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Cortical processing of discrete prosodic
patterns in continuous speech

G. Nike Gnanateja 1,10, Kyle Rupp2,10, Fernando Llanos3, Jasmine Hect 2,
James S. German4, Tobias Teichert5,6, Taylor J. Abel 2,7,11 &
Bharath Chandrasekaran 7,8,9,11

Prosody has a vital function in speech, structuring a speaker’s intended mes-
sage for the listener. The superior temporal gyrus (STG) is considered a critical
hub for prosody, but the role of earlier auditory regions like Heschl’s gyrus
(HG), associated with pitch processing, remains unclear. Using intracerebral
recordings in humans and non-human primate models, we investigated pro-
sody processing in narrative speech, focusing on pitch accents—abstract
phonological units that signal word prominence and communicative intent. In
humans, HG encoded pitch accents as abstract representations beyond
spectrotemporal features, distinct from segmental speech processing, and
outperforms STG in disambiguating pitch accents. Multivariate models con-
firm HG’s unique representation of pitch accent categories. In the non-human
primate, pitch accents were not abstractly encoded, despite robust spectro-
temporal processing, highlighting the role of experience in shaping abstract
representations. These findings emphasize a key role for the HG in early pro-
sodic abstraction and advance our understanding of human speech
processing.

Speech processing involves the high-fidelity encoding of continuous
spectral and temporal information, as well as extracting and mapping
relevant speaker-invariant dimensions onto linguistically relevant
constructs such as phonemes, words, phrases, and sentences1. Spoken
words are generally viewed as providing the core information
regarding a speaker’s communicative intent. Words are composed of
speech sounds or phonemes that are encoded in a spatially distributed
manner along the superior temporal gyrus and sulcus (STGand STS)2,3,
with neural ensembles representing emergent properties of acousti-
cally distinctive phonetic features (e.g., place and manner of articula-
tion, or vowel height and backness). In addition to words, prosody in
speech carries crucial cues regarding linguistic and affective content,

which ultimately serve to coherently structure the talker’s intended
message to the listener. Prosody is cued by multi-dimensional spec-
trotemporal features including pitch, duration, loudness, and gradient
differences in vowel formant characteristics. In conversational speech,
speakers often dynamically vary pitch in systematic ways to cue pho-
nologically distinct intonational patterns that convey, for example, the
type of speech act that is being intended (i.e., a statement vs. a ques-
tion), that certain words or phrases are attentionally important, that
specific information is either known or unknown to the listener, or an
intent to change the topic of conversation4–6. While much of the focus
in the neuroscience of speech perception has been dedicated to the
encoding of phonological patterns that contribute to spoken word
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processing1,3,7, relatively little is known about the encoding of phono-
logical patterns associated with intonation8,9.

The STG and STS are considered important interfaces for the
extraction of the high-level features that underlie spoken language
processing2,3,10,11. Sub-regions of the lateral STG independently encode
distinctive features underlying phonological categories3. Prior work
using intracranial recordings has argued for multiple, parallel path-
ways, including a direct pathway from the auditory thalamus to the
STG that bypasses the primary auditory cortex (a sub-regionwithin the
Heschl’s gyrus—HG) which encodes distinct speech features12. Indeed,
disruption of the HG due to lesions or via inhibitory cortical stimula-
tion does not substantially impair speech perception12. Tang et al13.
used controlled sentences to study the representation of sentence-
level prosody in the STG via high-density surface intracerebral
recordings. They found distinct representations of relative pitch tra-
jectories associated with the different intonational patterns. Such
representations were independent of the representation of segmental
information. Prior studies12,13 argue that the lateral STG is the key
region for processing segmental and prosodic information. However,
there are challenges to this conclusion: these studies have rarely
assessed prosodic encoding from both HG and STG; ablating the pri-
mary auditory cortex may not impact spoken word processing but is
known to impair pitch processing14. Neuroimaging studies (invasive
and non-invasive) have shown that the medial15 and anterolateral HG
and planum temporale (PT)16–20 are key centers for processing beha-
viorally relevant pitch information. Further, pitch processing is crucial
in narrative contexts which are rarely used in studies using intracer-
ebral approaches.

Pitch accents are abstract phonological units of prosodic struc-
ture whose primary phonetic correlates are changes in the funda-
mental frequency contour (Fig. 1a, b) on and around specific syllables.
In English, pitch accents are sparsely distributed, in that they do not
occur on every word. When they do occur, they are typically localized
to the lexically stressed syllable of a word. In the Autosegmental-
Metrical (AM) theory of intonational phonology9,21, pitch accents are
composed of one or two discrete tonal units, high (H) or low (L), which
determine the relative pitch levels as well as the temporal organization
of the pitchmovements associated with a given pitch accent. Only one
tonemay be associated directly with a pitch-accented syllable, thus if a
pitch accent is composed of two tones (e.g., L + H* or L* + H), AM uses
an asterisk (H* and L*, respectively) to identify which tonal target has a
specific temporal alignment with the stressed syllable of the word that
receives prominence. In other words, the entire pitch contour asso-
ciated with a pitch accent may stretch over an interval that is longer

than a syllable, though substantially shorter than a sentence or utter-
ance, within which they are highly localized. In standard varieties of
American English, there are at least four discrete categories of pitch
accents which are distinguished phonologically by both tonal com-
position and alignment, and include L*, H*, L +H*, and L* +H22. Pitch
accents contribute additional prominence to stressed syllables not
only in terms of pitch, but also duration, loudness, and vowel dis-
tinctiveness. Together with prosodic phrasal boundaries and their
associated boundary tones, pitch accents form the scaffolding of
sentential prosodic structure23.

We leveraged the high spatio-temporal resolution of human
intracerebral recordings to study the extent to which intonational
categories extracted from continuous speech are encoded as discrete
categories in the HG, relative to the STG13,24. In contrast to previous
intracerebral investigations of intonational prosody which used elec-
trocorticography, we used stereoelectroencephalography (sEEG),
which allows access to medial regions of the brain that are typically
inaccessible to surface electrocorticography arrays, including the HG
and the supratemporal plane (STP)25,26.We scaffold our examination of
phonologically distinct intonational categories within the AM frame-
work, which argues for a tier of phonological information that is dis-
tinct from segmental information, but whose temporally organized
sequences of high and low tones are aligned in specific ways with the
latter. Importantly, the categories that make up the tonal tier carry
information linked to the speaker’s intentions8. For example, an H*
pitch accent which is typically realized as shallow rising pitch move-
ment on the stressed syllable indicates that the word carries salient
(and new) information, while an L* pitch accent, realized as a low
dipping pitch movement on the stressed syllable, marks that the word
carries information already known by the listener (Fig. 1). These cate-
gory differences in the shape and timing of the pitch trajectories are
leveraged by listeners to access pragmatic information that goes
beyond the lexical content conveyed by words. While the AMmodel is
highly influential in shaping linguistic theory, the underlying premise
that the proposed category distinctions have a neurobiological basis
remains unknown. We propose that these intonational categories are
robustly represented within the HG, that the phonological repre-
sentations are an emergent abstract property, and that the neural
organization for intonational categories is distinct from segmental
feature representations within the HG and the STG. To further support
this argument, we examine pitch accent encoding in a non-human
primate model, shown to be an effective animal model for studying
auditoryprocessing similar to that of humans27–29.Wehypothesize that
a primate without experience in understanding and using pitch

Fig. 1 | Illustration of the experiment and the acoustic correlates of pitch
accents. a Examples of the four pitch accent categories and their associated
meaning for four sentenceswith identical segmental content.b Subjects listened to
the narrative ‘Alice’s Adventures in Wonderland,’ with a representative spectro-
gram and annotated words shown here. cMean stimulus envelope contours across
all instances of each pitch accent. Shading shows the standard error of the mean.
d Pitch contours of the narrative segment are shown in (b), with colors and

annotations marking individual pitch accent examples. These pitch accents are
tightly tied to the stressed syllables in speech. e High gamma (Hγ) responses from
an example channel, time-locked to the narrative segment shown in (b) and (d).
fMean pitch contours across all instances of each pitch accent. Shading shows the
standard error of the mean. A.U. indicates arbitrary units, as the figure here shows
normalized pitch intensity and pitch contours for intensity and pitch.
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accents—lacking both exposure to distinct pitch accent categories and
their social and linguistic meanings—would not develop abstract
representations of these units, while still robustly encoding the
underlying acoustic cues.

