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Massively parallel variant-to-function
mapping determines functional regulatory
variants of non-small cell lung cancer

Congcong Chen 1,2,10, Yang Li1,10, Yayun Gu3,10, Qiqi Zhai4,10, Songwei Guo4,
Jun Xiang1, Yuan Xie4, Mingxing An1, Chenmeijie Li3, Na Qin1,5, Yanan Shi4,
Liu Yang1, Jun Zhou1, Xianfeng Xu1, Ziye Xu4, KaiWang1, Meng Zhu1,5, Yue Jiang1,5,
Yuanlin He1,5, Jing Xu6, Rong Yin7, Liang Chen6, Lin Xu7, Juncheng Dai 1,5,
Guangfu Jin 1,5, Zhibin Hu 1,3,5,8, Cheng Wang 1,2,5 , Hongxia Ma 1,5,9 &
Hongbing Shen 1,5,9

Genome-wide association studies have identified thousandsof genetic variants
associated with non-small cell lung cancer (NSCLC), however, it is still chal-
lenging to determine the causal variants and to improve disease risk predic-
tion. Here, we applied massively parallel reporter assays to perform NSCLC
variant-to-function mapping at scale. A total of 1249 candidate variants were
evaluated, and 30 potential causal variants within 12 loci were identified.
Accordingly, we proposed three genetic architectures underlying NSCLC
susceptibility: multiple causal variants in a single haplotype block (e.g. 4q22.1),
multiple causal variants in multiple haplotype blocks (e.g. 5p15.33), and a
single causal variant (e.g. 20q11.23). We developed a modified polygenic risk
score using the potential causal variants fromChinese populations, improving
the performance of risk prediction in 450,821 Europeans from theUKBiobank.
Our findings not only augment the understanding of the genetic architecture
underlying NSCLC susceptibility but also provide strategy to advance NSCLC
risk stratification.

Lung cancer has a high incidence andmortality rate in both China and
worldwide. Non-small cell lung cancer (NSCLC) accounts for 85% of
total lung cancer cases and poses a significant threat to public health1,2.
NSCLC is a multifactorial disease driven by environmental exposures,

especially cigarette smoking and inherited germline genetic variants3.
Genome-wide association studies (GWASs) are powerful approaches
for identifying genetic factors forNSCLC. Large-scaleGWASs have thus
far identified thousands of genetic variants for NSCLC at genome-wide
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significance across various populations4–17. However, determining
causal variants that manifest phenotypes in a GWAS remains difficult.
More than 90% of the identified genetic variants reside in noncoding
regions of the genome with unknown function. In addition, due to
linkage disequilibrium (LD), each of these loci can encompass hun-
dreds of disease-associated single-nucleotide polymorphisms (SNPs),
which render it extremely difficult to pinpoint those genetic variants
that functionally contribute to the phenotype18.

A variety of fine-mapping strategies have been developed to
determine these disease-causing variants18–23. One prevalent strategy is
to propose hypotheses of genetic mechanisms by integrating statis-
tical association containing LD information with epigenetic annota-
tions. Then, a small number of candidate variants are nominated for
validation via low-throughput experiments. By employing the strategy,
recent studies have successfully identified a series of causal variants
for multiple diseases24–27, but most of them investigate one locus at a
time, and can hardly elucidate all causal variants or clarify the genetic
architecture at each locus due to the limited number of functionally
evaluated variants. Massively parallel reporter assays (MPRAs) enable
the high-throughput experimental evaluation of the transcriptional
regulatory potential of noncoding DNA sequences28. In an MPRA,
multiple regulatory elements are cloned into an expression vector
containing a reporter gene and a unique DNA barcode, creating an
expression library. This library is then analyzed using high-throughput
sequencing to assess the regulatory activity of the cloned elements29,30.
To date, MPRAs have successfully identified causal variants for multi-
ple traits and disorders, including red blood cell traits, autoimmune

disease, and neurodegenerative disease29–32, yet they have not been
systematically adopted for lung cancer studies.

In this work, we designed and applied an MPRA to systematically
characterize causal variants underneath NSCLC GWAS loci from our
previous study, which included 14,240 cases and 14,813 control indi-
viduals in the Chinese populations4. We totally evaluated 1249 genetic
variants and identified 82 functional regulatory variants (frVars) in
three lung-related cell types. Through the integration of MPRA and
lung-specific transcriptional regulatory annotations, we identified 30
potential causal variants within 12 loci, revealing the distinct genetic
architectures underlying NSCLC susceptibility. We also determined
the target genes of these variants using a lung tissue-specific expres-
sion quantitative trait loci (eQTL) database and elucidated the genetic
mechanisms at three representative loci (4q22.1, 5p15.33, and
20q11.23). Finally, we incorporated the potential causal variants into
the construction of polygenic risk score (PRS) and evaluated it in a
cohortof450,821 Europeans fromUKBiobank (UKB) datasets, with the
aim to improve the cross-ancestry performance of polygenic risk
prediction (Fig. 1).

Results
Study design and MPRA quality control
We selected common and low-frequency variants (minor allele fre-
quency [MAF] > 0.5%) with a P-value smaller than 1 × 10−5 in our recent
GWAS4, which utilized whole-genome sequencing (WGS) and
sequencing-based imputation, and then excluded the variants within
the major histocompatibility complex (MHC) region (Fig. 1a). As a
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Fig. 1 | Study overview. a Variant Selection. A total of 1,288 variants with an overall
NSCLC P-value smaller than 1 × 10−5 were selected from previous GWAS study. The
P-values were calculated using Firth’s logistic regression in 14,240 cases and 14,813
control individuals. These P-values were two-sided and unadjusted. b Massively
Parallel Reporter Assay (MPRA). All allelic pairs were barcoded and cloned into an
expression library that was transfected into A549、H1299 and BEAS-2B cells. Allelic
expression was quantified by next-generation sequencing of associated barcodes
and variants with significant allele-specific transcriptional activity were identified.
c Variant Function Annotation. Variants with MPRA results were further prioritized

using lung-specific genomic annotations. d Causal Variant Identification. By inte-
gratingMPRA results with lung-related functional genomic features, we pinpointed
potential causal variants at 12 different GWAS loci. The GWAS P-values were same
with (a). e PRS Improvement in Cross-ancestry Population. Incorporating the
potential causal variants from Chinese into construction of polygenic risk score
(PRS) froma total of 450,821 Europeans inUKBiobank improved the cross-ancestry
performanceof risk prediction. Error bars represented95%confidence interval (CI).
The Cox proportional hazardmodel was used to calculate the P-value. The P-values
were two-sided and unadjusted.
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result, a total of 1288 variants were included. For each variant, we
generated a pair of 120 base pair (bp) DNA oligonucleotides (subse-
quently referred to as “oligos”) for each allele in both forward and
reverse directions, with the variant located in the center and identical
flanking genomic sequence across the alleles. A scrambled sequence
for its core 20 bases was also generated and this finally resulted in an
assay of 7728 total allelic pairs (Fig. 1a and Supplementary Data 1). For
barcoding, random 20-bp sequences were coupled to each oligo. The
number of unique barcodes had an approximately normal distribution
with a median of 6803 barcodes per oligo (Supplementary Fig. 1a).
After reporter gene insertion, the plasmid library was separately
transfected into lung or lung cancer epithelial-like cells (A549, H1299
and BEAS-2B cell lines) in six independent technical replicates,
obtaining activitymeasurements fromat least five unique barcodes for
both alleles of 1249 of 1288 (96.8%) different variants (Fig. 1b). Those
variants consisted of median library complexities of 103, 80, and 89
barcodes per allele in different cell types respectively (Supplementary
Fig. 1b). Quality assessment also showed that barcode prevalence in
DNA and complementary DNA (cDNA) replicates were tightly corre-
lated (Supplementary Fig. 1c) and that some barcodes were more
present in cDNA than in plasmid libraries, suggesting higher expres-
sion of some active regulatory elements (Supplementary Fig. 1d).

