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Comprehensive exploration of visual
working memory mechanisms using large-
scale behavioral experiment

Liqiang Huang

Two decades of research on visual working memory have produced sub-
stantial yet fragmented knowledge. This study aims to integrate these findings
into a cohesive framework. Drawing on a large-scale behavioral experiment
involving 40 million responses to 10,000 color patterns, a quasi-
comprehensive exploration model of visual working memory, termed QCE-
VWM, is developed. Despite its significantly reduced complexity (57 para-
meters versus 30,796), QCE-VWMoutperforms neural networks in data fitting.
Themodel provides an integrative framework for understanding human visual
working memory, incorporating a dozen mechanisms—some directly adopted
from previous studies, some modified, and others newly identified. This work
underscores the value of large-scale behavioral experiments in advancing
comprehensive models of cognitive mechanisms.

The fusion of AI with extensive datasets has sparked a wave of pivotal
studies that utilize vast internet data to investigate human behavior1–6.
In the latest development of this trend, several recent research initia-
tives have begun conducting large-scale controlled experiments to
gain deeper insights into basic cognitive processes. Each of these
projects utilizes a large-scale experiment to carefully measure a spe-
cific facet of human behavior, subsequently conducts a “comprehen-
sive exploration”of the relevantmechanisms/factors, and tries to build
the most fitting model from them to interpret the accumulated data.
This comprehensive exploration7–9 approach attempts to combine the
strengths of traditional experimental psychology with data-driven
model development in the realm of artificial intelligence (AI). On one
hand, this approach is theory-oriented: mirroring experimental psy-
chology, it employs controlled experiments tailored to specific
research objectives, striving to uncover theoretical insights. On the
other hand, this approach is data-driven: similar to AI principles, this
approach fundamentally relies on constructing an extensive, high-
quality benchmark dataset as the cornerstone of model development,
and iteratively refining the model to attain a satisfactory performance
level. In brief, this is a theory-oriented, data-driven approach that uses
AI tools (data-driven model development) to achieve the goal of
experimental psychology (theoretical insights). A recent article pro-
vides a detailed conceptual and methodological justification for this
comprehensive exploration approach10.

For example, one pioneering study7 merged existing theories of
human decision-making through machine learning, yielding a model
that provides predictions with superior accuracy compared to any
singular theory. In a similar vein, another study8 formulated a quasi-
comprehensive exploration model for spatial working memory. This
model, while remaining explicitly interpretable, approaches the accu-
racy of a convolutional neural network (CNN).

This comprehensive exploration approach offers a significant
advantageover typical experimentalpsychology studies,whichusually
begin with a hypothesis and predict outcomes based on one or two
pre-established dimensions. Increasingly, it is evident that fragmented
insights from such narrowly focused studies cannot be easily synthe-
sized into a cohesive overall picture9–11. The comprehensive explora-
tion approach aims to address this limitation by creating an integrative
framework that unifies these fragmented insights10. Naturally, unra-
veling the complex relationships between these fragmented mechan-
isms is statistically demanding, necessitating the use of large-scale
experiments to provide sufficient data for robust analysis.

In this study, I embarked on a large-scale experiment to delve into
the mechanisms underlying human visual working memory (VWM), a
crucial domain for comprehending the complexities of the human
mind12–33. Researchers have strived to delineate the intricate mechan-
isms inherent inVWM34–37, but achieving a consolidated theory remains
challenging. The dataset harnessed in this study is several hundred
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times larger than those employed in previous investigations. This scale
affords an avenue to formulate a comprehensive model that incor-
porates many established mechanisms and potentially reveals pre-
viously unreported ones.

In this study, participants carried out a delayed estimation task15,38

related to VWM (See Fig. 1a and see the Methods section for more
details). Theywere asked tomemorize four saturated colors. After a 1-s
retention interval, they were required to report each of the four colors
by choosing it on a color wheel. The experiment employed a total of
10,000 randomly-generated color patterns and measured 40 million
responses (1009 responses per item, SD = 32). As shown in Fig. 2,
although the distributions of responses were generally centered
around the presented colors, their shapes were notably distinct.

The study aims to develop a model that effectively explains the
VWM process (i.e., fits the large-scale experiment data) while main-
taining parsimony. Specifically, the model uses the 10,000 color pat-
terns as input to predict the response distributions for 40,000 items
(10,000 patterns × 4 colors). Two additional models are used for
support: a baselinemodel representing previous theory-drivenmodels
and serving as the starting point, and a guidance neural network pro-
viding a benchmark for what a comprehensive model should achieve.
Importantly, while the neural network plays a critical role as a refer-
ence tool, the target model itself is not an AI model; rather, it is a
theory-based model similar to those traditionally used in VWM
research15–17.

Here, I show that a theory-basedmodel—theQCE-VWM(described
below)—simultaneously achieves effectiveness and parsimony. On one
hand, the QCE-VWM is highly effective, outperforming neural net-
works in data fitting. On the other hand, it is fairly parsimonious, with
only 57 parameters compared to the neural network’s 30,796. The
QCE-VWMprovides an integrative framework for understandingVWM,
incorporating a dozenmechanisms—someadopted directly fromprior
studies, others modified, and several newly identified.

Results
Pattern-level summary
The raw data are first summarized into response distributions for the
40,000 items (10,000patterns × 4 colors) by amalgamating responses
from all trials featuring the samepattern. These response distributions
are then used in all subsequent modeling efforts. See Supplementary
Methods 2.1 for reasoning behind this summarization.