Results
Speech-responsive electrodes
A total of 1561 electrode contacts were implanted across 11 participants
undergoing sEEG monitoring for intractable epilepsy. The participants
listened to an audio narrative of the book ‘Alice’s Adventures in Won-
derland’ by Lewis Caroll (produced by a male talker) during sEEG
monitoring (Supplementary Fig. 1). No participants had any gross
pathology in the STP. More details about the participants can be found
in Supplementary Table 1 and Supplementary Fig. 1. Broadband high
gamma (70–150Hz) (Hγ) was extracted across electrodes (Fig. 2a). In
another session, the participants also listened to short tokens of natural
speech. The Hγ responses to these short tokens were used to identify
speech-responsive electrodes (Fig. 2b). Among the electrodes implanted
within the STP, 158 electrodes in the STP (Fig. 2b) were found to be
speech responsive with significantly (false discovery rate-corrected
p<0.01) higher post-stimulus (50–200ms) Hγ responses than baseline
(−200 to 50ms). Further analyses were limited to only these electrodes.

Pitch accent separable electrodes in the supratemporal plane
Hγ responses to the audiobooknarrativewere segmentedbasedon the
temporal loci (−300 to 300ms relative to pitch accent location) of the

pitch accent (Fig. 2c). The time point 0ms does not mark the onset of
the pitch accent, but rather the location of the annotation landmark of
the tonal target that is temporally aligned with the stressed syllable,
which is typically the minimum or maximum fundamental frequency
(f0) in the stressed syllable depending on the pitch accent category
(see ‘Methods’ section). Consequently, pitch accent cues emerge
before the 0msmark, and thusmay be reflected in Hγ responses prior
to this point as pitch accent categories. We measured the ratio of
variance between and within-pitch accent categories to obtain F sta-
tistics. The F statistics were obtained for every time point between
−100 and 300ms, with a false discovery rate-corrected significance
threshold of q < 0.01. A clustering approach was used to estimate
significant clusters of time points that were temporally adjacent for at
least four time bins. The sum of the F statistic within each cluster was
used toobtain a cluster F statistic. The cluster statisticwasused to infer
the separability of pitch accent categories (henceforth, pitch accent
separability).

Out of the 158 speech-responsive electrodes in theHGandSTG,63
electrodes showed significant pitch accent separability. The electrodes
that showed maximum pitch accent separability were primarily loca-
lized to the HG in the STP bilaterally (Figs. 2d and 3a). A generalized
linear mixed effects model was fit on the pitch accent separability
across the 158 electrodes with fixed effects of the region of interest
(ROI) (HG and STG) and participant as a random intercept, which
showed that HG showed significantly more [t(156) = −5.616,
p = 8.749 × 10−8] pitch accent separability than STG (Fig. 3a). Adding
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Fig. 2 | Speech responsiveness and pitch accent separability in the
supratemporal plane. a High gamma (Hγ) power event-related responses elicited
using short speech tokens. The post-stimulus duration of the Hγ response (shaded
red) was compared with the pre-stimulus baseline (shaded gray) to select speech-
responsive electrodes. b Speech-responsive electrodes (red dots) across all parti-
cipants are plotted in a normalized spaceon the supratemporal planeof theMNI152
brain. Speech-responsive electrodes are primarily located in Heschl’s gyrus (HG—
green shading) and superior temporal gyrus (STG—blue shading). The size of the
red dots indicates the magnitude of the Wilcoxon sign rank test statistic (z)

comparing the post-stimulus Hγpowerwith the baseline as shown in (a). cMeanHγ
responses from an electrode in HG, time-locked to the pitch accents. The shaded
area shows the standard error of mean. The separability F-statistic across time is
shown in grayscale at the bottom of the plot. d The electrodes that showed strong
pitch accent separability are plotted as blue dots in a normalized space on the
MNI152 brain. The size of the blue dots indicates the magnitude of pitch accent
separability (cluster F statistic) normalized per individual. Pitch accent separable
electrodes are primarily localized near the HG bilaterally.
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the hemisphere as an additionalfixed effect did not improve themodel
fit [Likelihood ratio statistic—LRstat(2) = 2.783, p = 0.249]. Lastly, the
proportion of electrodes that showed significant separability did not
differ between hemispheres for both HG [χ2(1) = 1.155, p =0.282] and
STG [χ2(1) = 1.155, p =0.282].

Because the HG showed strong pitch accent separability, we fur-
ther evaluated the extent to which pitch accent separability differed

along the 60 speech-responsive electrodes along the axis of the HG
and the bounding sulci30. This was performed by using the normalized
MNI coordinates of the electrodes as fixed effects predicting the pitch
accent separability using a generalized linearmixed effectsmodel. The
right and left hemisphere electrodes were combined in the analyses by
multiplying the MNI medial-lateral coordinate by −1. For easier inter-
pretability of the model parameters, the coordinates of the electrodes
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were rotated such that the x coordinate was parallel to the HG axis, the
y coordinate was perpendicular to the HG axis with an anteroposterior
orientation, and the z coordinate was perpendicular to the HG with a
dorsoventral orientation. The square of y and z coordinates were used
in the model to assess the extent to which pitch accent separability
decreased as the electrodes were farther from the center of the HG,
and the participant identifier was used as the random intercept. The
pitch accent separability did not show statistically significant (all ps >
0.01) difference across any of the three axes of HG [x: t(52) = 2.426,
p =0.019; y 2: t(52) = 2.553, p = 0.136; z2: t(52) = −2.601, p = 0.0121], and
none of the interaction effects were statistically significant [x*y 2:
t(52) = −2.217, p =0.031; y 2*z: t(52) = 2.0728, p = 0.043; x*z 2:
t(52) = −1.864, p =0.043; x*y 2*z 2: t(52) = 1.262, p =0.213]. The pitch
accent separability thus did not vary systematically along the HG. The
addition of hemisphere to the model did not improve the model fit
[LRstat(1) = 0.174, p =0.676], suggesting that results did not differ
between the two hemispheres. While the above analyses show that
pitch accents are encoded differentially, they do not unequivocally
suggest that the pitch accents are encoded as higher-order prosodic
categories beyond acoustic representations.

Pitch accents are encoded as abstract representations beyond
spectrotemporal acoustic cues
To investigate the extent to which pitch accent separability was
driven by acoustic features or demonstrate evidence of abstract
representations of the pitch accent category, we used multivariate
encoding models. These encoding models resulted in linear kernels
(temporal response functions: TRFs) that described the relationship
between the stimulus features and the Hγ responses. These linear
kernels consist of regression coefficients in the time domain that
describe the encoding strength of different stimulus features.

