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Loss-of-function mutations in the dystonia
gene THAPI1 impair proteasome function by
inhibiting PSMBS expression
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The 26S proteasome is a multi-catalytic protease that serves as the endpoint
for protein degradation via the ubiquitin-proteasome system. Proteasome
function requires the concerted activity of 33 distinct gene products, but how
the expression of proteasome subunits is regulated in mammalian cells
remains poorly understood. Leveraging coessentiality data from the DepMap
project, here we characterize an essential role for the dystonia gene THAPI in
maintaining the basal expression of PSMBS. PSMBS insufficiency resulting from
loss of THAP1 leads to defects in proteasome assembly, impaired proteostasis
and cell death. Exploiting the fact that the toxicity associated with loss of
THAPI can be rescued upon exogenous expression of PSMB5, we define the
transcriptional targets of THAP1 through RNA-seq analysis and perform a deep
mutational scan to systematically assess the function of thousands of single
amino acid THAPI1 variants. Altogether, these data identify THAPI as a critical
regulator of proteasome function and suggest that aberrant proteostasis may

contribute to the pathogenesis of THAP1 dystonia.

Regulated protein degradation is essential for cellular homeostasis. As
the primary route through which the cell achieves selective protein
degradation, the ubiquitin-proteasome system (UPS) plays an impor-
tant role in essentially all critical cellular processes'. Proteins destined
for degradation are typically identified by E3 ubiquitin ligases, which,
following activation of ubiquitin by an E1 activating enzyme and its
transfer to an E2 ubiquitin conjugating enzyme, catalyze the attach-
ment of ubiquitin onto substrate proteins®. Addition of further ubi-
quitin moieties generates polyubiquitin chains, which can serve as a
potent recognition signal for the 26S proteasome, a multi-catalytic
protease. The importance of this pathway is underscored by the fact
that dysregulation of the UPS is a hallmark of diseases such as cancer,
autoimmunity and neurodegeneration®.

The 26S proteasome is a large, multi-subunit complex comprising
the 20S core particle and two 19S regulatory particles*. The regulatory
subunits are responsible for the recognition and unfolding of ubiqui-
tinated proteins, which are then threaded into the active site in the
core particle formed by two rings of B-subunits’. The complex com-
prises three catalytic subunits: PSMBS (also known as 35), PSMB6 (31)

and PSMB7 (2). These exhibit trypsin-like, chymotrypsin-like and
caspase-like activities respectively, resulting in the proteolysis of the
polypeptide chain into short peptides fragments®. Each catalytic sub-
unit harbors a catalytic threonine residue at its N-terminus®, which is
activated following autocatalytic processing of an N-terminal pro-
peptide at a late stage in core particle assembly’.

Transcriptional regulation of proteasome subunit expression is
known to be controlled by two major players. In yeast the transcription
factor Rpn4 is responsible for both the basal expression of proteasome
subunits, and, under conditions of proteasome insufficiency, feedback
induction of proteasome subunit expression®. Rpn4 functions as part
of a negative feedback loop that monitors proteasome activity: in
unstressed cells Rpn4 is constitutively degraded, but it is rapidly sta-
bilized upon proteasome dysfunction’. In mammalian cells Nrfl acts in
a similar manner to induce the expression of proteasome subunits
under conditions of proteasome insufficiency'®", but appears not to
have a major role in their basal expression'®. Several other transcrip-
tion factors have been implicated in proteasome gene expression'>™,
including NF-Y which regulates a set of proteasome genes which carry
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a CCAAT box motif in their promoters', but the factors which maintain
the basal expression of proteasome subunits in human cells remain
largely unknown.

By performing genome-wide pooled CRISPR/Cas9 loss-of-
function genetic screens across hundreds of cancer cell lines, the
Broad Institute’s Cancer Dependency Map (DepMap) project aims to
systematically catalog the essentiality of all protein-coding human
genes”. A key insight from these data is that whilst the dependency of
different cell lines on any one particular gene may vary, genes which
function in concert in a biological pathway often exhibit globally
similar essentiality patterns'®. Thus, by measuring gene dependency
across hundreds of cell lines, genes exhibiting ‘co-essential’ relation-
ships can be clustered into modules which may have the power to
predict novel functions for genes. Indeed, multiple studies have
exploited this dataset to provide new insights into gene function
across a range of biological processes'®™?'.

Here we leveraged insight from co-essentiality data to character-
ize an essential role for THAP1 in proteasome function. THAPI1 is a
ubiquitously expressed transcription factor which achieves sequence-
specific DNA binding via an atypical THAP-type zinc finger domain
located at its N-terminus?. Its target genes remain poorly defined, but
THAPI is thought to play an important role in DNA repair?, cell cycle
progression’* and oligodendrocyte myelination”?°. Homozygous
deletion of THAPI leads to embryonic lethality”*, Notably, a wide
variety of autosomal dominant mutations located throughout the
THAPI1 coding sequence cause an early-onset form of the neurological
disorder dystonia (DYT-THAP1, previously known as DYT-6), where
progressive loss of motor function leads to sustained involuntary
muscle contractions and abnormal posturing®®*°, However, as the
critical targets of THAPI are poorly characterized, it remains unclear
how the THAP1 mutations observed in dystonia patients result in
disease.

Exploiting a fluorescent reporter knocked into the endogenous
PSMBS locus, here we demonstrate that the co-essential relationship
between THAP1 and PSMBS is explained by an essential role for THAP1
in activating PSMBS expression. THAP1 binds to cognate sites within
the PSMBS promoter and is required for its basal expression, and hence
loss of THAP1 results in insufficient PSMBS5 expression, proteasome
dysfunction and cell death. Finally, we leveraged our functional
reporter assay to perform a deep mutational scan of THAP1, quanti-
fying the activity of thousands of single amino acid variants to define
the landscape of THAP1 mutations in dystonia.