A neural network
A neural network was employed to analyze the dataset. As depicted in
Fig. 1b, this neural network features an input layer with 8 nodes, which
is fully connected to a first hidden layer comprising 100 neurons. After
this layer, a ReLU activation function, defined asReLU(x) =max(x, 0), is
applied. This first hidden layer is fully connected to a second hidden
layer that also contains 100 neurons, and again, a ReLU activation
function is applied. Finally, the network possesses an output layer with
196 neurons.

The 8 input values are grouped into four pairs, each representing
a color as the x/y coordinates on a color wheel. The 196 output values
are designed to be used to simulate the distribution of responses. This
neural network aims to emulate observers’ responses by blending 16
normally distributed components - which represent knowledge-based
responses - with a fraction of random guesses.

Subsequently, the distribution of responses is computed and
compared against the ground truth (i.e., the actual distribution of
observers’ responses). The network was optimized to maximize the
likelihoodof observed data, employing aNegative Log-Likelihood for a
Single Response (NLLsr) loss function, which was also applied in the
subsequent conceptual models.

Further details regarding this neural network, including the pre-
cise calculation method for the distribution of responses and the

justification for its chosen configuration, are available in Supplemen-
tary Methods 3.

Neural network as the guidance for model development
Despite their inherent interpretability challenges, it has been recently
demonstrated that neural networks can provide valuable insights for
theorists attempting to understand mental processes. In brief, the
“scientific regret minimization” method utilizes the predictions pro-
duced by the neural network as guidance for the development of
conceptual models39. This role of guidance manifests in two ways.

First, the predictions of an under-development conceptualmodel
are compared with those of the guidance neural network to gain
insights into what is missing in the former. Why compare against the
predictions of the neural network rather than the actual data? The
sophistication of neural networks allows them to approximate
underlying mechanisms, effectively extracting genuine information
within the data. Concurrently, regularization techniques help filter out
the majority of the noise. As a result, the neural network’s predictions
may prove more helpful than the raw data when used as guidance for
conceptual model development. Nevertheless, it should be noted that
this comparison is made only for obtaining insights, and the model is
always still fitted to the actual data.

Second, the predictions of the guidance neural network are used
as virtual data, allowing us to go beyond the 10,000 patterns for which
we actually have data and explore all 3604 = 16,796,160,000 possible
patterns. Please see Supplementary Methods 5.3 for further details.

Factorial comparison analysis as baseline for model
development
Previous experimental studies of visualworkingmemoryhave typically
examined only one factor at a time. However, one study17 conducted a
factorial comparison of three factors—namely, the variability of mne-
monic precision, the number of remembered items, and spatial bind-
ing errors—by simultaneously testing all 32 possible combinations of
models (4 × 4 × 2). This factorial comparison study has greatly helped
to clarify the issues surrounding the debate between slot15 and
resource16. It has become a landmark in this field.

Some of the levels within these three factors were inapplicable to
the present design, resulting in a total of 8 possible models (2 × 2 × 2).
Consistent with previous findings17, the VP-F-NT model (Variable Pre-
cision, Fixed Capacity, with Non-Target Responses) emerged as the
best among these 8 and is used as the baseline model for the present
study. Further details of this factorial comparison analysis can be
found in Supplementary Methods 4.

A comprehensive exploration model
A quasi-comprehensive exploration model of VWM (QCE-VWM) is
created to provide a comprehensive framework forVWMmechanisms,
with “quasi” indicating a recognition of potential incompleteness. The
QCE-VWM, similar to previous VWM models15–17, uses explicitly inter-
pretable mechanisms to simulate VWM’s underlying functions but
provides a more accurate fit to the data.

As depicted in Fig. 1c, the QCE-VWM model underwent iterative
refinement (See SupplementaryMethods 5.4). This refinement process
—entailing the identification of mechanisms and the determination of
their assembly—was guided by observational clues derived from the
scientific regret minimization method and theoretical insights from
existing literature, as listed in Table 1.

The structure of this model is shown in Fig. 3, which will be ela-
borated below. The relative importance of different mechanisms and
aspects within the QCE-VWM model is shown in Fig. 4.

Similar to the guidance neural network, the QCE-VWMmodel aims
to simulate observers’ responses by mixing normally distributed com-
ponents, representing knowledge-based responses, with a proportion
of random guesses. Specifically, the model includes eight color-
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A quasi-comprehensive exploration model of VWM (QCE-VWM model)

Fig. 1 | Basic information of the present study. a In the present study, a delayed
estimation task was adopted. Participants attempted to memorize four saturated
colors and report them after a 1-s retention interval. The report for each color was
done by tapping the corresponding white square and selecting the appropriate
color on a color wheel. b The guidance neural network includes four layers,

respectivelywith 8, 100, 100, and 196 nodes and fully connected throughout. c The
QCE-VWM model underwent iterative refinement. This refinement process, invol-
ving the identification of individual mechanisms and the determination of their
interrelationships, was guided by both observational clues and theoretical insights.
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QCE-VWM                                                      Guidance neural network

Fig. 2 | Four sample patterns. This figure shows the response distributions of four
selected sample patterns, smoothed for clearer visualization. It also includes the
predictions made by the QCE-VWM model (white curve) and the guidance neural
network (black curve), both of which will be explained later. These patterns were

selected due to their mid-range positioning in a comparison of the fitting accura-
cies between the two models, giving a fair visual assessment of their relative
effectiveness.
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category-biased components in which thememorized colors are biased
toward the centers of eight color categories, one unbiased component,
and three swap-based components in which the memorized colors are
replaced by the three other items of the four-color pattern.