Multivariate encoding models with stimulus envelope and pitch
features were used to predict the Hγ responses to the pitch accents.
Hγ responses to pitch accents were averaged to obtain pitch accent
event-related high-gamma responses (ER-Hγ). Similarly, model-
predicted Hγ responses were also calculated for each stimulus fea-
ture using cross-validation, and ER-Hγ traces were obtained using the
TRF predictions (Fig. 3e). The addition of the pitch accent feature to
the acoustic (env + pitch) model resulted in significantly higher
(Fig. 3b) explained variance (adj. R2, ps < 0.01, see Variance Parti-
tioning in Methods, an approach which accounts for a differing
number of features between models) in the HG and STG electrodes,
suggesting a higher-order abstract representation of pitch accents
beyond encoding of the spectrotemporal acoustic cues. The ER-Hγ
responses for two electrodes in a representative subject are shown in
Fig. 3e. TheHG electrode showed distinct ER-Hγ responses across the
four pitch accent categories. These model-predicted ER-Hγ showed
that the cumulative addition of features significantly increased the
explained variance in the responses in the HG electrode, while the
same was not true in the STG electrode. The STG electrode only
showed a significant increase in explained variance with envelope
and pitch features and not the pitch accent feature. Variance parti-
tioning of the multivariate encoding models was performed to
extract unique R2 explained by each feature13. Electrodes in which
pitch accent features explained a significant unique R2 were primarily
localized near the HG (Fig. 3c and Supplementary Fig. 2), and were
significantly higher in proportion than in the STG [χ2(1) = 32.681,
p = 1.085 × 10−8]. It is worth noting that most of these electrodes in
the HG and STG encoded both spectrotemporal acoustic features
and higher-order categorical pitch accent features. This can also be
seen in the weights of the TRF in an HG electrode and STG electrode
in a representative participant (Fig. 3d). Further, the full

Fig. 3 | Pitch accent separability across the supratemporal plane. a Pitch accent
separability in the Heschl’s gyrus (HG) vs. the superior temporal gyrus (STG). The
values shown on the y-axis are the generalized linear mixed effects model-fitted pitch
accent separability (F stat) values with the fixed effects of region of interest (ROI),
hemisphere (right vs. left) and their interaction effect with participants being the
random intercept. Separability was significantly higher in the HG than the STG on a
generalized linear mixed effects model (p=8.75× 10−8 two-tailed cluster corrected).
b Variance explained (R2) in the Hγ responses by the acoustic-only and the acous-
tic + pitch accent category encodingmodels. Points on or near the diagonal represent
electrodes where the pitch accent category model does not explain any variance
beyond the acoustic model. Markers in red denote electrodes that showed sig-
nificantly (p<0.01) higher explained variance with the addition of the pitch accent
feature (adjusted for additional features) to the acoustic model. c Supratemporal

plane view showing the unique variance explained by each feature. Each electrode is
shown as a pie chart, with the total size denoting the full model R2 normalized per
participant, and the slices denoted the unique variance explained by each feature.
d Temporal response functions (TRFs) for the different stimulus features in a repre-
sentative subject from electrodes in HG (el1) and STG (el2). El1 shows strong encoding
of all features, while el2 shows strong encoding of only env and pitch features.
e Observed and TRF model-predicted Hγ evoked responses at two electrodes shown
in (d). Shaded regions show the standard error of mean. El1 shows distinct, highly
separable responses across pitch accents, and the model-predicted Hγ responses
showed an increase in explained variance (* indicates a significant increase in R2) with
the addition of pitch accent features. El2 does not show strong differential responses
across pitch accents. Model-predictedHγ responses at el2 closelymatch the observed
Hγ only when using the spectrotemporal acoustic features.
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Fig. 4 | Periodicity encoding in the supratemporal plane. a Temporal response
function for the periodicity from a representative electrode in the Heschl’s gyrus.
TRF was obtained on the local field potential. The shaded region shows the stan-
dard error of the mean. b Periodicity encoding in the supratemporal plane is

depicted by the prediction accuracy (marker size) of the encoding model of fun-
damental frequency onto the local field potential. The prediction accuracy was
normalized per subject and projected on the MNI152 template brain.
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spectrotemporal + discrete pitch accent features (actual) explained
higher variance (ps < 0.01) than the spectrotemporal model +
shuffled (100 times) pitch accent features. The variance explained by
the full model beyond the mean of the shuffled model was sig-
nificantly higher in the HG than the STG electrodes (Supplementary
Fig. 3). This provides further converging evidence that the pitch
accents are encoded as discrete features beyond spectrotemporal
features, with higher encoding in the HG than the STG electrodes
[t(156) = −2.862, p = 0.005].

Periodicity is a vital ingredient of intonation contours and pitch
accent processing. We sought to assess the brain regions involved in
encoding the low-level periodicity cues intomore abstractpitchaccent
cues. To this end, the phase-locking of the local field potentials to
periodicity (Fig. 4a) in the audiobook narrative was assessed in all the
electrodes in the STP. We analyzed the local field potentials instead of
the gamma information for periodicity encoding due to the partial
overlap of the periodicity and high gamma frequencies. The phase-
locking information was derived based on the magnitude of similarity
between the periodicity of the stimulus and the periodicity in the local
field potential at eachelectrode. This wasdone to evaluate if the neural
regions that show higher pitch accent separability also show higher
phase-locking to periodicity. First, a generalized linear mixed effects
model was fit on the phase-locking with fixed effects of the ROI (HG
andSTG) andparticipant as a random intercept. Thephase-lockingwas
highly localized (Fig. 4b) in the HG compared to the STG
[t(156) = −10.796, p = 1.217 × 10−20], and adding an interaction term of
hemisphere did not improve model fit [LRstat(2) = 3.429, p = 0.180]
suggesting similar phase-locking patterns between the hemispheres,
which was the same as pitch accent separability. Then we assessed if
the pitch accent separability was related to the phase-locking by fitting
a generalized linear mixed effects model predicting pitch accent
separability with fixed effects of periodicity encoding and interaction
of periodicity and ROI (HG and STG). Pitch accent separability was
strongly related to phase-locking [t(155) = 9.534, p < 3.048 × 10−17] and
the interaction [t(158) = −4.098, p = 6.686 × 10−5] between phase-
locking and ROI, suggesting that the electrodes in HG that showed
pitch accent separability also showed higher phase-locking, while the
same was not true in the STG. Further, a generalized linear mixed
effects model predicting the unique R2 of pitch accents was sig-
nificantly related to the phase-locking magnitude [t(156) = 5.323,
p = 3.488 × 10−7]. These results suggest that neural populations

displaying pitch accent separability also transform the spectro-
temporal acoustic features into higher-order prosodic representa-
tions. Taken together, these results are consistent with a model in
which theHG robustly encodes pitch and pitch accent information in a
highly specialized manner much more robustly beyond spectro-
temporal features compared to the STG.

Pitch accents are specific to language experience and not
encoded in a non-human primate model of auditory perception
To bolster the premise that abstract pitch accent features are encoded
in the human listeners beyond spectrotemporal representations and
are tied to listeners’ linguistic experience, and the learning of socially
relevant linguistic categories, pitch accent processing was assessed
using intracerebral recordings in a non-human primate model. We
turned to the macaque monkey because (i) they do not use or
understand pitch accents, but at the same time (ii) their auditory sys-
tem processes low-level acoustic features much like humans. If our
spectrotemporal model captures all relevant acoustic confounds, we
would expect no encoding of the abstract pitch accent features in this
species. Neural data were obtained from the right hemisphere of one
monkey using an electrophysiological mesoscope consisting of three-
dimensional penetrating electrode grid with 800 intracranial contacts
distributed across 50 shafts arranged in 12 coronal slices. This pro-
vided a dense coverage of the brain relative to our human data, where
the electrode coverage wasmore sparse. The ER-Hγ responses to pitch
accents showed separability in only one electrode (Fig. 5a) located in
the auditory cortex. Multivariate encodingmodels were fit in the same
way as in the humans to evaluate if the pitch accent separability in the
monkey was encoded as a higher-level abstract representation beyond
the spectrotemporal acoustic representation. The pitch accent fea-
tures did not explain variance in the ER-Hγ responses to pitch accents
beyond the variance explained by the spectrotemporal acoustic fea-
tures (Fig. 5b). Further assessment of phase-locking to the periodicity
showed multiple electrodes in the auditory cortex and the brainstem
that showed strong phase-locking (Fig. 6a, b). The pitch accent
separable electrode also demonstrated strong phase-locking to the
periodicity. This suggests that the single pitch accent separable elec-
trode encoded multiple acoustic features, namely phase-locking
information as well as the envelope and pitch contours. However,
the pitch accents were not encoded as higher-order features beyond
the low-level acoustic cues. A note worth mentioning is that, of the 11

Time (ms)

H
γ
(z
)

Observed Model-predicted

env+pitch+pitchaccentenv+pitchenv
a b 

Ventral

M
ed

ia
l Lateral

Dorsal R2 = 0.552 R2 = 0.8282* R2 = 0.8508

Auditory 
Cortex

Fig. 5 | Pitch accent separability in the right hemisphere of a rhesus macaque.
a Pitch accent separability (F-stat) shown as blue dots on a coronal brain slice. The
size of blue dot indicates the magnitude of separability. Only one electrode in the
auditory cortex showed pitch accent separability. b Pitch accent evoked high
gamma responses from the auditory cortex electrode and model-predicted high

gamma responses. Shaded regions show the standard error of mean. The pitch
accent separability was predicted by the acoustic (env and pitch) models, while the
pitch accent feature did not explain significantly more variance than the acoustic
features alone (* indicates significant increase in R2 with p <0.01).
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human participants, 4 had electrodes in right hemisphere ROIs, of
which 1 participant showed no right hemisphere pitch accent
separability.

