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Machine learning-based meta-analysis
reveals gut microbiome alterations
associated with Parkinson’s disease

Stefano Romano 1,2 , Jakob Wirbel 2, Rebecca Ansorge 1,3,
Christian Schudoma 2, Quinten Raymond Ducarmon2, Arjan Narbad 1 &
Georg Zeller 2,4,5

There is strong interest in using the gut microbiome for Parkinson’s disease
(PD) diagnosis and treatment. However, a consensus on PD-associated
microbiome features and a multi-study assessment of their diagnostic value is
lacking. Here, we present a machine learning meta-analysis of PD microbiome
studies of unprecedented scale (4489 samples). Within most studies,
microbiome-based machine learning models accurately classify PD patients
(average AUC 71.9%). However, these models are study-specific and do not
generalise well across other studies (average AUC 61%). Training models on
multiple datasets improves their generalizability (average LOSOAUC68%) and
disease specificity as assessed against microbiomes from other neurodegen-
erative diseases. Moreover, meta-analysis of shotgunmetagenomes delineates
PD-associated microbial pathways potentially contributing to gut health
deterioration and favouring the translocation of pathogenic molecules along
the gut-brain axis. Strikingly, microbial pathways for solvent and pesticide
biotransformation are enriched in PD. These results alignwith epidemiological
evidence that exposure to these molecules increases PD risk and raise the
question of whether gut microbes modulate their toxicity. Here, we offer the
most comprehensive overview to date about the PD gut microbiome and
provide future reference for its diagnostic and functional potential.

Parkinson’s disease (PD) is the second most common age-related
neurodegenerative disease after Alzheimer’s disease. Recent estimates
suggest a doubling of PD patients every ~ 30 years, which might result
in around 12millionpatientsworldwideby 20501. Only aminority of PD
cases are thought to be of purely genetic origin and environmental
factors areof crucial importance in diseasedevelopment2–4. A hallmark
of PD is the accumulation of Lewy’s bodies containing misfolded α-
synuclein (αSyn) proteins in the central nervous system (CNS), causing
neuron toxicity and death5. Specifically, the loss of dopaminergic

neurons and consequent decrease in dopamine levels are the mole-
cular mechanisms underlying motor impairments observed in PD
patients5. However, PD manifests with a plethora of both motor and
non-motor symptoms, many of which involve the gastrointestinal (GI)
tract6–8. Among the latter, gastroparesis, gut inflammation, increased
intestinal permeability, and constipation are frequently observed8 and
some of these GI symptoms have been shown to be predictive of PD7.
Strikingly, GI tract involvement canprecedemotor symptomsbymany
years. For example, constipation is among the earliest non-motor
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symptoms and can appear up to twenty years before diagnosis9.
Moreover, recent evidence has linked GI inflammatory diseases, such
as IBD, to PD pathophysiology10,11. This relationship between GI health
and PD hasmotivated numerous investigations of the putative roles of
the gut microbiome in the disease.

We recently conducted ameta-analysis of gutmicrobiome studies
in PD (based on 16S ribosomal RNA gene amplicon sequencing) and
showed that when compared to controls, the gut microbiome of PD
patients has some common alterations across patient populations
from diverse countries and continents12. Although high variability
between studies was observed, as often in microbiome meta-
analyses13, the gut microbiome in PD patients is typically depleted in
short-chain fatty acid (SCFA) producing bacteria. SCFAs are the end
product of the bacterial fermentation of complex carbohydrates and
they play a pivotal role in maintaining epithelial barrier integrity and
colonic immune homoeostasis. Similar results have been confirmed by
independent meta-analyses and more recent shotgun metagenomic
studies14–16. Nevertheless, there is still limited consensus on the bac-
terial species and metabolic pathways associated with the disease15–19.
Identifying microbial taxa and especially metabolic functions asso-
ciated with PD across sampling populations is essential in order to
develop mechanistic hypotheses on how the microbiome could pos-
sibly contribute to the disease. This will open doors for designing
experiments to mechanistically elucidate a putative impact of gut
microbes on PD and for developing strategies to use the microbiome
for disease diagnosis, prognosis, and treatment.

To date, PD is diagnosed through clinical assessment of motor
symptoms which can appear late in the disease course. Hence, there is
a clear need for alternative markers to facilitate early diagnosis. To
address this, several attempts have been made to use gut microbiome
features for building machine learning (ML) classification models that
discriminate PD patients from controls17,18,20–22, reporting up to 90%

classification accuracies. However, we currently do not know whether
these high prediction accuracies are observed across datasets from
different countries. Specifically, model portability, indicating howwell
models perform when applied to an independent dataset obtained
from another sampling population, has never been investigated in the
context of PD. This is, however, relevant as it could reveal features (i.e.,
bacterial taxa/functions) that consistently discriminate PD from con-
trols, thus informing on the potential generalisation and global
applicability of such models. Finally, the combination of multiple
datasets in a large-scale meta-analysis could ideally lead to more
accurate and robust models for PD classification, and it has so far not
been thoroughly explored.

Here, to fill this knowledge gap, we perform a large-scale meta-
analysis of the gut microbiome in PD to assess how accurately ML
models based on the currently available gut microbiome data can
discriminate PD patients from controls. We use both public 16S
amplicon sequencing and shotgun metagenomics data to extensively
evaluate various ML approaches based on single and combined data-
sets. We complement thisML analysis by conducting the largest meta-
analysis so far on the gutmicrobiome in PD to establish an updated list
of prokaryotic taxa and microbial metabolic functions robustly asso-
ciated with the disease.

