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Emergent quantum Majorana metal from a
chiral spin liquid

Penghao Zhu 1,7, Shi Feng 1,2,3,7, Kang Wang 4,5,7, Tao Xiang 4,5,6 &
Nandini Trivedi 1

Wepropose amechanism to explain the emergence of an intermediate gapless
spin liquid phase in the antiferromagnetic Kitaev model in an externally
applied magnetic field, sandwiched between the well-known gapped chiral
spin liquid and the gapped partially polarized phase. We propose that, in
moderate fields, π-fluxes nucleate in the ground state and trap Majorana zero
modes. As these fluxes proliferate with increasing field, the Majorana zero
modes overlap creating an emergentZ2 quantumMajoranametallic state with
a “Fermi surface” at zero energy. We further show that the Majorana spectral
function captures the dynamical spin and dimer correlations obtained by the
infinite Projected Entangled Pair States method, thereby validating our varia-
tional approach.

Quantum spin liquids (QSLs) are exotic topological quantum matter
that transcend the traditional framework of Landau’s symmetry-
breaking theory. Beyond the absence of zero-temperature order, QSLs
are positively characterized by fractionalized degrees of freedom and
associated emergent gauge fields that globally constrain the dynamics
of these fractionalized particles1–9. With the discovery of the exactly
solvable QSLs in Kitaev honeycomb model3,10, recent years have seen
significant efforts towards theoretically understanding and experi-
mentally searching for novel QSL phases in candidate Kitaev materials
due to spin-orbital coupling11. Experimental focus has primarily been
on the iridate magnetic insulators A2IrO3 (A = Na, Li and Cu)12–16 and α-
RuCl3

17–20. Recently, Na3Ni2BiO6
21, Na2Co2TeO6

22–26 and YbOCl27,28 have
emerged as promising candidates hosting antiferromagnetic Kitaev
interactions, thereby broadening the scope of research in the quest
for QSLs.

The integrable Kitaev honeycomb model is known to harbor a
Dirac QSL in the fractionalized quantum sector of Majorana fermions,
which becomes a chiral spin liquid (CSL) under time-reversal-breaking
perturbation. Remarkably, beyond the Dirac and CSL phases, recent
numerical studies have unveiled a novel gapless phase emerging from
antiferromagnetic Kitaev honeycomb model under moderate mag-
netic field29–31, which is experimentally relevant as QSL phases in

candidate materials like Na3Ni2BiO6, Na2Co2TeO6 and YbOCl are often
stabilized under moderate magnetic fields. Despite lots of numerical
efforts to understand this intermediate gapless phase (IGP)30,32–40, the
mechanism underlying its emergence, as well as the nature of its
fractionalization and emergent gauge structure, remain elusive and
subject to ongoing debate. Inspired by recent numerical studies
revealing the importance of fluctuations of Z2 fluxes in the formation
of the IGP38,40, we develop a mean-field ansatz for the emergence of a
Majorana metallic phase from the gapped CSL phase due to the field-
induced proliferation ofZ2 fluxes. In contrast to the thermalMajorana
metal induced by thermal fluctuations as discussed in previous
literature41, inourmodel, it is thequantumfluctuations stemming from
the hybridization of fluxes and Majoranas that leads to the quantum
phase transition from aCSL to a quantumMajoranametal. Specifically,
we analyze the entanglement between itinerant Majorana fermions
and localized Z2 fluxes in the IGP and show the following: (1) In the
backgroundof fluctuatingZ2 fluxes, themassiveMajorana fermions of
the gapped CSL becomemetallic in the IGP [Fig. 1], and the low-energy
fractionalized Majorana fermions couple to Z2 gauge fields instead of
complex fermions with U(1) gauge fields. (2) The emergent Majorana
metal has a finite “Fermi surface” (FS) at zero energywhich evolves as a
function of the magnetic field in the IGP. (3) The dynamical spectral
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functions of two- and four-spin correlators decomposed in terms of
multi-Majorana correlators in the background of fluctuating fluxes are
found to agreewell with the results by iPEPS obtainedwith fine energy-
momentumresolution. Althoughour argument is basedon the specific
model, it demonstrates a novel and general mechanism for the for-
mation of a Z2 neutral FS in chiral QSLs. The existence and the nature
of the emergent IGP as a Z2 Majorana metal at zero temperature
establish a new class of gapless QSLs alongside those commonly
recognized, such as U(1) Dirac QSLs and U(1) spinon Fermi surfaces in
prevailing theories. It is hence significant not only theoretically but
also in relation to experimental observations of gapless quantum spin
liquids.