Identification of frVars and the evaluation in lung-related func-
tional annotations
Then, we used negative binomial regression tomeasure the regulatory
effects of each variant (Methods). Overall, we first observed that 387
library elements (23.0%)were transcriptionally active (Fig. 2a). Relative
to non-active elements, transcriptionally active elements were enri-
ched within lung-related epigenomic annotations, including DNase
andATAC (open and active chromatin),H3K27Ac andH3K4me1 (active
enhancers), andH3K4me3 andH3K9ac (active promoters) (Figs. 1c and
2b), but not in repressive signals such as H3K36me3 andH3K9me3.We
also identified significant enrichment of transcription factor binding
sites (TFBSs) within active elements, including SP/KLF and E2F family
members (Supplementary Fig. 2a). We then defined frVars with a
stringent threshold, requiring both significant regulatory effect on the
elements and significantly different transcriptional efficacy between
alleles. In total, we identified 82 frVars distributed across 15 loci
including four novel loci, with amedianof four frVars per locus (Fig. 2c,
Table 1 and Supplementary Data 2). As expected, effect sizes of these
frVars were generally modest (mean absolute Log2FoldChange =0.36;
Fig. 2d). We then characterized frVars using functional annotations
from lung-specific expression quantitative trait loci (eQTLs), predicted
disruption of TFBSs, lung-specific open chromatin data and
ChromHMM active states. Of 82 frVars, all except three (79/82, 96.3%)
had at least one functional regulatory annotation, and the majority
overlapped twoormore functional annotations; 55 (67.1%) overlapped
transcriptionally active regions in human lung; 74 (90.2%) regulated
gene expression of lung normal tissue; and 56 (72.0%) were predicted
to significantly alter transcription factor binding (Fig. 2e, f). The
magnitude anddirectionality of predicted TFBSs disruption correlated
with MPRA effect sizes for frVars in our dataset (Pearson’s rho =0.37,
P = 1.2 × 10−5, Supplementary Fig. 2b). Furthermore, we developed
LungENN (Lung Effect Neural Network), a neural network-based epi-
genomic effects model. It was an extension of DeepSEA33 that utilized
the convolutional neural network architecture to predict regulatory
effects of genome-wide variants based on the lung-specific chromatin
profiles available in public databases (Supplementary Data 3). Lun-
gENN predicted functional features with high accuracy, with a median
area under the curve (AUC) of 0.948 (Supplementary Fig. 3). Of note,
we found frVars identified in this study had good concordance with
functional predictions from LungENN (Fig. 2g, h), but not with other
popular computational algorithms (i.e., CADD and LINSIGHT) (Sup-
plementary Fig. 4). In addition, we observed a poor correlation

between the LungENN score and the allelic effects of non-frVars
(Fig. 2i). Overall, the collective evidence presented above strongly
supported the validity and reliability of our MPRA results and most of
the regulatory variants identified by our assay likely had an active
regulatory role in human lung tissues.

Functional fine-mapping of NSCLC GWAS loci
By integrating MPRA results with lung-related functional genomic
features, including chromatin accessibility of the element and the
potential for variants to regulate gene expression, our analysis was
enhanced and this enabled us to pinpoint causal variants in different
GWAS loci (Fig. 1d). We identified potential causal variants in a total of
12 GWAS loci, comprising nine loci that had been previously reported
(accounting for 64.3% of all assessed reported GWAS loci) and three
novel loci (Table 2). Of these 12 GWAS loci, seven of them had two or
more potential causal variants. Utilizing the identified potential causal
variants and their LD relationships, we further classified these 12 loci
and discerned three distinct genetic architectures: multiple causal
variants in a single haplotype block (4q22.1, 3q28, 14q13.1, 10q25.2, and
17q24.2),multiple causal variants inmultiple haplotype blocks (5p15.33
and 11q23.3), and a single causal variant (20q11.23, 6p21.2, 8p12, 15q23,
and 4p15.31) (Table 2).

Characterization of loci that includedmultiple causal variants in
a single haplotype block
We first characterized the chromosome 4q22.1 locus, as one of the
frVarswithin it displayed the strongest allelic biases in reporter activity
in the MPRA (rs2904259: log2FoldChange = −2.64, q = 7.79 × 10−292,
Supplementary Data 2) and it was a newly identified suggestive loci for
NSCLC (Pgwas = 7.26 × 10−8). The 4q22.1 locus only involved a single
haplotype block associated with NSCLC and two potential causal var-
iants were identified in the block (Fig. 3a). The transcription-directing
activity of the two variants was immediately validated using a lucifer-
ase assay in H1299 cells (Fig. 3b). Among them, the C allele of
rs2904259 was predicted to disrupt binding motifs of multiple tran-
scription factors, especially the FOS/JUN family (Fig. 3c), which usually
form dimeric complexes in the nucleus that bind to AP1 elements and
regulate gene transcription34. The public lung-specific ChIP experi-
ments also confirmed the binding of the FOS and FOSL2 transcription
factors at this position (Fig. 3c). Furthermore, we determined the
candidate causal genes of this locus with our previous lung tissue-
specific eQTL support4. Both twocausal variants werewithin the intron
of FAM13A and can regulate the expression of FAM13A in lung tissues
(Fig. 3a, d). A locus-level GWAS-eQTL colocalization was also observed
(Fig. 3e). We separately confirmed the regulations of two different
elements where the causal variants were located using CRISPR-
mediated excision (Fig. 3f). We also conducted a CRISPR knock-in
experiment on rs2904259 using the adenine base editor (ABE), NG-
ABE8e35. As a result, weobserved a significant decrease in FAM13Agene
expression after base editing (Fig. 3g). Since 4q22.1 has been reported
to be a risk locus for chronic obstructive pulmonary disease (COPD)36,
we further observed a strong correlation between the GWAS P values
of lung cancer andCOPD at the locus based on the BioBank Japan (BBJ)
cohort data37 (Fig. 3h), suggesting it plays a crucial role in mediating
the related pathogenic mechanisms underlying the development of
both lung cancer and COPD.

Similar to 4q22.1, some reported loci such as 3q28, 10q25.2,
17q24.2, and 14q13.1, also showed the same genetic architecture, that
is,multiple causal variants in a single haplotype block. In this study, we
tagged the causal effect of rs34951828, as well as another variant of
high LD, rs7619517, identifying TP63 as a strong candidate risk gene, at
the 3q28 locus (Supplementary Fig. 5). At 10q25.2, two variants were
identified as causal variants, which we show regulate ZDHHC6 and
ACSL5 expression, respectively (Supplementary Fig. 6). Besides,
potential causal variants at 14q13.1 and 17q24.2 exhibited pleiotropic
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Fig. 2 | Identification and functional annotations of MPRA functional reg-
ulatory variants. a Quantification of MPRA elements transcriptional activity (n = 6
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(repressed) library elements highlighted on the volcano plot in orange and blue
respectively. The Wald test was used to calculate the P-value in a nested fixed
model. The P-values were two-sided and adjusted for multiple comparisons using
the False Discovery Rate (FDR) method. b Active elements were enriched for rele-
vant genomic features. A total of 1249 variants were included in the analysis.
Enrichment log2 odds ratios and P-values (Fisher’s exact test) of active and
repressed elements within lung-related chromatin accessibility and histones were
presented. The P-values were two-sided and unadjusted. Error bars indicated 95%
confidence interval (CI). c Histogram of the number of frVars identified per GWAS
locus (median = 4). d Volcano plot showed log2 allelic effect sizes and −log10 P
values for 1249 different variants evaluated byMPRA. The P-values were generated
using the same statistical methods as (a). eUpset plot showed the number of frVars

(bars) overlapping combinations (dots and lines below bars) of different functional
genomic annotations. Marginal values of each specific annotation were shown in
the graphic (lower left). f Pie chart depicted frVars binned by total number of
overlapping genomic annotations (percentages and counts). g All variants eval-
uated by MPRA were scored using LungENN. Violin plots showed algorithm pre-
diction scores for the frVars and non-frVars. The P-values were obtained from
Wilcoxon test and were two-sided and unadjusted. h Allelic effect of frVars was
highly correlatedwith LungENNscore (Pearson’s correlation). The errorbandswere
estimatedbasedon the standard error calculated from the linear regressionmodel,
representing a 95% confidence interval around the regression line. The P-values
were two-sided and unadjusted. i Allelic effect of non-frVars was poorly correlated
with LungENN score (Pearson’s correlation). The error bands were estimated based
on the standard error calculated from the linear regression model, representing a
95% confidence interval around the regression line. The P-values were two-sided
and unadjusted.
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regulatory effects, thereby identifying multiple potential risk genes,
such as WIPI1, CACNG1, BPTF and KPNA2 at 17q24.2 (Supplementary
Fig. 7 and 8), and KIAA0391, EAPP, and FAM177A1 at 14q13.1 (Supple-
mentary Fig. 9). In addition, potential causal variants located at 3q28,
14q13.1 and 10q25.2 displayed considerable heterogeneity across dif-
ferent histological subtypes, demonstrating stronger genetic effects in
lung adenocarcinoma (LUAD) (Supplementary Data 4).