Pitch accents and segmental speech features are differentially
encoded in the supratemporal plane
Pitch accents are multi-dimensional short timescale inflections at the
syllable level in the intonational contour of speech and are linked to
stressed syllables, which often co-occur with changes in spectro-
temporal acoustic cues. In contrast, the segmental/phonetic features

of speech are shorter timescale phoneme-level inflections primarily in
the formant frequencies, slow temporal fluctuations, and spectral
content that are produced as a consequence of the place, voicing, and
manner of movement of the speech articulators in the vocal tract.
However, both pitch accents and segmental features form discrete
auditory unit-like representations that are relatively invariant across a
range of absolute spectrotemporal cues. To determine whether pitch
accents and segmental features in speech are encoded in similar brain
regions, the pattern of electrode activation along the supratemporal
plane was assessed for pitch accents, vowel features, and place and
manner of articulation. Manner cues are primarily linked to longer
timescale temporal fluctuations in speech, while the place of articula-
tion is differentiated by short timescale spectrotemporal fluctuations,
primarily associated with formant frequency transitions. Vowels also
rely on formant frequency changes leading to the vowel formant
shape. Thus, the separability of segmental features and their patternof
similarities with the pitch accent separability was assessed.

Separability was assessed across vowel categories, consonant
categories, consonant place of articulation, and consonant manner of
articulation (Figs. 7a and 8a) (see ‘Methods’ section for the full list of
categories). In the HG, the proportion of pitch accent separable elec-
trodes was significantly lower than the proportion of consonant
(z=−3.669, p=2.437 × 10−4), manner (z=−4.021, p= 5.795 × 10−5), and
place [z=−3.669, p=2.437 × 10−4] separable electrodes but did not differ
significantly from the proportion of vowel separable electrodes
(z=−2.2015, p=0.03). In the STG, the proportion of pitch accent
separable electrodes was significantly lower than the proportion of all
segmental feature separable electrodes; consonant (z=−7.081,
p= 1.432 × 10−12), manner (z=−6.337, p= 2.335 × 10−10), place (z=−7.276,
p=3.449× 10−13), and vowels (z=−3.880, p= 1.045 × 10−4). Generalized
linear mixed effects models were also fit for separate electrodes to
assess whether the magnitude of pitch accent separability was linked to
the magnitude of segmental feature separability; pitch accent separ-
abilitywasmodeled using a fixed effect of segmental feature separability
and interaction effect of ROI and segmental feature separability, with a
random intercept of subject. This analysis was restricted only to the
electrodes that showed significant pitch accent separability. The scatter
plots in Fig. 7b show the relationship between pitch accent separability
and segmental feature separability across all the speech-responsive
electrodes in the HG and the STG. Pitch accent separability was sig-
nificantly predicted by consonant separability [t(60) = 5.335,
p= 1.534 × 10−6]. In contrast, pitch accent separability was not sig-
nificantly predicted by vowel separability [t(60) = 1.361, p=0.179],
manner separability [t(60) = 1.462, p=0.149], or place separability
[t(60) = 1.240, p=0.220]. None of the interaction effects were significant
(ps >0.01) indicating that the pattern did not differ across the HG and

r
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a b

Fig. 6 | Periodicity encoding in the auditory cortex of themacaque. a Temporal
response function (TRF) to speech periodicity recorded from an auditory cortex
electrode; shaded regions show standard error of the mean across trials. b TRF
prediction accuracy for periodicity was displayed on two coronal slices of the

macaque that showed the best phase-locking. Periodicity encoding was the stron-
gest in auditory cortex and brainstem electrodes. The electrode that showed
maximum periodicity encoding was not the one that showed maximum pitch
accent separability.
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showing the relationship between the separability of pitch accent and segmental
features (Fclus).
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STG. Together, these results suggest that pitch accent categories were
encoded by a subset of electrodes in the HG that encoded the con-
sonant segmental features (Fig. 7a, b).

Unsupervised hierarchical clustering was performed on the multi-
dimensional scaled distances of ER-Hγ responses to assess whether the
pitch accents were encoded as discrete representations in the HG and
STG are different from the representation of segmental feature of vowel
and consonants. Clustering was performed separately at the HG elec-
trodes and STG electrodes (Fig. 8b). Two indices of clustering were
derived: the Davies–Bouldin index (DBI) which is a combined index of
cluster tightness and cluster separability, and the Adjusted Rand Index
(ARI) which measured the accuracy of clustering the true categories.
Lower DBI indicates tighter andwell-separated clusters, while higher ARI
indicates better clustering accuracy. A bootstrapped independent t-test
was performed on theDBI and ARI to evaluate the accuracy of clustering
in the HG vs. STG (Supplementary Fig. 4). The pitch accents clustered
more tightly [t(998) =−87.140, p=0, d= −5.511] and with higher accu-
racy [t(998) = 104.815, p=0, d=6.629] in the HG than the STG. For the
vowel and consonant labels, multiple labels clustered together sug-
gesting that therewere no phoneme-specific clusters in theHG and STG,
rather the clusters formed based on common patterns across vowel and
consonant labels. For the vowels, the clusters were less tight
[t(998) = 45.281, p=3.191 × 10−244, d=2.864] and showed poorer accu-
racy [t(998) =−17.938, p= 1.399× 10−62, d=−1.134] in the HG than STG.
Similarly, for the consonants, clusters were less tight [t(998) =−82.186,
p=0, d= −5.198] and showed poorer accuracy [t(998) =−46.677,
p=3.623× 10−253, d=−2.952] in the HG than STG. Each consonant label is
cued by multiple segmental features such as manner (affricate, liquid,
etc.) and place (front, back, etc.) of articulation. Both the HG and STG
show that segmental features of manner and place are clustered more

accurately in the brain than the consonant labels themselves. Manner
clusters in the STG were tighter [t(998) = 18.9346, p= 1.498× 10−68,
d= 1.197] but similar in accuracy [t(998) =−2.592, p=0.01, d=−0.164]
when compared to the HG. Place features showed less tighter clustering
[t(998) = 18.935, p= 1.498× 10−68, d= 1.197] but similar accuracy
[t(998) = 3.160, p=0.002, d=0.200] in the STG as in the HG. Taken
together, the pitch accents showed more meaningful clusters in the HG
than the STG, while the place and manner features showed more
meaningful clustering in the STG than theHG, These results suggest that
the pitch accents are strongly encoded in theHG, andwith a pattern that
is different from the encoding of consonant segmental features.

Furthermore, we tested for hemispheric asymmetry in the encod-
ing of pitch accent and segmental speech features, motivated by the
differences in temporal scales across which the pitch accent and seg-
mental features of vowels and consonants unfold. This was done by
comparing the proportion of electrodes encoding each feature within
the HG and STG across the two hemispheres (Fig. 9). Chi-square tests
revealed no significant associations between hemisphere and elec-
trode proportion for pitch accent feature in both the HG [χ2(1) = 0.96,
p =0.327] and STG [χ2(1) = 0.578, p =0.447]. Similarly, all other seg-
mental features showed no hemispheric asymmetry (ps > 0.01) except
manner features in STG [χ2(1) = 9.168, p =0.002].