Results
Field-induced Majorana metal
Webeginwith the isotropic Kitaevmodel on a honeycomb lattice, with
a magnetic field applied normal to the honeycomb plane:

H =
X
hijiα

Jσα
i σ

α
j � h

X
i,α

σα
i , α 2 fx, y, zg ð1Þ

where ‹ij›α denotes nearest-neighbor sites on an α-type bond.We show
that under amoderatemagnetic field normal to the honeycombplane,
the gapped chiral spin liquid (CSL) phase of the Kitaev honeycomb
model transitions to the IGP, described as a neutral bulk super-
conducting Majorana metal with a finite FS at zero energy.

Equation (1) with h = 0 can be exactly solved by fractionalizing the
spin into two distinct quantum sectors: the gapless Dirac Majorana
fermions and the gapped Z2 fluxes3. The corresponding ground state
has been shown to have no flux and accommodates only the Dirac
Majorana fermions42. In the regime of weak magnetic fields, small
perturbations do not close the gap (~0.26J) of the Z2 flux excitation,
and thus theZ2 flux sector is still dominated by the vacuum state ∣F i0
with no flux excitation. A third-order perturbation provides the

Hamiltonian HM = F0

�
∣H∣F0

�
in the Majorana sector:

HM =
X
j, k

itjkcjck + H.c. , ð2Þ

where tjk = Jujk for nearest-neighbor hoppings; and tjk = λujlulk for anti-
clockwise next-nearest-neighbor (NNN) hoppings inside hexagons,
with λ ∝ h3 being the leading-order perturbation coefficient. ujk �
F0

�
∣ûij ∣F0

�
in Eq. (2) is the expectation value of the Z2 vector gauge

potential ûjk defined on the bond connecting sites j and k. The gauge
invariant flux operator corresponding to the flux excitation is the
product of six link operators ûjk that belong to a hexagon, i.e.,

The flux-free vacuum state has F0

�
∣Ŵp∣F0

�
= + 1 for

every hexagon. Since the ground state of the model is flux-free42, and
ûjk is a goodquantumnumber in Eq. (2),we can choose the gauge to be
ujk = 1 for every bond for the ground state. This Majorana-hopping
model captures the gapped CSL phase characterized by a nonzero
Chern number in Majorana bands. As the field strength increases to a
moderate level, there is a phase transition to an IGP based on our
previous simulations29,30, where the simple free Majorana model no
longer applies.

Wediscuss below themechanismbywhich the IGP emerges under
moderate field, largely from the interplay between flux fluctuations
and the Majorana Chern band. We start by establishing a suitable
mean-field ansatz that captures the essence of the many-body tensor
network representation40 within a quasi-particle picture. Since the
Majoranas andZ2fluxes forma complete basis for theHilbert space,we
can write an ansatz for IGP:

∣ΨIGP

�
=
X
F

ψF ∣F i � ∣MF
�
, ð3Þ

where ∣F i denotes a state that corresponds to a disordered flux con-
figuration on the honeycomb lattice; ∣MF

�
denotes theMajorana state

conditioned on the flux configuration; and ψF a complex scalar con-
ditioned onF . Once we average over all the flux configurations ∣F i we
recover a translationally invariant ∣ΨIGP

�
. This is because all flux pat-

terns obtained by translating ∣F i appear in the linear combinations
with the same coefficient.Wepropose that ∣MF

�
is the ground state of

HM = Fh ∣H∣F i, and HM is given by Eq. (2) with sign-disorder in uij. We
note that the ansatz in Eq. (3) is distinct from existing microscopic
MFTs that attempt to explain theorigin of the IGP inmoderatefields by
solving self-consistent equations of quadratic partons43,44, which fall
short in representing the entanglement between the two fractionalized
quantum sectors, and in representing a flux as a physical degree of
freedom with many-body entanglement among the six ûij ’s of a
hexagon. More justifications for our ansatz can be found in
Supplementary Information (SI).