Characterization of loci that includedmultiple causal variants in
multiple haplotype blocks
The 5p15.33 locus harbors the strongest common genetic association
with lung cancer and it contains complex haplotype blocks and
extensive LD, hampering interrogation with traditional statistical
genetics approaches. We leveraged the ability to functionally dissect
this locus with MPRA, ultimately identifying four distinct haplotype
blocks (Fig. 4a, Table 2, and Supplementary Data 5). The variants in
block 1 werewithin the intron of TERT gene andwere in strong LDwith
the lead SNP rs7705526 (Fig. 4a). We did not identify any frVar in block
1, indicating that they may not operate through a lung cell-specific
mechanism.Previous studies,mainly in EuropeanandAfrican ancestry,
have reported that 5p15.33 locus was associated with leukocyte telo-
mere length (TL)38. We validated the associations between variants of
block 1 and TL by using our WGS dataset4, and found that the other
three blocks were not associated with TL, which suggested multiple
distinct mechanisms at this locus (Fig. 4b and Supplementary Data 6).
We also found variable-sized associations between block 1 and the risk
of various tumors by searching the GWAS catalog (Supplementary
Data 7). In addition, weobserved risk of variants in block 1 showedhigh
degree heterogeneities in different subgroups of smoking and histol-
ogy status (Fig. 4c). These data indicated that effect allele of variants in
block 1 could lengthen TLs and thereby increase the risk of various
tumors, including lung cancer.

We next characterized the remaining three blocks of 5p15.33, each
of which unveiled lung cancer causal variants that were implicated in
lung cells, including rs2735846 in block 2, rs528894327 in block 3, and
rs2735948 and rs459961 in block 4. Their transcriptional activitieswere
all validated with luciferase assays in H1299 cells (Fig. 4d). Rs2735846
and rs528894327 bothdemonstrated specific associationswith the risk
of LUAD rather than with lung squamous cell carcinoma (LUSC)
(rs2735846: ORLUAD = 1.15, PLUAD = 5.81 × 10−12, ORLUSC = 1.03,
PLUSC = 0.346, Pheterogeneity = 0.002; rs528894327: ORLUAD = 2.62,
PLUAD = 3.20×10−10, ORLUSC = 1.48, PLUSC = 0.137, Pheterogeneity = 0.05).
Notably, rs528894327 was a low-frequency variant and was only

observed in the Asians (MAFAsian=0.1%, MAFEuropean = 0), with an MAF
of 0.5% in our study. We found that variants in these two blocks may
regulate the gene expression of LPCAT1 and SLC12A7 respectively, and
successfully verified the corresponding regulatory activities of the two
elements through CRISPR experiments (Fig. 4e, f). We also identified a
separate haplotype block harboring five frVars, and two of which were
further prioritized as potential causal variants by regulatory annota-
tions: rs2735948, which falls betweenCLPTM1L and TERT (disrupts ETV
family, Supplementary Fig. 10); and rs459961, which falls within the
CLPTM1L intron (predicted to disrupt STAT1 binding, Supplementary
Fig. 10). Notably, neither variant regulated the gene in which it was
located nor the nearest. By integrating eQTL data and CRISPR
experiments validation, we have identified the underlying target
genes, SLC6A3 and NKD2, respectively (Fig. 4g, h). A borderline mul-
tiplicative interaction was observed between rs459961 and smoking
status on the risk of lung cancer (Supplementary Data 8), implicating a
potential smoking-related mechanism for this block. Our findings
indicated that 5p15.33 demonstrated the genetic architecture with
multiple causal variants in different haplotype blocks. A similar archi-
tecture was also observed at 11q23.3. In two different blocks, five and
one potential causal variants were identified respectively, which were
associated with different potential risk genes (Supplementary
Fig. 11 and 12). In addition, previous public lung single-cell eQTL data39

showed that rs10892229 at the 11q23.3 locus regulates the expression
of the gene MPZL3 specifically in epithelial cell types, such as alveolar
type 2 cells, ciliated cells, and SCGB1A1+/MUC5B+ secretory cells, but
not in other cell types (Supplementary Data 9).

Characterization of loci that included a single causal variant
We next highlighted the classic genetic architecture, characterized by
the presence of a single causal variant at the locus. For instance, the
20q11.23 locus was first reported in our recent study4. We observed
rs6130139, rather than the lead SNP rs11466931, showed significant
MPRA-allele-specific activity and was identified as a potential causal
variant (Fig. 5a). Thus, we chose to further dissect the regulatory
capacity of rs6130139 in lung-related cells. Its transcriptional regulatory
activity was further confirmed via a luciferase assay in the H1299 cell
line (Fig. 5b). We found and validated rs6130139 as a regulating variant
of distal SRC gene rather than the adjacent genes (Fig. 5c, d), with the
disease-protected allele (C) predicted to disrupt binding of SOX9/
SOX5/SRY and decreased the expression of SRC (Fig. 5e).

Similarly, at both 8p12 and 15q23, we identified single causal
variants, rs2466066 and rs28750234 respectively, neither of

Table 1 | Summarized results for the functional regulatory variants (frVars) at non-small cell lung cancer (NSCLC) GWAS loci

Locus Lead SNP Chr:pos:ref:alt Number of evaluated variants Number of frVars

3q28 rs36108040 3:189335844:A:G 146 9

4p15.31a rs2610989 4:18022834:T:C 3 1

4q22.1a rs9997652 4:89846749:T:A 151 11

5p15.33 rs7705526 5:1285974:C:A 124 8

6p21.2a rs2436733 6:40467616:T:C 3 1

6p21.1 rs2496644 6:41482745:A:C 27 1

7p14.3a rs3750092 7:29924072:A:G 5 1

8p12 rs7820838 8:32405979:T:C 40 2

9q33.2 rs12683922 9:124958572:A:G 17 4

10q25.2 rs140034551 10:114490332:A:AT 89 7

11q23.3 rs1540191 11:118090432:G:A 86 6

14q13.1 rs4313721 14:35343409:A:G 90 5

15q23a rs28491594 15:69593622:C:G 10 1

17q24.2 rs12602655 17:65909442:A:G 318 22

20q11.23 rs11466931 20:35532445:A:AGATGACTTCTT 59 3
aThe susceptibility locus that has never been reported before.
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which were lead SNPs at the locus (Supplementary Fig. 13 and 14).
The NRG1, a classic tumor susceptibility gene, was identified as
the target regulatory gene for the 8p12 (Supplementary Fig. 13).
The 15q23 was a newly identified locus whose potential causal
variant, rs28750234, was located in the promoter region of
PAQR5, and population-based eQTL data supported its tran-
scriptional regulation of PAQR5 and nearby gene KIF23 (Supple-
mentary Fig. 14). Besides, we also identified that the single causal
variants at other two loci, rs2610989 at 4p15.31 and rs2436733 at
6p21.2. Both the two variants were lead SNPs. Among them,
4p15.31 was a novel locus that has never been reported and the
putative risk gene was DCAF16 (Supplementary Fig. 15). At 6p21.2,
our eQTL data supported that rs2436733 could regulate the
expression of TREML2 and UNC5CL (Supplementary Fig. 16).