Results

The dystonia gene THAP1 exhibits a co-essential relationship
with the proteasome subunits PSMB5 and PSMB6

Leveraging co-essentially data from the DepMap project”, we set out
to characterize novel roles for genes involved in the UPS. Focusing on a
manually curated set of ~-1000 genes implicated in UPS function, we
examined co-essential gene relationships derived from genome-wide
CRISPR-Cas9 screens across ~1100 different cancer cell lines. Sup-
porting the utility of this approach to identify genetic relationships
that are functionally relevant, many of the most significant positive co-
essential relationships clustered genes whose products are known to
act in multi-protein complexes to facilitate protein degradation (Sup-
plementary Fig. 1A). For instance, the RNF126 E3 ubiquitin ligase
cooperates with BAG6 to target hydrophobic sequences mislocalised
to the cytosol for proteasomal degradation® (Fig. 1A); Cul2, ElonginB/C
and the von Hippel-Lindau (VHL) substrate adaptor comprise a Cullin-
RING E3 ubiquitin ligase complex responsible for the degradation of
hypoxia-inducible factor (HIF)-1a in normoxia (Fig. 1B)*?, and the CTLH
complex is a multi-subunit E3 ligase orthologous to the yeast GID
complex which degrades gluconeogenic enzymes® (Fig. 1C). Further-
more, several of the most significant negative co-essential relation-
ships define E3 ligase-substrate pairs: for example, MDM2 mediates the

degradation of p53** (Supplementary Fig. 1B) and the Cul4 substrate
adaptor AMBRAL targets cyclin D**** (Supplementary Fig. 1C).

Our follow-up work focused on the most statistically significant
uncharacterized co-essential relationship in the dataset: THAPI exhi-
bits a highly significant positive association with both PSMBS5 and
PSMB6 (Fig. 1D-F). THAP1 is a transcription factor which binds DNA in a
sequence-specific manner using a THAP-type zinc-finger domain, while
PSMBS and PSMB6 encode catalytic subunits of the proteasome core
particle. Thus, we set out to test the hypothesis that the co-essential
relationship between THAPI and PSMB5/6 could be explained by an
essential role for THAP1 in regulating the expression of catalytic pro-
teasome subunits.

Loss of THAP1 abrogates PSMBS transcription

Lentiviral expression of Cas9 and CRISPR sgRNAs targeting THAPI in
HEK-293T cells was extremely toxic (Fig. 1G, H), consistent with Dep-
Map data which demonstrates that knockout of THAPI is broadly
deleterious across cancer cell lines®. However, at day 5 post-trans-
duction, before the onset of significant cell death, we found sub-
stantially reduced levels of PSMBS5 transcripts by quantitative reverse
transcription PCR (qRT-PCR) (Fig. 1I). In contrast, we observed no
reduction in the expression of either PSMB6 or PSMB7, the other
catalytic subunits of the proteasome (Fig. 1I). Concordantly, we also
observed reduced abundance of PSMB5 protein as assessed by
immunoblot (Fig. 1)). Thus, these data suggest that THAPI is required
to maintain basal levels of PSMBS transcription.

Lethality resulting from loss of THAP1 can be rescued by
exogenous PSMB5

Next, we sought to test the hypothesis that the essentiality of THAP1 is
due to its role in activating PSMBS expression. Should this be the case,
we reasoned that, irrespective of any reduction in the expression of
endogenous PSMBS, an exogenous source of PSMBS5 should rescue cell
viability upon THAPI ablation. Strikingly, unlike their wild-type coun-
terparts, HEK-239T cells transduced with a lentiviral vector expressing
PSMBS did not display any significant growth defect following CRISPR/
Cas9-mediated targeting of THAPI (Fig. 2A and Supplementary
Fig. 2A). Exogenous expression of PSMB6, however, was incapable of
rescuing viability following THAPI ablation (Fig. 2A and Supplementary
Fig. 2B). Thus, the toxicity that results from loss of THAPI is due to
insufficient PSMBS5 expression, explaining the molecular basis for their
co-essential relationship. In contrast, we found no evidence to support
a direct relationship between THAPI and PSMB6, suggesting that their
co-essential relationship arises indirectly through their shared rela-
tionship with PSMBS.

DepMap data demonstrates that disruption of THAP1 is broadly
lethal across cancer cell lines (Fig. 2B). Thus, to generalize our finding
that the essential requirement for THAPI1 is to facilitate PSMB5
expression, we ablated THAPI in three additional human cell lines:
HeLa, A549 and THP-1. Mirroring our findings in HEK-293T cells, in
A549 and HeLa we found that the toxicity observed upon loss of THAP1
could be ameliorated upon exogenous expression of PSMB5
(Fig. 2C, D). THP-1 cells, however, did not exhibit reduced viability
following THAPI disruption (Fig. 2E). This prompted us to examine in
more detail the nature of the cell lines in which THAP1 is not essential,
which were strikingly enriched (P <1 x107°) forimmune cells (‘myeloid’
or ‘lymphoid’ as defined by DepMap). Considering that the immuno-
proteasome is constitutively expressed by many immune cells***?, we
reasoned that expression of PSMBS8, the analogous counterpart of
PSMBS in the immunoproteasome, might relieve the essential
requirement for THAPL. Indeed, there is a strong correlation between
the essentiality of THAP1 and PSMB8 expression levels as measured by
RNA-seq, wherein the cell lines in which THAP1 knockout has little or
no impact on viability express the highest levels of PSMBS8 (Fig. 2F).
Indeed, we found that THP-1 cells expressed high levels of PSMB8 by
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gRT-PCR (Fig. 2G). We further validated these conclusions in HEK-293T
cells, where, like PSMBS5, exogenous expression of PSMB8 maintained
the viability of THAP1 knockout cells (Fig. 2H and Supplementary
Fig. 2C). Thus, sustained expression of either PSMBS or its immuno-
proteasome counterpart PSMB8 can rescue the toxicity associated
with loss of THAPL.

