dis-
parate magnitude and range effects arising between the different data
streams28. This produces normalized distributions of data stream
values, which prevents one data type from dominating feature selec-
tion. It also improves comparisons between volcanoes where stations
are located at different distances from the vent. In log space, dis-
tributions exhibit central tendencies and do not display excessively
large asymmetries (Fig. S6). Using the entire signal record for nor-
malization can lead to information leakage because it incorporates
future data into the scaling process, potentially biasing the model’s
performance estimates. However, we checked the effect of removing
the small amount of pre-eruption data from normalization and the

effects are imperceptible. An alternative normalization approach
could be to use reduced displacement52,53.

Feature calculation
Data time series are divided into 48-hour windows, with each window
consisting of 288 samples, each sample 10min in length. Duringmodel
training, we allow adjacent windows to overlap by 36 h (75% of their
length) which increases the likelihood that a precursor pattern is fully
captured within at least one window rather than split by window
boundary. During model forecasting, adjacent windows overlap
almost entirely, except for a one sample (10-minute) shift forward in
time. For each data stream in eachwindow, we calculate over 700 time
series features using the Python package “tsfresh54. These features
include distribution measures (mean, standard deviation, number of
peaks), correlation measures (lags, Fourier coefficients), linearity
(slope and intercept of linear regressors), and other information
measures (entropy, energy, nonlinear scores). All feature values are
stored in a matrix, where individual columns represent different fea-
tures, and rows represent the end-time index of each window. Our
choice to use a 48-hour window focuses on detecting short-term
fluctuations in volcano state. This ultimately derives from the intent of
this analysis, which is to provide information on short-term changes in
hazards that would be useful for responsive volcanic monitoring. We
affirm that shorter or longer time windows might also be useful and
could be explored in other studies. However, previous studies28,50

explored a range of windows between 12 h and 5 days at Whakaari and
found that the choice did not greatly impact forecast accuracy at that
volcano.We further note that some volcanoes showmeaningful unrest
on longer timescales55.

Labeling
We define a classification problem that prioritizes algorithm atten-
tion on signals occurring in the 48 h before eruptions, called the
“look forward” window. All feature windows whose end time occurs
48 h or less before the date of an eruption onset are labeled “1”,
while the remaining windows are labeled as “0”. For training win-
dows that overlap by 75%, this results in about 164 label-1 windows
(pre-eruptive) and more than 50,000 label-0 windows (non-erup-
tive). The large imbalance is handled by randomly discarding non-
eruptive “0” windows until the dataset is balanced. The process of
randomly discarding non-eruptive “0” windows until the dataset is
balanced is repeated multiple times to minimize the influence of
random selection when removing non-eruptive windows during
downsampling.

Feature ranking
For a given down-sampled window subset, feature values are sub-
divided into groups corresponding to label-0 and label-1. The impor-
tance of each feature is then determined by whether there is a
statistically significant difference between the two distributions of
feature values for each label class. Significance is assessed using the
Mann-Whitney U test, which evaluates for a possible difference in
median between two distributions. Features are retained as significant
if the output p-value from the test falls below an adjusted Benjamini-
Yekutieli threshold50,56, which controls for a fixed false discovery rate
of 5%when conductingmany statistical tests. Features are then ranked
(by lowest p-value) and passed on for model training.

Training
First, out-of-sample volcano data are set aside for testing and not
used during feature selection or model training. We use a random
forest algorithm to solve the classification problem. Each model
consists of up to 200 individual decision trees, with each tree hav-
ing been trained on a different subset of down-sampled windows.
Thus, all non-eruptive data appears, at a very low frequency, across
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the training set50. This means that within the training set used for
the random forest algorithm, non-eruptive data instances are
represented sparsely. Models are trained using the scikit-learn
Python library57. The random forest classification model we imple-
ment has been preferred as it was previously found to outperform
other classifiers on this problem50.

Pseudo-prospective forecasting
Forecasts are only constructed for data withheld from feature selec-
tion and model training steps, simulating real-time conditions by
ensuring the test data remains unseen. This approach approximates
but does not fully replicate prospective forecasting conditions, offer-
ing a more realistic assessment of performance than a hindcast, which
includes test data in the training set. For the test data, feature time
series are calculated using overlapping 48-hour windows that each
advance the previous by 10min and hence overlap at 287 out of 288
points. This is intended to imitate real-time volcanomonitoring where
data is interpreted as it is received, i.e., at 10min intervals. Features
fromeach subsequentwindowarepassed to the trained random forest
model. The binary outputs of each decision tree are averaged to pro-
duce a value ranging from 0 to 1, referred to as the consensus of the
forecast model.