A polygenic risk score based on functional variants in Chinese
improves the prediction of lung cancer in the European
populations
To demonstrate the potential of causal variants in improving cross-
ancestry PRS performance, we further incorporated the lung cancer

causal variants identified in this study from theChinese populations into
the construction of lung cancer PRS from the 450,821 Europeans in UKB
datasets (Fig. 1e).We first built the PRSEUR using 17 lead SNPs at previous
lung cancer susceptibility loci in European populations8, and then sub-
stituted the variants in four loci shared by Chinese and European
populations with the potential causal variants identified in this study to
create a new PRSEUR-substituted, which involved 25 variants (Supplemen-
tary Data 10). The result showed that our new PRSEUR-substituted improved
lung cancer prediction compared with the previous PRSEUR (Fig. 6).
Subsequently, we integrated all identified NSCLC potential causal var-
iants in the Chinese populations with PRSEUR to create an expanded PRS
named PRSEUR-expanded, which involved 46 variants (Supplementary
Data 10). Members of the top 5% PRSEUR-expanded had the highest lung
cancer risk compared to the other two PRSs (Fig. 6, hazard ratio [HR] =
2.48, 95% confidence interval [CI], 1.84-3.34; P = 2.04× 10−9).

Discussion
In this study, we perform a systematic functional evaluation of com-
mon and low-frequency susceptibility variants in NSCLC, determining
30 potential causal variants at 9 known and 3 new loci, with 90% of

Table 2 | Characterization of causal variants at non-small cell lung cancer (NSCLC) GWAS loci

Genetic architecture Locus Causal SNP Chr:pos:ref:alt MPRA log2 fold
change

Annotated eQTL gene

Multiple causal variants in a single
haplotype block

4q22.1a rs2904259 4:89885714:T:C −2.644 FAM13A, PKD2, SPP1

rs2464522 4:89860843:G:A 0.202 FAM13A, NAP1L5

3q28 rs34951828 3:189354655:T:C 0.217 TP63

rs7619517 3:189360235:T:C 0.227 TP63

14q13.1 rs11454169 14:35327311:C:CA −0.261 KIAA0391, EAPP,
FAM177A1

rs4313721 14:35343409:A:G 0.275 KIAA0391, EAPP,
FAM177A1

10q25.2 rs1885281 10:114492898:A:G −0.168 ACSL5

rs138322120 10:114527703:G:GCCGGACACGTATTACTTCC 0.182 ZDHHC6

17q24.2 rs3936134 17:65814382:C:G −0.839 WIPI1, BPTF

rs142633440 17:65831779:ATTTTTTTTTT:A −0.460 WIPI1, CACNG1,
BPTF, KPNA2

rs11079709 17:65853363:C:T −0.384 WIPI1, CACNG1,
BPTF, KPNA2

rs12601759 17:65955284:A:G 0.223 WIPI1, CACNG1, KPNA2

rs62086899 17:66009134:C:T −0.245 KPNA2

rs77536355 17:66028231:T:A −0.284 KPNA2

rs62084740 17:66061184:C:T −0.234 KPNA2

Multiple causal variants in multiple
haplotype blocks

5p15.33 rs2735846 5:1299379:C:G 0.536 LPCAT1

rs528894327 5:1326436:G:A 0.264 SLC12A7

rs2735948 5:1299213:A:G 0.126 SLC6A3

rs459961 5:1337106:T:A 0.184 NKD2

11q23.3 rs1793169 11:118070264:G:A −0.148 SCN2B, AMICA1

rs4938489 11:118079867:G:T 0.210 SCN2B, MPZL3,
AMICA1, PCSK7

rs75552058 11:118082733:CT:C 0.242 SCN2B, MPZL3,
AMICA1, PCSK7

rs10892229 11:118111498:A:T 0.183 SCN2B, MPZL3, AMICA1

rs1104542 11:118129340:C:T −0.534 SCN2B, MPZL3, AMICA1

rs7925499 11:119087651:C:T −0.564 CBL

A single causal variant 20q11.23 rs6130139 20:35561469:T:C −0.619 SRC, C20orf24

6p21.2 rs2436733 6:40467616:T:C −0.407 TREML2, UNC5CL

8p12 rs2466066 8:32438416:G:A 0.280 NRG1

15q23a rs28750234 15:69591607:G:A 0.251 KIF23, PAQR5

4p15.31a rs2610989 4:18022834:T:C 0.505 DCAF16
aThe susceptibility locus that has never been reported before.
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these variants not being lead SNPs. Moreover, we observe that the
majority of loci contained more than one potential causal variant. We
further conclude three different genetic patterns and elucidate the
underlying genetic mechanisms at the representative loci. We also
include the causal information in the PRS construction and improve
risk prediction performance across ancestry.

Previous fine-mapping studies usually hypothesized that a GWAS
hitwas driven by a single causal variant18; however, increasing evidence
suggests that a disease-associated locus can harbor multiple causal
variants, which collectively contribute to the susceptibility of complex
traits30,40,41. In our study, 7 out of the 12 loci harbored more than one
potential causal variant, including two distinct genetic architectures:

(I) multiple causal variants in a single haplotype block and (II) multiple
causal variants in multiple haplotype blocks. Architecture (I) was the
predominant genetic architecture of susceptibility loci of NSCLC,
involving 5 loci (i.e., 4q22.1, 3q28, 14q13.1, 10q25.2, and 17q24.2). These
causal variants could not be fully identified in prior fine-mapping
studies, primarily because experiment validation was restricted to
variants with the highest probability based on bioinformatics annota-
tion, thereby leaving a large number of potential candidates uneval-
uated. Consequently, the effect of the block was frequently
misinterpreted as the sole effect of one or a few variants with the
highest annotationprobability, leading to an incomplete elucidationof
the genetic mechanism42.
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4q22.1 locus. a Top: All evaluated variants at 4q22.1 plotted by position and MPRA
significance (−log10 P values; the shaded rs2904259 and rs2464522 indicated
potential causal variants). Middle: GWAS regional plot of 4q22.1 was shown and the
samecolors indicated the samehaplotypeblocks (r2 > 0.2with rs2904259). Bottom:
Lung-related functional annotations of variants were shown. The vertical line
indicated that the variants coincide with the annotation, and the red line marked
the potential causal variants. The GWAS P-values were calculated using Firth’s
logistic regression in 14,240 cases and 14,813 control individuals. These P-values
were two-sided and unadjusted. TheMPRA P-values were calculated using theWald
test in a nested fixedmodel. The P-values were two-sided and adjusted formultiple
comparisons using the False Discovery Rate (FDR) method. b Luciferase assays for
the activity of rs2904259:T > C and rs2464522:G > A in the H1299 cell lines. The P-
values were obtained using the Student’s T-test and were two-sided and unad-
justed. The error bars representedmean ± SD. A total of 6 biological replicateswere
used in each group. c The alternate allele of rs2904259 was predicted to disrupt
FOS/JUN family TFBSs. d eQTL signals were presented for FAM13A with rs2904259
and rs2464522 respectively. The P-values were obtained using the linear regression