Results
Datasets overview and beta diversity analysis
We processed a total of 4489 samples obtained from 22 case-control
studies across 11 countries and 4 continents that profiled the faecal
microbiome of PD patients and controls using 16S amplicon (16S;
3165 samples) and shotgun metagenomics sequencing (SMG;
1324 samples; Table 1). Altogether, the number of samples we used is
up to four times larger than those used in previous PD meta-
analyses12,14,16,22. This first allowed us to investigate the overall

Table 1 | Overview of the studies re-analysed in this work

Study Accession Id Data type #Samples Country

Wallen 202129 (2 datasets) PRJNA601994£ 16S 130/184 CTR; 196/323 PD USA

Zhang 202024 CRA001938$ 16S 137 CTR; 63 PD China

Tan 202125 PRJNA494620£ 16S 96 CTR; 104 PD Malaysia

Heintz-Buschart 2017110 PRJNA381395£ 16S 38 CTR; 26 PD Germany

Petrov 201792 Personal communication 16S 67 CTR; 95 PD Russia

Qian 2018228 PRJNA391524£ 16S 45 CTR; 45 PD China

Keshavarzian 201594 PRJNA268515£ 16S 31 CTR; 34 PD USA

Pietrucci 2019111 PRJNA510730£ 16S 72 CTR; 80 PD Italy

Aho 2019112 PRJEB27564£ 16S 64 CTR; 67 PD Finland

Weis 201995 PRJEB30615£ 16S 25 CTR; 39 PD Germany

Hopfner 201759 PRJEB14928£ 16S 26 CTR; 29 PD Germany

Nishiwaki 202014 DRA009229* 16S 137 CTR; 223 PD Japan

Cirstea 202096 Personal communication 16S 103 CTR; 197 PD Canada

Lubomski 202221 PRJNA808166£ 16S 81 CTR; 103 PD Australia

Kenna 2021107 https://doi.org/10.6084/m9.figshare.14345513& 16S 47 CTR; 86 PD Canada

Jo 202219 PRJNA742875£ 16S 84 CTR; 88 PD South Korea

Total samples 16S 1367 CTR; 1798 PD –

Bedarf 201718 PRJEB17784£ SMG 28 CTR; 31 PD Germany

Qian 202017 PRJNA433459£ SMG 40 CTR; 40 PD China

Mao 202146 PRJNA588035£ SMG 39 CTR; 39 PD China

Jo 202219 PRJNA743718£ SMG 74 CTR; 82 PD China

Wallen 202215 PRJNA834801£ SMG 234 CTR; 490 PD USA

Boktor 202316 (2 datasets) ERP138197/ERP138199£ SMG 72/67 CTR; 42/46 PD USA

Total samples SMG 554 HC; 770 PD –

Sample numbers refer to those used in our study after data filtration. CTR = controls; PD = Parkinson’s disease patients. Accession numbers refer to different sources: ENA= £; GSA =$; Figshare = &;
DDBJ = *. 16S = 16S ribosomal RNA gene amplicon data; SMG= shotgun metagenomic data.
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structure of the microbiome through a well-powered beta diversity
analysis. Consistent with our previous report12, samples did not cluster
according to disease status (Fig. 1a, b). Even after removing the effect
of the study of origin, only a weak separation was observed between
PD and controls (Fig. 1c, d). Permutational multivariate analysis of

variance (PERMANOVA) indicated that the disease status explains ≤ 1%
of the variance in microbiome composition across studies, despite
being statistically significant (Fig. 1). The study of origin instead
explains a considerably higher proportion of variance, 19.9% and 7.7%
for the 16S and SMG data, respectively, which is substantially higher
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Fig. 1 | The compositionof the gutmicrobiome significantly differs betweenPD
and controls (CTR). Distance-based redundancy analysis (dbRDA) was performed
on Bray-Curtis dissimilarities calculated for the 16S (a, c) and SMG data (b, d) with
the percentageof variance explainedannotated along the axes. Rawdistances (a,b)
and distances conditioned by the study of origin to remove study-specific (batch)
effects are shown (c, d). Boxplots depict the sample distribution along the two
components and are coloured to indicate the different datasets used (e, f) or the
disease status (g, h). Boxes delineate the interquartile range (IQR), with themiddle

thick segment indicating the samplemedian.Whiskers extend to themost extreme
valueswithin 1.5 × IQR.Data beyond this rangeare not reported. The sample size (n)
for eachboxplot corresponds to the number of samples reported inTable 1. Results
of permutational analysis of variance (PERMANOVA) performed for each data type
are shown within (a) and (b). The significance of the clustering was calculated for
both the study of origin (16S: df = 16; F = 49; p-value = 0.0005; SMG: df = 6; F = 18.2;
p-value = 0.0005) and the disease status (16S: df = 1; F = 31.4; p-value = 0.0005;
SMG: df = 1; F = 7.9; p-value = 0.0005).
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than those explained by the geographical origin of the studies (Sup-
plementary Data 1; see also Supplementary Fig. 1 confirming the strong
differences between studies). This highlights the high variability in
microbiome composition across studies that is often observed in
microbiome meta-analyses12,13.

