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Artificial intelligence links CT images to
pathologic features and survival outcomes of
renal masses
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Treatment decisions for an incidental renal mass are mostly made with
pathologic uncertainty. Improving the diagnosis of benign renal masses and
distinguishing aggressive cancers from indolent ones is key to better treat-
ment selection. We analyze 13261 pre-operative computed computed tomo-
graphy (CT) volumes of 4557 patients. Two multi-phase convolutional neural
networks are developed to predict the malignancy and aggressiveness of renal
masses. The first diagnostic model designed to predict the malignancy of renal
masses achieves area under the curve (AUC) of 0.871 in the prospective test
set. This model surpasses the average performance of seven seasoned radi-
ologists. The second diagnostic model differentiating aggressive from indo-
lent tumors has AUC of 0.783 in the prospective test set. Both models
outperform corresponding radiomics models and the nephrometry score
nomogram. Here we show that the deep learning models can non-invasively
predict the likelihood of malignant and aggressive pathology of a renal mass
based on preoperative multi-phase CT images.

Widespread utilization of cross-sectional imaging has led to increased  mortality has not substantially decreased, suggesting possible over-
detection of asymptomatic incidental renal lesions', accompanied by  treatment of benign renal masses and limited benefit from instant
increasing surgeries and ablations performed for suspicious malignant  extirpative surgeries*®. Around 20% of resected renal masses are
renal masses*. However, over the same period, kidney cancer-specific  reported to be benign’. Therefore, more accurate identification of
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benign lesions could potentially avoid unnecessary surgeries and
associated risk and morbidity’. Nowadays, with evolving management
strategies such as active surveillance and ablation, knowing whether a
renal mass is benign or malignant is insufficient; knowledge of its
indolent or aggressive histology is also important®’. Even many
malignant renal masses follow an indolent course®'>. The decision
whether to offer active surveillance, ablation or surgery for a certain
patient depends on an individualized balance between cancer-specific
mortality risk and comorbidity-related mortality risk.

Computed tomography (CT)" ' and magnetic resonance ima-
ging (MRI)"7"® are commonly used for the detection of renal masses,
but they have limited accuracy in estimating the probability of
malignancy and degree of aggressiveness. Percutaneous biopsy is
another way to obtain histology information before treatment.
However, percutaneous biopsy is found non-diagnostic in 20% of
cases and differs from the final pathologic diagnosis of resected
tissues in another 10% of cases”. It also demonstrates relatively low
accuracy in predicting tumor nucleus grade, necrosis, and sarco-
matoid differentiation probably due to high tumor heterogeneity in
renal cell carcinoma (RCC)®. In addition, the invasive procedure
puts patients at risk of complications such as hemorrhage, infec-
tion, and implantation metastasis®.

Under most circumstances, the decision between active sur-
veillance, percutaneous ablation, and surgical resection is made
without a reliable pathologic diagnosis®. Thus, there is an urgent
need to improve the non-invasive diagnosis of benign renal masses
and differentiate aggressive tumors (prompting treatment) from
indolent tumors (allowing ablation or deferred treatment)®. Artifi-
cial Intelligence (Al)-driven quantitative analysis of preoperative
medical images can play a critical role. Radiomics-based machine
learning models have been used to evaluate renal masses with
promising results**?. However, hand-crafted radiomics features
have intrinsic limitations, such as lacking contextual information
and being sensitive to variations in tumor delineation. In contrast,
deep learning models learn hierarchical features from original
images in an end-to-end manner. There are some recent deep
learning studies aimed at characterizing renal masses, but few have
a large sample size or a comprehensive analysis including both
histology subtype and ISUP grade®®.

In this study, we develop deep learning models using preoperative
CT scans to discriminate benign versus malignant renal masses, as well
as indolent versus aggressive tumors. Previous diagnostic models
solely predicted high-grade pathology of clear cell renal cell carcinoma
(ccRCC), while our deep learning model incorporated most renal mass
pathologic subtypes and comprehensively assessed tumor aggres-
siveness by integrating histologic subtype, tumor grade, and adverse
pathologic features. We explore further differences in patient survival
between Al-predicted indolent and aggressive tumors, which were less
explored in previous studies.

Results

Flowchart of the recruitment and clinicopathologic character-
istics of each cohort

Flowchart of patient recruitment was demonstrated in Fig. 1A. A
total of 4557 patients undergoing nephrectomy with preoperative
enhanced CT scans were identified. There were 2400 patients in the
training set, 598 patients in the internal test set, 561 patients in the
external test set, 610 patients in the prospective test set, and 388
patients in the TCIA test set. Detailed clinicopathologic information
for each cohort were listed in Table 1. In the training set, benign and
indolent renal masses, malignant and indolent tumors, and malig-
nant aggressive tumors represent 16.8, 61.5, and 21% of cases,
respectively. In the internal test set, they each represent 15.7, 62,
and 21.4% of cases. In the external test set, 15.9% of patients had
benign and indolent renal masses, 61.1% patients had malignant and

indolent tumors, 19.8% patients had malignant and aggressive
tumors. In the prospective test set, malignant and indolent tumors
held 13.8%, malignant and aggressive tumors held 63.9%, and
malignant and aggressive tumors held 21%. In the TCIA test set, the
three subtypes held 3.6, 51, and 45.4%, respectively (Table 1). Per-
centages of each specific histologic classification across different
datasets were illustrated in Fig. 1B.

Diagnostic accuracy of the deep learning model to differentiate
benign from malignant renal masses

The segmentation network achieved satisfactory performance in
delineating kidney tumor (Fig. 2B, E) with a dice similarity coefficient
score (DICE) of 0.852 (Table S2). Based on the cropped images, a multi-
phase convolutional neural network was established to predict the
malignancy of renal mass. Representative CT images of a benign renal
mass (metanephric adenoma) and a malignant renal mass (clear cell
renal cell carcinoma) were listed in Fig. 2A, D, respectively. Class acti-
vation maps (CAM) of benign and malignant masses are presented in
Fig. 2C, F, visualizing the import regions in the image for the neural
network to predict the malignancy®.

The classification performance is summarized in Fig. 2 and
detailed in Table S4. The AUCs for differentiating malignant from
benign renal masses were 0.898, 0.853, 0.871, and 0.881 in the internal
test set (Fig. 2G), external test set (Fig. 2H), prospective test set (Fig. 2I),
and TCIA test set (Fig. 2J), respectively. Alexander Kutikov et al. con-
structed two nomograms for predicting malignant and high-grade
pathology using R.E.N.A.L. nephrometry scores with 525 renal
masses®. Besides, in previous studies many radiomics models were
proposed for differentiating malignant from benign renal lesions®**,
In this study, we also developed two radiomics models as benchmarks
for the two deep learning models respectively. Our deep learning-
based diagnostic model outperformed the nephrometry score
nomogram and the radiomics model for predicting malignancy across
three test sets (Fig. 2G-I) encompassing all three CT phases.