To understand the origin of the sign disorder in uij, we trace out
the flux sector and get the density matrix of Majorana:

ρM =TrF ∣ΨIGP

�
ΨIGP

�
∣=

X
fF g

jψF j2∣MF
� MF
�

∣: ð4Þ

Unlike the CSL phase, the flux fluctuation is significant in IGP and jψF j2
is typically nonzero because of the presence of a large number of
plaquette fluxes. We assume the flux sector has slow dynamics in the
IGP regime according to recent numerical results38, so that for a given
flux configuration ∣F i, HM is determined by the Eq. (2) with
fuij = Fh ∣ûij ∣F ig. HM’s conditioned on different flux configurations
form an ensemble. We emphasize that configurations {uij} related by
gauge transformations are physically equivalent, as they produce
identical flux patterns, ensuring that all physical quantities remain
unchanged. By sampling the gauge fields uij, we include these slow
gauge fluctuations as “flux disorder" seen by theMajorana sector; after

Fig. 1 | Emergenceof theMajoranametal fromthe chiral spin liquid (CSL) under
moderate magnetic fields at a critical field hc1 = 0.45J. The first row depicts a
schematic of the CSL and Majorana metal phases, where the dots in the left plot
represent boundary chiral Majorana modes while the Gaussian-like wavepackets in
the right plot indicate Majorana zero modes trapped at π-fluxes. The second row
shows our results for their respective bulk density of states (DOS) under periodic
boundary conditions. The two DOS are calculated from the Majorana-hopping
models, one without sign disorder (Wp = 1, left) and the other with (Wp =0:05,
right). In both cases we used λ = 0.25J for next neighbor hopping in the Majorana
hopping model.
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averaging over all random flux patterns in the ensemble, translation
symmetry is recovered, and we then obtain the momentum-resolved
spectral function for the Majorana sector.

The strength of the external field enters HM by determining the
strength of NNN hopping λ and affecting the density of the π-fluxes
given by {uij}. We define the ensemble average of the flux to be Wp �P

F jψF j2WF
p with . is the number of

hexagons in the system. Since a stronger magnetic field can induce a
higher density of π-fluxes,Wp decreases as the external magnetic field
increases. Therefore, for stronger magnetic field, we have an ensemble
of HM with smaller Wp within the IGP phase. Given the translation
symmetry and the three-fold rotation symmetry of our ansatz jΨIGPi,
the expectation of uij and Wp should be identical on each bond and
within each hexagon respectively, i.e., each uij and Wp have the same
probability toflip. For this reason,we implement the signdisorder in the
gauge fields by randomly flipping each ujk independently with a given
probability. Note that similar implementation has been used to study
the thermal Majorana metal phase at high temperatures in Kitaev’s
honeycomb model, yielding results that align perfectly with quantum
MonteCarlo simulations45. In our implementation of signdisorders,WF

p
of the ensemble f∣F ig follows aGaussian-like distributionwith themean
Wp due to the central limit theorem; for details see SI. Our analysis of
the Majorana spectrum from Eq. (2) upon ensemble averaging reveals
an entrance into a gapless Majorana metal from a gapped CSL, as illu-
strated in Fig. 1.Whilewehaveutilized a specific scheme togenerate the
emergent flux disorder, we emphasize that the emergence of the gap-
less Majorana metal phase does not rely on the specific distribution.
Another way to generate flux disorders is discussed in SI to support this
point. The underlyingmechanism is more general, as we discuss below.

To understand the transition in theMFT,we first remind that Eq. (2)
with uij = 1 for all bonds is equivalent to a p + ip topological super-
conductor, asdetailed inSI, inwhich aπ-flux traps aMajoranazeromode
(MZM). When the flux density is large enough such that the average
separation between two fluxes is comparable to the localization length
of the MZMs, then the MZMs can tunnel from one trapped location to
the next and form a band around zero energy. Besides the obvious
nonzero density of states (DOS) at zero energy shown in Fig. 1, we also
obtain the DOS as a function of low energies shown in Fig. 2a, exhibiting
a lnjEj scaling as expected for aMajoranametal40,46–48. Since a larger gap
in the CSL phase results in a smaller localization length for MZMs, we
expect that a larger field will be required to enter the IGP, see SI.

While one can understand the gapless nature of IGP from the flux-
induced proliferation of MZM and the lnjEj scaling of DOS near zero
energy, to establish that the IGP is indeed metallic with delocalized
states, we analyze the scaling of the inverse participation ratio (IPR).
The IPR analysis further reveals the multifractal nature of the zero
energy states, and from the behavior at large system size we establish
the extended nature of these states, in spite of the presence of flux
disorder; see SI.