Comparison of machine learning approaches
To assess how well the microbiome profiles could distinguish
between control and PD samples, we first applied ML models to each
dataset individually.We initially exploreddifferent filtering strategies,
normalisation approaches, and ML algorithms implemented in the R
package SIAMCAT23. Accuracies of ML models were evaluated using
the area under the receiver operating characteristics curve (AUC).
These comparisons were performed for the taxonomies of both 16S
and SMG data. In general, for both types of data, retaining taxa
detected in at least 5% of the samples in ten 16S and two SMGdatasets
resulted in profiles which allowed to build the most accurate ML
models (Supplementary Figs. 2, 3). However, the accuracies ofmodels
varied substantially across ML algorithms and filtering/normalisation
strategies (Supplementary Figs. 2, 3). For the 16S data, Random Forest
classifiers performed in general better than the other algorithms
tested, reaching a maximum AUC of ≥ 95%, observed in within-study
cross-validation (CV) performed for the data of Zhang et al. 24 and Tan
et al. 25 (Supplementary Fig. 4). For the SMGdata, the Ridge regression
and LASSO algorithm (LibLinear implementation) yielded the most
accurate models with ≥ 85% AUCs obtained for the study of Bedarf
et al. 18 and Qian et al. 17 (Supplementary Fig. 5). For the sake of clarity
and comparability, all results subsequently presented in themain text
were obtained using the Ridge regression classifiers for both 16S and
SMG data (Fig. 2 and Supplementary Fig. 6). Between the two data
types, MLmodels built on SMG data had a higher average AUC for the
within-study CV (also when compared directly on matched SMG and
16S data generated from the same samples in the study by Jo et al. 19

with AUCs of 82.4% and 70.4% for SMG and 16S data, respectively;
Supplementary Fig. 7c) and a considerably lower variation compared
to the 16S-based models (Fig. 2; SMG= 78.3% ± 6.5, 16S = 72.3% ± 11.7;

t test: t = 1.6, df = 19.6, p-value = 0.13, effect size = − 0.6, 95% confidence
interval = − 1.9 - 0.2). For both data types no correlation was observed
across the studies included in this meta-analysis between the number
of samples used to train the models and classification accuracies
indicating that study heterogeneity overrides the expected gain in
AUC with a higher sample size that is typical for ML applications to a
single homogeneous dataset (Pearson correlation, 16S: p-value = 0.8;
SMG: p-value = 0.95; Supplementary Fig. 7).

Cross-study portability of the ML models
Given that study-specific PD models in many cases showed promising
accuracies, we next assessed generalisation across studies, i.e., exam-
ined their prediction accuracies when tested on all other data sets. We
performed study-to-study validation (cross-study validation; CSV) for
both 16S and SMGdata, by treating all data sets a study-specificmodel
had not been trained on as independent test sets. Compared to the
performance estimated through within-study CV, CSV performances
were significantly lower for both SMG and 16S data (t test: SMG,
t = −5.2, df = 8.8, p-value <0.001, effect size = −2, 95% confidence inter-
val= −3.6 to −1; 16S, t = − 4.2, df = 17.4, p-value < 0.001, effect size = −1.1,
95% confidence interval = −1.7 to −0.7; Fig. 2 and Supplementary
Figs. 4–6). In general, 16S datasets showing high AUC in the within-
study CV (i.e., Zhang et al., 24 and Tan et al. 25) could also be better
classified by external models (i.e., models built on other datasets;
Supplementary Fig. 4). However, the models trained on these datasets
showed a much lower performance when tested across other studies
(Supplementary Fig. 4). A similar pattern was observed for the SMG
data (Fig. 2 and Supplementary Fig. 5). For example, the datasets of
Bedarf et al. 18 resulted in a model with an AUC of 85% in the within-
study CV, but an average AUC of only 57.4% in CSV (Supplementary
Fig. 5). Low model generalisation evident from low CSV accuracies
could neither be explained by differences in age and sex distribution
between test and training set (Supplementary Fig. 8; coefficient
p-values in linear models > 0.05), nor by the geographic origin of the
samples (Western vs Eastern countries; Supplementary Fig. 8; one-way
ANOVA p-values >0.05). CSV AUCs obtained for the SMGmodels were
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higher than those for the 16S models (t test: t = −3.2, df = 65.1,
p-value = 0.002, effect size = −0.5, 95% confidence interval = −0.8 to
−0.2; average AUC SMG64.2% ± 7.4, average AUC 16S 60.1% ± 9.73). No
clear correlation was observed between the number of samples used
for training and the CSV classification accuracies (Pearson correlation,
16S: p-value = 0.9; SMG: p-value =0.22; Supplementary Fig. 7). These
low overall CSV performances indicate large inter-study variability in
microbiome composition, consistent with the above-mentioned PER-
MANOVA results (Fig. 1 and Supplementary Fig. 1).

The 16S datasets varied greatly in sequencing depths (Supple-
mentary Fig. 9), which may negatively affect the generalisation cap-
abilities of ML models. To test this possibility, we built ML models on
rarefied data (see “Methods”), and compared their accuracy in CSV to
those of the not-rarefied models. For the majority of the ML algo-
rithms, AUCs did not change significantly between the two approaches
(averagedifference inAUCs<0.7%; Supplementary Fig. 10). OnlyRidge
regression was sensitive to heterogeneity in sequencing depth,
although AUCs differences were minimal (average difference in
AUCs ≤ 1.3%; Supplementary Fig. 10). Another factor potentially
affecting CSV performances is study-associated heterogeneity in
microbiome profiles – due to technical or biological differences (here
study effects, elsewhere also referred to as batch effects). As study
effects appeared considerably stronger in the 16S data than the SMG
data (Fig. 1), we investigated if correcting for study effects in the 16S
datawould increase the overallmodel portability.We explored various
available batch correction approaches to reduce study heterogeneity
while ensuring that all methods were blind to the labels (PD vs con-
trols) to avoid over-optimistic evaluations26. However, none of the
batch correction approaches used here significantly increased the
average AUC in the CSV evaluations (Supplementary Fig. 11 and Sup-
plementary Data 2). This suggests that currently, available batch cor-
rection methods may be of limited practical value for improving the
cross-study portability of microbiome classifiers.