Seven radiologists with over 5 years of experience reading
abdominal CT imaging from tertiary academic medical centers,
given clinical information of each patient and blind to histopatho-
logic data, evaluated CT images of the renal masses in the pro-
spective test set. The deep learning-based model showed better
performance than six of the seven expert radiologists (Fig. 2K).
Specifically, when the model matched the average sensitivity of
these radiologists, its specificity surpassed the average specificity of
them. Conversely, when it matched their average specificity, its
sensitivity outperformed the average sensitivity of them (Fig. 2K).
We then compared the sensitivities of the Al system and the reader
performance at specificities fixed to match reader performance,
and found that the deep learning model significantly outperformed
four radiologists (Table S5). When the sensitivities were matched,
the deep learning model demonstrated higher specificity than six
radiologists, but none of them reached a statistical significance
(Table S5). We further asked seven radiologists to revisit and re-
evaluate CT scans from our prospective validation cohorts with a
minimum washout period of two months between assessments.
This time, however, we provided the radiologists with the predictive
results from our deep learning model, emphasizing that it had
outperformed the average diagnostic capabilities of seven radi-
ologists. With the additional insights offered by the deep learning
model, we observed a significant improvement in the diagnostic
accuracy of the radiologists (Fig. 2L). Analysis of diagnostic corre-
lation revealed that seven radiologists exhibited stronger diag-
nostic similarity among themselves compared to the deep learning
model (Fig. 2M), and this may partly explain why the diagnostic
accuracy of radiologists improved with the assistance of the deep
learning model. We also measured the time taken by the radi-
ologists to evaluate CT scans from the 101st to the 200th case and
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Fig. 1| Flowchart of the recruitment and clinicopathologic characteristics of each cohort. A Flowchart of patient recruitment across different cohorts B Percentages of
each pathologic subtypes across different cohorts.

compared it to their initial evaluation time, noticing no significant
differences in time spent on CT scan evaluation (Fig. 2N).

The diagnostic model also showed robust performance in sub-
group analyses of solid tumors (Fig. S3A-D), cystic tumors (Fig. S3E-H),
and small renal masses (SRMs) (Fig. S3I-L), and outperformed both the
radiomics model and the nephrometry score nomogram. In addition,

we have developed additional diagnostic models that can handle var-
ious combinations of CT phases. We have showcased the AUCs of our
two deep learning models, evaluating their performance with different
CT phase combinations in the internal test set: N (non-contrast), A
(arterial phase), V (venous phase), as well as N+A, N+V, and A+V
(Table S6).
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Table 1| Clinicopathologic characteristics and race information of different cohorts

Feature Training set N=2400 Internal test External test Prospective test TCIA test
set N=598 set N=561 set N=610 set N=388
Number of CT volumes 7200 1794 1683 1830 754
Median age (IQR) 57 (49,65) 57 (48,65) 56 (48,64) 57 (47,65) 50 (50,69)
Male sex (%) 1458 (60.8) 367 (61.4) 349 (62.2) 397 (65.1) 241(62.1)
Race (%)
Asian 2399 (100.0) 598 (100.0) 561 (100.0) 610 (100.0) 161 (41.5)
White 1(0.0) (0] (6] (0] 14 (3.6)
Black or African American 0] 0 0 0 3(0.1)
Imaging appearance (%)
Cystic 422 (17.6) 111 (18.6) 79 (14.1) 96 (15.7) 37(9.5)
Solid 1978 (82.4) 487 (81.4) 482 (85.9) 514 (84.3) 351(90.5)
TNM stage (%)
| 1642 (82.2) 408 (81.0) 405 (85.8) 463 (88.0) 242 (62.4)
1] 163 (8.2) 6.7 (7.9) 37(7.8) 21(4.0) 33(8.5)
1] 188 (9.4) 9.0 (10.7) 28 (5.9) 40 (7.6) 92 (23.7)
[\ 4(0.2) 2(0.4) 2(0.4) 2(0.4) 6 (1.5)
WHO/ISUP Grade?® (%)
Low (1&2) 1443 (82.6) 348 (81.1) 310 (78.3) 353 (78.3) 206 (60.6)
High (3 & 4) 286 (16.4) 76 (17.7) 74 (18.7) 96 (21.3) 134 (39.4)
Necrosis® (%) 227 M.4) 72 (14.3) 44 (9.2) 25 (4.1) 50 (13.4)
Sarcomatoid differentiation® (%) 34(1.7) 3(0.6) 7(1.5) 8 (1.3) 11(2.9)
Histologic classification (%)
Benign and indolent (%) 403 (16.8) 94 (15.7) 89 (15.9) 84 (13.8) 14 (3.6)
Angiomyolipoma 251 (10.5) 62 (10.4) 47 (8.4) 43 (7.0) 3(0.8)
Complex renal cyst 80 (3.3) 16 (2.7) 23 (4.1) 25 (4.1) 0
Oncocytoma 33(1.4) 6 (1.0) 12 (2.1) 5(0.8) 9 (2.3)
Mixed epithelial and stromal renal tumors 9 (0.4) 3(0.5) 0 2(0.2) 2(1.4)
Metanephric tumors 4(0.2) 1(0.2) 0 5(0.8) 0
Other benign masses® 26 (1.1) 6 (1.0) 7(1.2) 4(0.7) 0
Malignant and indolent (%) 1475 (61.5) 371(62.0) 343 (61.1) 390 (63.9) 198 (51.0)
Indolent clear cell RCC® 1185 (49.4) 285 (47.7) 282 (50.3) 327 (53.6) 143 (36.9)
Indolent papillary RCC® 90 (3.8) 23 (3.8) 13 (2.3) 10 (1.6) 24 (6.2)
Chromophobe RCC 120 (5.0) 29 (4.8) 33(5.9) 30 (4.9) 29 (7.5)
Clear cell papillary renal cell tumor 14 (0.5) 7(1.2) 2(0.4) 7(1.1) o]
Multilocular cystic renal neoplasm of low 21(0.9) 8 (1.3) 7(1.2) 2(0.3) 1(0.3)
malignant potential
Epithelioid angiomyolipoma 29(1.2) 1(1.8) 4(0.7) 1(0.2) 0
Other indolent tumors* 16 (0.7) 8 (1.3) 2(0.4) 13 (2.1) 1(0.3)
Malignant and aggressive (%) 505 (21.0) 128 (21.4) 111 (19.8) 128 (21.0) 176 (45.4)
Aggressive clear cell RCC 417 (17.4) 106 (17.7) 94 (16.8) 100 (16.4) 164 (42.3)
Aggressive papillary RCC 42 (1.8) 12 (2.0) 2(0.4) 12 (2.0) 9 (2.3)
TEF-3 rearranged RCC*® 19 (0.8) 4(0.7) 3(0.5) 4(0.7) 0
Renal cell carcinoma, NOS 8(0.3) 4(0.7) 9(1.6) 7(1.1) 1(0.3)
Sarcomas’ 14 (0.6) 2(0.3) 2(0.4) 1(0.2)
Other aggressive tumors® 5(0.2) 0 1(0.2) 4(0.7) 2(0.5)
Malignant and indeterminate® (%) 17 (0.7) 5(0.8) 18 (3.2) 8 (1.3) 0
CT phases (%)
All three phases 2400 (100) 598 (100) 561 (100) 610 (100) 86 (22.2)
Arterial phases 2400 (100) 598 (100) 561 (100) 610 (100) 219 (56.4)
Venous phases 2400 (100) 598 (100) 561 (100) 610 (100) 259 (66.8)
Non-contrast phases 2400 (100) 598 (100) 561 (100) 610 (100) 276 (71.1)

*WHO/ISUP grade was evaluated in clear cell RCC and papillary RCC only. Necrosis and sarcomatoid differentiation were evaluated in malignant tumors. Any sarcomatoid differentiation led to the
classification of malignancies.