The QCE-VWM model is divided into three distinct phases, each
further subdivided into multiple steps. For a detailed, step-by-step
explanation of the model, please refer to Supplementary Discussion 1.

Phase 1: pre-categorical processing
Phase 1 incorporates two crucial processes that occur before color
categories come into play.

In step 1a, interactions between items have two effects: an effect
on the retention rates of items, which affects step 3d below, and an
effect on bias, which affects step 3b below. The latter also influences
multiple other steps by incorporating this bias into their calculations
of color values. These effects are respectively represented by the blue
and green arrows in Fig. 3. As illustrated in Figs. 5a, b, the influence of
one item on another is described by a normal function of the color
difference between the two items in the effect on retention, and by a
Mexican-hat-like function in the effect on bias.

In step 1b, chunking between items is modeled. This chunking
effect is represented by the red arrow in Fig. 3, and it affects two
subsequent steps. As shown in Fig. 6a: the overall chunking effect of a
pattern is calculated as aweighted average. On one hand, the elements
being averaged are the chunking effects for all possible chunking

structures (see Supplementary Table 2). As depicted in Fig. 6b, the
magnitude of the chunking effect for each structure is quantified as a
reduction in the number of storage units. For instance, a two-chunk
structure (e.g., 3 + 1) earns twopoints because it reduces thenumberof
storage units from four to two.On the other hand, theweights used for
averaging are determined by the likelihood of each structure, which is
derived from the difference between between-chunk variability and
within-chunk variability. Intuitively, the greater the between-chunk
variability (items of a chunk are very different from those in other
chunks), and the smaller the within-chunk variability (items within the
same chunk are similar), the more likely a chunking structure is.

An important distinction between interactions between items and
chunking is that the former focuses on the effects of interactions at the
individual-item level, while the latter is awhole-pattern-level index that
describes how well-chunked the entire pattern is.

Phase 2: Calculation of weights of components
Eight color categories are defined in step 2a, each adhering to a normal
distribution (see Fig. 7a). Importantly, there are two identical cate-
gories for reddish colors: red and red 2, a point that will be revisited
below. In step 2b, weights of the eight color-category-biased compo-
nents are determined by the distribution values of their corresponding
categories. Intuitively, for blueish colors, the blue-category-biased
component weighsmore than the green-category-biased one, and vice
versa for greenish colors.

Table 1 | Findings and previous studies

Relevant
mechanism

Implications Previous studies See also

Global-level implication An integrative framework, created by merging individual mechanisms, is very effective,
even more so than neural networks.

not previously reported

Interactions between items Items influence each other’s biases and retention rates. different from them18 3.9

The interactions between items are based on pre-categorical, not category-based, color
information.

not previously reported 3.7

The effect of interaction on biases is governed by a Mexican-hat-like function. confirms them30

Chunking Chunking magnitude = reduction in the number of storage units.
Likelihood = between-chunk variability - within-chunk variability.

different from
them19,21,26,33

3.9

Chunking is based on pre-categorical, not category-based, color information. not previously reported 3.7

Better-chunked patterns are less likely to be swapped, and less attracted toward category
centers.

not previously reported

Contrary to previous findings, better-chunked patterns are no more likely to be
remembered.

different from
them19,21,26,33

Category-
biased component

Memory of colors are affected by color categories. confirms them23 3.4

The category-based encoding is Bayesian-like but does not strictly follow Bayesian rules. different from them18,23,43 3.6

Red advantage: reddish colors are represented more precisely than other colors in
category-biased component (i.e., red 2 category).

not previously reported 3.5

Unbiased component Red disadvantage: reddish colors are represented less precisely than other colors in the
unbiased component.

not previously reported 3.5

Swap-based component Spatial binding errors occur at the representation stage, but not at the response stage. different from them13,20 3.8

Concentration and Crosstalk The weights of items affect each other. not previously reported 3.9

Retention rates/
Random guess

More typical colors, as defined by the categories, are more likely to be remembered. confirms them27

Consistent with the spirit of the slot model, only the retention rates, not the precision, are
affected by interactions between items and spatial attention.

different from them15,24 3.3

Trade-off There is a trade-off between the quantity and quality of representations. This is consistent
with the spirit of resource model.

confirms them16,28,41 3.3

Precision of representations There are low-precision components. confirms them17,29,31,32 3.2

Spatial attention Better-attended items are more likely to be remembered. confirms them15,51–54 3.1

Better-attended items’ color categories are narrower and taller, and less effective at
attracting the color-category biased component.

not previously reported 3.1

Category/ representation The truncated normal distribution is superior to the von Mises distribution. different from
them15,16,38,55

3.10

This table presents the primary finding of theQCE-VWMmodel, alongwith 20 specific implications. The “Previous studies” column provides references to relevant prior findings when available and
clarifieswhether the present studyconfirms themor supports a different conclusion. The rightmost “see also” columnguides readers to the corresponding sections in the SupplementaryDiscussion
where each topic is elaborated.
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In step 2c, the weight of the unbiased component is determined
by an item’s location. This will be discussed below.

These nine weights—corresponding to the eight color-category-
biased components and the unbiased component—then undergo
two processes: concentration (step 2d) and crosstalk (step 2e).
Previous VWM studies have explored the role of color categories23

and the interactions between items18 but have not examined the
conjunction of these two concepts: how the categories of one item
influence those of another. This study explores this conjunction,

leading to the discovery of two mechanisms that have not been
previously reported: concentration and crosstalk. In the concentra-
tion mechanism, smaller category weights are disproportionately
reduced, which intensifies their diminishment—hence the term
“concentration.” By contrast, crosstalk involves a proportional
redistribution of category weights between items, regardless of their
initial magnitudes. Both concentration and crosstalk are influenced
by the color difference between the two items, as illustrated in
Figs. 5c, d.