Our results are consistent with the fact that the randomMajorana-
hoppingmodels of class D are known to exhibit three distinct phases: a
topological insulator, a trivial insulator, and a gapless metal phase
dubbed as Majorana metal. The topological insulator phase corre-
sponds to the CSL phase of the Kitaev honeycomb model, where the
band ofMajorana fermions possesses a nonzero Chern number. In this
work, we identify the IGP in the Kitaev honeycomb model under a
moderate magnetic field as a quantum Majorana metal phase at zero
temperature. The entrance into the Majorana metal phase from the
CSL phase can be understood from another useful perspective: The
states in the Majorana sector of the CSL phase can be scattered by the
fluctuations of the flux configurations between states with different
momenta. This results in a mini-gap, as schematically depicted in
Fig. 2b around ω ~ 2J, pushing down the states at lower energy and
lifting up the states at higher energy, as seen inMFT and also validated
by iPEPS data shown in Fig. 2c, d. In the absence of flux disorder, the

band bottom is pinned atω = 2J at theM point for large fields h; see SI.
This is because increasing h enhances the second-nearest-neighbor
hopping λ ∝ h3 which increases the gap at the K point, leaving the
energy unchanged at the M point. Consequently, under a sufficiently
strongmagnetic field, the band bottom remains atM atω = 2J, where a
minigap forms in the IGP phase. This picture helps us understand the
momentum-resolved spectral function and dynamical structures at
low energy for the IGP as discussed below.

Spin dynamics
We start bywriting the time-dependent spin-spin correlations in terms
of the Majorana and flux states,

hσ iðtÞ � σ jð0Þi � h MF
�

∣ciðtÞcj ∣MF
�iF , ð5Þ

of which the Fourier transformation is denoted as S1(k, ω). On the left-
hand side h�i � ΨIGP

�
∣�∣ΨIGP

�
, on the right side the outer bracket

denotes disorder averageoverflux configurations.We apply the ansatz
in Eq. (3) assuming thefluxdynamics ismuch slower than theMajorana
dynamics38. Hence the dynamical spin spectrum is determined
primarily by Majorana fermions in the diagonal sector (see SI). For
i, j belonging to the same sublattice of the honeycomb lattice, the
Fourier transform of h MF

�
∣ciðtÞcj ∣MF

�iF gives the average of single-
particle Majorana spectrum over all flux configurations (see SI),
providing distinct features of the emergent Majorana FS.

We now test Eq. (5) by comparing the single-particle Majorana
spectrum to the spin-flip dynamics obtained by iPEPS. The Majorana
spectral function is computed by:

Aðr1, r2,ωÞ=
X
n

Trcellϕnðr1Þϕ*
nðr2Þδðω� EnÞ ð6Þ

whereϕn(r) = 〈r∣n〉, with ∣ni being an eigenstate of HM. Note that Trcell
is the trace of intracell degrees of freedom, which corresponds to the
sum of intra-sublattice correlations whose momentum-space repre-
sentation is periodic within the first Brillouin zone (BZ). Since the
ground state of IGP is translation invariant, allflux configurations in the

Fig. 2 | Nature of intermediate gapless phase (IGP). a The DOS in the Majorana
metal shows a logarithmic scaling behavior explaining the origin of states at zero
energy. The data are obtained for a systemwith λ=0.25, 80 × 80unit cells, averaging
over 20 samples withWp =0:05. b Schematic illustration of a minigap opening due
to scattering between Majorana Bloch states induced by fluctuating flux disorder.
c The spectral function (averaged over 50 samples) of itinerant Majoranas is shown
alongahigh symmetry cut for the IGP,whichmatcheswellwith iPEPS results for spin-
spin correlations, S1(k, ω), displayed in d. The white dashed lines in c and d are eye-
guiding lines that emphasize the shape of the spectra and the presence of the gap.
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ansatz should form a representation of the translation symmetry.
Therefore, there is a well-defined momentum resolved spectral
function A(k, ω) that is the center-of-mass average of A(r1, r2, ω). This
center-of-mass average is equivalent to an average over flux config-
urations connected by translations, within the average over all flux
configurations. As all the Bloch eigenstates in the clean limit form an
orthonormal basis, we expand eigenstates of a disordered system into
∣ni=Pαkc

n
αk∣αk

�
, where α is the band index and k the momentum of

the Bloch states. Substituting this into Eq. (6) and averaging over
center-of-mass R = (r1 + r2)/2, we have

hAðr,R,ωÞiR =
1
N

X
nαk

eik�r∣cnαk∣
2δðω� EnÞ, ð7Þ

where r = r1 − r2. After a Fourier transformation, one can get the
spectral function in momentum space:

Aðk,ωÞ=
X
nα

∣cnαk∣
2δðω� EnÞ: ð8Þ

Next, we average Eq. (8) over random flux configurations that are not
connected by translations. We show our results of averaged A(k, ω)
along high-symmetry lines in Fig. 2c, which captures the gapless
feature of the spin-spin correlations around M and K. For comparison
we also show numerical evidence from iPEPS for intra-sublattice spin-
spin correlations in Fig. 2d; details can be found in SI. Remarkably, our
mean field analysis when compared with the unbiased iPEPS results,
reproduces the twomost salient features in the IGP: (i) The presenceof
spectral weight at low energies immediately above ω = 0; and (ii) the
opening of a gap centered aroundω≃ 2J, whichwe now understand as
a flux-induced gap separating the upper and the lower branches of the
Majorana bands.

To gain more information about the gapless modes in the Major-
anametal, we further calculate the averaged A(k,ω = 0) over the whole
BZ (i.e., the FS) for systems with different Wp. The results in Fig. 3
explicitly show the presence of gapless states around M and K in the
Majorana sector, which suggests the presence of zero-energy modes
with definite momentum or a Majorana FS. It is straightforward to see
that when Wp are large (sparse fluxes) for weak magnetic fields, zero
energy states aremainly found around theMpoint. However, whenWp

becomes smaller (denser fluxes) for stronger magnetic fields, zero
energy states populate mainly around K points. This matches well with
our previous iPEPS calculations40. The reason zero energy states first
appear near the M point before appearing near the K point is because,
in the clean limit, the band edge is at theMpoint for large enoughNNN
hopping λ, as depicted in Fig. 2b, and is thus more susceptible to be
rendered gapless by fluxes. More information about the band struc-
tures for different λ’s can be found in SI. It is important to distinguish
the fluctuations of flux configurations that have averaged translation
symmetry considered here from quenched bond- or site-vacancy dis-
order discussed in refs. 49,50. While both types of disorder can lead to
gapless states, quenched disorder lacks well-defined momenta for
zero-energy modes due to the absence of translation symmetry.

We briefly comment on the implications of the Majorana FS on
quantum oscillations. There have been previous attempts to attribute
the quantum oscillations to a gapless U(1) spin liquid phase char-
acterized by a Fermi surface of complex fermions30,32,33,51. However, as
discussed in ref. 52, even if interactions (such as pairing between U(1)
fermions) convert the complex fermions into real (Majorana) fer-
mions, the de Haas van Alphen quantum oscillations can still be
observed as long as some fraction of Majorana fermions remaining
gapless. Similarly, Friedel-type oscillations can also occur due to the
presence of an FS of U(1) complex fermions and can persist under Z2

gauge with fermion pairing53–55.

Dimer dynamics
Similar to the spin dynamics, the dimer correlations reflect the
dynamics of four-Majorana correlations that can be observed by
Resonant Inelastic X-ray Scattering (RIXS) experiments56,57. We denote
the dimer by Dα

j = σ
α
j σ

α
j + z . In analogy to the two-spin spectrum, the

dimer-dimer spectrum S2ðk,ωÞ=F:T:fhDiðtÞ �Djig in the IGP can be
approximated by:

hDiðtÞ �Dji � h MF
�

∣ciðtÞci+ z ðtÞcjcj + z ∣MF
�iF ð9Þ

An exact evaluation of the R.H.S. of Eq. (9) using mean-field modes is
not entirely justified since the Majorana dispersion is rather broad
indicating strong lifetime effects (see Fig. 2c). We therefore attempt to
capture the essence using a single-mode approximation (SMA) to
describe the excitations of the gapless continuum of the Majorana
fermions near low energy. Such a semi-quantitative description of the
Majorana FS remarkably shows good agreement with the data
obtained by iPEPS.