Other benign masses included hemangioma, leiomyoma, schwannoma, etc.

°Clear cell RCC and papillary RCC with high-grade (3-4) components, sarcomatoid differentiation or evasion into major veins or perinephric tissues were classified as aggressive. The presence of
coagulative necrosis also led to the classification as aggressive for clear cell RCC but not for papillary RCC.

9Other indolent tumors included mucinous tubular and spindle cell carcinoma, tubulocystic RCC, eosinophilic solid, cystic RCC, etc.

°Xp11 translocation RCC and melanotic Xp11 translocation RCC followed an aggressive course.

fSarcomas included rhabdomyosarcoma, synovial sarcoma, Ewing sarcoma, etc.

90ther aggressive tumors included collecting carcinoma, renal medullary carcinoma, indolent subtypes with sarcomatoid differentiation, etc.

"The aggressiveness for some of the tumors with missing information on tumor grade, immunohistochemistry, or genetic testing were unclear. Race and sex were self-reported
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Fig. 2 | Diagnostic accuracy of the deep learning model to differentiate
malignant from benign renal masses. A Representative CT images of a benign
renal mass. B Automatic segmentation of the renal mass and kidney. C Class acti-
vation maps (CAMs) of the benign and malignant prediction for the benign renal
mass, where red color represents a region more significant to the designated
classification. D Representative CT images of a malignant renal mass. E Automatic
segmentation of the renal mass and kidney. F CAMs of the benign and malignant
prediction for the malignant renal mass. G The receiver operating characteristic
(ROC) curves of the deep learning-based model, the radiomics model, and the
nephrometry score nomogram on the internal test set. H The ROC curves of the
deep learning-based model, the radiomics model, and the nephrometry score
nomogram on the external test set. I The ROC curves of the deep learning-based
model, the radiomics model, and the nephrometry score nomogram on pro-
spective test set. ] The ROC curves of the deep learning-based model and
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nephrometry score nomogram on TCIA test set. K The ROC curves of the deep
learning-based model and performance of seven radiologists on prospective vali-
dation set. L The diagnostic accuracy of seven radiologists with (n =7) or without
(n=7) the assistant of the deep learning-based model. M Clustered observer
similarity matrix of the deep learning-based model and seven radiologists. N The
diagnostic efficiency of seven radiologists with (n=7) or without (n=7) the assis-
tant of the deep learning-based model. In Fig. 2B, E yellow areas represent renal
lesions identified by the nnU-Net model, while blue areas represent the kidney
tissue also identified by the nnU-Net model. In Fig. 2C, F, the color intensity
represents the level of importance for the deep learning model in making its
decision. Red (designated as point 1) indicates the most important regions, green
(designated as point 0.5) signifies regions of lesser importance, and blue (desig-
nated as point 0) denotes regions that are not important for the model’s decision.
Source data for ROC curves are provided as a Source Data file.

Diagnostic accuracy of the deep learning model to differentiate
aggressive from indolent renal tumors

Besides malignancy, aggressiveness is of growing importance in the
treatment of renal tumors. Thus, we sought to develop a second
diagnostic model to differentiate between indolent (benign
and indolent, malignant and indolent) and aggressive (malignant
and aggressive) renal tumors. Classification of indolent malignant
tumors and aggressive malignant tumors were mainly based on
2022 WHO classifications and previous reports. To confirm
the reasonability of the classification and find out whether

the proposed aggressiveness could translate into actual survival
differences, we analyzed the survival differences between indolent
and aggressive malignant tumors in the Zhongshan cohort
and Zhejiang cohort. Detailed information on the two cohorts
were listed in Table S7. As expected, indolent tumors were asso-
ciated with significantly longer survival compared with aggressive
tumors in both the Zhongshan cohort (p <0.001 for DSS, RFS, and
0S) and Zhejiang cohort (p < 0.001 for DSS, RFS, and OS) (Fig. S4).

Sharing the same network architecture, we developed another
multi-phase convolutional neural network to predict the
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Fig. 3 | Diagnostic accuracy of the deep learning model to differentiate
aggressive from indolent renal tumors. A Representative CT images of an indo-
lent renal mass. B Automatic segmentation of the renal mass and kidney. C CAMs of
the indolent and aggressive prediction for the indolent renal mass, where red color
represents a region more significant to the designated classification.

D Representative CT images of an aggressive renal mass. E Automatic segmentation
of the renal mass and kidney. F CAMs of the indolent and aggressive prediction for
the aggressive renal mass. G The receiver operating characteristic (ROC) curves of
the deep learning-based model, the radiomics model, and nephrometry score
nomogram on the internal test set. H The ROC curves of the deep learning-based
model, the radiomics model, and nephrometry score nomogram on the external
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test set. I The ROC curves of the deep learning-based model, the radiomics model,
and nephrometry score nomogram on the prospective test set. J The ROC curves of
the deep learning-based model and nephrometry score nomogram on TCIA test
set. In Fig. 2B, E yellow areas represent renal lesions identified by the nnU-Net
model, while blue areas represent the kidney tissue also identified by the nnU-Net
model. In Fig. 2C, F, the color intensity represents the level of importance for the
deep learning model in making its decision. Red (designated as point 1) indicates
the most important regions, green (designated as point 0.5) signifies regions of
lesser importance, and blue (designated as point 0) denotes regions that are not
important for the model’s decision. Source data for ROC curves are provided as a
Source Data file.

aggressiveness of renal tumors. The classification performance is
summarized in Fig. 3 and detailed in Table S8. Representative CT
images of an indolent renal mass (mucinous tubular and spindle cell
RCC) and an aggressive renal mass (renal cell carcinoma NOS) are
demonstrated in Fig. 3A, D, respectively. Class activation maps of
indolent and aggressive tumors are presented in Fig. 3C, F, visua-
lizing the import regions in the image for predicting the
invasiveness.