Discussion
The human auditory system parses multi-dimensional cues in natural
speech to facilitate seamless speech perception across a variety of
listening situations. Natural speech is rich in prosodic cues that add a
critical layer of meaning beyond the segmental features of speech. We
characterized the processing of pitch accents, which are discrete
phonological units of prosodic structure associated with the melodic
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and rhythmic profile of speech and which are substantially shorter in
timescale than an entire sentence or utterance. Specifically, we traced
the encoding of pitch accents along the STP spanning theHG, and STG,
in contrast to a previous study13 which investigated the processing of
distinct intonational patterns over longer sentential duration in the
STG but with sparse STP sampling. However, the encoding of intona-
tional patterns in the STG may be inherited from the HG in the STP,
which has yet to be evaluated. Using high-density sampling of the STP,
we examined the encoding of short-timescale prosodic features (i.e.,
pitch accent categories) that form the building blocks of sentential
prosody. We evaluated the extent to which pitch accents are encoded
in the STP as discrete representations and traced their transformation
along the medial-lateral axis of the STP. Primarily, we focused on how
pitch accent representations transform along both the HG, which
contains the earliest stages of cortical auditory processing, and the
STG. Furthermore, we investigated the extent of dissociation between
the processing of pitch accents and segmental speech cues, to char-
acterize specialized areas for processing themulti-dimensional cues in
natural speech.

Our results demonstrate that the HG is the cortical locus for
processing pitch accents as discrete representations, expanding its
role in speech processing beyond the low-level spectrotemporal
representations suggested previously12. We show discrete representa-
tions of pitch accent categories in the HG, beyond the associated
acoustic representations of pitch and/or intensity responses. Studies
that have used controlled non-speech stimuli have suggested that
diffuse regions in the medial and anterolateral HG and the PT16,18,19,31

comprise the pitch center in the brain. Further, studies showed that
intonation contours of sentences are encoded in specific electrode
sites along the STG, while absolute pitch is encoded in the HG or the
anterolateral border of the core auditory cortex12,13. In contrast, we
show that pitch accents are robustly encoded in the HG. The HG sites
that encoded pitch accents are also strongly tuned to periodicity cues,
relative pitch, and amplitude envelope cues. However, the pitch
accents showedmaximumseparability only in theHG andnot the STG.
The pitch accent separability was distributed across the HG and not
specifically limited to the anterolateral or the posteromedial portion of
the HG. This suggests that HG specializes in extracting discrete pitch
accent information from natural speech by integrating multi-
dimensional cues. It also performs higher-order computations that
go beyond spectrotemporal processing or simple phase-locking to
periodicity pitch. Similarly, pitch processing across multiple time-
scales and complexities has been shown to be differentially encoded
along the HG15,32, suggesting that the centers for processing pitch and

pitch accent information differ based on relevance and hierarchical
complexity.

We sought to evaluate the extent to which cortical sites encoding
the pitch accents are similar to those encoding segmental features of
vowels or consonants. Pitch accent identification and categorization
are known to be sensitive to the pitch contour’s alignment with chan-
ges in intensity and periodic energy, as well as durational variability,
associated with features of the underlying segments33–37. As with pitch
and pitch accents, the acoustic cues for vowels unfold over time and
must be integrated dynamically with other types of spectrotemporal
variation including, most notably, the rising-falling nature of the
speech envelope of the vowel itself. The primary cues to vowel cate-
gory are the first and second spectral formants. For most vowel cate-
gories, these are not stable properties in continuous speech but are
realized as transitions stretchedover the temporal spanof the vowel. In
contrast to pitch accents and vowels, the primary manner cues to
consonants such as plosives, fricatives, and nasals occur as a sequen-
tially organized series of relatively stable states. The acoustic cues for
consonantalmanner of articulation comprise the entirety of the speech
signal with a combination of duration and spectral energy cueing the
manner of articulation. In contrast, place cues, while relatively short in
duration, interact in complex ways with the quality of the following
vowel and typically involve transitions over and above those required
for cueing the category of the vowel itself. It is an open question,
therefore, whether place features for plosives are expected to pattern
with vowels, and by extension, pitch accents, in terms of the need for
dynamic integration with overlapping spectrotemporal cues. The
vowel features, unlike consonant segmental features, were primarily
encoded in theHG, and the encoding of vowelswas not related to pitch
accent processing. Similarly, pitch accent processingwas not related to
place feature representation; however, it was related to the manner
feature representation. This dissociation between representations of
segmental features and pitch accents is consistent with the fact that
pitch accents unfold over time and must be dynamically integrated
with other spectrotemporal features for perceptual identification and
category discrimination,while consonant features are temporallymore
stable and constitute bundles of acoustic features that are perceptually
independent. The difference observed in vowel representation in
contrast to pitch accent representation is potentially driven by the
importance of formant spectral representation for vowel perception in
contrast to pitch contours cueing pitch accent representation.

The anatomical distribution of pitch accent representations dif-
fered from segmental speech features. Pitch accents and vowel
representations were primarily localized to the HG, with pitch accents
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exhibiting the smallest spatial spread. Representations of place and
manner information were seen both in the HG and the STG, with place
and manner features clustering better in the STG than in HG. While
most explorations of phonetic feature representation have been
demonstrated in the STG using intracerebral recordings2,12, the current
study and another recent study38 demonstrate phonetic feature
representation in the HG and STG. The specialization of the HG for
preferentially processing intonational/prosodic features and dis-
tributed segmental feature processing in the HG and STGmay suggest
a parallel organization for speech processing.

The encoding of pitch accents upstream in the processing hier-
archy suggests a role in dynamically shifting focus39 to the stressed
syllable, which could aid in the extraction of segmental information.
Whileweclearly showneural representations of pitch accents and their
dissociation from segmental speech features, it remains an open
question how these speech cues interact and aid in a coherent speech
percept. Pitch accent processing compared to segmental feature
processing showed clear categorical representations in the HG. While
segmental features showedmeaningful clustering, multiple segmental
features were clustered together as shared representations. Future
research focused on a unified model of prosody and segmental
information will help clarify the functional role of pitch accents and
their neurophysiological basis in speech perception.

The non-human primate model bolsters evidence that pitch
accent processing is a specialized function related to human speech
processing, as evidenced by the absence of higher-order pitch accent
representations beyond spectrotemporal representations in the pri-
mate auditory cortex. Interestingly, macaques are a social species that
use vocalizations to communicate, and their vocal repertoire includes
category-relevant variations along the primary acoustic dimensions of
pitch accents, namely intensity and pitch contour shape. Despite the
behavioral relevance of these acoustic dimensions for macaques, they
do not use or understand pitch accents. Our results showing acoustic
but not category encoding of pitch accents in primate auditory cortex
are consistent with this argument, providing a critical piece of evi-
dence for empirical questions surrounding the relevance of pitch
accent encoding to human speech processing.

In addition to exploring pitch accent representations, we also
sought to study whether the brain regions that support the processing
of these higher-order features also encode an important feature of
pitch processing, i.e., phase-locking to the periodicity of speech. We
found that neural populations that encoded pitch accents also phase-
locked to the periodicity. These results hint at the existence of popu-
lations of neural ensembles that transform periodicity features into
higher-order pitch accent features in the HG. Previous explorations of
pitch processing argue for a pitch center in the anterolateral HG and
the STG18,40–42; in contrast, we show that encoding of higher-order pitch
features in speech is distributed across the HG. Similar results have
also been reported in recent multiunit explorations of pitch-relevant
information in theHG,which foundapitch-sensitive regiondistributed
across the HG15,43,44. While we demonstrate that extraction of higher-
order linguistically relevant pitch accent information is distributed in
the HG, it should not be generalized to the existence of a universal
pitch center. The focus of the current study was to evaluate pitch
accent processing for speech, and we did not explore the various
dimensions of pitch perception using controlled pitch magnitudes as
in previous studies15,17,19,45. Our results shed light on the perception of
linguistically relevant, naturally produced pitch accents in natural
speech containing rich harmonic information, and do not necessarily
explore a pitch center in the brain common to processing of pitch
across speech and non-speech stimuli.