model from 116 Chinese individuals. The P-values were two-sided and unadjusted.
The bottom, middle, and top of each box plot represented the 25th, 50th, and 75th
percentiles. The solid line ends represented the minimum and maximum values,
respectively. e The Pearson correlation between log-transformed P values of eQTL
and GWASwas shown. Green dots indicated evaluatedMPRA variants and red dots
indicated two potential causal variants. The reported P-values were two-sided and
unadjusted. f CRISPR-mediated excisions of two different genomic elements con-
taining rs2904259 or rs2464522 both changed FAM13A expression. The P-values
were generated using the same statistical methods as (b). The error bars repre-
sentedmean± SD. A total of 6 biological replicateswere used in the rs2904259, and
9 biological replicates were used in the rs2464522. g Transcriptional analysis of
FAM13A gene following base editing of rs2904259 inH1299 cells. The P-values were
generated using the same statistical methods as (b). The error bars represented
mean ± SD. A total of 9 biological replicateswere used in each group.hThe Pearson
correlation between log-transformed P-values of COPD GWAS in BBJ dataset and
NSCLC GWAS in our study. The P-values were two-sided and unadjusted. COPD:
chronic obstructive pulmonary disease; BBJ: BioBank Japan.
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rs528894327, rs2735846 and rs459961 respectively. Bottom: Lung-related func-
tional annotations of variants were shown. The vertical line indicated that the
variants coincided with the annotations, and the red line marked the potential
causal variants. The GWAS P-values were calculated using Firth’s logistic regression
in 14,240 cases and 14,813 control individuals. These P-values were two-sided and
unadjusted. The MPRA P-values were calculated using the Wald test in a nested
fixed model. The P-values were two-sided and adjusted for multiple comparisons
using the False Discovery Rate (FDR) method. b All evaluated variants at 5p15.33
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were calculated using Firth’s logistic regression and the error bars indicated 95%
confidence interval (CI). LUAD: lung adenocarcinoma; LUSC: lung squamous cell
carcinoma. d Luciferase assays for the activity of rs2735846:C >G,
rs528894327:G > A, rs2735948:G > A and rs459961:T > A in the H1299 cell lines. P-
values were obtained using the Student’s T-test. The P-values were two-sided and
unadjusted. The error bars represented mean± SD. In each group, 4 biological
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In this genetic architecture, multiple causal variants located in a
haplotype block typically collaborated to contribute to the genetic
effect of the block estimated by the GWASs42,43. In our study, for the
two potential causal variants at the 4q22.1 locus, we observed that the
effect size increasedwith an increase in the number of risk alleles (P for
trend = 8.43 × 10−6, Supplementary Fig. 17), implying that the variants
may also collectively increased the risk of lung cancer in an additive
manner. In addition, some functional variants may influence pheno-
type by regulating different genes and affecting distinct biological
processes, despite being genetically linked within the same haplotype
block. For instance, at the 10q25.2 locus, the two causal variants within
a haplotype block, rs1885281 and rs138322120, regulate ACSL5 and
ZDHHC6 respectively, as confirmed by CRISPR-mediated excisions
(Supplementary Fig. 6 and 18). Furthermore, given that neither
ZDHHC6 nor ACSL5 are recognized as known causal genes for lung
cancer, further well-designed mechanistic studies will be necessary to
elucidate the genetic causal effect driving this association in the future.

In our study, two previously reported loci (i.e., 5p15.33 and
11q23.3) exhibited genetic architecture (II), including 4 and 2 causal
blocks, respectively. The 5p15.33 locus was one of the earliest sus-
ceptibility loci for lung cancer9. Two fine-mapping studies based on
statistical association have reported two independent blocks44,45,
namely blocks 1 and 4 in our study. A prior study has characterized
rs36115365 as a causal variant in block 1 in 4 different cell lines,
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Fig. 5 | Identification of the potential causal variant and candidate risk gene at
the 20q11.23 locus. a Top: All evaluated variants at 20q11.23 plotted by position
and MPRA significance (−log10 P values; the shaded rs6130139 indicated the
potential causal variant). Middle: GWAS regional plot of 20q11.23 was shown and
the same color indicated the same haplotype blocks (r2 > 0.2 with rs6130139).
Bottom: Lung-related functional annotations of variants were shown. The vertical
line indicated that the variant coincides with the annotation, and the red line
marked the potential causal variants. GWAS P-values were from a previous GWAS
study. MPRA P-values were calculated using the Wald test in a nested fixed model.
The MPRA P-values were two-sided and adjusted for multiple comparisons using
the False Discovery Rate (FDR) method. b Luciferase assay for the activity of
rs6130139:T > C in the H1299 cell lines. The P-values were obtained using the

Student’s T-test. The reported P-values were two-sided and unadjusted. A total of 4
biological replicates were used in each group. The error bars represented mean±
SD. c eQTL signal was presented for SRC with rs6130139. Lung specific eQTL
database is derived from 116 Chinese individuals4 P-values were obtained using the
linear regressionmodel. The reported P-valueswere two-sided andunadjusted. The
bottom, middle, and top of each box plot represented the 25th, 50th, and 75th
percentiles. The solid line ends represented the minimum and maximum values,
respectively. d CRISPR-mediated excision of genomic element containing
rs6130139 decreased SRC expression. The P-values were generated using the same
statistical methods as (b). A total of 9 biological replicateswere used in each group.
The error bars represented mean ± SD. e The alternate allele of rs6130139 was
predicted to disrupt SOX9/SOX5/SRY TFBSs.
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Fig. 6 | Polygenic risk scores based on causal variants improve the cross-
ancestry performance of lung cancer risk prediction. PRSEUR was built using
the previous lead SNPs of lung cancer susceptibility loci in European GWASs;
PRSEUR-substituted was built by substituting the variants in the loci shared by Chinese
and Europeanpopulationswith the potential causal variants identified in this study;
PRSEUR-expanded was built by integrating all identified NSCLC causal variants in the
Chinese populations with PRSEUR. A total of 450,821 Europeans from the UK Bio-
bank were included for analysis. Error bars represented 95% confidence interval.
The Cox proportional hazardmodel was used to calculate the P-value. The P-values
were two-sided and unadjusted. HR: hazard ratio; CI: confidence interval.
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including lung cancer cells46. Despite the absence of significant allelic
effects after multiple testing corrections, rs36115365 exhibited nom-
inal significance in the combined data of three lung-related cell lines
(MPRA: log2FoldChange = 0.12, Pnominal = 0.03). The block was recog-
nized for its association with TL46–48 and its influence on the onset of
various tumors9,49,50. The effect of block 4, however, was found to be
independent of TL,with the underlying geneticmechanisms remaining
elusive. In this study, we identified the potential causal variants and the
target gene SLC6A3, which was involved in nicotine dependence51,52. It
was consistent with our finding that the effect of the variant in this
block was stronger in smokers (Supplementary Data 8). In contrast to
the aforementioned blocks, two novel blocks were specifically identi-
fied in the Chinese populations. The causal variant in block 2 can
influence the expression of LPCAT1, which has been reported to
influence the transcription of MYC through the PI3K/AKT signaling
pathway, thereby impacting the progression of lung
adenocarcinoma53. In block 3, the causal variant was low-frequency
amongAsians butwas absent in Europeanpopulations (MAFAsian=0.1%,
MAFEuropean = 0). These results suggested that nearby variants in the
genome can form distinct haplotype blocks and potentially operate in
different manners. Therefore, it is necessary to perform refined
interpretations of the functional genomic structure in the vicinity of
the previously reported SNPs.

This study also unveiled three loci (i.e. 4q22.1, 4p15.31, and 15q23)
that failed to reach genome-wide significance, and determined the
potential causal variants at these loci. The 4q22.1 locus has been pre-
viously reported in GWAS for COPD and lung-function36,54,55, yet its
association with lung cancer risk has not been documented. The block
identified in our study was also associated with lung-function54, sug-
gesting shared genetic mechanisms of lung-function and lung cancer
of this block56. The target gene, FAM13A, was supported by robust
evidence from both populations’ eQTL data and the CRISPR experi-
ments. Elevated expression of FAM13A has been demonstrated to
affect the repair and regeneration of alveolar epithelial cells, poten-
tially via activation of the Wnt pathway57, thereby altering the pro-
liferation and differentiation of alveolar epithelial progenitor cells. It is
worth noting that there was a signal, rs7690881, associated with lung
function independent of our potential causal variants54. The signal was
not associatedwith the expression of FAM13A (Supplementary Fig. 19),
indicating that the effect of this locus was specific to lung-function.
Therefore, there may be additional causal variants located at 4q22.1,
which influence lung function through different mechanisms and
warrant further investigation. The remaining two loci, 4p15.31 and
15q23, each harbored a single causal variant, respectively regulating
the target genes DCAF16 and PAQR5. DCAF16 has been identified as a
lung cancer susceptibility gene58 through a transcriptome-wide asso-
ciation study, with changes in its expression levels influencing the
proliferation and migration capabilities of cancer cells. PAQR5 has
been reported to suppress the growth andmetastasis of clear cell renal
cell carcinoma by inhibiting the JAK/STAT3 signaling pathway59. Thus,
MPRAmay facilitate the identification of novel loci, even if they do not
achieve genome-wide significance in a GWAS.