Volcano training pools
Volcanoes were divided into distinct groups or “pools” based on their
reported eruption types. We used three specific pools in this study
(Fig. 1b). Themagmatic pool comprised volcanoes in Alaska (Redoubt,
Augustine, Veniaminof, Pavlof, Great Sitkin, Semisopochnoi, Okmok),
Kamchatka, Russia (Bezymianny), and Washington, USA (Mt. St.
Helens). These volcanoes were included due to their shared tectonic
origin, and tendency to produce magmatic eruptions. The phreatic
pool included New Zealand volcanoes (Whakaari, Ruapehu, Tongar-
iro), as well as Mt. Ontake in Japan (Yamaoka et al., 2016), Copahue in
Chile/Argentina51, and Kawah Ijen in Indonesia51. These volcanoes all
have well-developed hydrothermal systems. Finally, a world pool
comprising all the volcanoes was included.

Forecast evaluation
The purpose of forecast testing is to determine overall accuracy,
including the false positive rate (incorrectly forecasted that an erup-
tionwill occur), false negative rate (failing to forecast an eruption), and
the correlation between forecasted probabilities and actual outcomes
over long time periods. Accuracy can be tested under pseudo-
prospective and prospective conditions with the latter needing real-
time or future data to assess a frozen model —a finalized model that
remains unchanged during evaluation28. Pseudo-prospective forecast
performance is not guaranteed to replicate real-time prospective
performance.

In machine learning, cross-validation is used to evaluate model
performance as well as its ability to generalize to new data or con-
texts. Leave-One-Out Cross-Validation (LOOCV) trains a model
using all samples (volcanoes or eruptions) in a dataset except for
one, and then using the excluded sample as a validation set to
measure model performance. This is repeated for each sample in
the dataset and the performance of all models is combined for an
overall estimate of model performance. Here, we applied LOOCV at
the volcano level when constructing generalized ML forecasts. We
applied LOOCV at the individual eruption level when making com-
parisons to tailored ML forecasts (Fig. 1c). See Fig. S7 for an alter-
native scheme.

Receiver operating characteristic (ROC) curves
ROC curves measure the ability of machine learning classification
models to correctly classify whether an eruption will or will not occur.
All ROC curves shown here are calculated for out-of-sample forecasts.

The ROC curve tracks how true positive (sensitivity) and false positive
rate (1-specificity) co-evolve for a trigger threshold that is swept from0
to 1. Hence, they provide a single evaluation of forecast independent of
threshold choice. The ROC curve is quantified by its area under the
curve (AUC), with values approaching 1 indicating perfect
performance.

Here, we constructed ROC curves according to the following
steps (See Fig. 6): (1) a threshold value is selected, (2) the threshold
is applied to the forecast to create a binary output (1=consensus
exceeds threshold, 0=consensus is equal to or below threshold); (3)
a true positive (TP) or true negative (TN) is scored in each window
that the forecast model agrees with the out-of-sample data label:
both “1” for TP or both “0“ for TN (Fig. 6); (4) a false positive (FP) is
scored when the forecast model outputs a “1” but this does not
match a corresponding “0” of the label vector; a false negative (FN)
is scored for all other mismatches (Fig. 6); (5) the true positive rate
(TPR) and false positive rate (FPR) are calculated as TPR = TP /
(TP + FN) and FPR = FP / (FP + TN); (6) steps (1-5) are repeated using
100 evenly spaced thresholds between 0 and 1 with the set of
matching pairs forming the ROC curve; finally (7) AUC is calculated
as the integral of the ROC curve.

Seismic amplitude forecast
To benchmark the generalized ML forecasts, we construct a simple
forecast based on seismic amplitude. An RSAM forecast consensus
is calculated by transforming the raw RSAM record calculated in this
study for each volcano to an equivalent percentile value, e.g., an
RSAM value at the median would correspond to an RSAM forecast
consensus of 0.5. The percentile evaluation is done on a volcano-by-
volcano basis and, as it assumes knowledge of future extreme
maximum values, it is not pseudo-prospective. Although this means
the RSAMmodel has an information advantage over generalizedML
forecasts, we deemed this acceptable as it is here used only as a
reference case. The RSAMmodel was further advantaged by testing
three variations: direct use of its output on a 10min basis, or a
rolling median using 6 h or 2 days. We selected the version with the
highest accuracy, which turned out to be the 6-hour rolling median,
for comparison to the ML forecasts.