Phase 3: Calculation of distributions of responses

Phase 2: Calculation of weights of components

Phase 1: Pre-categorical processing

(3a) Attraction toward centers (3c) SDs of distributions

(3f) Distribution of responses (with low-precision components)

(3d) Retention rates of items

(3b) Biases of distributions

Interaction on retention Interaction on bias Chunking effect

(1b) Chunking(1a) Interactions between items

(2g) Weights of all 3 types of components

(2d) Concentration

(2e) Crosstalk

(2c) Weights of unbiased component

(2f) Weights of Swap-based components

(2b) Weights of color-category-biased
components

(2a) Eight color categories

(3e) Trade-off

Spatial attention 

Fig. 3 | Structure of QCE-VWM model. This model aims to simulate observers’
responses by blending knowledge-based responses with a proportion of random
guesses. The former comprises three types of normally distributed components:
eight color-category-biased components, one unbiased component, and three
swap-based components. Throughout the operation of the model, the weights of

these components, along with the means and SDs of their distributions, as well as
the proportion of random guesses, are calculated and used collectively to make
predictions about the distribution of responses. Blue, green, red, and yellow arrows
respectively represent the effects of interaction on retention, interaction on bias,
chunking, and spatial attention.
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In step 2f, the weights of the three swap-based components
decrease as the target item and the swapped item become more dif-
ferent, as illustrated in Fig. 5e. Put simply, swaps occur only between
similar items. Moreover, swaps are less likely to occur with better-
chunked patterns.

In step 2g, the weights of all three types of components are
combined.

Phase 3: Calculation of distributions of responses
In step 3b, the biases for all 12 components of the 40,000 items are
calculated. Each of the biases for the eight color-category-biased
components is determined as a proportion of the color difference

between the category center and the item. This proportion, termed the
“degree of attraction”, is calculated in step 3a. It varies across cate-
gories and decreases for better-chunked patterns. By definition, the
bias for the unbiased component is zero, whereas the biases for the
swap-based components are the color difference between the swap-
ped item and the concerned item.

In step 3c, the standard deviations (SDs) of the components are
calculated. As illustrated in Fig. 7b, the SDs of the color-category-
biased components are proportional to, specifically 80.8% of, the SDs
of the categories themselves. However, there is a distinctive red
advantage: the color-category-biased component associated with the
Red 2 category is much more precise (SD ratio = 0.452) than the
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unequal spatial attention
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Fig. 4 | QCE-VWM vs 17 alternative models. This graph illustrates the cost asso-
ciated with eliminating a single mechanism (or aspect) of the QCE-VWMmodel, or
that of applying different methods (see text and Supplementary Discussion 2 for
details). These costs are gauged by the effect sizes of t-tests in 17 comparisons
between QCE-VWM and 17 alternative models. These effect sizes are measured as

Cohen’s d value (green bars), as well as the CAD values (complexity-adjusted d, see
Supplementary Methods 5.1, purple bars), and they are generally quite large.
Moreover, cross-validation is performed, and the Cohen’s d value for the validation
set (blue bars) is nearly as large as that for the training set (red bars), suggesting
that these effects are generalizable.
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proportional relationship predicts. Interestingly, as shown in Fig. 7c,
there is a red disadvantage in the unbiased component: reddish colors
(at the category center) are much less precise (SD ratio = 1.827) than
other colors. Altogether, reddish colors are unique40 (see Supple-
mentary Discussion 3.5).

The SD of the swap-based components is constant, equivalent to
80.8% of the SD of the distribution of their weights (i.e., the distribu-
tion shown in Fig. 5e).

In step 3d, the retention rates of items are primarily calculated as
theweighted average of the distributions of the eight categories on the
color wheel, plus a constant baseline. This implies that atypical colors,
falling between the primary color categories, are generally at a
disadvantage27. The retention rates are also influenced by the inter-
actions between items (i.e., the interaction on retention effect from
step 1a).

In step 3e, a trade-off28,41 takes place between the quantity
(retention rates) and the quality (SDs) of VWM representations.

In step 3f, the response distributions are calculated. The response
distribution for each of the 12 components of every item is derived
from the previously calculated biases and SDs. These 12 components
for each item are then integrated into a single distribution, which is
combined with a low-precision counterpart (see also Supplementary
Discussion 3.2) to form the overall distribution of knowledge-based
responses—responses influenced by the knowledge about the colors of
items. Then, the response distributions are computed as a mixture of
knowledge-based responses and random guesses, with the proportion
of knowledge-based responses indicated by the aforementioned
retention rates.

Spatial attention
The mechanisms of the QCE-VWM model are sometimes spatially
inhomogeneous. As depicted in Fig. 5f, the top-left item has a distinct
advantage over the bottom two items, while the top-right item occu-
pies amiddle ground. This phenomenon is likely influenced by reading
habits42, where readers typically begin at the top-left corner, proceed
through the rest of the line, and thenmove to the lines below. In other
words, this spatial inhomogeneity is probably a manifestation of the
effect of unequal spatial attention to these locations and is tentatively
interpreted as such (see also Supplementary Discussion 3.1).

As indicated by the yellow arrows in Fig. 3, this effect of unequal
spatial attention impacts three steps. Specifically, better-attended
items are more likely to be remembered (i.e., higher retention rates,
step 3d), particularly as the unbiased component (step 2c). Its color
categories are narrower and taller and are less effective at attracting
the color-category biased component (step 2a).