PRSs have emerged as a valuable tool for quantifying the aggre-
gate genetic predisposition to a trait or disease, holding significant
potential in risk assessment and precision medicine60–62. However,
several challenges remained to be addressed, such as enhancing the
prediction accuracy and improving the transferability of PRS across
different populations63,64. Firstly, the prediction accuracy of PRShinges
on the choice of SNPs used for its construction. Previous studies have
indicated that incorporation of functional annotation data can
enhance the prediction capability of PRS65–68. In this study, the per-
formance of PRS was immediately improved when we replaced the
original variants with potential causal variants at four loci shared by
Chinese and European GWASs. This suggests that causal variants
identified through MPRA may contribute to refining the predictive

accuracy of PRS. Secondly, disparities in LD patterns across popula-
tions hinder the efficient transferability of PRS across ancestries68–71, as
conventional PRSs were primarily constructed by lead SNPs. Emerging
studies proposed that the allelic effects of causal variants should be
universally applicable across populations72,73. Our study provided evi-
dence that the potential causal variants determined by MPRA can
improve the performance of PRS in a disparate population. A study
also found that incorporating functional annotations to PRS could
improve its trans-ancestry application71. As current efforts primarily
focused on enhancing the transition from European population-based
PRS to non-European populations71,74–76, our study suggested that
causal variants identified in non-European populations might also
refine the predictive accuracy for lung cancer PRS in the European
populations.

Our study did not identify any causal variants at the remaining five
reported susceptibility loci included in this study, namely 3q26.2,
9p21.3, 9q33.2, 2p14, and 15q21.1. A potential explanation is thatMPRA
was only performed in the lung epithelial cells. Consequently, causal
variants that influence lung cancer susceptibility by affecting cell types
other than lung epithelial cells, such as immune cells, were difficult to
identify. This is also why we did not include the MHC region in our
study. In addition, the causal variants that exert their influence through
mechanisms other than direct transcriptional regulation (e.g., alter-
native splicing or alternative polyadenylation77,78) were not discernible
within the scope of this study, and would necessitate the employment
of other high-throughput methodologies in the future study79.

In conclusion, we augment the understanding of the functional
genomic architecture required forNSCLC susceptibility by performing
a high-throughput evaluation of variant regulatory activity, determin-
ing distinct genetic architecture for different loci and advancing lung
cancer risk stratification across different populations. These findings
greatly broaden our understanding of the genetic etiology of lung
cancer and will ultimately improve the precise prevention of lung
cancer.

Methods
Variant selection and DNA sequence generation
We selected common and low frequency (MAF > 0.5%) variants with an
overall NSCLC P-value smaller than 1 × 10−5 from our previous study
and excluded the variants within MHC region. For SNVs, we pulled 120
base pair (bp) of GRCh37-flanking DNA sequences for every allele, with
the variant located in the center (59 bp upstream and 60bp down-
stream of the variant). For the other types of variants (indels), we
designed the flanking sequences to ensure that the longest allele has
120 bp. Adapters (15 bp)were added to each sequence at either end (5’-
ACTGGCCGCTTGACG - [120 bp oligo] - CACTGCGGCTCCTGC -3’) to
make a 150 bp DNA sequence (Supplementary Data 1). A scrambled
sequence (core 20 bases encompassing the SNP with the reference
allelewere shuffled)was also generated. For all resulting sequences, we
created a forward and reverse complement sequence to compensate
for possible DNA synthesis errors. Finally, a total of 7728 oligos (1288
variants, 2576 alleles) were obtained.

Reporter plasmid library construction
Unique 20bp barcodes were attached to each oligo fragment by PCR
in 28 parallel reactions using Barcode_F and Barcode_R primers. Then
all PCR reactions were pooled together and cleaned up in column. To
create our mpraΔorf library, the purified PCR products were cloned
into pMPRA1 (MiaoLingBio, P31645) plasmid which was digested with
SfiI-HF (NEB, R0123) in advance. Then the ligated library was electro-
porated into DH10B-Plus Electroporation-Competent Cell (DE1072) in
six parallel transformations with BioRad Gene Pulser Xcell Eukaryotic
System, followed by independent outgrowth in 20mL LB media with
100ug/mL carbenicillin for 14–16 h. After growth, cultures were
pooled and the plasmids were extracted by maxiprep according to
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standard protocols (Qiagen, 12362). All primers in MPRA experiments
were shown in Supplementary Data 11.

After constructing the mpraΔorf library, we performed sequen-
cing to create a lookup table mapping barcodes to oligos. Illumina
libraries were prepared by performing 6 parallel PCR reactions with
the following composition: [200ng of plasmid, 200 µLHigh-Fidelity 2×
PCR Master Mix (NEB, M0541), 10 µL pMPRA1_Δorf_F2, 10 µL
pMPRA1_Δorf_R primers] and cycled for [95 °C for 2min, (95 °C for
20 s, 62 °C for 15 s, 72 °C for 30 s) × 6, 72 °C for 2min]. Amplified
material was purified with DNA clean beads using a 0.8× bead/sample
ratio and elutedwith 30 µL of water. For indexing and sequencing of all
libraries, multiplex adapters were added using the following PCR
reaction: [50 µl High-Fidelity 2× PCR Master Mix, 10μl illumia_P70X_F,
10μl pMPRA1_Δorf_R, 10 µl water, 30 µl sample] and cycled for [95 °C
2min, (95 °C 20 s, 60 °C 30 s, 72 °C 30 s) ×6, 72 °C 2min]. After
amplification, sampleswere purified fromagarose gels. The librarywas
sequenced using 2 × 150bp chemistry on Illumina Novaseq 6000.

To prepare our final library, the minP:luciferase fragment was
amplified from the pGL4.23 vector (MiaoLingBio, P0696) using min-
P_luciferase_F and minP_luciferase_R primers. The purified products
were then cloned into mpra:Δorf which linearized with AsiSI-HF (NEB,
R0630). The final plasmid pool was electroporated as before except in
ten parallel transformations followed by everyfive cultures recovery in
200mL LB with carbenicillin. After outgrowth, each 200mL cultures
were purified by maxiprep, resuspended in nuclease-free water and
quantified by NanoDrop.

Cell culture and transfection
The human cell lines A549, H1299 and BEAS-2B were purchased from
the American Type Culture Collection (ATCC). A549 and H1299 cells
were cultured in completed RPMI 1640medium (Gibco, Carlsbad, CA),
while BEAS-2B cell line was cultured in completed DMEM high glucose
medium (Gibco, Carlsbad, CA). all supplemented with 10% fetal bovine
serum (FBS, Gibco) and 1% penicillin/ streptomycin at 37 °C with
5% CO2.

Cells were cultured in 10 cm dishes maintaining a density of
0.7–1.2 × 106 cells/mL and grown to 70–90% confluence. The next day,
media was replacedwithOpti-MEM followed by transfectionwith 15 µg
of plasmid library using X-treme GENE HP DNA Transfection System
Removed the transfection mixture after 6 h and cultured the cells for
another 24 h. Six biological replicates were performed on separate
cultures.

Reporter mRNA isolation and normalization
After recovery, total RNA was extracted using Qiagen Mini RNeasy
(Qiagen) following the manufacturer’s protocol including the on-
column DNase digestion. Total RNA was subjected to mRNA selection
(Vazyme, N403) and first-strand cDNA was synthesized from purified
RNA with HiScript II Enzyme Mix (Vazyme) and a gene-specific primer
(RT_primer).

To minimize amplification bias during the creation of cDNA tag
sequencing libraries, samples were normalized by qPCR using [1 µL of
sample, 5.2 µL ChamQ SYBR Master Mix (Vazyme), 0.2 ul mpra:mini-
P:luciferase_F2 and 0.2ul pMPRA1_ΔORF_R primers]. Samples were
amplified with the following conditions: [95 °C for 20 s, 40 cycles
(95 °C for 20 s, 65 °C for 20 s, 72 °C for 30 s), 72 °C for 2min].