Next, we examined whether model performance could be
improved by pooling data across studies in comparison to models
trained on single studies. This can be assessed using leave-one-study-
out (LOSO) validation, in which all data are combined except for the
data from one study that is used to evaluate the model. For both 16S
and SMG data, we observed LOSO model performances to be sig-
nificantly better than for CSV (Fig. 2; t test: 16S, t = −3.5, df = 18.8,
p-value = 0.002, effect size = −0.8, 95% confidence interval = −1.4 to
−0.4; SMG, t = −3.1, df = 9, p-value =0.01, effect size = −1.2, 95% con-
fidence interval = −2.2 to−0.3), even though therewas still considerable
variability across held-out studies. Between data types, average LOSO
AUCs for SMGwere higher than those obtained for the 16S data (t test:
t = −1.5, df = 14.9, p-value =0.15, effect size = −0.6, 95% confidence inter-
val= −1.7 - 0.1; LOSO AUC average: SMG= 72.3 ± 6.3, 16S = 67.5 ± 8.3).
To examine additional factors with a probable influence on LOSO
AUCs, we next investigated the composition of the training data. For
this, we performed variations of LOSO validations (one for each SMG
hold-out dataset) in which the training sets were constructed by pro-
gressively increasing the number of pooled studies from 2 to 6 for all
possible combinations (57 models per test set for a total of 399
models). The results of this analysis show a dependence of the
resulting AUC on the test set, which explains a considerable propor-
tion of the variance in AUC (intraclass correlation coefficient = 0.19;
Supplementary Fig. 12). Nevertheless, LOSO AUCs also did increase
significantlywith an increasing number of training samples (coefficient
p-values in linear models < 0.01; 15% of variance explained; Supple-
mentary Fig. 12). Furthermore, we hypothesised that models built on
data collected within a similar population (i.e., studies from the same
continent) might be more similar to each other, corresponding to
higher CSV and LOSO performances. To assess this, we extracted the
feature coefficients from all models built on the 16S and SMGdata and
visualised their similarity using ordinations (Canberra distances;

Supplementary Fig. 13). However, we observed only a weak separation
by continent of origin, which was statistically significant only for SMG
data (PERMANOVA p-values: 16S = 0.40; SMG=0.04). These results are
consistent with the lack of association between the Western/Eastern
origin of the study and the CSV AUCs (Supplementary Fig. 8), sug-
gesting that model accuracy in generalising across studies is not pri-
marily limited by geographic differences, but rather by other study-
specific characteristics.

In light of the large variability of cross-study generalisation
accuracies of PD models, we asked if a universal subset of features
exists that is sufficient to robustly discriminate PD from controls. As
the SMG data resulted in more generalizable models, we performed
another set of LOSO validations in which we built models only on the
20 features with the strongest difference in abundance between PD
and controls in each training set (to avoid over-optimistic perfor-
mance estimation, we did not select features globally across all SMG
datasets). These reduced models generally exhibited slightly
decreased LOSO accuracies (Fig. 3a). However, for the test sets of
Bedarf et al. 18 and Boktor et al. 16 (for the dataset named Boktor_1
here) this approach considerably increased AUCs, resulting in an
overall average LOSO AUC almost identical to the one obtained using
the full features set (72.3% vs 72.4%). These results indicate that even
when based on a concise gut microbial signature, models can classify
PD vs. controls with reasonable accuracywhen trained onpooled data
from multiple studies and evaluated on held-out populations. In
general, the taxa selected were consistent across training sets
(Fig. 3b). Exceptions from this were mostly taxa (not) selected
exclusivelywhenWallen et al. was used as a test set, which is likely due
to the fact that this dataset is considerably larger than the others
(N = 724 versus an averageN = 100 for the others) and thus has a larger
influence on the statistical analyses. However, six taxa were selected
in all of the seven training sets, suggesting consistent associations of
these bacteria with PD.

Cross-disease prediction
A final important aspect of externally validating PD models is addres-
sing their disease-specificity, that is to check to what extent they
wrongly predict patients affectedbyneurodegenerative diseases other
than PD. To assess cross-disease prediction rates, we tested PDmodels
on data obtained from studies investigating other neurodegenerative
diseases. We performed this cross-disease validation using only 16S
data due to a scarcity of publicly available SMG data for such diseases.
We tested models built for each PD 16S dataset on data from Alzhei-
mer’s disease (AD) and Multiple Sclerosis (MS). The observed cross-
prediction rates (assessed in termsof the falsepositive rate, FPR, onAD
and MS samples and compared to the PD-internal FPR of 10%) varied
greatly across the PD-specific ML models, ranging from 0% to almost
100%, with an average of 35.1% (Fig. 4). However, cross-disease pre-
diction drastically improved when using LOSO models, as their aver-
age FPR was reduced to 18.7%, which is only moderately higher than
the expected 10% FPR for PD-internal control groups. Our finding that
disease specificity of ML models can be significantly improved by
training on data pooled across multiple studies confirms earlier
reports on the effectiveness of this approach23.