Fig. 6 | The figure shows how the consensus time series, which is the output of
the eruption forecasting classifier model, is used to count true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN) using a
threshold and a pre-defined eruption window. Threshold: A horizontal line
between 0 and 1 on the model output axis. In this study, we tested for 100
thresholds equally distributed between 0 and 1. Pre-eruptive window: A shaded
area on the time axis representing the time period before the eruption consider as
pre-eruptive (corresponding to the trainingwindow). Truepositive (TP): Anymodel
output that surpasses the threshold after the start of the pre-eruptive window and
before the eruption is considered a TP. These are correctly predicted eruptions.
False negative (FN): Anymodel output that does not surpass the threshold between
the beginning of the pre-eruptive window and the first time it surpasses the
threshold (if it ever does) is considered an FN. These are missed eruptions. False
positive (FP): Any model output that surpasses the threshold outside the pre-
eruptive window is considered an FP. These are incorrectly forecasted eruptions.
True negative (TN): Any model output that does not surpass the threshold outside
the pre-eruptive window. These are correctly classified non-eruptive data. Note:
The selection of the threshold value can significantly impact the number of TP, FP,
FN, and TN.
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Potential avenues for enhancing methods
To enhance accuracy, avenues for improvement include expanding
precursory analysis by considering longer time periods (multi-time
scale approaches; Ardid et al., 2023; Ardid et al., 2024) and incorpor-
ating additional data types such as gas emission rate58,59, thermal
anomalies60,61, andmagnetotelluric data62–64, and fromextendedglobal
datasets65 Also, application to geysers monitored with seismic data66,67

given their frequent eruptive nature and lower time between eruption
offers an opportunity to improve these methods with more balanced
datasets between eruptive and non-eruptive data for the ML classifi-
cation problem.

Another avenue for improvement is on the outlier detection
algorithm, which is intended to filter out regional earthquakes, and
its calibration was based on data specifically gathered from regional
earthquakes28. However, it filters out all earthquakes without dis-
criminating, including VTs—this is because our research interest is
in online real-time algorithms that can operate without human
assistance (e.g., classifying VT earthquakes)—future work could
include adding automated discrimination of VTs from regional
earthquake68–70.

Data availability
The dataset for most volcanoes in the catalog, pre-processed as
amplitude measurements sampled every 10min, is included in the
Supplementary Data 1. Raw waveform data for New Zealand volcanoes
can be downloaded from GEONET, and for Alaskan volcanoes from
IRIS. Both datasets are operable as clients through the FDSN webser-
vice (https://www.fdsn.org/networks/). If you utilize the provided
seismic data, please cite this article accordingly. Users are also
expected to adhere to the non-commercial nature of the provided
datasets and materials.

Code availability
The codes used in this study are provided in the Supplementary Code
1. The repository includes themain library for forecasting, named Puia
(meaning “volcanoes” in Māori), along with scripts to implement a
generalized forecaster, test a simple RSAM forecaster, and compute
ROC curves. The code is released under the Creative Commons
Attribution-NonCommercial (CC BY-NC) License, allowing free use,
modification, and distribution of the software for non-commercial
purposes, provided the original license and copyright notice are
included. Any third-party use of this software for commercial purposes
is strictly prohibited without explicit permission from the corre-
sponding author. Users are also expected to adhere to the non-
commercial nature of the provided datasets and materials. This soft-
ware is not guaranteed to be entirely free of bugs or errors. Minor
issues may exist, but they are expected to have only amarginal impact
on accuracy and performance. If you discover any bugs or errors, we
encourage you to report them by contacting the corresponding
author. Please note that this software is not designed to serve as an
Application Programming Interface (API) for building custom volcano
eruption forecast models, nor is it particularly user-friendly for indi-
viduals new to Python or machine learning. However, if you wish to
adapt this model for another volcano or a different use case, we
encourage you to do so. We welcome inquiries regarding the best way
to proceed and are happy to provide guidance when possible. The
authors acknowledge the preprint of this manuscript, which is avail-
able online at https://doi.org/10.21203/rs.3.rs-3483573/v171.
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