A fluorescent reporter at the endogenous PSMBS locus monitors
THAPI activity in live cells

We extended these findings by knocking-in a fluorescent reporter to
the endogenous PSMBS locus, enabling us to monitor PSMB5 expres-
sionin live cells. Following transfection of HEK-293T cells with Cas9, an
sgRNA targeting the transcriptional start site of PSMBS5 and a homology
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Fig. 1| Transcriptional regulation of PSMB5 by THAP1 explains their co-
essential relationship. A-C Co-essential relationships involving UPS genes predict
biological relationships, as exemplified by three E3 ligase complexes: the BAG6
complex (A), Cul2"* (B) and the CTLH complex (C). Network diagrams were produced
using NetworkX; numbers annotating the edges indicate pairwise correlation coeffi-
cients as calculated in ref. 16. D-F THAPI exhibits a strong positive co-essential rela-
tionship with both PSMB5 and PSMB6 across DepMap data. G, H THAPI disruption is
toxic in HEK-293T cells. Cells were transduced with a lentiviral vector expressing Cas9

and the indicated sgRNAs, followed by puromycin selection to eliminate untrans-
duced cells commencing 48 h later. A further 48 hours later, cells were counted,
plated in equal numbers, and their viability assessed by counting (G) and brightfield
microscopy (H). Data in (G) represent mean values of n =3 biological replicates + s.d.
(**P<0.001, two-tailed t-test) (Scale bar =100 um). I, J Ablation of THAPI decreases
PSMBS expression. HEK-293T expressing Cas9 and the indicated sgRNAs were ana-
lyzed by qRT-PCR (I) and immunoblot (J). Data in (I) are presented as mean values of
n=3 technical replicates + s.d. Source data are provided as a Source Data file.
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Fig. 2 | Lethality resulting from THAP1 loss can be rescued by exogenous
expression of PSMBS5. A Exogenous expression of PSMBS rescues cell viability
upon THAPI ablation. HEK-293T cells were first transduced with lentiviral vectors
expressing either PSMBS or PSMB6; then, following transduction with Cas9 and the
indicated sgRNAs, cell numbers were monitored over time. B Loss of THAP1 is
broadly toxic across cell types. CRISPR/Cas9-mediated ablation of THAPI adversely
affects the viability of 946/1100 cancer cell lines (blue dots, representing effect
scores < -0.25) examined by DepMap. C, D The toxicity associated with THAPI
ablation is rescued by exogenous PSMBS5 expression in HeLa cells (C) and A549 cells
(D). E-H Like PSMBS5, expression of PSMB8 also protects against the toxic effects of
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THAP1 loss. THP-1 cells do not exhibit any substantial growth defect following
THAPI ablation (E). High levels of PSMBS8 expression are observed in the cell lines
whose growth is not significantly affected by THAPI loss (orange dots, representing
effect scores >-0.25) in DepMap data (F), and THP-1 cells strongly express PSMBS as
assessed by qRT-PCR (G). Exogenous expression of PSMB8 can rescue the viability
of HEK-293T cells following THAPI disruption (H). Data in (G) represent mean
values of n =3 technical replicates * s.d.; data in (A, C-E, and H) represent mean
values of n =3 biological replicates + s.d. (**P < 0.001, two-tailed t-test; ns, not
significant). Source data are provided as a Source Data file.

donor vector encoding the green fluorescent protein (GFP) variant
mClover3*® followed by a P2A peptide (Fig. 3A), we were readily able to
establish a population of cells (-10%) which were stably GFP-positive
(Fig. 3B). Single cell clones isolated from the GFP-positive population
(Fig. 3C) harbored GFP at the intended site as validated by PCR from
genomic DNA (Supplementary Fig. 2D). Furthermore, lentiviral
expression of shRNAs targeting PSMBS resulted in a reduction in GFP
expression (Supplementary Fig. 2E) prior to the onset of cell death
(Supplementary Fig. 2F, G), validating that the reporter clones could be
used to quantitatively assess PSMBS expression.

We exploited our findings above to generate viable THAP1
knockout (KO) reporter cells. Following CRISPR/Cas9-mediated dis-
ruption of THAP1 in Ppsyps-GFP reporter cells (sustained by exogenous
expression of PSMBS5) (Fig. 3D), we isolated single cell clones from the
GFP™ population by fluorescence-activated cell sorting (FACS)
(Fig. 3E). Disruption of the THAPI locus was confirmed by PCR from
genomic DNA followed by Sanger sequencing (Supplementary Fig. 2H).
Using primers specific to the 3’ untranslated region of PSMBS5 to allow

for selective detection of the endogenous transcript, we confirmed a
substantial reduction in PSMBS5 expression in two THAP1 KO clones by
gRT-PCR (Fig. 3F). Our attempts to validate efficient knockout of THAP1
by immunoblot, however, were hampered by the paucity of effective
commercial antibodies. In particular, we found that the Proteintech
antibody (12584-1-AP) used in multiple previous studies detected a
prominent band running around the expected molecular weight
(25 kDa), but whose abundance was not affected upon CRISPR/Cas9
targeting of THAPI (Fig. 3G). However, this antibody could readily
detect exogenous THAPI as a separate band that migrated just slightly
slower, and, upon prolonged exposure, was able to detect endogenous
THAPI1 in control cells but not in the THAP1 knockout clones (Fig. 3G).

THAPI acts through cognate binding sites located within the
PSMBS promoter

Next, we sought to determine how THAP1 might regulate PSMB5
expression. In support of a direct effect, chromatin immunoprecipi-
tation followed by sequencing (ChIP-seq) data from the ENCODE
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project* revealed THAP1 occupancy immediately upstream of the
PSMBS transcription start site (TSS) (Fig. 4A). Despite THAP1 binding to
thousands of gene promoters (Supplementary Data 1), this property is
not shared among the genes encoding proteasome subunits: PSMDS is
the only other gene to exhibit THAP1 occupancy (Fig. 4A). THAP1
contains a THAP-type zinc finger domain which mediates sequence-
specific DNA binding, and competitive EMSA experiments*> have
defined the consensus binding sequence (“THABS” motif) as
TNNNGGCA (where N represents any nucleotide) (Fig. 4B). Strikingly,
examination of the PSMB5 proximal promoter region revealed two
perfect matches within 200 bp of the TSS, and a third near-perfect
match a further -500 bp upstream (Fig. 4C). Together, these data
suggest that THAP1 binds cognate motifs in the PSMB5 promoter to
activate its transcription.

We examined this hypothesis by engineering a lentiviral reporter
system in which -1 kb of the PSMBS5 proximal promoter was placed
upstream of GFP (Fig. 4D). Single copy expression of this reporter
construct in HEK-293T cells resulted in robust GFP expression (Sup-
plementary Fig. 3A). This appeared to be due in part to the activity of
THAP1, as combined deletion of all three THABS motifs from the
PSMB5 promoter (“ATHABS”) resulted in decreased GFP expression
(Fig. 4E). Importantly, CRISPR-mediated ablation of THAPI (performed
following the introduction of exogenous PSMB5 to maintain cell via-
bility) reduced GFP expression from the reporter construct driven by
the wild-type PSMB5 promoter, but did not further reduce expression
from the PSMBS promoter lacking all THABS sites (Fig. 4F).