Comparison between taxonomic and functional microbiome
profiles
Not only taxonomic profiles but also functional microbiome profiles,
derived from SMG data to capture a broad range of metabolic and
other pathways, have previously been used for building classification
models. Here we specifically used KEGG orthologous groups (KOs),
KEGG modules, KEGG pathways, gut metabolic modules (GMMs27), or
gut-brain axismodules (GBMs28;manually curatedmicrobialmetabolic
pathways of relevance for gut health and gut-brain axis) to investigate
whethermodels based on functional or taxonomic profiles yield better
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accuracy13,17. We found that models based on functional profiles per-
form in general slightly worse than those built on taxonomic profiles
(although differences were in most cases not statistically significant,
Fig. 5 and Supplementary Data 3), and this was consistent across the
different types of functional profiles examined (Fig. 5, Supplementary
Figs. 14–18 and Supplementary Data 3). The only exception was
observed in the CSV, where the average AUC obtained for the KO
profiles was slightly higher than those obtained for species (64.8 ± 8.4
vs 64.2 ± 7.4, Supplementary Data 3). Among the different functional
profiles, KOs performed best in discriminating PD from controls and
had the highest CSV performances compared to KEGG modules and
pathways, GMMs, or GBMs (Fig. 5; Supplementary Fig. 14–18 and
Supplementary Data 3). Similar to the taxonomic profiles, across the
different types of functional profiles CSV accuracies were considerably
lower than those obtained for the within-studies CV (Fig. 5 and Sup-
plementary Figs. 14–18). These results indicate that the use of func-
tional profiles does not significantly improve classification accuracies
or ML model portability (as assessed by CSV) when compared to
taxonomic profiles.

Taxa associated with PD
To systematically identify taxa consistently associated with PD across
datasets, we performed a meta-analysis on relative abundances of gut
microbial taxa (Fig. 6 and Supplementary Datas 4, 5). This was done by
calculating Generalised Odds Ratios (Gen. Odds), pooling the effect
sizes using random effect meta-analysis, and correcting p-values for
multiple testing using the Benjamini-Hochberg method (FDR). We
found that taxa within the Lachnospiraceae family belonging to the
generaRoseburia, Blautia, and Fusicatenibacterwere strongly depleted
in the microbiome of PD patients in both 16S and SMG data. Similarly,
we detected the genus Agathobacter, within the Lachnospiraceae
family, to have a strongly reduced abundance in PD in the 16S datasets.
Affiliated to this genus are uncharacterised species (mOTUs 03657 and
12366) which were depleted in PD patients across the SMG datasets.
Similarly, Faecalibacterium (family Ruminococcaceae) was found
strongly and consistently depleted in PD. The high-resolution profiling
we performed for the SMGdata allowed us to identifymultiple species
within the Faecalibacterium genus and multiple strains within the
Faecalibacterium prausnitzii species (mOTUs 06112, 06110, 06109,
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06108) depleted in the microbiome of PD patients. The species
showing the strongest depletion in PD metagenomes belonged to the
Butyricicoccus genus (Fig. 6 and Supplementary Data 5). However, this
association was not detectable in 16S datasets, even though the

corresponding family Butyricicoccaceae was reported as PD-depleted
in our previous meta-analysis12.

For many taxa enriched in PD, we observed similarly good con-
cordancebetween 16S and SMGdata. For example, thefive generawith
the strongest enrichment in the 16S datasets had related mOTUs
enriched in the SMG data (Fig. 6 and Supplementary Datas 4, 5). Dif-
ferently fromprevious studies12,15,17,29, we detected inboth 16S and SMG
data the Ruthenibacterium genus and the Ruthenibacterium lactati-
formans species as the most enriched taxa in the PD gut microbiome.
In addition, taxa within the genera Alistipes, Anaerotruncus, Enter-
ococcus, Porphyromonas, Scatomorpha, Limiplasma, Bifidobacterium,
Christensenella, Streptococcus were all consistently enriched in the 16S
and the SMG datasets. However, we also observed several differences
in the taxa associated with PD between the two sequencing methods
(Supplementary Datas 4, 5). For example, in SMG data we detected the
potential pathogenic species Turicibacter sanguinis (mOTU 04703),
and multiple species within the order Clostridiales enriched in PD
samples, but the respective genera were not significantly PD enriched
in the 16S datasets. Taxa within the Lactobacillus genus were enriched
as well in PD samples. Recently, this genus has been reassessed tax-
onomically and several new genera have been created30. As we used an
up-to-date version of theGenomeTaxonomyDatabase (GTDBv207) to
obtain high-resolution taxonomic classification of 16S-derived ASVs,
we could identify the genera Limosilactobacillus, Lactobacillus, Lacti-
caseibacillus, and Ligilactobacillus, within the Lactobacillus sensu-lato,
all enriched in the PD gut microbiome (Fig. 6 and Supplemen-
tary Data 4).

Despite significant differential abundance detected in the pooled
meta-analysis, many taxa exhibited significant abundance shifts in only
a fraction of the individual datasets, in agreement with previous
findings12,16 (Fig. 6b and Supplementary Data 4, 5). This most likely
reflects both the variability observed across studies and the low sta-
tistical power in smaller datasets we re-analysed. To more deeply
investigate the robustness of PD associated taxa, we assessed if these
might be confounded by sex, age, or medication usage. For this we re-
analysed datasets with availablemetadata using linearmodels in which
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these covariateswere accounted for. This analysis indicated that only a
minor fraction of the taxa associated with PD (< 23%) were potentially
confounded by sex, age, or medication usage, and in general the taxa
with the strongest abundance shift were not affected by covariates
(Supplementary Datas 6–9). When comparing the results of differ-
ential abundance tests applied to each taxonwith their influence in the