Limitations and future directions
The current study used naturally produced pitch accent stimuli to
study their neural representation, but we stopped short of

comprehensively exploring their interaction with segmental feature
representations. This would require using experimental stimuli with
controlled manipulation of pitch accents to understand how they
interact with different speech cues to generate a coherent speech
percept, conveying both the speaker’s message and intent. Further-
more, we did not explore connectivity between neural populations
that represent pitch accents and those that represent segmental fea-
tures, which would elucidate how pitch accents influence representa-
tions of the accompanying segmental features. Future research
exploring the above will inform how upstream and downstream
information for speech processing are integrated in the brain to per-
ceive speech.

Methods
Humans
Participants. A total of 11 participants (2 female) participated in the
study. The age of the participants ranged from 9 to 24 years, and 2 of
these participants were left handed. Additional details about the par-
ticipants are provided in Supplementary Table 1. The participants were
undergoing intracranial electroencephalography monitoring for clin-
ical evaluation of epilepsy surgery using sEEG. All participants were
native speakers of English. The participants had no other relevant
medical history, and electrode placement was based purely on clinical
necessity. The families/participants gave written informed consent to
participate in the study. All research protocols were approved by the
Institutional Review Board of the University of Pittsburgh.

Stimuli and annotation. An audio narrative of the book ‘Alice’s
Adventures in Wonderland’ by Lewis Caroll was used as the stimulus
(Chapters 1–7, http://librivox.org/alices-adventures-in-wonderland-by-
lewis-carroll-5). The book was narrated in American English by a male
speaker (F0: M = 152.10Hz, SD = 40.82Hz). Silences in the narrative
>300ms were trimmed. The narrative was broken down into 45 con-
tiguous audio tracks each ~65 s long. The narrative audio and written
version of the book were then aligned in time using the Montreal
Forced Aligner to locate the onsets and offsets of phonemes and syl-
lables in the narrative. The forced alignment was visually inspected by
three experienced linguists, and the annotation was manually cor-
rected following the guidelines for phoneme boundary placement46. A
full prosodic annotation was then carried out following the Tones and
Break Indices (ToBI) guidelines22,47, which is a set of annotation con-
ventions designed for American English and motivated by the AM
theoretical model9,21. These annotations were performed by an expert
annotator who is not one of the authors. This annotation included
pitch accents, phrase accents, boundary tones, and break indices. Only
four pitch accent categories (L +H*: 1188 occurrences, L* +H: 322, H*:
1610, and L*: 318) were considered for analysis in the study due to their
comparatively higher frequency of occurrence in the recorded narra-
tive. The * in the labels indicates which tone in a pitch accent (either L
or H) is phonologically associated with the stressed syllable, which for
bitonal pitch accents (L +H*, L* +H) is realized phonetically as a dif-
ference in how the low and high f0 ‘targets’ align relative to the
stressed syllable (Fig. 1 and Supplementary Fig. 5). The stimuli were
presented through ER-3C headphones driven by an audio interface
through psychtoolbox in MATLAB. The stimulus intensity was cali-
brated for each patient prior to the start of the experiment by
adjusting the volume to a level deemed loud but comfortable. Parti-
cipants listened to at least 30 of the 45 audio tracks.

Stereoelectroencephalography. sEEG electrodes were inserted into
the brain using robot-assisted implantation48,49. Electrode trajectories
were inserted along different brain regions to test seizure localization
hypotheses based on non-invasive evaluations50. Each electrode had
between 8 and 18 cylindrical contacts with a length of 2mm and a
diameter of 0.8mm. The center-to-center distance between each
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electrode contact was 3.5mm. The choice of electrode sampling
(spatial resolution) across the trajectories was made based on clinical
necessity. The anatomical locations of the electrode sites were esti-
mated using high-resolution computed tomography (CT) and struc-
tural MRI. For each patient, a post-operative CT scan and a pre-
operative structural MRI were jointly used to identify the precise
anatomical location of each electrode. A cortical surface reconstruc-
tion was generated from the MRI using Freesurfer51, and electrodes
were localized using coregistration between the CT and MRI and then
manually marking electrode locations in the CT using Brainstorm, a
MATLAB-based third-party application52.

The sEEG data were recorded with a Grapevine Nomad processor
(Ripple) using the Trellis recording software. The sEEGwas recorded at
a sampling rate of 1000Hz, and an online notch filter was applied at
60/120/180Hz to reduce electrical line interference. The audio signal
was synchronously recorded by the Grapevine system at a sampling
rate of 30,000Hz and was used to temporally synchronize the audio
and the sEEG. The participants listened to the audio narrative Alice’s
Adventures in Wonderland, with every ~65-s segment followed by two
multiple-choice comprehension questions to encourage participants’
attention.

Data pre-processing. A regression-based algorithm cleanline imple-
mented in EEGLAB 14.1.2b was used to clean any residual electrical line
interference in the EEG data at frequencies 60, 120, 180, and 240Hz. A
Laplacian-style re-referencing approach53 was applied to cleaned sEEG
data, where every electrode contact in an electrode trajectory was re-
referenced to its immediately neighboring contacts. Laplacian re-
referencing reduces the volume conduction spread of neural activity
and aids in increasing the spatial resolution. High gamma power was
extracted from the re-referenced data to obtain population-level
activity fromneural ensembles proximal to the electrode contact. High
gamma (Hγ) amplitude was extracted between the range of 70–150Hz
using the naplib toolbox54. A 1/7th octave filterbank was used to filter
the EEG data to extract the EEG in multiple frequency bands. A Hilbert
transform was then applied in each band, and the magnitude of the
analytic signal in each band was extracted. The resultant signal was
averaged across all the bands and resampled at 128Hz. This signal was
then z-scored based on the mean and variance in a baseline period
before the onset of each audio track and was referred to as Hγ activity.

Speech-responsive electrodes. Speech stimuli from the Natural
Sounds stimulus set used in earlier studies55,56 were used to identify
speech-responsive electrodes. ER-Hγ responses time-locked to the
onset of the speech tokens were extractedwith an epoch ranging from
−1000 to 2000ms (ref: stimulus onset). The post-stimulus ER-Hγ
epochswere z-scored using the pre-stimulus baseline from −200ms to
−50ms. The ER-Hγ epochs were then averaged to obtain the averaged
ER-Hγ responses. The ER-Hγ responses in the post-stimulus epoch
(50–200ms) were then statistically compared with the baseline using
Wilcoxon Sign rank tests with false discovery rate correction (q =0.01)
to obtain electrodes that were speech responsive. All data presented in
the manuscript are only from speech-responsive electrodes obtained
in this step.

Pitch accent separability. High gamma responses were temporally
aligned with the stimulus based on the auxiliary audio input channel.
Annotated markers for pitch accents were used to segment high
gamma responses into 1000ms long epochs (−500 to 500ms relative
to the locus of the pitch accent) for each pitch accent. In contrast with
phoneme onsets or word onsets where cues start at 0ms2,57, pitch
accents are tightly tied to stressed syllables and are marked at their
maximum realizations, which is typically an f0 peak for the categories
H* and L +H*, and an f0 minimum for L* and L* +H. Since time points
prior to 0ms contain relevant information, we considered both

negative and positive epoch limits for data analysis. The epochs were
further baseline corrected using a −300 to −150 ms baseline to
enhance the responses elicited by the pitch accent; the function
rmbase.m in EEGLAB 14.1.2b was used. These baseline-corrected epo-
ched data were trimmed to −300 to 300ms and considered the ER-Hγ.