To investigate the relative importance of the three THABS motifs,
we created an additional panel of mutant constructs in which each
THABS motif was individually deleted. These data pointed to a critical
role for site 2, as only the ATHABS2 construct exhibited decreased GFP
expression relative to the level of the ATHABS construct (Supple-
mentary Fig. 3B). Moreover, the ATHABS2 construct was the only one
unaffected following ablation of THAP1, whereas a marked reduction

in GFP expression was observed in cells expressing ATHABSI and
ATHABS3 (Supplementary Fig. 3C). Thus, THAPI1 binding to a cognate
motif (THABS2) immediately upstream of the PSMB5 TSS appears
critical for PSMBS expression.

Loss of THAP1 impairs proteasome function

As PSMBS encodes one of the three catalytic subunits of the con-
stitutive 20S proteasome core particle, we set out to test the hypoth-
esis that the toxicity associated with loss of THAP1 was due to
proteasome dysfunction. First, we examined whether the catalytic
activity of PSMB5 was required to sustain cell viability upon THAPI
ablation. Whereas HEK-293T cells expressing wild-type PSMBS did not
exhibit any appreciable growth defect upon disruption of THAPI, cells
expressing a catalytically-inactive PSMB5 mutant were not viable under
these conditions (Fig. 5A). Second, as PSMBS is critical to facilitate the
integration of the other catalytic 3 subunits into the 20S core particle
during proteasome assembly***, we assessed whether loss of THAP1
resulted in defects in proteasome assembly. As a result of impaired
autocatalytic cleavage of their N-terminal propeptide, an inability of
the catalytic subunits to incorporate into the 20S core particle causes
an accumulation of the immature proteins which can be detected by
immunoblot®. Supporting the idea of defective proteasome assembly
in the absence of THAP1, we found decreased abundance of the mature
forms of PSMB6 and PSMB7, concomitant with the accumulation of
immature (uncleaved) species (indicated by asterisks) which were
absent from control cells (Fig. 5B). Moreover, native gels revealed the
accumulation of proteasome assembly intermediates (indicated by
asterisks) upon THAPI disruption which mirrored the defects observed
upon PSMBS knockdown (Fig. 5C). Finally, we reasoned that protea-
some dysfunction upon THAP1 loss should result in the stabilization of
short-lived proteins. Exploiting the Global Protein Stability (GPS) two-
color lentiviral reporter system*® (Fig. 5D), we found that CRISPR-
mediated ablation of THAPIL stabilized two exogenous GFP-degron
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fusion proteins to a similar degree as shRNA-mediated knockdown of
PSMBS5 (Fig. SE). Similarly, THAPI disruption also resulted in increased
abundance of endogenous HIF-1a, which is constitutively degraded by
the proteasome in normoxia®>*” (Fig. 5F). Altogether, these data sup-
port a model whereby the death of cells lacking THAPI is caused by
defective proteasome function resulting from inadequate expression
of PSMBS.

Defining the transcriptional targets of THAP1

The key transcriptional targets of THAP1 remain poorly defined,
hampering our ability to understand the functional consequences of
THAP1 mutations in disease. Leveraging our insight that viable THAP1
knockout cells could be sustained by exogenous expression of PSMB3,
we used RNA-seq to assess the impact of THAP1 deletion on the tran-
scriptome. To avoid potential artefacts resulting from the analysis of
single cell clones, we purified a population of THAP1 knockout cells.
Following the CRISPR-mediated ablation of THAPI in Ppsyps-GFP
knock-in reporter cells (overexpressing PSMBS5 to ensure viability), we
isolated GFP™ cells by FACS and performed RNA-seq analysis (Fig. 6A).
After discounting genes exhibiting differential expression between
untransduced cells and cells expressing control sgRNAs, we identified
277 genes (220 downregulated, 57 upregulated) whose expression was
significantly altered (FDR < 0.001, fold-change > 2) upon THAP1
knockout (Fig. 6B and Supplementary Data 2). Supporting the veracity
of the dataset, the most significantly downregulated gene was Shieldin
complex subunit 1 (SHLDI, previously known as C200rf196), consistent
with recent findings describing a role for THAP1 in DNA double strand
break repair choice”. Furthermore, although the requirement for
exogenous expression of PSMBS5 precluded its identification as a dif-
ferentially expressed gene, the abundance of intronic reads mapping

to the endogenous PSMBS5 locus was greatly reduced in the THAP1
knockout cells (Supplementary Fig. 4A-B).

To identify direct transcriptional targets of THAP1, we cross-
referenced the differentially expressed genes identified through RNA-
seq with THAP1 binding sites as defined by ChIP-seq. Among the dif-
ferentially expressed genes, 42 exhibited THAP1 occupancy in their
proximal promoter (Fig. 6C); of these 42 direct targets, 19 were
downregulated upon loss of THAP1 while 23 were upregulated, sug-
gesting that THAPI has the potential to act as either a repressor or
activator of transcription depending on the genomic context. How-
ever, the primary role of THAP1 appeared to be as an activator, with
several of its direct targets exhibiting marked downregulation in its
absence (Fig. 6B, C). We found no significant functional enrichment
among the differentially expressed genes through GO term analysis,
but their promoter sequences were enriched for transcription factor
binding motifs for both THAP1 and YY1, a known THAPI1 co-factor?*5*°
(Fig. 6D and Supplementary Fig. 4C). None of these genes are currently
associated with dystonia, but they include ECHI, an enzyme involved in
fatty acid metabolism that has been previously identified as a THAP1
target'’, and METTL3, the N°-methyladenosine methyltransferase,
which is an attractive therapeutic target in cancer*°. Across five of the
THAPIL target genes that exhibited the greatest degree of down-
regulation upon loss of THAPI, we further validated these findings by
gRT-PCR (Fig. 6E-I). Altogether, these data define the genes directly
targeted by the transcription factor activity of THAP1.