Statistical analysis
From a statistical perspective, the QCE-VWM model is robustly sub-
stantiated. It was compared with 17 alternative models. Fourteen of
these models (models 2-15) were derived by eliminating a single
mechanism or aspect, and they are used to show that each of these 14
mechanisms/aspects is essential for the QCE-VWM model. The
remaining three (models 16-18) were developed by applying different
methods to specific aspects of theQCE-VWMmodel, and they are used
to show that each of these alternative methods is inferior to what is
used in QCE-VWM.

Specifically, 17 t-tests were conducted to evaluate the QCE-VWM
model’s advantage (i.e., reduction in NLLsr values) over alternative
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Fig. 5 | Variousmechanisms of the QCE-VWMmodel. a–e. In five cases, a variable
is the function of the color difference between two items. From top to bottom, the
panels respectively show the functions governing the effect of interaction on
retention rate, the effect of interaction on bias, concentration, crosstalk, and
weights of swap-based components. f Several mechanisms have been identified to
exhibit spatial inhomogeneity, as illustratedby thedistribution shownhere: the two
bottom corners are at a clear disadvantage compared to the top-left corner, while
the top-right corner occupies an intermediate position. This is likely attributable to
the unequal distribution of spatial attention.
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models. Given the unusually large sample size (10,000 patterns), even
small effects could produce extremely low p-values (p < 0.001 in all
cases, see details in Supplementary Table 3). Therefore, p-values are
not a suitable statistical index in this context. For an index that does
not scale with sample size, the effect sizes (Cohen’s d) of these 17
comparisons are illustrated in Fig. 4 (see the values in Supplementary
Table 3). Most of these d values are decently large, but several are only
slightly above 0.2, which could be considered small effects. However,
Cohen’s d is typically used in situations where the experiments are
tailor-made to highlight one specific mechanism/factor, whereas the
randomly-generated patterns in the present study are not. With this
consideration, it seems fair to say that all these effects are
decently large.

The mechanisms are not equally complex. For example, elim-
inating the chunking mechanism results in the reduction of 3 para-
meters, whereas eliminating the trade-off mechanism results in the
reduction of only 1 parameter. Therefore, a “complexity-adjusted d”
(CAD) is also presented in Fig. 4. This CAD is defined as follows (see
Supplementary Methods 5.1 for further details).

CAD ðcomplexity adjusted dÞ= Cohen0s d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δparam

q ð1Þ

Furthermore, cross-validation was conducted to evaluate the
generalizability of these 17 comparisons. The data were partitioned
into 10 subsets, with models being trained on one subset and then
applied to the other nine subsets. Figure 4 reveals that the Cohen’s d
values for these 17 comparisons are approximately the same for both
the training and validation sets. The average generalizability ratio
(Cohen’s d for validation set/Cohen’s d for training set) for the 17
comparisons is 99.5 %, suggesting that they are generalizable (see
details in Supplementary Table 4).

Discussion
Compared to traditional one-at-a-time studies, which yield fragmented
insights like pieces of a puzzle, the comprehensive exploration
approach merges these pieces of insight into an overall picture: an
integrative framework. The task of putting puzzle pieces together is
supposedly undertaken by literature reviews, but unfortunately, they
are not very effective in doing so9–11. From this perspective, compre-
hensive exploration can be seen as an enhanced literature review
equipped with a structured methodology. As depicted in Fig. 8a, it
aims to amalgamate the precision and evidence-based nature of
experimental studies with the extensive, holistic scope of literature
reviews.

By integrating the fragmented insights, the QCE-VWM model has
achieved an optimal balance between effectiveness and parsimony.

1+1+1+1 2+1+1 2+2 3+1 4Nature of chunks

Possible chunking 
structures

Difference between 
within-chunk variability 

and
between-chunk variability

Weights used for 
averaging: 

likelihood of each 
structure

Elements being 
averaged: 

chunking effects of all
possible structures

Overall
chunking effect 

of a pattern:
determined by a

weighted 
average

a

b

Reduction in 
the number

of storage units

Number of chunks 4 3 2 2 1

Chunking effect 
(4-Number of chunks) 0 1 2 2 3

Fig. 6 | Chunking. a The chunking effect of a pattern is calculated as a weighted average across possible chunking structures.b Themagnitude of the chunking effect for a
structure is calculated as the reduction in the number of storage units.
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Figure 8b compares the fitting of the QCE-VWM model with those of
the guidance neural network and the baseline model (i.e., the VP-F-NT
model discussed above). As expected, the guidance neural network
exhibits a superior fit to the data compared to the baselinemodel. This
aligns with the commonly observed discrepancy between neural

networks and cognitive models: the former excel in data fitting but
tend to be complex, while the latter are parsimonious but often fall
short in effectively explaining data. TheQCE-VWMmodel has achieved
effectiveness but has alsomaintained relative parsimony.Ononehand,
it surpasses the guidance neural network in terms of data fit. The latter
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is presumably a nearly full explanation of the data, so the QCE-VWM
model also is. On the other hand, it remains fairly parsimonious, with
57 parameters compared to the neural network’s 30,796. In brief, by
summarizing the accumulatedwisdomof decades of previouswork on

VWM, the QCE-VWMmodel provides a better explanation of empirical
observations than a massive neural network.

As shown in Fig. 8b, the performance of the neural network sub-
stantially decreases when the number of its parameters is reduced to
628 and 208 (see also Supplementary Methods 3). This observation
further supports that the neural network cannot maintain its effec-
tiveness without its complexity, highlighting the distinct advantage of
the QCE-VWM model in achieving both effectiveness and parsimony
simultaneously. For a complete comparison, allmodels involved in this
study are presented in Fig. 9.