In addition to the nephrometry score nomogram, we
also developed a second standardized radiomics model as another
benchmark model. The AUCs for predicting aggressive pathology are
0.792 in the internal test set (Fig. 3G), 0.763 in the external test set
(Fig. 3H), 0.783 in the prospective test set (Fig. 3I), and 0.755 in the
TCIA test set (Fig. 3)), higher than the radiomics model and the
nephrometry score nomogram to predict high-grade pathology in all
test cohorts. In subgroup analyses we found that the deep learning
model achieved robust performance in solid tumors, cystic tumors,
and SRMs. It also outperformed the radiomics model and the
nephrometry score nomogram in all subgroup analyses (Fig. S5).
Interestingly, AUCs of the radiomics model and the nephrometry
score for SRMs dropped significantly compared with all cases or
other subgroups (Fig. S5). Classification performance across differ-
ent CT phases were listed in Table Sé.

Associations between radiological aggressiveness and survival
outcomes

We have validated the diagnostic model discriminating aggressive
tumors from indolent tumors across different cohorts, proving the
robustness and accuracy of the diagnostic models. Another important
aspect of aggressiveness evaluation is still survival outcomes. We,
therefore, compared the oncologic outcomes between patients with
tumors predicted to be indolent by the Al-based diagnostic model (Al-
predicted indolent) and patients with tumors predicted to be aggressive
(Al-aggressive). We found profound survival differences between Al-
predicted indolent tumors and Al-predicted aggressive tumors in both
internal test sets (DSS, p < 0.001, HR =5.48; RFS, p < 0.001, HR =4.11; OS,
p=0.005, HR =2.66) and external test (DSS, p <0.001, HR =20.61; RFS,
p<0.001, HR=9.69; OS, p < 0.001, HR =13.19) in terms of DSS, RFS, and
OS (Fig. 4A-F). A similar trend was observed in the training set as well
(Fig. S6). Baseline characteristics of patients with malignant renal tumors
in training, internal test, and external test sets for survival analyses were
listed in Table S7. The 5-year survival rates were 97.9% (DSS), 94.5% (RFS),
and 96.8% (OS) for Al-predicted indolent tumors; 86% (DSS), 77.2% (RFS),
and 85.1% (OS) for Al-predicted aggressive tumors in the internal test set.
In the external test set, the 5-year survival rates were 99.6% (DSS),
96.8(RFS), and 98.9 (OS) for Al-predicted indolent tumors; 79.6% (DSS),
74.6% (RFS), and 79% (OS) for Al-predicted aggressive tumors.
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Fig. 4 | Associations between Al-predicted aggressiveness and survival out-
comes. A Kaplan-Meier analysis of disease-specific survival (DSS) in the internal
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In multivariate analyses after adjustment for TNM stage and ISUP
grade, Al-aggressiveness subtypes (Al-predicted aggressive versus Al-
predicted indolent) remained an independent adverse risk factor for
patient survival in DSS (p=0.008, HR =5.80), RFS (p=0.003, HR=
3.78), and OS (p=0.007, HR=4.31) analyses in external test set
(Table S9). Interestingly, we found that Al-aggressiveness score as a
continuous variable ranging from 0 to 10 was also an adverse inde-
pendent risk factor for DSS (p=0.002, HR=2.433), RFS (p<0.001,
HR=2.928), and OS (p=0.002, HR=2.231) in external test set
(Table S9), which revealed a potential link between the likelihood of a
renal mass being aggressive and the risk of relapse of the renal tumor.
If a renal tumor is more likely to be an aggressive tumor predicted by
the Al-based model, the tumor is more likely to metastasize in the end.
Al-aggressiveness score functions more than predicting the

aggressiveness of a renal tumor. In tumors of same aggressiveness
subtype, indolent or aggressive, Al-aggressiveness score is still an
adverse risk factor for DSS (indolent, p = 0.001, HR = 5.239; aggressive,
p <0.001, HR =2.255), RFS (indolent, p < 0.001, HR = 3.802; aggressive,
p<0.001, HR=2.214), and OS (indolent, p<0.001, HR=3.806;
aggressive, p < 0.001, HR =1.982) (Fig. 4G). Forest plots showed that
the Al-aggressiveness score was significantly associated with dismal
survival across different subgroups, including TNM stages, ISUP
grades, and histologic subtypes (Fig. 4G). All these results indicated
that the Al-aggressiveness score was significantly associated with
patient survival and had great potential to be a reliable prognostic
biomarker. We compared the prognostic value between the Al-
aggressiveness score, the radiomics model, the nephrometry score
nomogram, the TNM stage, and ISUP grades and surprisingly found
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that the Al-aggressiveness score outperformed all the other risk factors
in both internal and external test set in terms of DSS, RFS, and
OS (Fig. 4H).

We conducted further analyses to evaluate the model’s perfor-
mances specifically in subsets of high clinical significance, namely Tla
and T1 solid tumors. Our findings indicate that even within this subset,
where imaging overlap between lesions is most pronounced, the
diagnostic models exhibit robust performance in the two primary
diagnostic tasks (Table S10). Additionally, we stratified the model’s
performance based on tumor size and stage (T1aNOMO, TIbNOMO, T2-
T4NOMO&TI-T4NIMO), as outlined in Table S11. These analyses not
only reinforce our initial findings but also demonstrate that, beyond
considering tumor size, our models possess strong predictive cap-
abilities, making the analyses less biased. The spatial resolution of CT
scans was provided in Table S12.

Distinct genetic and immune landscapes of aggressive and
indolent renal tumors

Afterward we analyzed the genetic, transcriptomic, and immune land-
scapes in aggressive versus indolent tumors to explore the underlying
biological mechanisms of the dismal survival in aggressive tumors.
Between indolent versus aggressive tumors, we found no difference in
TMB. Among the top 28 mutant genes, AHNAK2 mutation increased in
aggressive tumors with statistical significance (p =0.029) (Fig. 5A). On
the transcriptomic level, we observed a heavily infiltrated but immuno-
suppressive tumor microenvironment (Fig. 5, Fig. S7, and Table S13),
which is further illustrated in supplementary materials. To confirm the
differences in immune infiltrations, we performed immunohistochem-
istry and toluidine blue staining on tissue microarrays of 229 patients.
There were more CD8+T cells (p=0.051) and Tregs (p=0.041) in
aggressive tumors, more mast cells (p=0.019) in indolent tumors.
Detailed analyses could be found in the supplementary materials.

Discussion

Over the past decades, increased use of medical imaging has led to
higher detection of renal masses, along with diagnosis at smaller
tumor size*?¢, The decision to offer surgical resection is often made
without pathologic diagnosis, which is within standard treatment”.
However, this can sometimes lead to overtreatment of benign renal
lesions’. Percutaneous biopsy yields relatively high accuracy in deter-
mining histologic subtype, but it’s invasive and time-consuming®, with
risks of complications such as significant pain, biopsy tract seeding,
perinephric hematoma, etc. The non-diagnostic rate can be as high as
22.6%%. Meanwhile, accurate diagnosis of fat-poor angiomyolipoma,
oncocytoma, and complex renal cysts using CT or MRI by radiologists
is challenging®. There exists a gap between the clinical need for a
simple yet accurate characterization of renal masses and current
diagnostic tools.