Informed by the spectral function at the Fermi energy pre-
sented in Fig. 3b, we use a low-energy SMA around the soft fer-
mion modes at and near the K and K0 points, depicting the state
deep in the IGP where flux density is near half-filling. It is then
straightforward to calculate the dimer-dimer correlation in terms
of the effective Majorana band, which in Lehmann spectral
representation is:

S2ðk,ωÞ ’
Z

q2BZ
W ðk,qÞδ½ω� ðEk�q + EqÞ� ð10Þ

up to constants. HereW ðk,qÞ= E2
k�q=ðE2

k�q �Q2
k�qÞ is the two-fermion

(four-Majorana) spectral weight function given by the approximated
single-modeMajorana band Ek, gapless near K andK0 points in keeping
with Fig. 3b; and Qk � ½sinðk � n2Þ � sinðk � n1Þ � sinðk � ðn2 � n1ÞÞ�, the
NNN hopping induced by a time-reversal-breaking perturbation,
concomitantly tuned to give the desired soft modes in the aforemen-
tioned Ek. The derivation and computational details are relegated to
the SI. Results by SMA and iPEPS in Fig. 4 show a strikingly similar
spectrum at low energies. At the lowest energies, the strongest
intensities for the dimer-dimer spectral functions are observed near
the Γ point, followed by slightly weaker signals at K, and negligible
signal near M. Minor differences between the Majorana analysis and
iPEPS can be attributed to truncation errors of iPEPS and the loss of
higher-energy states in the MFT.

Fig. 3 | Fermi surface of quantumMajoranametal.Majorana spectral function at
zero energy on the FS, A(k, ω = 0), in the intermediate gapless phase (IGP), sand-
wiched between the chiral spin liquid (CSL) phase and the polarized phase (PP), for
(a) Wp =0:53 and (b) Wp =0:05, whereWp is the ensemble average of the π-flux
density. h represents the strength of the Zeeman field [c.f. Eq. (1)]. The blue dashed
contour in (a) marks the boundary of the first BZ and the gray dashed lines
represent the cut used in Fig. 2. λ = 0.25J is used for the calculations.
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Discussion
In this work, we shed light on the field-induced IGP in the Kitaev
honeycomb model by introducing an effective tight-binding model
that describes the interplay between emergent Z2 flux disorder and
Majorana Chern-bands. Within our theory, the IGP is a zero-
temperature quantum Majorana metal phase characterized by persis-
tent fermion pairing and a neutral FS. In previous works, the inter-
mediate phase has been either identified as a gapless phase of neutral
spinons with a finite Fermi surface and an emergent U(1) gauge
structure30,32,33,54 or identified as a gapped topological orderwithChern
number ± 4 and an emergent Z2 gauge structure43,44. All of these pro-
posals fail to capture the simultaneous presenceof a gaplessphase and
an emergent Z2 gauge structure observed in our recent numerical
study40. It is by considering the interplay between matter and gauge
fields that ourwork accommodates both the gapless and theZ2 nature
of the IGP.

Recent exact diagonalization studies32,44 claim that the inter-
mediate phase is gapless from the behavior of spin correlations. It is
further asserted that the specific heat calculations indicate the pro-
liferation of π-flux at low energy which leads to a Z2 to U(1) transition
in the gauge structure, resulting in a transition from a chiral spin liquid
(CSL) to a spinon metal with a spinon Fermi surface. Such statements
are difficult to validate since the calculations are based on spin
operators on small systems that are not privy to the gauge structure. In
addition, it is difficult to understand from a theoretical perspective the
Z2 to U(1) transition in the gauge structure.

In our approach, as discussed above, we have proposed that the
Z2 gauge structure persists under the transition from a gapped CSL to
a gaplessMajoranametal, and we further present a mechanism for the
transition that is supported by features observed in our iPEPS
calculations.

Ref. 44 presents a microscopic parton mean field theory (MFT)
that provides an explanation of the divergent susceptibility at the
transition between the CSL and intermediate phase, consistent with
previous DMRG results30,33. However, the MFT also finds that the
intermediate phase is gapped with a low-energy ring of gapped exci-
tations around the Γ point in momentum space. This result is however
not consistent with our unbiased iPEPS calculations that show a loga-
rithmically divergent density of states at low energy (Fig. 2a and
ref. 40) that strongly support a Z2 gapless Majorana metal.