A deep mutagenic scan defines the landscape of THAP1 muta-
tions in Dystonia

A wide range of autosomal dominant mutations distributed through-
out the THAPI1 coding sequence give rise to DYT-THAP1 dystonia™ ¥,
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Fig. 5 | PSMBS insufficiency resulting from THAPI loss impairs proteasome
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inactive mutant, restored the viability of HEK-293T cells following THAPI ablation.
Data are presented as mean values of n=3 biological replicates +/- s.d. (**P < 0.001,
two-tailed t-test; ns, not significant). B, C Loss of THAP1 impairs proteasome
assembly. B THAPI ablation decreases the abundance of mature, processed PSMB6
and PSMBY as assessed by immunoblot, but leads to the accumulation of the
uncleaved proproteins (indicated with asterisks). C Native PAGE analysis reveals the
accumulation of proteasome assembly intermediates (indicted with asterisks) fol-
lowing THAPI disruption, mimicking the defects observed upon PSMB5

knockdown. D-F THAP1 impairs the proteasomal degradation of short-lived pro-
teins. D Schematic representation of the lentiviral Global Protein Stability (GPS)
two-color fluorescent reporter system to monitor protein stability. E Stabilization
of two model GFP-degron fusion proteins upon ablation of THAPI, as assessed by
flow cytometry; the N-terminal peptide derived from PTGS1 harbors an N-terminal
degron targeted by UBR-family E3 ligases®’, while the C-terminal peptide derived
from TNNC2 harbors a C-terminal degron targeted by Cul4°“A"™27°_ F Increased
abundance of endogenous HIF-1a upon THAP1 disruption, as assayed by immu-
noblot. All immunoblot data is representative of at least two independent experi-
ments. Source data are provided as a Source Data file.

an early-onset neurological disorder characterized by involuntary
muscle contractions and movements causing abnormal and painful
posturing. Thus, we sought to exploit our Ppsyps-GFP knock-in repor-
ter clone to assess the functional impact of DYT-THAP1 mutations.
Genetic complementation of THAP1 KO cells with wild-type THAP1 did
result in a restoration in Ppsyps-GFP expression, although this effect
was partial and did not restore GFP fluorescence to the levels observed
in the parental cells (Supplementary Fig. 5A). However, this assay was
sufficiently sensitive to report on THAPI activity, as expression of an
inactive THAP1 mutant unable to bind DNA (C5A, which abrogates zinc
chelation by the zinc finger motif*?) did not restore Ppsyps-GFP
expression (Supplementary Fig. 5A).

With the goal of globally defining how mutations in THAP1 affect
its function, we leveraged our phenotypic assay in Ppspps-GFP knock-in
reporter cells to carry out a deep mutational scan. Through microarray
oligonucleotide synthesis, we generated a library of mutant constructs
in which each residue of THAP1 (with the exception of the initiator
methionine, 212 amino acids in total) was systematically replaced with
all of the other 20 possible amino acids (Fig. 7A, B). The resulting site-
saturation mutagenesis library was packaged into lentiviral particles
and introduced into THAP1 KO Ppsyps-GFP reporter cells at low mul-
tiplicity of infection, ensuring single-copy expression. We then used
FACS to partition the population into GFPY™ cells, in which no
restoration of Ppsyps-GFP expression was observed, and GFPPre™ cells,
in which Ppsyvps-GFP expression was restored, and quantified the
THAP1 variants present in each population by Illumina sequen-
cing (Fig. 7B).

After an initial filtering step to remove variants with low read
counts, we recovered data for 4002 of the 4240 possible single
amino acid variants (94.3%). Overall, we observed high concordance

between mutant performance across two replicate experiments
(Supplementary Fig. 5B); however, we discarded 179 mutants which
exhibited discordant behavior between the two replicate experiments,
leaving a total of 3823 (90.2%) variants for analysis (Supplementary
Data 3). The results are summarized as a heatmap in Fig. 7C, with the
data normalized such that the mean performance of all the control
(wild-type) constructs is centered at 1; thus, the darker the red color
the more deleterious the impact of the mutation on THAPI function,
whereas blue cells indicate mutations which may enhance the THAP1-
mediated activation of Ppsyps-GFP expression.

We evaluated the quality of the dataset in several ways. First, we
considered residues essential for zinc chelation and hence folding of
the zinc finger motif*%: C5, C10, C54 and H57. These critical residues
were uniformly essential for THAPI activity, as mutation to any other
residue prevented activation of the Ppsyps-GFP reporter (Fig. 8A).
Moreover, mutations across all residues previously determined to be
important for DNA binding through biochemical assays® were
extremely deleterious (Fig. 8B). Second, the global landscape of
THAP1 activity correlated well with the predicted structure of THAP1
(Fig. 8C, D). In particular, mutation of most residues in the two
structured regions, the THAP-type zinc finger (residues 2-81) and the
predicted coiled-coil domain (residues 139-191) abrogated tran-
scriptional activity, whereas most mutations targeting the unstruc-
tured central linker (residues 82-138) and C-terminus (residues
192-213) did not impair transcriptional activity (Figs. 7C and 8E). A
notable exception, however, was the DHNY motif (residues 134-137)
lying at the end of the central unstructured linker, which was abso-
lutely critical for THAP1 function (Fig. 7C). Interestingly, this motif
has been identified as the binding site for HCFC1°%, and AlphaFold 3%
predicts with high confidence an interaction between the THAP1
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DHNY motif and the kelch repeats of HCFC1 (Supplementary Fig. 5C).
HCFC1 has been identified as an essential cofactor for the THAPI-
mediated activation of SHLD?, and thus is also likely to be critical for
the THAP1-mediated activation of PSMBS5. Indeed, we confirmed that
deletion of the DHNY motif and the coiled-coil domain, but not the
disordered C-terminus, abolished the ability of THAP1 to activate the
Ppsmps-GFP reporter (Fig. 8F).