Our study primarily focuses on two primary tasks. The first pri-
mary task centers on developing a deep learning model capable of
differentiating between malignant and benign renal masses. This
diagnostic model has consistently demonstrated high accuracy across
multiple cohorts. The R.EN.A.L. nephrometry score-based
nomogram® have been used to evaluate the risks of a renal mass
being malignant with an AUC of 0.76. Some radiomics models have
been proposed as well. The largest CT-based radiomics model was
developed by Yap et al. from CT images of 735 patients® and achieved
an AUC of 0.75. Nassiri N et al. proposed a radiomic-based machine
learning algorithm using CT images from 684 patients and achieved an
AUC of 0.84**. This nephreometry score nomogram, along with other
radiomics models were all validated in small internal cohorts without
sufficient external testing, while our models have been validated
externally and prospectively across diverse cohorts with large sample
size**?**, To validate its accuracy, we first compared our model
against a standardized radiomics model and the nephrometry score

nomogram, observing that our deep learning model outperformed the
others. Secondly, through subgroup analyses, we observed robust
performance in SRM subgroups, solid renal mass subgroups, and
cystic renal mass subgroups. Furthermore, our model outperformed
the average diagnostic capabilities of seven experienced radiologists
from tertiary medical centers. We also conducted an exploration of
how our deep learning model for differentiating between benign and
malignant renal masses could be integrated into clinical workflows and
potentially impact current practices. With the assistance of the deep
learning model, the diagnostic accuracy of radiologists significantly
improved. We observed that seven radiologists displayed a higher
degree of diagnostic consistency amongst themselves when compared
to the deep learning model. This suggests that the deep learning model
and the radiologists may be approaching the classification of renal
masses from different yet complementary perspectives. This diver-
gence in diagnostic approach could explain why, when radiologists
were informed of the model’s results, their diagnostic accuracy
increased significantly. There were instances where the deep learning
model provided accurate diagnoses while the radiologists erred, and
vice versa, further highlighting the complementary nature of their
diagnostic capabilities.

In the modern era, with growing evidence suggesting a non-
inferior survival outcome for active surveillance and image-guide
ablation compared with instant curative nephrectomy, there has been
an increased adoption of ablation and active surveillance in the treat-
ment of renal cell carcinoma’'. Predicting aggressive versus indolent
tumor histology could better assess oncologic risk relative to com-
peting risks, which is important for precision medicine. For example,
decision-making can be difficult in some elderly or co-morbid patients.
Our findings may guide such patients with Al-predicted aggressive
tumors towards prompt surgeries while patients with Al-predicted
indolent tumors could consider active surveillance or ablation.
Besides, nephron-sparing surgeries are recommended as the standard
of care for localized renal tumors less than 7cm when technically
feasible, while the risk of complications and recurrences increases with
anatomical complexity*°. Preoperative aggressiveness estimation for
challenging tumors may support surgical decisions, favoring radical
nephrectomy for aggressive tumors. However, no radiology-related
studies have comprehensively evaluated tumor aggressiveness taking
stage, grade, histologic subtype, necrosis, and sarcomatoid differ-
entiation into account. In previous studies aiming to predict the
aggressiveness of renal tumors, researchers only focused on predict-
ing high versus low ISUP or Fuhrman grade in ccRCC patients based on
CT or MRI images, achieving AUCs ranging from 0.62 to 0.91*. How-
ever, many lacked external validation or involved small test cohorts,
which raises concerns about model generalizability and bias. Small
training sets in earlier studies also increased the risk of model over-
fitting. In a study with one of the largest cohorts, Demirjian et al.
developed a CT-based radiomics signature to discriminate low-grade
from high-grade ccRCC in 587 patients. The signature achieved an AUC
of 0.70*.

The second primary task of our study involves developing a deep-
learning model to distinguish between indolent and aggressive renal
masses. In our study, we enrolled patients from six Chinese medical
centers and five public imaging datasets. Our model was tested in an
independent external cohort and a prospective multi-center cohort,
further proving its generalization ability. Another important point is
that our analysis includes most histologic subtypes, which reflects the
real clinical scenario than studies focused on ccRCC subtype only* ¢,
Different histologic subtypes of renal lesions have varied prognosis.
For example, collecting duct RCC and renal cell carcinoma, NOS are
aggressive renal cell carcinoma with poor prognosis, while subtypes
such as chromophobe RCC, clear cell papillary renal cell tumors and
mucinous tubular and spindle cell RCC follow an indolent course with
good prognosis*’~*. In this study we predict the overall aggressiveness
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Fig. 5 | Distinct genetic and immune landscapes of aggressive and indolent
renal tumors. A Waterfall plot demonstrating clinical information and genetic
mutations in indolent and aggressive renal tumors. B Gene ontology analyses of
aggressive versus indolent tumors. C Heatmap displaying expressions of immune-
related gene clusters, angiogenesis gene clusters, and prognostic gene clusters in
indolent and aggressive tumors. D Raincloud plot of immune score in indolent
(n=93) and aggressive tumors (n=127). E Raincloud plot of immune suppression
score in indolent (n =93) and aggressive tumors (n =127). F Immune cell fractions
in indolent (n =93) and aggressive tumors (n =127). G Violin plot of immune cell
infiltrations in indolent and aggressive tumors (B cells, p=0.702; CD8 +T cells,
p=0.006;CD4 +T cells, p=0.200; Tregs, p = 0.028; NK cells, p = 0.221; Monocytes,
p =0.304; Macrophages, p = 0.127; Dendritic cells, p = 0.731; Mast cells, p < 0.001;
Eosinophils, p = 0.129; Neutrophils, p = 0.328). H Representative images of

FOXP3 staining and raincloud plot of Treg densities in indolent (n=171) and
aggressive tumors (n = 51). I Representative images of CD8 staining and raincloud
plot of CD8 + T cell densities in indolent (n=176) and aggressive tumors (n=52).
J Representative images of toluidine blue staining and raincloud plot of Mast cell
densities in indolent (n =175) and aggressive tumors (n=52). The components of
the box plots in the raincloud plots comprise the minimum and maximum non-
outlier values in the dataset, the median (center), the first quartile (Q1, 25th per-
centile), and third quartile (Q3, 75th percentile) defining the box bounds, and
whiskers extending to 1.5 times the interquartile range (IQR) beyond Q1 and Q3,
with outliers plotted separately. The error bars in the violin plot represented the
upper and lower quartiles. P values were two-sided and not adjusted for multiple
comparisons. *p < 0.05, *p < 0.01, and **p < 0.001.

of renal tumors using a deep learning model based on radiological
imaging, where the labels incorporate extensive pathological infor-
mation, including tumor nuclear grade and histologic subtype, to
determine the aggressiveness of renal masses. Other aggressive his-
tology, such as sarcomatoid differentiation and coagulative necrosis
are included in radiological aggressiveness evaluation’®”. The
R.ENN.A.L. nephrometry score-based nomogram* have been used to
evaluate the risks of a renal mass being high-grade with AUCs of 0.76.

Our second deep-learning diagnostic model has exhibited strong dis-
criminatory capabilities and has outperformed a standardized radio-
mics model and the nephrometry score nomogram, maintaining
robust performance in renal mass subgroups.