After demonstrating that the QCE-VWM model achieves an opti-
mal balance between effectiveness and parsimony, we now turn to its
conceptual implications. Using the puzzle analogy again, the key
message of the present study is that a fairly complete overall picture is
formed from these puzzle pieces, something rarely achieved or
attempted for any cognitive task. In addition to this, there are
numerous specific findings concerning the relationships among the
puzzle pieces (i.e., the relationships between various mechanisms
within themodel), the discovery of new puzzle pieces, or the updating
of old ones. There are toomany to discuss exhaustively here; however,
the 20 most important ones are listed in Table 1.

Next, we will go through five benefits of the comprehensive
exploration over traditional one-at-a-time studies and/or literature
reviews. First, a comprehensive exploration explicates the relation-
ships among individual mechanisms. Traditional experimental studies
examine different mechanisms one at a time and cannot elucidate the
relationship among these mechanisms. For example, one previous
study23 distinguished between pre-categorical and category-based
color information, while another explored the mechanism of
chunking21. However, these separate studies do not address their
relationship: is chunking based on pre-categorical or category-based
color information? In contrast, a comprehensive formal computational
model compels us to explicitly answer such questions. Specifically, by
positioning chunking in phase 1, the QCE-VWM model implies that
chunking relies on pre-categorical color differences rather than
category-based ones (see Supplementary Discussion 3.7). To general-
ize, the QCE-VWM model automatically implies numerous relation-
ships. For instance, are each of the aspects (e.g., retention rates,
memory precision, categories’ attraction, swapping) affected by each
of the factors (e.g., chunking, interaction between items, spatial
attention, and position on the color wheel)? The model provides
answers to these and other potential questions, which can be found by
examining the model’s details (see Table 1).

Second, relevant to the preceding point, a comprehensive
exploration facilitates the examination of the conjunction of existing
findings. Previous studies have separately established the role of color
categories23, the interactions between items18, and the role of random
guesses15. The present study tries to explore the conjunctions between
them. As mentioned above, the conjunction between category and
interaction (i.e., how the weights of items affect each other) led to the
discovery of twomechanisms that have not been previously reported:
concentration and crosstalk (see Supplementary Methods 5.4 for the
other conjunctions). Such a conjunction-based finding is unlikely to
emerge from traditional one-at-a-time studies because it requires the
simultaneous consideration of two factors that are not typically con-
sidered together. Nevertheless, their importance for explaining the
data (Cohen’s d =0.248 and 0.261, respectively, for concentration and
crosstalk) are comparable to the conceptually straightforward
mechanism, trade-off (Cohen’s d =0.238).

Third, in the comprehensive exploration, a missing or redundant
mechanism can be objectively assessed throughmodel fitting. On one
hand, if an important mechanism is missing from the model, it will
result in a set of poorly-fitted patterns, allowing us to speculate on the
nature of themissingmechanism. On the other hand, if amechanism is
redundant, then it will not lead to further improvement in the model’s
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functions as an enhanced literature review, aiming to merge the precision and
evidence-based characteristics of traditional experimental studies with the broad,
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F-NT model have achieved effectiveness and parsimony, respectively. In contrast,
theQCE-VWMmodel hasmanaged to simultaneously achieve both; it surpasses the
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nious. Four reduced versions of the guidance neural network are indicated by the
gray dots. Their performance substantially decreases when the number of para-
meters is reduced to 628 and 208. This confirms that the neural network cannot
remain effective without its complexity, highlighting the distinct advantage of the
QCE-VWM model in simultaneously achieving effectiveness and parsimony.
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fitting. In comparison, the literature review is inherently subjective and
lacks an objective method to guarantee the detection of missing or
redundant mechanisms.

Fourth, a comprehensive exploration fosters more constructive
theoretical developments. Consider, for instance, the ongoing
debate15–17,20,24 between the slot model and the resource model, which
has significantly influenced studies on VWMover the past 15 years. The
slot model proposes a fixed number of slots for remembering items,
storing high-precision information for items assigned a slot, and
making random guesses for others. In contrast, the resource model
suggests flexible resource allocation, enabling potentially unlimited

items to be remembered with varying precision. As mentioned above,
the factorial comparison study17 has bridged someof the gaps between
them. The QCE-VWM model further progresses in integrating these
theoretical positions. On one hand, it asserts that only retention rates,
not SDs, are influenced by external factors (spatial attention, interac-
tions between items), making the SDs a more fixed aspect than the
retention rates. This aligns with the spirits of the slot model. On the
other hand, the trade-off observed between the quantity and quality of
representations in Step 3e is consistent with the spirits of the resource
model. Overall, it is evident that both the slot and resource models
encapsulate certain aspects of the truth, yet neither is entirely accurate

QCE-VWM model

Applying von Mises distribution

Eliminating trade-off

Eliminating red disadvantage

Eliminating low precision component

Eliminating concentration

Eliminating crosstalk

Guidance neural network (30796 parameters)

Eliminating chunking

Eliminating unbiased component

Eliminating swap-based component

Eliminating red advantage

Eliminating one category

Applying category-based difference

Neural network (8100 parameters)

Eliminating random guess

Eliminating unequal spatial attention

Applying strict Bayesian rule

Eliminating two categories

Eliminating interactions between items

Neural network (2227 parameters)

Neural network (628 parameters)

Neural network (208 parameters)

VP-F-NT (Baseline model)