Many of the THAP1 mutations identified in dystonia patients
remain of uncertain significance®’. Thus, we examined the utility of this
dataset in classifying the functional effects of THAP1 variants identified
clinically (Fig. 8G). The majority of these mutations strongly impaired
the ability of THAP1 to activate expression of the Ppsyps-GFP reporter,
consistent with the prevailing view that disease-causing mutations
represent loss-of-function alleles®****”. However, some mutants
exhibited activity at or approaching the level of the wild-type protein,
suggesting that they might represent benign variants. To verify that
the screen results could be faithfully recapitulated in individual
experiments, we selected eight patient mutations predicted to abolish
THAPI activity (A7D, R13H, K24E, P26R, H57N, L72R, F8IL and N136S)
and compared their performance to five mutants predicted not to
affect THAPI activity (I80V, C83R, M143V, A166T and D192N). Vali-
dating the screen results, the eight inactive mutants exhibited little or
no ability to activate Ppsyps-GFP reporter expression (Fig. 8H and
Supplementary Fig. 6), whereas the five active mutants exhibited
similar performance to wild-type THAP1 (Fig. 8H). Altogether, these
data illustrate structure-function relationships for THAP1 at high
resolution, enabling the functional classification of clinical THAP1
mutations.

Discussion
Co-essential relationships identified through the DepMap project®
represent a rich resource to characterize gene function. Here we
explain the co-essential relationship between THAP1 and PSMB5 by
demonstrating that THAP1 is essential for the basal expression of
PSMBS. Insufficient PSMBS expression resulting from loss of THAP1
results in proteasome dysfunction and cell death, which can be rescued
through exogenous expression of PSMB5. We exploit this finding to
generate viable THAP1 knockout cells and hence identify transcriptional
targets of THAP1 by RNA-seq. Finally, leveraging a phenotypic assay to
systematically assess the activity of THAP1 mutants at the endogenous
PSMBS locus, we define the transcriptional activity of THAP1 mutants
found in dystonia patients. Overall, these data identify THAPI as a
regulator of proteasome function and suggest that aberrant proteos-
tasis could be a factor underlying the pathogenesis of THAP1 dystonias.
Here we characterize THAP1 as an additional regulator of pro-
teasome gene expression. In contrast to the master regulators Rpn4
and Nrf1*'°, THAP1 appears to regulate only PSMBS. Why might THAP1
have evolved to exclusively regulate the expression of one single
proteasome subunit? We speculate that perhaps there is a physiolo-
gical circumstance wherein the downregulation of PSMB5 expression
is beneficial, which could be achieved through the conditional inacti-
vation of THAPI activity. For example, it is plausible that transcrip-
tional downregulation of PSMBS concomitant with upregulation of
PSMBS8 might be beneficial upon viral infection, when immunopro-
teasomes are favored to increase the production of antigenic
peptides®®®', or during thymic development when PSMBI11 (B5t) is
incorporated in preference to PSMB5 and PSMB8 into the
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residues predicted to lie in ordered regions of the protein (AlphaFold pLDDT > 60)
were much less tolerant of mutations than residues predicted to lie in disordered
regions (E). Individual validation of the screen results was performed using flow
cytometry: deletion of the coiled-coil and HCFC1-binding motif abrogated THAP1
function, whereas deletion of the disordered C-terminus did not (F). G, H Profiling
the activity of THAP1 mutations found in Dystonia patients. G Performance of all
missense variants identified in Dystonia patients, displayed as in (A). H Individual
validation experiments measuring the activity of THAP1 mutants predicted to be
inactive (top row) and THAP1 mutants predicted to be active (bottom row) by flow
cytometry. See also Supplementary Fig. SC-E.

thymoproteasome®’. Another interesting question for future studies
will be to examine whether the expression of other individual pro-
teasome subunits (such as PSMB6 and PSMB?) is also subject to spe-
cific regulatory mechanisms.

The mechanisms through which THAP1 mediates its effects on
gene expression remain unclear. THAP1 does not possess an obvious
activator or repressor domain, and so it is likely that it acts through the
recruitment of co-factors to target genes. A complex of THAP1 with YY1
and HCFC1 has previously been shown to mediate activation at the
SHLD promoter®, and the F81L dystonia mutation is thought to disrupt
YY1 binding and hence impair THAPl-mediated transcriptional
activation®’. Our data offer support to this notion: YY1 binding motifs
were strongly enriched amongst the direct targets of THAP1 identified
by RNA-seq, and an intact HCFC1-binding motif was critical for THAPI-
mediated activation of the Ppsyps-GFP reporter. However, ChiP-seq
reveals thousands of THAP1 binding sites in promoters across the
genome, many of which colocalize with HCFC1 and YY1%, and yet we
observed relatively few transcriptional changes by RNA-seq. Thus, we
speculate that other factors must be involved in determining whether
THAPI1 binding alters transcriptional activity. Our Ppsyps-GFP knock-in
reporter cells may therefore serve as a useful resource for further
genetic interrogation of this pathway; for example, genome-wide
CRISPR screens may identify additional genes required for the THAP1-
mediated activation of PSMBS.

We leveraged our genetic reporter to characterize the impact of
single amino acid variants on the ability of THAP1 to activate the

expression of PSMBS. This dataset, covering over 90% of all possible
single amino acid variants, represents a rich resource for functional
classification of THAP1 mutations. Specifically, these data strongly
support the notion that disease-causing mutations in THAP1 generate
loss-of-function alleles which are unable to regulate target gene
expression: 84% of the missense mutations in THAP1 identified in
dystonia patients exhibited performance at <50% of the wild-type
protein. Thus, we propose that the mutations which do not impair
THAP1 activity are likely to represent benign variants. Indeed, the
clinical evidence supporting a pathogenic role for some THAP1
mutations remains equivocal’’; for example, a previous study con-
cluded that the IS0V mutation was very likely to be benign, supported
by the conservative nature of the substitution and the lack of any
functional defect in a reporter assay®’.

How does loss of THAPI function result in Dystonia? As the most
plausible explanation is that dysregulated expression of one or more
of its target genes leads to disease®, our data advance progress
towards answering this question in two ways. First, the identification of
THAPI as a critical activator of PSMB5 expression suggests that pro-
teasome dysfunction could underlie the pathogenesis of DYT-THAP1,
although, to the best of our knowledge, no other mutations in pro-
teasome genes have so far been associated with dystonia. Second, by
exploiting exogenous PSMBS expression to generate viable THAP1
knockout cells, we were able to rigorously identify additional direct
transcriptional targets of THAPL. However, as none of these genes are
currently associated with dystonia and aberrant proteostasis is a
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feature of many neurological disorders®*, these data highlight pro-
teasome dysfunction as a candidate pathogenic mechanism under-
lying THAP1 dystonias.