classification models (i.e., their coefficient size in the Ridge regression
classifiers), we found these to be remarkably consistent (Supplemen-
tary Fig. 19). The sign of model coefficients for these taxa mostly
matched the direction of association fromunivariate analysis although
variability in the average Ridge regression weights across datasets was
evident (Fig. 6c and Supplementary Datas 4, 5).
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Gut microbial gene functions associated with PD
To explore changes in gut microbial functionalities in PD patients
relative to controls, we extended the differential abundance meta-
analysis to microbial genes and pathways as defined by the KEGG
orthologous groups (KO), KEGGmodules, KEGGpathways, GMMs, and
GBMs (Fig. 7 and Supplementary Datas 10–14). We complemented this
approach with an enrichment analysis to detect those pathways that
were significantly enriched in KOs showing differential abundances
between PD and controls (Supplementary Data 15). Belowwe highlight
those gut microbial functions with a possible relation to Parkinson’s
aetiology or symptomatology. Modules related to the degradation of
complex polysaccharides and sugars were strongly depleted in PD, in
agreement with previous reports15,18 (KEGG modules: M00631,
M00061, M00081; GMM: MF0001, MF0003, MF0004, MF0022,
MF0010, MF0018, MF0002; KEGGpathways enriched in KOs depleted
in PD: ko00040, ko00520; Supplementary Datas 11, 13, 15). In contrast
to these results, some functionalities related to the production of
propionate and butyrate were enriched in PD (MF0093, MF0094,
MF0089, Supplementary Data 13).

Several pathways involved in the metabolism of amino acids
showed a significant difference in abundance between PD and controls
(Fig. 7a and Supplementary Datas 10–15). These pathways are relevant

in the context of the gut-brain axis, as amino acids, especially trypto-
phan and tyrosine, are precursors of neurotransmitters that have
altered concentration in PD31. Our results suggest that the PD gut
microbiome has an increased ability to degrade tryptophan as genes
encoding enzymes involved in this process were significantly enriched
in PD gut metagenomes, while those involved in tryptophan synthesis
were depleted (KEGG pathway: ko00380, KEGG Module: M00038,
GBM:MGB049,MGB004,MGB005 andGMMMF0025; Supplementary
Datas 10–14). Our data also hint at an increase in microbial tyrosine
turnover in the gut of PD patients, aswedetected a significantly higher
abundance of genes for both tyrosine degradation and synthesis
(KEGG pathway: ko00350, KEGG modules: M00044, M00042, and
M00040, and the GMMMF0027; Supplementary Datas 10–14). Within
this pathway, the gene coding for tyrosine decarboxylases TyrDC
(K22330) was enriched in PD gut metagenomes. Intriguingly, this
enzyme also catalyses the degradation of the main PD medication, L-
dopa, in Lactobacillus sp. and Enterococcus sp32., suggesting that PD
medication regimes might influence the metabolism of the PD gut
microbiome. Indeed, our analysis suggested that some of these path-
waysmight be affected by PD-related and non-PD-relatedmedications,
but not L-dopa (SupplementaryDatas 6–8 and Supplementary Fig. 20).
Significantly altered abundances were also observed for genes related
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to the metabolism of glutamine, glutamate, and 4-aminobutyrate
(GABA), which are all essential amino acids for brain metabolism and
function. PDmetagenomes were depleted in genes encoding enzymes
for glutamate synthesis and showed enrichment in genes involved in
its degradation (enriched in PD: equivalent modules MF0032 and
MGB051; depleted in PD: equivalent modules MGB007 and MF0047;
KEGG KOs: K01846, K19268, K04835, K00265, K00266, K00284;
Supplementary Data 10, 13, 14). Finally, enzymes catalysing the
degradationof GABAandgamma-Hydroxybutyric acid, a natural GABA
precursor, as well as the last step of the glutamate conversion into
succinate through GABA, showed significantly higher abundance in PD
metagenomes (KEGG module: M00027; KEGG KOs: K00135; GMM
MF0076 and GBM MGB039; Supplementary Datas 10, 11, 13, 14).
Although these data are consistent with the increased ability of the PD
microbiome to degrade GABA, we also detected an enrichment, albeit
with smaller abundance shifts, of enzymes catalysing GABA synthesis
(GBM: MGB021 and MGB020; KEGGmodule: M00136) and a potential
confounding effect of age on the abundances of these functions
(Supplementary Data 9). Together this suggests complex microbiome
influence on both production and degradation of GABA.

PD gut metagenomes were enriched in genes encoding proteins
involved in the adhesion to, interaction with, andmanipulation of host
cells, as well as the resistance against host immune responses. Speci-
fically, the KEGG pathway for bacterial secretion systems was sig-
nificantly more abundant in PD metagenomes (ko03070; Fig. 7a and
Supplementary Data 12). Secretion systems are complex molecular
machineries used by bacteria to release effector proteins in the sur-
rounding environment or into neighbouring cells33. The type III, IV, and
VI secretion systems are used by pathogens to inject effector mole-
cules into host cells to manipulate their defence and immune
systems34. Within this pathway, we observed 52.7% of KOs to be dif-
ferentially abundant between PD and controls, with the types II, III, IV,
and VI secretion systems showing the clearest enrichment in PD.
AdditionalKOs related to the typeVI secretion systemwereenriched in
PD as well (K11890, K11895-7, K11900, K11909, K12210-1, K12213,
K12217-8; Supplementary Data 10). Similarly enriched were several
modules and KOs involved in bacterial resistance against cationic
antimicrobial peptides (CAMPs; KEGG modules: M00730, M00739,
M00744, M00723, M00722, M00726, M00725; Supplementary
Data 11 and 15). CAMPs are important host defence mechanisms pro-
duced at sites of infection and/or inflammation35. Hence, finding an
enrichment of these defence mechanisms suggests an ongoing host
immune response towards microbes. Some of the above associations
might be potentially confounded by sex and age (Supplementary
Data 9 and Supplementary Fig. 20), as these functions showed higher
abundances in the older population and in males, which are both,
however, known intrinsic risk factors for PD1,4. Another way in which
bacteria can interact with their host is by producing extracellular
structures called curli fibres that are involved in cell adhesion, biofilm
formation, and bacterial virulence36. Confirming previous findings15,
KOs for curli fibres showed a significantly higher abundance in PD
(K04337-8, K06214, K04334-5; Supplementary Data 10). These
amyloid-like bacterial proteins have attracted considerable interest in
relation to PD as they have been shown to promote αSyn aggregation
andmotor impairment inmice37,38. Altogether these results indicate an
enrichment of potential pathogenic functions in the gut microbiome
of PD patients and suggest an increased activation of host defence
mechanisms towards infectious agents.