The trial-specific ER-Hγ was then used to calculate pitch separ-
ability. The ratio of the within-pitch accent category variance to the
variance across categories (F statistic) was calculated using the naplib
toolbox and served as our metric of pitch accent separability. F-sta-
tistic significance was estimated using numerator degrees of freedom
k−1 (k = 4, the number of pitch accents), and denominator degrees of
freedom n − k (n = number of ER-Hγ epochs across the four pitch
accents). F-statistics were calculated for every time point from −100 to
300ms; this time range was chosen because it contained the most
deviations from zero in both the mean ER-Hγ and stimulus pitch con-
tours. As the F-statistic was calculated at 58 time points, the sig-
nificance level (p value) was adjusted based on the false-discovery rate
(FDR) correction procedure to control the inflation of the family-wise
error rate due to multiple comparisons58 at a q value of 0.01. A con-
servative FDR-adjusted p value of 0.01 was used to consider each
individual F-statistic as significant. Furthermore, only time points with
significant p values that were contiguous (i.e., clustered) in time for at
least ~31ms (four time bins) were considered significant. This step was
used to ensure that only neurophysiologically plausible data that
shows temporal quasi-stationarity59 were considered significant. The F-
statistic was summed across all time points within each cluster to get a
cluster statistic (Fclus), andmaximum Fcluswas considered as themetric
of pitch accent separability. The pitch accent separability was esti-
mated at all speech-responsive electrode contacts.

Vowel and consonant separability. Separability metrics were also
estimated for vowels (vowel identity), consonants (consonant identity),
and segmental features (manner and place) in the sameway as the pitch
accent separability metrics with degrees of freedom adjusted by the
number of categories in each feature. Consonant and vowel identity
refers to the individual phoneme labels that are cued by multi-
dimensional features, while manner and place are features that collec-
tively contribute to the identity of each phoneme (consonant or vowel).
A total of 14 vowels were assessed (/AA/, /AE/, /AH/, /AO/, /AW/, /AY/,
/EH/, /EY/, /IH/, /IY/, /OW/, /OY/, /UH/, /UW/). In total, 21 consonantswere
analyzed (B/, /CH/, /D/, /DH/, /ER/, /F/, /G/, /JH/, /K/, /L/, /M/, /N/, /NG/, /P/
, /R/, /S/, /SH/, /T/, /TH/, /V/, /Z/). The labels were based on the ARPAbet.
Ten place features were assessed (Front, Central, Back, Bilabial, Labio-
dental, Linguadental, Linguaalveolar, Linguapalatal, Linguavelar, Glot-
tal). Six manner features were analyzed (Plosive, Fricative, Affricate,
Nasal, Liquid, Glide). Consonant manner features were defined as the
degree and type of constriction or obstruction of airflow as it passes
through the vocal tract when producing the consonant. Place of
articulationwas defined as the location in the vocal tract where a speech
sound is produced based on the position of the speech articulators.

Multivariate encoding models. Multivariate forward encoding mod-
els were fit to high gamma responses across the entire narrative. Sti-
mulus features used for themodels were the envelope, pitch, and pitch
accents (Fig. 3).

Envelope. A multiband amplitude envelope was derived from the sti-
mulus waveform. The stimulus waveform was first filtered into 16
equally spaced bands on an ERB scale60–63. A Hilbert transform was
applied to the output of each filter band and the magnitude of the
analytic signal was extracted to obtain the envelope at each band. The
amplitudeof themultibandenvelopewas compressedusing a factor of
0.6 to mimic the compression in the inner ear. This multiband envel-
ope was then resampled to 128Hz to match the sampling rate of
the Hγ.
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Pitch. Pitch accents are closely linked to the shape of the pitch con-
tour. Thus, a pitch model was fit to the neural data to assess if the
neural responses to pitch accents merely represent the pitch contours
or if they represent an object-related invariant response that is
informed by the pitch contours. The stimulus pitchwas estimatedwith
the autocorrelation method in Praat64 using a pitch floor of 75Hz, a
time frame of 40ms, and time steps of 10ms. We used the MATLAB
implementation of praat, mPraat65, to extract the pitch contours. The
pitch contours in each audio track were z-scored to get a normalized
estimate of the pitch. These pitch contours were epoched in the same
way as the neural data; Fig. 1d demonstrates the difference in pitch
contours across the four pitch accents. However, the pitch contours
were not directly used in encoding models. Generally speaking, linear
models estimate unit changes in the high gammamagnitude given unit
changes in an input stimulus feature. This is straightforward for the
stimulus envelope, as increases in stimulus amplitudes change the
magnitude of neural activity. We would not expect a similar relation-
ship with stimulus pitch, as a reduction in stimulus pitch would not
necessarily reduce the neural response. To circumvent this problem,
pitch contours were discretized into ten bins, similar to the approach
used by Tang et al.13. The discretization was performed by creating a
binary vector of 0s and 1 s, which signified instances when the pitch
contour was within a bin’s edges.

Pitch accent model. To assess whether pitch accents form discrete
object-like representations beyond the spectrotemporal acoustic cues
of envelope and pitch, separate models were built using pitch accent
categories. Binary vectors of 0s and 1s were created with a 1 denoting
the locus of each pitch accent. Four pitch accent categories (L +H*,
L* +H, H*, and L*) were used.

Linear kernels (models) were estimated, which when convolved
with the stimulus features resulted inpredicted highgamma responses
(1), and called the TRFs. Each of these models was fit separately using
linear ridge regression implemented using the mTRF toolbox66. Leave-
one-out cross-validation was used for hyperparameter tuning (λ, ridge
parameter) and model fit (r, Pearson’s correlation between observed
and model-predicted high gamma responses). The leave-one-out step
trained themodels on all tracks except the kth track and predicted the
response to the kth track. This step was repeated until predicted
responses were generated for all tracks.

HγðtÞ=
X

w tð Þ× s t � τð Þ+ εðtÞ ð1Þ

The high gamma response Hγ(t) is modeled as the linear convolu-
tion of time-lagged versions of the stimulus features sðt � τÞ and the
TRFwðtÞ, where t denotes time and τ denotes the time lag. Time lags of
−300 to 300ms were used to estimate the TRFs. TRFs were practically
estimated using Eq. 2, where λ is the ridge parameter andM is a matrix
that quadratically penalizes the neighboring terms inw and smoothens
the TRF to avoid overfitting and produce better generalization (2).

w tð Þ= ðst × s + λMÞ�1
× ðst × rÞ ð2Þ

Theobserved ER-Hγwas compared to themodel-predicted ER-Hγ,
which was generated by averaging across predicted Hγ responses
within each pitch accent category (Fig. 3e). Three TRF models (env,
env + pitch, and env + pitch + pitch accent) were fit separately to pre-
dict the Hγ responses, and the ER-Hγ were extracted from the pre-
dicted Hγ responses. No baseline correction was performed while
comparing the observed ER-Hγ and the model-predicted ER-Hγ to
facilitate direct comparisons.

Phase-locking to periodicity. Phase-locking to the periodicity of
speech stimuli was assessed by fitting the forward encoding model to
map the fundamental frequency waveform of the narrative onto the

local field potential. The fundamental frequency waveform was
extracted using empirical mode decomposition67. Unlike the above
sections where encoding models were fitted on the Hγ responses,
Laplacian referenced local field potential waveforms that were band-
passfiltered from 70 to 300Hzwere used to analyze the phase-locking
to the periodicity. The periodicity waveform and the neural data were
segmented into successive 3000ms segments for estimating theTRFs.
This resulted in ~600 to ~900 segments. The TRFs were fitted using
linear ridge regression with a lambda value of 10,000, which was
empirically found to be appropriate. The time lags used for estimating
the TRFswere −50 to 100ms. TRFswere fitted for each of the segment.
Leave-one-out cross-validation was performed to obtain the goodness
of fit of the periodicity. This was obtained by predicting the LFP of the
left-out trial using the average of TRFs across all segments except one,
and this procedure was cross-validated. The goodness of fit was
obtained using Pearson’s correlation (r value) between the TRF-
predicted local field potential and the fundamental frequency wave-
form to obtain phase-locking magnitude. The phase-locking magni-
tude was averaged across all the 3000ms segments per electrode.