For sequencing of barcodes from plasmid or cDNA, the following
PCR reaction was performed with each sample: [25 µl NEBNext High-
Fidelity 2× PCR Master Mix, 2.5 µl mpra:miniP:luciferase_F2 (including
UMIs 10 bp in length), 2.5 µl pMPRA1_ΔORF_R, 10 µl water, 10 µl sample]
and cycled for [95 °C 2min, [95 °C 20 sec, 60 °C 15 s, 72 °C 30 s] × 12,
72 °C 2min]. Amplified material was purified with DNA clean beads
using a 0.8x bead/sample ratio and eluted with 30 µL of water. Indexes
were added to each sample by amplifying the entire 30 µL elution in a
100 µL NEBNext reaction: [50 µl High-Fidelity 2× PCRMaster Mix, 10μl

illumia_P70X_F, 10μl pMPRA1_ΔORF_R, 10 µl water, 30 µl sample] and
cycled for [95 °C 2min, [95 °C 20 s, 60 °C 30 s, 72 °C 30 s] × 6, 72 °C
2min]. Indexed libraries were DNA clean beads purified. Samples were
sequenced using 2 × 150bp Illumina Novaseq 6000.

MPRA data analysis
Analysis of sequencing data fromMPRA experiments mainly drew on
previous study43. Basically, we used FLASH80 to merge paired-end
reads from NovaSeq data and then used STAR v2.7.1a81 to align the
merged reads against a reference index created from the designed
library sequences. Following the filtration of reads that did not
uniquely map to a designed sequence or had low-quality alignment
scores, we extracted the resulting barcode-oligo pairs and removed
any sequences detected on multiple oligos. To quantify oligo-level
counts from barcodes, we further used Bartender v1.182 to obtain
barcode clusters on each sample individually and correct for
sequencing errors. After clustering, we computed oligo counts by
mapping each barcode to its corresponding parent oligo with an
exact match, and then aggregated all barcode counts within each
oligo. Oligos were excluded from the analysis if activity measure-
ments could not be obtained from at least five unique barcodes, or if
the mean raw count was less than 150 across all samples. The final
oligo count matrix included measurements for 2383 allelic pairs of
1249 variants, encompassing a combination of three cell types (A549,
H1299 and BEAS-2B) and different stands (forward or reverse
direction).

To account for variation due both sequencing depth and allelic
ratios, we applied a nested fixed model using DESeq283 described for
high-depth allele-specific expression analysis that accounts for the
intrinsically paired allelic design, after adjusting the effect of cell types
as a categorical covariate. After fitting, we tested for expression effects
using a Wald test and tested for allele effects using a linear contrast
betweenDNAandRNA levels to test thenull hypothesis that the nested
allelic coefficients were equal. For both sets of summary statistics, P-
values were adjusted for multiple testing using the Benjamini-
Hochberg procedure. We required our final MPRA regulatory variant
set to have significant expression and allelic adjusted P-values (FDR
< 0.01) in either strand, and then further selected those with either
allele displaying a significant departure (FDR < 0.01) from the
scrambled core sequence. According to these criteria, a total of 82
variants were ultimately identified as frVars.

Functional genomic data and annotation
Functional annotations and enrichment of regulatory elements: We
obtained narrowPeak files for lung-related DNase-seq, ATAC-seq,
active histone ChIP-Seq (H3K4me3, H3K9ac, H3K27ac, and H3K4me1),
and TF-ChIP-seqmarks from the ENCODE project server (https://www.
encodeproject.org/), specifically for the bronchial epithelial cell, lung
fibroblast, lung tissues, and lung-related cell lines such as A549,
AG04450, IMR90, PC9, and WI38. We also annotated the frVars with
the core 15-statemodel learnedusingChromHMMfrom theROADMAP
epigenetics consortium. We considered the following as “active”
transcriptional states from the 15-state model: 1_TssA, 2_TssAFlnk,
3_TxFlnk, 4_Tx, 5_TxWk, 6_EnhG, 7_Enh, 8_ZNF/Rpts, 10_TssBiv,
11_BivFlnk, 12_EnhBiv. Subsequently, we assessed the overlap between
these marks and MPRA “active” and “repressive” elements, requiring a
minimum of 1 bp overlap between the 120 bp oligonucleotide and the
chromatin mark using bedtools84. Enrichment for active or repressive
elements was then calculated against a background set of all other
evaluated oligos using a Fisher’s exact test. Predicted TFBSs enrich-
ment for active elements was calculated using the HOMER (4.11)85

against a background set of all other oligos, after prefiltering for oligos
containing reference alleles.

Functional annotations of frVars: The frVars from this study were
annotated for TFBSs disruption and overlapped with functional lung-
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related annotations. We calculated TFBSs disruptions using the
motifbreakR package86 based on the HOCOMOCO v1187 and JASPAR
201888 TF binding database (filtered for a binding threshold of
P < 1 × 10−4 and “strong”predicted effects). TFBSs disruptionswere also
scored using the SNP2TFBS webtool89 and an enrichment odds ratio
for TFBSs-disrupting variants amongst frVars was calculated using
Fisher’s exact test against a background set of all evaluated variants.
For frVars predicted to disrupt TFBSs, we tested the correlation
between allelic effect sizes from our MPRA and the predicted TFBSs
disruption scores.

Identification of potential causal variants: We identified potential
causal variants in each locus by assigning an integrative score to these
frVars defined by MPRA results, using lung-specific epigenomic and
gene expression regulation data. Each variant was initially scored
within specific categories (score 0 for no hit, score 1 for a hit), and the
scores from all categories were then added up to form a total score.
Variants with a total score of 3 were identified as potential causal
variants. The detailed categories were listed as below: (1) MPRA score:
Functional regulatory variants defined by MPRA results were con-
sidered as a hit; (2) Chromatin annotation score: Overlap with an
accessible chromatin region reported in at least one dataset (datasets
from ENCODE, including genomic peaks from DNase-seq, ATAC-seq,
H3K4me3, H3K9ac, H3K27ac, andH3K4me1 of the lung tissues or lung-
related cell lines [normal lung tissue, the fibroblast of lung, the bron-
chial epithelial cell, A549, AG04450, IMR90, PC9 and WI38]) was
considered as a hit; (3) Gene expression regulation score: Variants
displaying significant eQTL associations (P <0.05) in lung tissue or
significant matches with TF-binding disruptions for either allele pre-
dicted by motifbreakR86 analysis (filtered for a binding threshold of
P < 1 × 10−4 and “strong” predicted effects), were considered as a hit.
We identified target genes regulated by frVars using our previous lung
specific eQTL database with 116 Chinese individuals4. In addition, for
the causal variants that did not identify any regulatory genes that met
the nominal threshold (P < 0.05), including the rs2735846,
rs528894327, and rs459961 variants at 5p15.33, we selected the genes
with suggestive threshold (P <0.1).

Comparison with computational predication algorithms: We
scored all evaluated variants using the LINSIGHT90, CADD91 and Lun-
gENN algorithms. LungENN was a neural network-based epigenomic
effects model, using the convolutional neural network architecture to
predict regulatory effects of genome-wide variants based on the lung-
specific chromatin profiles available in public database. The archi-
tecture of the LungENN model was implemented using PyTorch and
the Selene library92. Specifically, during the training process, each
training sample consists of a 1000 bp sequence from the human
GRCh37 reference genome centered on each 200bp bin, paired with a
label vector for 291 lung-specific chromatin features (Supplementary
Data 3). These features include histone marks, transcription factors,
and DNase or ATAC accessibility data, which were processed from
Cistrome93, ENCODE94 and Roadmap Epigenomics95 projects. The
training and testing sets were split by chromosomes and were strictly
non-overlapping. Chromosomes 8 and 9 were excluded from training
in order to evaluate chromatin feature prediction performance, while
the remaining autosomes were utilized for training and validation. For
performance evaluation on the test set, we used the area under the
receiver operating characteristic curve (AUC). The predicted prob-
ability for each sequence was calculated as the average of the prob-
ability predictions for the forward and complementary sequencepairs.
Finally, the prediction of variants requires only the genomicposition in
GRCh37 and the allele changes. The maximum functional difference
score observed across any feature was assigned to each variant in this
study.Weused theWilcox.test to compare the differences in predicted
scores between the two groups of frVars and non-frVars. Pearson’s
correlation of frVars was calculated between allelic effect-sizes and
computational predicted scores.