We further focused on subgroups of utmost clinical significance,
specifically solid Tla and T1 renal masses. Our deep learning model
demonstrated resilient performance across most subset cohorts.
Upon analysis of the external test set, it was observed that our

Nature Communications | (2025)16:1425


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-56784-z

diagnostic model, designed to distinguish between indolent and
aggressive tumors, achieved an AUC of 0.619. In the case of Tla
tumors, aggressiveness was predominantly determined by the ISUP
grade. However, it’s important to note that there exists a notable dis-
parity in grading among pathologists from different hospitals. Even
with slide reviews by pathologists, their grading is still significantly
influenced by the initial grading outcomes. Larger lesions, particularly
those categorized as >T2, typically exhibit more pronounced histolo-
gical markers of aggressiveness. Notably, our diagnostic models
maintained impressive performances across various size categories,
highlighting that, apart from tumor size, our models possess sub-
stantial predictive abilities.

Notably, existing studies have not investigated the prognosis of
radiographically aggressive vs. indolent renal tumors. It remains
unknown whether tumors predicted as high grade by previous radio-
graphic models actually have inferior outcomes**™*°, We analyze the
oncologic outcomes of tumors predicted as aggressive or indolent
based on radiographic features. In our study, Al-predicted aggressive
tumors demonstrated significantly worse outcomes compared to Al-
predicted indolent tumors, confirming the higher malignancy of the
aggressive subgroup. Interestingly, the Al-aggressiveness score also
showed a higher C-index in predicting survival than the radiomics
model and nephrometry score nomogram, further confirming its
accuracy in identifying aggressive renal tumors from a distinct per-
spective of survival.

We also analyzed differences in biological behavior between
aggressive and indolent tumors, which demonstrated distinct genetic
and immune landscapes. Aggressive tumors were associated with
more frequent SETD2 and AHNAK2 mutations. As the main methyl-
transferase for H3K36me3, SETD2 plays important roles in active
transcription, alternative splicing, transcriptional repression, and DNA
damage repair®>. SETD2 mutations are a key molecular feature in renal
cell carcinoma and are associated with recurrence and poor
prognosis™. AHNAK2 was reported to be a novel prognostic marker
and oncogenic protein by mediating hypoxia pathway-driven epithe-
lial-mesenchymal transition and stem cell properties in renal cell
carcinoma®. Further transcriptomic analyses revealed that markers,
pathways, and immune cells referring to immune suppression sig-
nificantly elevated in aggressive renal tumors. We found there were
significantly higher infiltrations of CD8 + T cells and Tregs in aggres-
sive tumors. In contrast to the majority of tumors, high densities of
CD8 + T cells were associated with poor prognosis in RCCs. Tregs play
a crucial role in tumor immune evasion. Tregs suppress antitumor T
cell responses through multiple mechanisms, such as secreting inhi-
bitory cytokines like TGF and IL-10, expressing the immune-inhibitory
receptor such as CTLA4, etc™. A graphic abstract (Fig. S8) provides a
visual representation of our study’s framework.

We employed state-of-the-art Al algorithms for the automatic
segmentation of kidney structure and detection of renal masses, which
is necessary for large-scale imaging studies. In traditional radiomics
studies, tumor boundaries are first manually drawn for feature
extraction by experienced radiologists which is time-consuming and
less reproducible. In this study, we adapted the pre-trained nnU-net
and fine-tuned it on our multi-center dataset, achieving satisfactory
segmentation accuracy comparable to experienced radiologists. This
makes the analysis pipeline more efficient and suitable for clinical
application as radiologists only need to perform quality control and
correct problematic results.

The deep learning models for renal mass classification utilized
multi-phase CT images containing complementary information. To
avoid the potential registration error from patient motion, a late fusion
strategy was used where image features were extracted individually for
each phase and then integrated through a cross-attention module.
Moreover, in practical clinical scenarios, it's not uncommon for some
patients to have missing CT phases. To deal with the missing-phase

problem, we trained single-phase and dual-phase candidates for easy
adaption in real-world datasets. By adapting to situations where spe-
cific phases are absent, our models can enhance their clinical applic-
ability and prove even more valuable in real-world settings. Compared
to the pre-defined image features in radiomics studies, deep learning
models have more expressive power and achieve better performance.
The advantage is more profound in large-scale datasets like the multi-
center cohort in our study. The CAM visualization also provides some
interpretability of the deep learning models which are essential for
reliable application in future clinical practice.

Several limitations remained. First of all, this is a retrospective
study in nature, with inevitable selection bias. But we have validated
our retrospective model in a multi-centered prospective cohort and
multiple external test cohorts, which suggested a strong robustness
and clinical applicability. Secondly, we only included patients who
received nephrectomy, because in medical centers included in this
study, needle biopsy was scarcely performed for resectable suspicious
renal masses in actual clinical practice. Most doctors and patients opt
for direct surgeries over biopsies. In most cases, needle biopsies are
performed in unresectable or metastatic RCCs requiring further sys-
tematic treatment in these medical centers. This may bring bias but the
proportion is extremely low compared to the large sample size, thus is
unlikely to significantly affect the model performance. Another lim-
itation of our study was that the training set included patients from
Chinese hospitals, most of whom were Asian. Despite this, our model
still achieved good performance in the TCIA cohort, where the
majority of patients were white. Specifically, the model achieved an
AUC of 0.726 for differentiating between indolent and aggressive renal
tumors in White patients from the TCIA cohort. Additionally, our
approach of using the maximal tumor slice to represent the lesion
inevitably overlooks certain spatial heterogeneities within the tumor.

We have retrospectively developed and prospectively validated
deep learning-based diagnostic models discriminating benign versus
malignant renal masses and indolent lesions versus aggressive tumors
in a multi-centered cohort. Our models demonstrated high AUCs in
distinguishing benign from malignant, indolent from aggressive renal
lesions across different cohorts. Patients with Al-predicted aggressive
tumors have significantly worse RFS, DSS, and OS compared to
patients with Al-predicted indolent tumors. The Al-aggressiveness
score showed a higher C-index in predicting survival than the TNM
stage and ISUP grade. Aggressive tumors are associated with higher
mutations of SETD2 and AHNAK2, and demonstrate a heavily immune
infiltrated but immunosuppressive TME with increased CD8 + T cell
and Treg infiltrations.