Anatomy. The cortical surfaces of eachparticipantwere reconstructed
from a pre-operative MRI using Freesurfer51. The MRI was then co-
registered with a post-operative CT scan, and the electrode locations
were localized in Brainstorm52. For visualization and data analyses, the
MRIs were normalized using Brainstorm’s implementation of SPM12
non-linear warping. This MNI deformation field was then used to warp
the Julich volumetric atlas into patient space and each channel was
localized to a ROI by finding the label of the closest voxel. The elec-
trodes that corresponded to STG, HG, ID3, and ID4 insula ROIs were
used for further analysis. The electrodes in the ID3 and ID4 insula were
combined with the HG for data analyses, as these showed auditory
responses that potentially bled from the HG. Further, ROI labels of
each electrode were manually corrected wherever appropriate.

Macaques
Electrophysiological data recording. Mesoscopic electrophysiological
recordings were performed in an adult male macaque monkey (Macaca
mulatta). The treatment of the monkey was in accordance with the
guidelines set by the US Department of Health and Human Services
(National Institutes of Health) for the care and use of laboratory animals.
All methods were approved by the Institutional Animal Care and Use
Committee at the University of Pittsburgh. The animal was 10 years old
and weighed 15.7 kg at the time of the experiments.

The mesoscopic electrophysiology recording system consisted
of a three-dimensional grid of 800 intracranial electrode contacts
distributed across 50 multi-electrode electrode shafts arranged on a
grid on the horizontal plane to cover the volume of the right hemi-
sphere. The electrodes traversed the brain in the dorsoventral
direction and penetrated the cerebrum, cerebellum, diencephalon,
and parts of the mesencephalon. The inter-electrode distance varied
between 0.4 and 2.7mm between consecutive electrode contacts,
depending on the length of each shaft. The locations of the electrode
shafts and contacts were assessed using a CT scan with all the
implanted electrode shafts in place. We then registered the D99 atlas
to the T1 image of the animal. This allowed us to assign anatomical
labels to each electrode contact.

The recordings were performed in a small (4 feet wide × 4 feet
deep × 8 feet high) sound-attenuating and electrically insulated
recording booth (Eckel Noise Control Technologies). The monkey was
positioned and head-fixed in custom-made primate chairs (Scientific
Design). Neural signals were recorded with a SpikeGadgets recording
system at a sampling rate of 30 kHz. Stimuli were presented in the
same paradigm as in humans through a custom MATLAB package
monkeylogic. The sound files were presented through a PCI audio
interface (model M-192, M-Audiophile) at a rate of 96 kHz. The analog

Article https://doi.org/10.1038/s41467-025-56779-w

Nature Communications |         (2025) 16:1947 12

www.nature.com/naturecommunications


output of the audio interface was amplified by a 330W amplifier (QSC
GX3) and converted into soundwaves using a single element 4-inch full
range speaker (modelW4-1879, Tang Band) located 8 inches in front of
themonkey and presented at an intensity of 78 dB SPL. To synchronize
the electrophysiological data with the audio, the analog audio signal
from another channel of the audio interface was routed to one of the
unused analog inputs of the data recording system and was used later
in the offline processing.

Data processing. The electrophysiological data were downsampled to
1000Hz, and data at each electrode were Laplacian referenced using
the two closest electrodes in 3D space to enhance spatial resolution.
The data processing beyond this step was the same as in the human
sEEG data. During analysis, unlike the human sEEG data, the responses
were notmasked based on speech responsivity, as we did not have the
same dataset as was used to estimate speech responsiveness in
humans (responses to the Natural Sounds stimulus set). However, this
was not an important factor, as only a single electrode in the monkey
showed significant pitch accent separability and robust ER-Hγ
responses to the pitch accents.

Statistical analysis
All statistical analyses were performed in Matlab R2022a. Generalized
linear mixed analysis was performed for statistical comparisons to pre-
dict the pitch accent separability based on the ROI, hemispheres, and
different separability phase-locking metrics. The proportion of electro-
des that encoded each feature were compared using chi-square tests of
associations. All statistical comparisons considereda level of significance
of 0.01. Wherever appropriate, false discovery rate corrections were
applied for multiple comparisons. All tests performed were two-sided.

Variance partitioning. To evaluate the unique variance explained (R2)
by a given feature, a partial model was built in which that feature was
excluded. The R2 for this partial model was then subtracted from the R2

for the full model (env + pitch + pitch accent)13 (3–5).

R2
pitch accent =R

2
env +pitch+pitch accent � R2

env +pitch ð3Þ

R2
pitch =R

2
env+pitch+pitch accent � R2

env +pitch accent ð4Þ

R2
env =R

2
env +pitch+pitch accent � R2

pitch+pitch accent ð5Þ

The significance of the unique variance explained was calculated
using an F-test (m, N− k− 1) with the following statistic, where k is the
number of predictor variables in the fullmodel andN is the total number
of time points in the ER-Hγ responses. This approach accounts for the
difference in the number of predictors between the full model and the
underspecifiedmodel13. The R2 in each electrode in each participant was
normalized by the maximum R2 per participant for plotting (6).

Ff eature =
R2
f eature

m

,
1� R2

f ull

N � k � 1
ð6Þ

The same approach was used to evaluate if the addition of addi-
tional predictors statistically increased explained variance in Fig. 3e.

Multi-dimensional scaling (MDS) analysis and clustering. MDS was
performed separately on the averaged ER-Hγ responses to five differ-
ent feature sets, namely pitch accents, vowel identity, consonant
identity, manner, and place of articulation. All electrodes in each ROI
(HG and STG) were used to assess how the neural activity differed
between categories within a feature set in latent three-dimensional
space. The epoch used for paired distances was −100 to 300ms for the
pitch accents and 0–300ms for the segmental features. The MDS

space in all electrodes was Procrustes transformed (without scaling) to
the mean of Euclidean distance averaged across all electrodes. These
transformed MDS spaces were clustered using agglomerative hier-
archical clustering. The number of clusters was optimized by mini-
mizing the DBI68. The range of number of clusters evaluated was 4–10.
Statistics were performed on the cluster outputs to obtain metrics of
clustering tightness, separability, and accuracy. The DBI was used as a
combination metric for cluster separability and compactness.

DBI =
1
k

Xk
i = 1

maxj≠i Di, j

n o
ð7Þ

Di, j =
�di +

�dj

� �
di, j

ð8Þ

where �di is the average distance between each point in the ith cluster
and the centroid of the ith cluster. �dj is the average distance between
each point in the jth cluster and the centroid of the jth cluster. �di, j is
the Euclidean distance between the centroids of the ith and jth
clusters. Themaximum value of �Di, j represents the worst-case within-
to-between cluster ratio for cluster i. The optimal clustering solution
has the smallest DBI value.

ARI69,70 was used as ametric for clustering accuracy by comparing
the cluster membership with ground truth.

RI =
TP+TN

FP+FN+TP+TN
ð9Þ

where TP (True Positives) are pairs of samples that are in the same
cluster in both the true andpredicted partitions, TN (TrueNegatives) are
pairs of samples that are in different clusters in both the true and pre-
dicted partitions, FP (False Positives) are pairs of samples that are in the
same cluster in the predicted partition but in different clusters in the
true partition, and FN (False Negatives) are pairs of samples that are in
different clusters in the predicted partition but in the same cluster in the
true partition. The ARI was then calculatedwhich adjusts the Rand Index
by considering the expected similarity by chance, providing a correction
for random agreement. The ARI wasmore suitable for our application as
it assesses the similarity between two clustering solutions, particularly
when dealing with different numbers of clusters or when random
agreement needs to be taken into account.

ARI =
RI� Expected RI

maxðTotal RIÞ � Expected RI
ð10Þ

Bootstrapped statistics were obtained to compare the clustering
metrics between ROIs. Bootstrapping was performed using 500 draws
of the data with permutation (with replacement). Clustering metrics
were obtained on the bootstrapped samples and independent t-tests
were used to compare the metrics between ROIs. Cohen’s d was esti-
mated for effect size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data in this study are available on request from the lead contacts.
The data are not publicly available because they could compromise
research participant privacy and consent.

Code availability
The code used to support the findings of this study is available on
request from the lead contacts.
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