VP-F

VP-A-NT
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FP-A

5.072 5.074 5.076 5.078 5.08 5.1 5.12 5.14 5.145 5.15 5.2 5.25 5.3

The 17 alternative models

Neural networks

Factorial comparison analysis

NLLsr (with uneven scales for the different ranges)

QCE-VWM model

Fig. 9 | A thorough comparison of allmodels.TheQCE-VWMmodel (represented
by a greenbar), alongwith the 17 alternativemodels (represented by blue bars), the
guidance neural network and its four reduced versions (represented by red bars),
and the eight models in the factorial comparison analysis (represented by yellow
bars), are all sorted based on their data fitting (NLLsr). Please note that uneven
scales are used across different ranges because the fittings are densely clustered
within two specific ranges: one for the QCE-VWM and alternative models, and

another for six of the eight models in the factorial comparison analysis. Conse-
quently, uneven scales are employed to highlight the distinctions within these two
clusters. The QCE-VWM and alternative models greatly outperform those in the
factorial comparison analysis due to their effective integration of more mechan-
isms. Furthermore, the QCE-VWM and several alternative models surpass the per-
formance of the guidance neural network, presumably because the latter does not
capture the underlying mechanisms as precisely as the former.
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(see Supplementary Discussion 3.3 for more details). The QCE-VWM
model serves as a constructive intermediary in this debate, amalga-
mating and scrutinizing insights from both the slot and resource
models within an integrative framework.

Fifth, a comprehensive exploration is more precise. For instance,
the color-category-biased components are attracted toward the cate-
gory centers. Although this center-attraction mechanism appears
Bayesian-like, substantial modifications are needed. Bayesian rules
predict an additive relationship between the precision of color-
category-biased components and the precision of those
categories18,43, yet a multiplicative relationship provides a better fit to
the data (see Supplementary Discussion 3.6). For another example,
while the von Mises distribution is commonly considered the appro-
priate substitute for the normal distribution in circular space, the
current analysis reveals that the truncated normal distribution offers a
better explanation for the data (see Supplementary Discussion 3.10).

After reviewing thebenefits of comprehensive exploration,wewill
now explore aspects that some may find undesirable, beginning with
the issue of the model’s complexity. One might argue that the QCE-
VWM model, with its 57 parameters, is overly complex by cognitive
psychology standards. However, the traditional belief that a model
should be limited to a few parameters emerged in contexts with lim-
ited datasets. Applying this convention to large datasets can be mis-
leading. Recent research indicates that as datasets expand, the optimal
models should also become more intricate7,44. Furthermore, the
mechanisms underlying any function of the human mind are likely to
be multifaceted. Therefore, if the goal is to reveal this complex truth,
then the model must be correspondingly complex. From another
perspective, as illustrated in Fig. 8a, the comprehensive exploration
can be considered an enhanced literature review.When the QCE-VWM
model is compared to a recent literature review35, it demonstrates a
comparable breadth of factors considered. Therefore, the complexity
of the QCE-VWM model aligns with the expectations for an enhanced
literature review.

A consequence of complexity is the iterative nature of the model.
For example, the factorial comparison analysis17, which explored a
solution space of 4 × 4 × 2 = 32possiblemodels, is broader thanwhat is
typical in experimental psychology. The present study shares the goal
of simultaneously testing multiple factors. However, the current QCE-
VWM model has 57 parameters, making it obviously impossible to
exhaustively test all 257 = 1.4E + 17 ablated models, not to mention the
many other parameters that could have been included. Therefore,
unlike the factorial comparison study, which conducted exhaustive
testing within a predefined space of solutions, the present study
adopts the style of AI studies: a data-driven iterative search within an
unlimited space of solutions. Thus, the currentQCE-VWMmodel, while
being the best option available at thismoment, is tentative andmay be
replaced by superior alternatives in subsequent iterations. Several
points need clarification regarding this iterative nature.

First, the minor cost of being iterative is outweighed by the
greater benefit of exploring unlimited possibilities. This is why the
QCE-VWM can surpass factorial comparison analysis17. While exhaus-
tive testing is valuable because it can identify the best solutionwithin a
predefined space, isn’t it preferable to discover an even better solution
by venturing into a larger space?

Second, being iterative does not equate to being arbitrary.
Although the existence of essentially unlimited possible models pre-
vents exhaustive assessment, necessitating an iterative search, those
models that are assessed undergo rigorous statistical evaluation. The
statistical evidence provided underscores the indispensability of all
the model’s mechanisms. Additionally, many candidate mechanisms,
including the Boolean map45,46, have been tested and found to be
unhelpful and thus were rejected, indicating that mechanisms cannot
be arbitrarily added. The Boolean map is particularly worth mention-
ing because it was the primary driving force behind my theory-driven

studies45–48 for 15 years and indeed the initial reason I started this
project. However, it had to be rejected because the data indicated as
much. This example clearly demonstrates that there is little room for
subjective bias in the decision to add or remove a mechanism.

Lastly, the iterative or tentative nature aligns well with the inher-
ent process of scientific discovery49. In the AI domain, the iterative
approach tomodel development is often viewed as a strength because
it enables starting with a modest proposal, gathering feedback and
additional data, and then refining the model based on those inputs,
continuing this constructive loop of enhancements. This principle
certainly applies here. Beyond the QCE-VWM model, the current
dataset also represents an initial attempt. Hopefully, this study will
inspire peer researchers to adopt a more comprehensive approach,
and ultimately, the community will decide how to establish a better
benchmark dataset for everyone’s use.