Methods

Study participants

The study followed the Declaration of Helsinki and complies with all
relevant ethical regulations. The study was undertaken with approvals
from the ethics committee of Zhongshan Hospital, the First Hospital of
Zhejiang Province, Quanzhou First Hospital, the First People’s Hospital
of Lianyungang, Xiamen Branch of Zhongshan Hospital, and Zhangye
People’s Hospital. Patients who received nephrectomy from January
2009 to June 2021 in Zhongshan Hospital, from February 2017 to June
2021 in Quanzhou First Hospital (Quanzhou Hospital), from October
2016 to June 2021 in the First People’s Hospital of Lianyungang (Lia-
nyungang Hospital), from November 2017 to June 2021 in Xiamen
Branch of Zhongshan Hospital (Xiamen Hospital) and from July 2013 to
June 2021 in Zhangye People’s Hospital (Zhangye Hospital) with non-
contrast, arterial and venous phase preoperative CT scans were
screened for the training and internal test sets. Patients who under-
went nephrectomy from January 2016 to June 2021 in the First Hospital
of Zhejiang Province (Zhejiang Hospital) were screened for the exter-
nal test set. Patients who received nephrectomy from October 2021 to
June 2022 from Zhongshan Hospital, Zhejiang Hospital, Lianyungang
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Hospital, and Xiamen Hospital were prospectively collected for the
prospective test set. Patients with either arterial or venous phase
preoperative CT scans from The Cancer Imaging Archive (TCIA) were
screened for the TCIA test set’®. We aimed to evaluate the performance
of deep learning models in a TCIA test set under real-world conditions
where certain CT phases may be absent. Exclusion criteria included
bilateral, multiple, or metastatic renal tumors; renal lesions proved to
be lymphoma or metastasis from other sites; prior history of
nephrectomy. We adhered to the APA Style Guide for Bias-Free Lan-
guage, the JAMA Network Updated Guidance, and the NASEM guide-
lines in reporting race. The race information for the TCIA cohort was
obtained directly from cBioPortal. For patients from other hospitals,
race was self-reported. Sex and/or gender of participants was deter-
mined based on self-report. Given the lack of appreciable differences
in key tumor characteristics, including tumor size, stage, grade, and
outcome between males and females, we did not carry out sex or
gender analyses. Informed consents for patients from retrospective
cohorts were waived, and those for patients from the prospective test
cohort were obtained. The informed consent for patients from retro-
spective cohorts was waived due to the fact that the study involved
only the analysis of pre-existing CT images, posing no risk of harm to
patients and not constituting an intervention. In the end, there were
4169 patients in the above six medical centers and 388 cases in the
TCIA dataset included in our study. Clinical and radiological informa-
tion of the TCIA test set were downloaded from the National Cancer
Institute, the Cancer Imaging Program (CIP) (https://www.
cancerimagingarchive.net). The TCIA cohort was composed of four
independent public datasets, the Climb 4 Kidney Cancer—Kidney and
Kidney Tumor Segmentation Challenge (C4KC-KiTS) cohort of the
University of Minnesota Medical Center, the Cancer Genome Atlas
(TCGA)—Kidney Clear Cell Carcinoma (KIRC) cohort, TCGA—Kidney
Papillary Cell Carcinoma (KIRP) cohort, TCGA—Kidney Chromophobe
(KICH) cohort and the Clinical Proteomic Tumor Analysis Consortium
—Clear Cell Renal Cell Carcinoma (CPTAC-CCRCC) cohort. Patients
with malignant renal masses who received curative nephrectomy from
2009 to 2019 in Zhongshan Hospital (Zhongshan cohort) or from 2012
to 2017 in Zhejiang Hospital (Zhejiang cohort) had follow up infor-
mation. The last follow up time for the two cohorts was September,
2021. These two subsets of patients with follow up information were
termed Zhongshan cohort and Zhejiang cohort. The tumor stage at the
time of surgery was determined according to the 8th edition of the
AJCC cancer staging system. R.E.N.A.L. scores were evaluated by seven
experienced radiologists. To avoid potential confusion with data
combinations and cohort information, we have provided a summary in
Table S1, detailing the patient composition, types of data, and analyses
conducted for each cohort.

Histologic classification

Renal tumors were classified as benign indolent, malignant indolent,
and malignant aggressive according to previous histologic research*’*’
(Table 1). Benign and indolent renal masses included angiomyolipoma,
complex renal cyst, oncocytoma, adult cystic nephroma, mixed epi-
thelial and stromal tumor, metanephric adenoma, leiomyoma, hae-
mangioma, schwannoma, juxtaglomerular cell tumor, inflammation,
and hematoma. Papillary adenoma and renomedullary interstitial cell
tumor were clinically silent and discovered as incidental findings, thus
they were not included in our study. Malignant and indolent renal
tumors included indolent ccRCC (ccRCC without invasion into major
veins or perinephric tissues, grade 3-4 components, necrosis or sar-
comatoid differentiation), indolent papillary RCC (papillary RCC
without invasion into major veins or perinephric tissues, grade 3-4
components or sarcomatoid differentiation), chromophobe RCC, clear
cell papillary renal cell tumors, multilocular cystic renal neoplasm of
low malignant potential, succinate dehydrogenase-deficient RCC,
mucinous tubular and spindle cell carcinoma, tubulocystic RCC,

nephroblastoma, epithelioid angiomyolipoma, solitary fibrous tumor,
other oncocytic tumors of the kidney and well-differentiated neu-
roendocrine tumor. Any indolent subtype with sarcomatoid differ-
entiation were considered aggressive. Malignant and aggressive
subtypes included aggressive ccRCC (non-indolent ccRCC), aggressive
papillary RCC (non-indolent papillary RCC), TFE3-rearranged renal cell
carcinoma, renal cell carcinoma NOS, collecting duct carcinoma,
medullary carcinoma, any subtypes with sarcomatoid differentiation
and sarcomas such as leiomyosarcoma, rhabdomyosarcoma, synovial
sarcoma, Ewing sarcoma, etc. Tumor nucleus grades were recorded in
clear cell renal cell carcinoma (ccRCC) and papillary renal cell carci-
noma only. Three experienced pathologists re-valuated tumor sub-
types according to the 2022 WHO classification for renal tumors and
tumor nucleus grades according to the WHO/ISUP grading system for
cases with available slides in the Zhongshan cohort and Zhejiang
cohort. For few tumor samples graded according to Fuhrman grade
before 2016 unavailable for re-evaluation, Fuhrman grades were mat-
ched to ISUP grades.

Automatic detection of renal masses

Firstly, nnU-Net was used to segment the kidney structure and renal
masses on arterial phase CT images™. It is a convolutional neural net-
work with an encoder-decoder structure that integrates multi-scale
image features for medical image segmentation. The segmentation
model takes 3D arterial phase images as the input and outputs the
segmentation map of kidneys and tumors. The model was pre-trained
on the official KiTS challenge dataset and fine-tuned on 100 cases from
the training set of this study where ground-truth segmentations were
provided by an experienced radiologist*’. The detailed architecture of
nnU-Net and benchmark of segmentation performance are provided in
the Supplementary Material (Fig. S1 and Table S2). Next, the mass
center of the detected tumor was calculated, and a volume of interest
(VOI) with a fixed size of 14 x14 x16 cm was generated. To minimize
potential errors in localization, a quality control step was imple-
mented, wherein a radiologist reviewed and, if necessary, manually
corrected the mass center. For the cases without arterial phase ima-
ging in the TCIA dataset, the mass center was manually drawn at the
axial image slice with maximum renal masses on either venous or non-
contrast CT images. With the generated VOI, the multi-phase CT ima-
ges were cropped and registered to the arterial phase image. Fur-
thermore, the axial slices with maximum tumor were extracted from
the registered multi-phase imaging volumes and resampled to a spatial
resolution of 0.625x 0.625 mm.