Haplotype block
To calculate LD between variants within the susceptibility loci, we
utilized whole-genome sequencing data from 3020 unrelated cancer-
free controls of Chinese descent, which were included in the OMICS
database we previously established4. At each locus, we used PLINK to
calculate the LD relationship between all evaluated variants and causal
variants. If the r2 between variants was greater than 0.2, they were
divided into the same haplotype block.

Leukocyte telomere length
Leukocyte telomere length (TL) was estimated from our WGS data4

using Telseq96. In short, the reads were classified as telomere, if they
contain more than k occurrences of the telomeric nucleotide motif
TTAGGG. Given that theWGS data were sequenced using reads length
of 150 bp, a k of 12 was recommended by previous studies38,97. Then,
telomeric read counts were normalized to the number of reads in the
WGS data having GC content between 48% and 52%, and this fraction
was multiplied by a constant equal to the number of base pairs of a
reference genome (GRCh37) with GC content between 48% and 52%
and divided by the number of chromosome ends, resulting in the
estimated average telomere length in kb. We used age-adjusted TL,
calculated as the residuals from linear regressions of TL on age, for
further analysis. Associations between variants at 5p15.33 and TL were
performed in 2984NSCLC cases and 3020 controls, respectively. After
adjusting for sex, smoking status, and the first two principal compo-
nents, per-allele effects (Beta) and standard errors (SE) were calculated
using linear regression analysis. Finally, a fixed-effect meta-analysis
was performed to combine association estimates from different
groups.

Plasmids and reporter assays
Using normal germline DNA, a total of seven selected variants was
cloned into the multiple cloning site of pGL3-Basic upstream of the
firefly luciferase gene with primers flanked with KpnI or Xho1 sites to
create wild-type construct. Site-directed mutagenesis was performed
on the wild-type construct to produce the variant. Constructs were
verified by Sanger sequencing. H1299 cells were cultured in RPMI 1640
medium, containing 10% fetal bovine serum. Cells were seeded in 24-
well plates and transfected using X-tremeGENE HP DNA Transfection
Reagent (Roche) with 2mg of the variants-luc construct and 0.02mg
of pRL-TK (Promega), a control Renilla luciferase vector. 48 h later cells
were lysed and luciferase activity was assayed with the Dual Luciferase
Reporter (Promega) assay in a 96-well format according to manu-
facturer instructions. Experiments were performed in triplicate wells.
Relative luciferase activity was calculated as the ratio of firefly to
Renilla luciferase.

CRISPR excision experiments
We excised gene containing rs2904259, rs2464522, rs2735846,
rs528894327, rs2735948, rs459961, rs6130139, rs1885281 and
rs138322120: Three pairs of guide RNAs targeting upstream (5’) and
downstream (3’) flanking sequences were designed to span a -300 to
+300 base region around each variant locus and cloned into pSpCas9
BB-2A-Puro (PX459) V2.0 (Plasmid #62988). The guide RNAs were
finally synthesized by the GenScript Biotech Corporation (Supple-
mentary Data 12). Three pairs of guide RNAs were used in conjunction
with X-tremeGENE™ HP DNA Transfection Reagent (Roche, 6365779)
for transfection. These gRNA were employed to infect 80% confluent
six-well plates of H1299 cells. Culture media was replaced 24 h later
and cellswere incubated for twodays post-infection. For each replicate
we collected total RNA using the TRIZOL method. The cDNA was
reversed transcribed using Hiscript lll Reverse Transcriptase (Vazyme,
R323-01) and 1 ug of total RNA. We performed qPCR using the 2×
ChamQ SYBR gPCR Master Mix (Vazyme, 0711-02) and 200nM qPCR
primers (Supplementary Data 13). Relative transcript abundance was

Article https://doi.org/10.1038/s41467-025-56725-w

Nature Communications |         (2025) 16:1391 12

www.nature.com/naturecommunications


quantified using the 2-ΔΔCT method normalized to the geometric mean
of the GAPDH reference genes.

CRISPR base editing
To introduce the rs2904259:T >C into lung cancer cells, we employed
a system utilizing the NG-ABE8e35 adenine base editor (RRID:
Addgene_138491) together with the guide RNA (gRNA) plasmid. We
purchased the gRNA expression plasmid (gRNA sequence:
GGTGATTCATTATGACTAGA) from Tsingke Biotechnology. H1299
cellswere seeded in six-well plates at a density of 3.5 × 105 cells perwell,
incubated overnight at 37 °C, and transfected with 3 µg ng of NG-
ABE8eplasmid, alongwith 1 µgof sgRNAexpressionplasmid, following
the manufacturer’s protocol. Following transfection, the cells under-
went selection with 2.5 µg/mL puromycin for two days. Total RNA was
then extracted from each replicate using the TRIZOL method. The
cDNAwas reversed transcribed usingHiscript III ReverseTranscriptase
(Vazyme) with 1 µg of total RNA. We performed qPCR using the
2×ChamQ SYBR qPCR Master Mix (Vazyme) and 200nM qPCR pri-
mers. Relative transcript abundance was quantified using the 2-ΔΔCT

method normalized to the geometric mean of the GAPDH reference
gene. Three independent biological replicates were conducted.

PRS construction
In the present study, PRS was generated by multiplying the genotype
dosage of each risk allele for each variant by its respective weight (ie,
the Ln of the odds ratio [OR]), summing all included variants together
into a PRS. We built the PRSEUR for the European populations in the
UKB by using the lead SNPs in previous reported lung cancer sus-
ceptibility locus of the largest available genome-wide association stu-
dies dataset of Europeandescent8. By using the same exclusion criteria
as before98, we included a total of 450,821 individuals for the final
analysis. The UKB had obtained ethics approval from the North West
Multi-centre Research Ethics Committee, which covers the UK
(approval number 11/NW/0382) and had obtained written informed
consent fromall participants. PRSEUR-substituted wasbuilt by substituting
the variants in the loci shared by Chinese and European lung cancer
GWASs with the potential causal variants identified in this study and
PRSEUR-expanded was built by integrating all identified NSCLC causal
variants in the Chinese populations with PRSEUR. To ensure the com-
parability of the different models, effect sizes for all included variants
were derived from the association of patients with NSCLC of European
descent in the previous OncoArray Project15, which were all flipped to
risk alleles, where appropriate, for consistency. After excluding
redundant SNPs with a minor allele frequency of less than 0.5%, the
final variants used for building various PRS models were shown in
Supplementary Data 10. The PRSs were categorized as low (<5%),
intermediate (5%–95%), or high (>5%) genetic risk, where percentages
were calculated on the basis of the distribution of the PRS among
participants without lung cancer.

Statistical analysis
MPRA data analysis has been described in detail above. All enrichment
was determined using a Fisher’s exact test, except when explicitly
stated. A Wilcoxon rank-sum test was used to assess the difference in
algorithm prediction scores between the frVars and non-frVars. For
reporter assays experiments, a two-sided Student’s t-test was per-
formed by comparing the average value of ref-allele against the aver-
age value of alt-allele conditions. We applied a Cox proportional
hazard model to evaluate the association between the different PRSs
and the risk of lung cancer, and estimated the HRs and 95% CIs. We
adjusted for age (continuous; age at assessment in UKB), age squared
(continuous), sex (categorical), smoking pack-years (continuous),DNA
source (categorical), and top ten principal components (continuous).
All reported P values were two-sided. All the analyses were performed
using the R software (version 3.6.3).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data ofMPRAhave been deposited in the Genome
Sequence Archive (GSA) in National Genomics Data Center, China
National Center for Bioinformation/Beijing Institute of Genomics,
Chinese Academy of Sciences, under accession number CRA020239
(https://ngdc.cncb.ac.cn). All other data generated in this study are
available within the paper and/or the Supplementary Information.
Source data are provided with this paper.
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