Methods

Cell culture

HEK-293T, HeLa and A549 cells were grown in Dulbecco’s Modified
Eagle’s Medium (DMEM, Merck #D6429); Jurkat and THP-1 cells were
grown in Roswell Park Memorial Institute Medium (RPMI, Merck
#R8758). Both were supplemented with 10% fetal bovine serum
(ThermoFisher Scientific, #A5256701) plus penicillin and streptomycin
(ThermoFisher Scientific, #15140122) and incubated at 37 °C plus 5%
CO,. All cells were routinely checked for mycoplasma contamination.
Cell counting experiments were performed using a Countess Il
instrument (ThermoFisher Scientific) and analyzed using unpaired two
tailed t-tests.

Antibodies

Primary antibodies used in this study were: rabbit anti-THAP1 (Pro-
teintech, #12584-1-AP, 1:5000), mouse anti-V5 tag (Abcam, #AB27671,
1:10000), rabbit anti-PSMB5 (Enzo Life Sciences, #BML-PW8895),
mouse anti-PSMB6 (Enzo Life Sciences, #BML-PW8140, 1:5000),
mouse anti-PSMB?7 (Enzo Life Sciences, #BML-PW8145, 1:5000), mouse
anti-HIF-1a (BD, #610959, 1:1000), mouse anti-proteasome o-subunits
(Abcam, #22674, 1:1000), mouse anti-Vinculin (Sigma, #V9131,
1:10000) and mouse anti-B-actin (Sigma, #A2228, 1:10000). HRP-
conjugated donkey anti-mouse IgG and donkey anti-rabbit IgG sec-
ondary antibodies were obtained from Jackson ImmunoResearch.

Plasmids
Proteasome 20S core particle B-subunits were exogenously expressed
from the pHRSIN-Psgry-GFP-WPRE-Ppci-Blast?/Hygro® lentiviral vectors
(a gift from Paul Lehner), with constructs cloned in place of GFP via the
Gibson assembly method using the NEBuilder HiFi Cloning Kit (NEB,
#E5520S). GPS lentiviral vectors encoding the N-terminus of PTGS1 and
the C-terminus of TNNC2 fused to GFP were gifts from Stephen
Elledge. CRISPR sgRNA sequences were selected from the Brunello
genome-wide library®® and synthesized as top and bottom strand oli-
gonucleotides (IDT). Oligos were phosphorylated (T4 PNK; NEB
#MO0201), annealed by heating to 95 °C followed by slow cooling to
room temperature, and then inserted (T4 ligase; NEB #M0202) into
lentiCRISPRv2 (Addgene #52961). shRNAs were cloned in an analogous
manner into the pHR-SIREN-Py¢-shRNA-WPRE-Ppgi-Puro lentiviral
vector (a gift from Paul Lehner) using the BamHI and EcoRlI sites. Top
strand oligonucleotide sequences used were:

sgl-Control (targets FOXP1 intron): caccgTGGGAACAGGATGAG
GAAGG

sg2-Control (targets ATPIAL intron): caccGATGGGCAAGAAGG
AAGCAG

sgl-THAP1: caccgCTGCAAGAACCGCTACGACA

sg2-THAPL: caccGAAAACTGAGAGATTAACAG

sg3-THAPL: caccgCTGTGACCACAACTATACTG

shControl:gattcGTTATAGGCTCGCAAAAGGTTCAAGAGACCTTTT
GCGAGCCTATAACTTTTTTg

shPSMB5:gattcCAATGTCGAATCTATGAGCTTCTCGAGAAGCTCA
TAGATTCGACATTGTTTTTTg

Lentivirus production

Lentiviral stocks were generated through the transfection of HEK-293T
cells with the specific lentiviral vector plus a mix of packaging plasmids
encoding Gag-Pol, Rev, Tat and VSV-G. HEK-293T cells seeded at 70-
90% confluence were transfected using Polylet /n Vitro DNA Trans-
fection Reagent (SignaGen Laboratories, #SL100688) according to the
manufacturer protocol. The media was replaced 24 h post-transfection
and the viral supernatant was collected at 48 h post-transfection,

centrifuged at 800 x g for 5 min to remove cellular debris, and either
applied immediately to target cells or stored at —80 °C in single-use
aliquots.

CRISPR/Cas9-mediated gene knock-in

A four-fragment Gibson assembly reaction was used to generate the
homology donor vector. 5’ and 3’ homology arms (-1kb) were ampli-
fied from genomic DNA, and were assembled together with a fragment
encoding mClover3 followed by a P2A peptide and a pUC plasmid
digested with Pcil (NEB, #R0655) and Sbfl (NEB, #R3642). The resulting
plasmid was transfected into HEK-239T cells along with a PX459
(Addgene #48139, kindly deposited by Feng Zhang) plasmid encoding
Cas9 and an sgRNA (CTTTCTGCCCACACTAGACA) targeting the start
of the PSMBS5 coding sequence. Transfected cells were selected with
puromycin for 48 h commencing 24 h post-transfection. Two weeks
later, cells that remained GFP* were single cell cloned by FACS.

Flow cytometry and FACS

Analysis of cells by flow cytometry was performed using either an LSR-
Il or Fortessa instrument (BD Biosciences), collecting a minimum of
10,000 cells per sample. All flow cytometry data were collected
through FACSDiva software and subsequently analyzed using FlowJo.
Cell sorting was carried out using an Influx instrument (BD
Biosciences).

Immunoblotting

Cells were lysed in 1% SDS plus 1:200 Benzonase (Merck, #E1014) for
20 min at room temperature. Following the addition of Laemmli buffer
(Bio-Rad, #161-0747), lysates were heated to 70 °C for 10 min. Proteins
were separated by SDS-PAGE using 4-12% Bis-Tris gels (Merck,
#MP41G12) and transferred onto an activated PVDF membrane (Merck,
#IPFLO0O010). Membranes were blocked for a minimum of 30 min in 5%
Skim Milk Powder (Merck, #70166) in PBS + 0.1% Tween-20 (PBS-T)
(Merck, #P1379). Membranes were incubated with primary antibodies
overnight at 4 °C, washed at least three times in PBS-T, and then
incubated with HRP-conjugated secondary antibodies for 40 min at
room temperature. Following a further five washes in PBS-T, reactive
bands were visualized using SuperSignal West Detection Reagents
(ThermoFisher Scientific, #32106, #34580 and #34076) and images
collected on a ChemiDoc Imaging System (Bio-Rad). Raw images were
processed using GNU Image Manipulation Platform (GIMP) version
2.10.34. Uncropped and unprocessed blot images are available in the
Source Data file.