Finally, our analyses of gut microbial functions revealed that
multiple pathways within the KEGG class “Xenobiotics biodegradation
and metabolism” were significantly enriched in PD. While xenobiotic
metabolism has not been thoroughly investigated in PDmetagenomes
previously, it is highly relevant since exposure to environmental
xenobiotics (e.g., pesticides, herbicides, solvents) is one of the main
non-genetic risk factors for developing PD4,39–42. In these enriched

pathways, between 15.4 and 52.6% of all KOs were significantly more
abundant in PD (Fig. 7a). Some of these KOs (e.g., K04072, K00121,
K00170) can be part of the central metabolism and hence might not
necessarily be involved in xenobiotic degradation.Moreover, it cannot
be excluded that these enzymesmaymetabolise medications taken by
PD patients. Indeed, we detected a minority of these features to be
potentially confounded by medication intake in addition to sex and
age (Supplementary Datas 6–9 and Supplementary Fig. 20). However,
we detected many unconfounded KOs enriched in PD that are speci-
fically involved in the metabolism of environmental xenobiotics: for
example, the 2-haloacid dehalogenase K01560, which takes part in the
degradation of halogenated hydrocarbons (Supplementary Data 10).
These molecules have been widely used as solvents, industrial che-
micals, pesticides, and herbicides, and have been linked with PD
before39,40. For example, recent epidemiological studies suggested that
individuals exposed to water contaminated with trichloroethylene
(also known as trichloroethylene or TCE) had a 70% increased risk of
developing PD40. Interestingly, our analysis revealed that PD gut
metagenomes were enriched in K03268 and K18089, which encode
enzymes that can catalyse the conversion of TCE into formate. Con-
sidering the relevance of xenobiotics in PD aetiology, we further
inspected the PD-enriched KOs manually to identify those involved in
xenobiotic metabolism and related pathways (Fig. 7b). In addition to
the KOs belonging to PD-enriched pathways, we observed a significant
increase in abundance of other KOs involved in xenobiotic metabo-
lism, even though the whole pathway did not pass our significance
threshold. For example, PD metagenomes had a higher abundance of
the genes atzB, atzD, and biuH (K03382, K03383, K19837; Supple-
mentary Data 10), which encode enzymes that catalyse the degrada-
tion of atrazine, which is a widely used chlorinated pesticide that
showed dopaminergic toxicity in rat models41. In summary, our meta-
analysis revealed compelling associations between the microbiome
functionalities and PD matching known risk factors for the disease.

Discussion
In recent years, several studies have suggested that thegutmicrobiome
might be leveraged to support PD diagnosis17–20,22. However, a con-
sensus on gut microbiome features associated with PD and a thorough
evaluation of microbiome-derived biomarkers for PD is lacking. The
extensiveMLvalidation andoptimisationweperformedhere underline
that within most study populations gut microbiome-based ML models
can accurately discriminate PD from controls. However, ML models
were generally study-specific, i.e., poorly generalised to data from
other studies (cross-study portability tested using CSV). This may
reflect the fact that PD is a very heterogeneous disease in terms of
aetiology, pathophysiology, and symptomatology6,43. This biological
heterogeneity is rarely accounted for in microbiome studies, as sam-
ples come from patients (i) affected by different PD subtypes; (ii)
having different PD severity resulting in different lifestyles; (iii) having
individual medication regimes; (iv) reporting disparate histories of
medical conditions and exposure to risk factors (e.g., xenobiotics). All
these aspects might exert heterogeneous influences on microbiome
composition, and contribute to the low study-to-study portability and
high variability in accuracy of ML models across datasets observed
here. Moreover, these differences can potentially confound the asso-
ciations between microbiome features and disease conditions. To
thoroughly assess potential confounders, the scarcity of standardised
publicly available metadata poses a severe limitation. Nonetheless,
here we did analyse the metadata available for some studies, which
suggested that aminor part of PD-associatedmicrobiome featuresmay
be confounded (< 28.2%). However, it is worth noting that to identify all
potential confounding effects, larger datasets with standardised
metadata are required. Hence, caution is needed in concluding on the
value of gut microbiome biomarkers for PD diagnostics. On a positive
note, the data from Bedarf et al. 18 that comprises only male, L-dopa-
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naive, early PD patients, allowed us to buildMLmodels that classify PD
caseswith high accuracy. In their study, the authors ruled out an overall
influence of PDmedication on themicrobiome abundance. Hence, it is
reasonable to expect that the gut microbiome of these patients more
closely resembles the one of undiagnosed/early PD patients. The
results related to this particular study suggest that microbiome sig-
natures may capture truly PD-associated signals. However, it is also
evident that the models built for this study did not generalise well to
other datasets, suggesting that this PD population is relatively dissim-
ilar to those of the other studies we re-analysed. More generally, when
pooling SMG data for model building, generalisability increased (see
LOSOvalidations), and thiswas also truewhenonly a subset of taxawas
selected, indicating that these features could be truly associated with
PD. Moving forward, the diagnostic potential of such gut microbiome
biomarkers would need to be explored in largermulti-centre studies of
drug-naive early PD patients, or of high-risk individuals, as has been
recently attempted in two independent investigations44,45. Another
important prerequisite for future clinical application of microbiome-
derived biomarkers for PD is their disease specificity, i.e., their cap-
ability to distinguish the PDmicrobiome signature from those of other
neurological diseases. Towards this aim, we demonstrate that pooling
training data from multiple studies was also an effective strategy for
building PD-specificMLmodels with a low propensity formaking false-
positive predictions on microbiome profiles from other neurodegen-
erative diseases.