Deep learning models for tumor diagnostics

We first investigated which image feature extraction backbone to
employ. In our preliminary exploration of the malignancy classification
task based on arterial phase CT, ResNet-18 performed the best, while
increasing the complexity of network design did not lead to better
classification results, as depicted in Table S3. Based on the pre-
processed imaging slices, we developed a multi-phase convolutional
neural network to integrate multi-phase CT images and predict tumor
diagnostics. The ResNet-18 was used as the backbone network to
extract image features for non-contrast, arterial, and venous phase
images, respectively®. The weights of ResNet-18 were initialized using
a pre-trained ImageNet model and fine-tuned on our curated dataset of
CT images. This fine-tuning process allowed the model to adapt to
domain-specific features present in medical images, enhancing its
generalization capability for tumor diagnostics.

Then the individual features were fused to predict the final diag-
nostics. The detailed architecture of each network module and
implementation details are provided in the Supplementary Material
(Fig. S2). To deal with the missing phases in the TCIA dataset, in
addition to the multi-phase model, we also built three models with
single-phase input and three models with dual-phase input. The
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prediction of tumor malignancy and invasiveness were formulated as
two binary classification tasks, and we trained two separate networks
to predict corresponding probabilities.

Radiological interpretation

Seven experienced radiologists (Linpeng Yao, Xue Zhang, Risheng
Huang, Xiaoxia Li, Jianjun Zhou, Feng Chen, and Chenchen Dai), each
were fellowship trained in abdominal imaging with over 5 years of
experience from prominent academic medical centers, evaluated the
cases. Prior to the evaluation, a urological imaging expert (Professor
Jianjun Zhou, who has reviewed over 5000 renal mass cases) con-
ducted a training session for all observers. This training encompassed
the explanation of common imaging characteristics through 50
representative cases from our internal test set. Additionally, standard
scoring criteria from the literature, including the Ottawa Criteria®', and
the 2019 version of the Bosniak classification®’, were reviewed. How-
ever, the radiologists were not compelled to strictly adhere to these
criteria, allowing for a more realistic clinical approach. The triple-phase
CT images were then presented anonymously and in random order
through our local picture archiving and communication system. The
radiologists, blinded to any clinical or pathological information, were
tasked with predicting whether the renal mass was malignant or
benign. The radiologists were asked to provide binary predictions of
malignancy (malignant or benign) for each case.

Computational analyses of genetic and immune landscapes
RNA-seq and mutational data of TCGA cohorts and CPTAC-CCRCC
cohort were downloaded from the GDC Data Portal (https://portal.gdc.
cancer.gov). We performed Gene Ontology (GO) analyses and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses for upregulated
genes in aggressive renal tumors in the TCIA cohort. Gene Set
Enrichment Analysis was performed by applying the GSEA®* “weighted”
enrichment statistics on a score for enrichment or depletion. For GSEA,
we utilized pathways contained in Hallmark, Reactome, BioCarta, PID,
GO, and KEGG databases. We calculated infiltrations of B cells,
CD8+T cells, CD4 +T cells (non-regulatory), Tregs, NK cells, mono-
cytes, macrophages, dendritic cells, mast cells, eosinophils, and neu-
trophils in tumors from TCGA cohort CIBERSORT, a computational
method for evaluating leukocyte representation in bulk tumors®.
Infiltrations of major types of immune cells were also evaluated by
single sample gene set enrichment analysis (sSGSEA)**®. Stromal
score, immune score, and estimate score were calculated with ESTI-
MATE for inferring stromal cell admixture, immune cell admixture, and
tumor purity, respectively. The metagene value for immune suppres-
sion was measured by summarizing the gene signature as the mean
expression of each gene in the category®.

Immunohistochemistry

For evaluation of infiltrations of Tregs, CD8 + T cells, and mast cells, we
collected formalin-fixed, paraffin-embedded surgical specimens from
patients who received nephrectomy from August 2020 to June 2021 with
malignant tumors in Zhongshan cohort and constructed tissue micro-
arrays for immunohistochemistry, and we term this cohort the IHC
cohort. A total of 229 cases with obtainable specimens were collected, of
which 177 were indolent and 52 were aggressive. Tregs were stained with
FOXP3 antibody (ab22510, Abcam, diluted 1:100) and CD8 + T cells were
stained with CD8 antibody (ab245118, Abcam, diluted 1:1000). We used
toluidine blue stains to evaluate mast cell infiltrations. The densities of
each immune cells were recorded as cells/mm?

Statistical analyses

For statistical analyses, SPSS Statistics 21.0 and R software 3.51 were used.
We used Welch’s t-test for comparisons between continuous variables.
Measurements were taken from distinct samples. For categorical vari-
ables, Pearson’s chi-square test or Fisher’s exact test were performed.

The prediction performance of the deep learning models was evaluated
using receiver operating characteristic curve (ROC) analysis and by
estimating the area under the curve (AUC). In addition, quantitative
classification metrics were calculated, including accuracy, sensitivity, and
specificity. For each reader sensitivity and specificity values, the corre-
sponding specificity and sensitivity of the deep learning model at that
sensitivity or specificity settings are computed. A significant difference is
determined by means of the McNemar test. The Kaplan-Meier analyses
and univariate Cox regression analyses were applied for comparisons of
patient survival. To further determine the contribution of Al-
aggressiveness score compared to other risk factors as predictors of
survival, they were all combined in a multivariate Cox proportional
hazards model. Survival outcomes included disease-specific survival
(DSS), recurrence-free survival (RFS), and overall survival (OS). Disease-
specific survival was defined as the time of surgery to the time of death
from renal tumors. Recurrence-free survival was calculated from the time
of surgery to local recurrence, distant metastasis, or death from renal
tumors. Overall survival represents time from surgery to death from all
causes. For all survival analyses, we included patients with malignant
tumors only. Values of p <0.05 were considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The imaging datasets utilized in this study, with the exception of
those from the TCIA cohort, are currently restricted from public
release due to data privacy laws and the policies of the respective
institutional review boards. The TCIA cohort data can be down-
loaded from the Cancer Imaging Archive (https://www.
cancerimagingarchive.net/collections/) and the GDC Data Portal
(https://portal.gdc.cancer.gov/). If the interested researchers want to
achieve the restricted imaging datasets for non-commercial use, they
can request for the corresponding author S.W. (shuowang@fuda-
n.edu.cn). Corresponding author will review their requests and ask
for consent from each center, requestors will receive a response
within 4 weeks. Source data are provided with this paper.

Code availability

A valid OSl-approved open-source license, the Apache License 2.0, is
applied to our code. The code repository includes a clear LICENSE file
specifying that the code is released under the Apache License 2.0.
Codes are publicly available at (https://github.com/shuowang26/renal-
mass-ai). Other information is available from the corresponding author
(S.W.) upon request.
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