Native PAGE

Cells were lysed in OK Lysis Buffer®” containing 5% Digitonin (Ther-
moFisher Scientific, #BN2006) on ice for 20 min, and, following
addition of Tris-Glycine Native Sample Buffer (ThermoFisher Scien-
tific, #L.C2673), samples were separated using NuPAGE Tris-Acetate 3-
8% gels (ThermoFisher Scientific, #£EA03752PK2) with Tris-Glycine
Native Running Buffer (ThermoFisher Scientific, #LC2672). Protein
denaturation was achieved by soaking the gel in solubilization buffer®
for 15min; the subsequent transfer, blocking and immunoblotting
steps were performed as described above.

Imaging

HEK-293T cells were imaged on a Zeiss Primovert Inverted Phase
Contrast Microscope Ph1/0.3 at 10x magnification using the NexYZ
3-axis Universal Smartphone Adapter (Celestron).

qRT-PCR

Total RNA was extracted from ~1 million cells using the RNeasy Mini Kit
(Qiagen, #74104) with QIAshdredder Mini Spin Columns (Qiagen,
#79656) as per the manufacturer’s protocol, including on-column
DNasel digestion using the RNase-Free DNase Set (Qiagen, #79254).
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Reverse transcription was performed with 1 ug of RNA using one-step
reaction using LunaScript RT SuperMix Kit (NEB, #E3010) as indicated
by the manufacturer. For subsequent analysis by qPCR, 1ul of cDNA
template, 0.5 ul of each primer (10 uM) and 12.5 ul Luna Universal Probe
gPCR Master Mix (NEB, M3004) were mixed in a final volume of 25 pl;
thermocycling was performed on a QuantStudio 7 Flex Real-Time PCR
system (ThermoFisher Scientific). Relative expression was quantified
using the AACt method relative to RPS18; data are expressed as
mean + standard deviation and P values calculated using a one-tailed
unpaired t-test. All qPCR amplicons were verified using agarose gel
electrophoresis. Primer sequences are listed in Supplementary Data 4.

RNA-seq

RNA extracted as above was sent to Azenta for strand-specific polyA*
Illumina library preparation and sequencing. Raw sequence reads were
trimmed of adaptor sequence using Cutadapt (version 4.1), aligned
using HISAT2 (version 2.2.1) to the human genome (GRCh38 geno-
me_tran index), and further analyzed using SeqMonk (version 1.48.1).

Deep mutational scan
The THAPI coding sequence was divided into six segments for muta-
genesis (encompassing residues 2-37, 38-73, 74-109, 110-145, 146-181
and 182-213). Using pKLV2-Pgrio- THAP1-Ppgy-Puro-T2A-BFP-WPRE as
the starting point, six vectors were generated in which ‘stuffer’ regions
flanked by Bbsl restriction sites replaced the sequence encoding each
segment. An oligonucleotide pool encoding the mutant alleles was
synthesized by Twist Bioscience: for each segment, each amino acid
was systematically exchanged to all 20 possible amino acids. Each of
the six mutant segments were amplified from the oligonucleotide pool
by PCR (QS, NEB #MO0491L), gel purified (QIAEX II Gel Extraction Kit,
Qiagen #20021), and then cloned into their respective ‘stuffer’ vector
cut with Bbsl (NEB, #R3539S) using the Gibson assembly method (NEB,
#E5520S). The reaction products were electroporated into DH10[ cells
(ThermoFisher Scientific, #18290015) and grown on LB plates with
ampicillin overnight at 30 °C; the next morning, plasmid DNA was
extracted (GenElute HP Plasmid Midiprep Kit, Merck #NA0200-1KT)
from all of the E. coli and verified by Sanger sequencing (Azenta).
The six mutant pools were combined into three for screening (1-2,
3-4, and 5-6). These were packaged into lentiviral particles and, in
duplicate, introduced into GFP“™ THAP1 KO Ppsyps-GFP reporter cells
at a multiplicity of infection of ~0.3 (-30% BFP* cells). Five days post-
transduction, the BFP* cells were partitioned into GFPY™ (THAP1
inactive) and GFP" €™ (THAPI active) populations by FACS. Genomic
DNA was extracted from the sorted cells (Gentra Puregene Cell Kit,
Qiagen #158767) and the exogenous THAP1 sequences in each sample
amplified by PCR (Q5, NEB #MO0493L), using primers annealing to
invariant regions flanking each mutagenized segment. PCR products
were purified using a spin column (QIAquick PCR Purification Kit,
Qiagen #28104), and then used as a template for a second PCR reaction
using primers to add the lllumina adaptors and indexes. Products were
purified using a spin column, quantified using a Nanodrop spectro-
photometer, and mixed evenly; the final pool was purified from a 2%
agarose gel (QIAEX Il Gel Extraction Kit, Qiagen #20021). All steps were
performed at sufficient scale to maintain at least 200-fold repre-
sentation of the library. Sequencing was performed on an Illumina
NovaSeq 6000 instrument using 150 bp paired-end reads. Count tables
quantifying the abundance of each mutant in each sorting bin were
generated by trimming the raw sequence reads of constant flanking
sequence using Cutadapt (version 4.1) and aligning them to a reference
index using Bowtie 2 (version 2.4.5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

THAP1 RNA-seq data has been deposited in NCBI's Gene Expression
Omnibus with the GEO Series accession number GSE264536 and Illu-
mina sequencing data from the THAP1 deep mutagenic scan are avail-
able in NCBI's Sequence Read Archive (SRA) with the accession number
PRJNA1102672. THAP1 ChIP-seq data was obtained from NCBI's GEO with
the accession number GSM803408. DepMap datasets are publicly
available at https://depmap.org/portal/download/all/. Source data are
provided with this paper.
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