Methods
The experimental procedure adhered to The Chinese University of
Hong Kong’s guidelines for conducting survey and behavioral
research. Ethical approval was obtained from the Research Ethics
Committee of The Chinese University of Hong Kong prior to the
commencement of the study (SBRE-19-224, approved on 6 February
2020; SBRE-21-0204, approved on 6 December 2021). This approval
encompassed the consent form, the experimental processes, and the
payment system involved in the experiment.

The experiment was conducted as an online game that partici-
pants accessed using their personal devices. For obtaining informed
consent, participants were explicitly informed that the outcomes of
the testing would contribute to a scientific study led by the author.
Additionally, details regarding the task embedded within this experi-
ment were shared with them. Participants expressed their willingness
to take part in the study by tapping the Continue button on their
personal devices.

Online data collection platform
The current experiment was conducted as an online game using our
laboratory’s online data collection platform (https://huang.psy.cuhk.
edu.hk/games/). The computer code used to create the webpage for
data collection was written in JavaScript, Vue.js (version 2.6.11), and
PHP (version 5.3.3).

This platform is embedded within the WeChat app, meaning the
webpage can only function properly when accessed through the app.
This integration with WeChat is essential for facilitating user engage-
ment and management.

WeChat, a widely usedmultipurpose instantmessaging and social
media application among Chinese individuals, boasts over a billion
active users. This makes it convenient for users to share the platform
on their WeChat Moments. More importantly, embedding the plat-
form within WeChat enables access to its identification system,
streamlining user payment processes and preventing the creation of
multiple IDs. To utilize WeChat’s ID system, the platform must auto-
matically detectWeChat IDs, which necessitates opening the webpage
exclusively within the WeChat app.

Participants
As described, the experiment was conducted as an online game that
participants accessed using their personal devices, indicating that the
majority were likely active internet users. Additionally, the data col-
lection platform was presented in Chinese and embedded within the
WeChat app, implying that participants were probably Chinese lan-
guage users. Individuals with color vision deficiencies were explicitly
instructed not to participate. Beyond these factors, no other apparent
bias exists in the study population.

A total of 2316 participants (59.3% female; mean age = 29.4 years,
both based on self-reported gender and age) participated in the game.
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During each week-long session, several hundred active partici-
pants received participation-based awards (25 Chinese Yuan each),
while two randomly selected participants were granted lottery-based
awards (500 Chinese Yuan each). Further details can be found in the
Supplementary Methods 1.3.

The target dataset size was determined based on an estimation of
the total number of trials required. Specifically, based on previous
experience with working memory studies, it was estimated that 1000
trials would be sufficient for measuring VWM for each individual color
pattern. Consequently, a total of 10 million trials was planned.

Stimuli and procedure of the experiment
The current working memory task was depicted in Fig. 1a. Each trial
began with a 1-s presentation of a fixation, followed by a memory
display that showed four colored squares arranged in a 2 × 2 matrix.
Participants were instructed to memorize these four colors. This
memory display lasted for 1-s, succeeded by a retention interval of
equal duration. Upon completion of the retention interval, four white
squares appeared, indicating to theparticipants that they could initiate
their response.

Participants responded by tapping one of the white squares and
then sliding on a color wheel to report the memorized color of the
selected square. The orientation of the color wheel was randomized
for each response. During sliding, the color of the selected square
immediately changed to reflect the currently selected color. Once
satisfied with their choice, participants released their finger to confirm
their response. They then repeated this process for the remaining
three colors. In this procedure, colors that had already been reported
remained visible. Participants responded to the four items in any order
they preferred.

The aforementioned displays occupied the central square area of
the device. On a typicalmobile phone screen, the squares and the gaps
between them measure 0.91 cm and 1.04 cm, respectively.

Randomization was utilized for both the generation and use of
color patterns. In each trial, the colors were randomly selected from a
pool of 10,000 color patterns. These patterns were generated in
advance, each by selecting four random integers from the range of [0,
359]. Eachnumber corresponds to a color, represented as an angle on a
color wheel. Since participants used their own devices, the actual
colors displayed inevitably varied slightly between devices, implying
slight inconsistencies from their designed values in the color space
(See Supplementary Methods 1.2 for further details).

Preliminary analysis and data exclusion
The dataset incorporates a total of 10,159,250 trials, encompassing
40,637,000 responses. The mean performance was commendably
good, mirroring the results of past studies. Specifically, in pre-
liminary analysis, performance ismeasured by the average rootmean
square error (RMSE) of participants’ responses in comparison to the
actual colors on the color wheel. The average RMSE for the dataset is
47°, suggesting that participants generally focused on the task
at hand.

Certain trials were excludedbasedonpre-set criteria. Poor blocks,
characterized by an average RMSE of 90° ormore, were excluded. This
led to the elimination of 0.64% of trials. Unusually good blocks, char-
acterized by an average RMSE of 10° or less, were also eliminated. This
resulted in the removal of 0.025% of trials. This second exclusion was
motivated by the assumption that such outcomes are likely the result
of artificial strategies. Following these exclusions, the dataset con-
tained a total of 10,091,320 trials and 40,365,280 responses for sub-
sequent analysis.

Next, the response distributions for the 40,000 combinations
(10,000 patterns × 4 colors) were computed by amalgamating the
responses fromall trials featuring the samepattern. The compiled data

was then utilized by the neural networks and the QCE-VWMmodel for
their respective modeling processes, implemented using PyTorch
version 1.12.0 and MATLAB (R2022b), respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data is available on the Open Science Framework50 and can be
accessed at https://doi.org/10.17605/OSF.IO/QPY49.

Code availability
All scripts used for data analysis are available on the Open Science
Framework50 and can be accessed at https://doi.org/10.17605/OSF.
IO/QPY49.
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