Our identification of IGP as a zero-temperature Majorana metal
suggests novel thermal transport and spin relaxation within this

phase48. The understanding gained from the spin-spin and dimer-
dimer correlations in terms of multi-Majorana correlations in Fig. 4
provides detailed predictions for observation of fractionalization in
Raman scattering and momentum-resolved RIXS experiments. Given
that Majorana metal phases can be induced by thermal fluctuations in
chiral spin liquids under zero magnetic field as previously
reported41,58,59, along with our theory on the gapless IGP as a Z2

Majoranametal at zero temperature induced by quantum fluctuations,
these results are suggestive enough to warrant further investigation
into the comprehensive phase diagram parametrized by temperature
and magnetic field for the new class of the Z2 gapless QSLs, and the
unusual transport properties therein.

Methods
Average of the spectral function
The center-of-mass averaged spectral function [c.f. Eq. (7)] can be
derived from Eq. (6) by decomposing the eigen wave function ϕn(r)
into a linear combination of Bloch states:

ϕnðrÞ=
1ffiffiffiffi
N

p
X
αk

cnαke
ik�ruαk: ð11Þ

where α labels internal degrees of freedom, i.e., the sublattice indices.
Substituting Eq. (11) into Eq. (6) and replacing r1 and r2 by r = r1 − r2 and
R = (r1 + r2)/2, we can derive

hAðr1, r2,ωÞiR � 1
N

X
R

Aðr,R,ωÞ

=
1

N2

X
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X
n

X
αα0

X
kk0

eiðk�k0 Þ�Reiðk+k0 Þ�r=2

× cnαkc
n?
α0k0Trcellðuαku

y
α0k0 Þδðω� EnÞ

=
1
N

X
n

X
αα0

X
kk0

δkk0eiðk+k0 Þ�r=2cnαkc
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α0k0

×Trcellðuαku
y
α0k0 Þδðω� EnÞ

=
1
N

X
n

X
αα0

X
k

eik�rcnαkc
n?
α0kδαα0δðω� EnÞ

=
1
N

X
nαk

eik�rjcnαkj2δðω� EnÞ:

ð12Þ

After a Fourier transformation, we can eventually derive Eq. (8) used in
our numerical calculations. Specifically, for each flux pattern gener-
ated by randomly flipping uij on each bond, we diagonalize the dis-
ordered Majorana-hopping model and calculate the spectral function
using Eq. (8). We then average the results for different random flux
patterns which leads to the plot in Figs. 2 and 3. More details about
spectral functions of different phases can be found in SI.

iPEPS calculation
The ground state is described as infinite tensor network with transla-
tion invariant local tensor A:

ð13Þ

4-spin correlation

4-majorana correlation

Fig. 4 | Comparisonbetween the four-Majorana correlation in Eq. (10) (top) and
the dimer-dimer correlation in the intermediate gapless phase obtained by
iPEPS (bottom) along the momentum cut through high-symmetry points
ΓMKΓ. The white dashed lines are eye-guiding lines that enclose the energy-
momentum region having the strongest intensities, i.e., those near KðK0Þ and Γ at
the lowest energy; while signals around M point are negligible.
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and tensor A can be derived by minimizing the cost function:

L=
ψ0ðAÞ
�

∣H∣ψ0ðAÞ
�

hψ0ðAÞjψ0ðAÞi
ð14Þ

using automatic differentiation60. The single-mode approximation
(SMA), introduced in refs. 61–65, is employed to characterize excited
states. The SMA uses variational tensors for the excited state as shown
below:

ð15Þ

Here, k denotes momentum and ∣Ψr

�
signifies the state with an exci-

tation at site r. Under the representation of iPEPS, it’s implemented by
replacing the local tensor A of the ground state at site r with a dis-
turbed local tensorB. Note that excited states are required to adhere to
the orthogonality constraint in relation to the ground state, depicted
as 〈ψ0∣Ψk(B)〉 = 0. Additionally, theymust eliminate gauge redundancy
to ensure accuracy in calculations64.With these two constraints, we can
obtain the B tensor and thus the excited states by minimizing the cost
function

L0 =
ΨkðBÞ
�

∣H � Egs∣ΨkðBÞ
�

hΨkðBÞjΨkðBÞi
: ð16Þ

With the ground state and the excited states, we can directly
calculate the spin-spin and dimer-dimer correlations as detailed in SI.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
The codes that support the findings of this study are available from the
corresponding author upon request.
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