Our large-scale meta-analysis further adds to a better under-
standing of PDprocesses towhich the gutmicrobiomemay contribute.
First, we found the gut microbiome of PD patients to be depleted in
bacteria known to ferment complex carbohydrates into SCFAs and in
pathways involved in complex carbohydrate degradation. While this is
in agreement with earlier studies12,15,16,18,46, we report this depletion in
the largest and most diverse dataset thus far analysed, which strongly
suggests that it is a common feature in PD across patient populations.
Low levels of SCFAs have been linked to compromised gut health,
increased gut permeability and inflammation, as well as prolonged
transit time, and have often been recorded in faeces of PD patients,
who can suffer from compromised gut health9,47–49. However, the fact
that some functions related to SCFA production were enriched in PD
indicates that caution needs to be exerted in concluding on the
metabolic output of themicrobiome-based only onmetagenomic data.
Future multi-omics approaches (e.g., metagenomic, metaproteomics,
and metabolomics) are required to clearly establish how the gut
microbiome contributes to metabolite concentrations in the gut of PD
patients. Our data indicate that another general feature of the PD gut
microbiome is the enrichment of lactic-acid producing bacteria (e.g.,
Lactobacillus sensu-lato, Bifidobacteirum, and Ruthenibacterium), in
agreement with earlier findings12. Some Lactobacillus strains encode
the enzyme tyrosine decarboxylases TyrDC (K22330) which catalyse
the degradation of the main PD medication L-dopa32. Here, we verified
at a large scale that among the lactic acid-producing bacteria enriched
in PD, TyrDC is only encoded by some taxa within the genus Lactoba-
cillus sensu-lato and Bifidobacterium (Supplementary Data 16). Hence,
the use of L-dopa alone does not explain the enrichment of these
bacteria in PD, as their abundances were also not associated with PD
medication usage (Supplementary Datas 6–8). Whereas lactic acid-
producing bacteria are generally considered beneficial commensals,
some of them have also been found enriched in other inflammatory
conditions affecting the gut (i.e., IBD) and it has been suggested that
they might take advantage of microbiome imbalance in a proin-
flammatory environment50,51. Further experimental work is required to
clarify whether their increased abundances have an impact on the
pathophysiology of PD.

In PD gutmetagenomes, wedetected an enrichment of type III, IV,
and VI secretion systems, which are a hallmark of pathogenic bacteria.
Our finding aligns well with previous studies reporting an enrichment

of potentially pathogenic bacteria in the PD gutmicrobiome15,29, which
we partially replicated here. Secretion systems are used by pathogenic
bacteria to, amongst others, modulate the host immune response
during infection and can cause an activation of inflammatory response
and an increase in gut permeability52,53. As a first line of defence in the
innate immune response against infections, the host can produce
CAMP, which are broad-spectrum antimicrobials also involved in
modulating inflammatory responses35. Hence, the enrichment of sys-
tems used by bacteria to resist CAMP, which we detected here, sug-
gests elevated host defence levels against potential infective agents in
the gut of PD patients. Infective agents can lead to an increase in gut
inflammation and permeability, which are both commonly observed in
PDpatients49. This deterioration in gut healthmight then contribute to
the translocation of proinflammatory signals and cells to the CNS54,55.
Finding these functions enriched in the PD gut metagenomes across
study populations is highly relevant as it suggests new hypotheses on
how the gut microbiome might contribute to the deterioration of gut
health and favour the spread of pathogenic processes along the gut-
brain axis. Recently, the connection between gut microbiota, gut
health and CNS has emerged as an important aspect affecting neuro-
degeneration and ageing. For example, faecal microbiota transplan-
tation between aged and young mice showed that the aged donor
microbiota increases gut permeability, and systemic inflammation and
accelerates age-associated CNS inflammation in young mice56. Inter-
preting our results in light of these recent experimental findings, we
hypothesise that the gut microbiome of PD patients has an increased
pathogenicity potential, which could trigger a pro-inflammatory
response and compromise the integrity of the gut epithelial barrier.
Compromised gut health and integrity can then facilitate epithelial
translocation of toxic compounds (including chemicals, see below)
and bacterial proteins, such as curlifibres allowing them tomore easily
reach the CNS. There they could stimulate αSyn aggregation, Lewy’s
body formation, neuronal toxicity, and neuroinflammation. Further
experimental evidence is required to verifywhether and towhat extent
these processes might impact PD development.

Strikingly, the extensive functional metagenomic analyses we
performed here revealed many microbial pathways and enzymes
involved in xenobiotics degradation to be enriched in PD metagen-
omes. Although some enriched genes, such as xylC, todC1, todB (KOs:
K00141, K03268, K18089) are found exclusively in KEGG xenobiotic
metabolism, they can be involved in the degradation of multiple
molecules (Toluene, Nitrotoluene, Xylene, Ɣ-Hexachlorocyclohexane,
TCE). Hence, it is not possible to pinpoint the specific xenobiotic types
that might have contributed to selecting these signatures. However,
the enrichment of pathways involved in xenobiotic degradation sug-
gests that the PDmicrobiome has been exposed to and has adapted to
these chemicals. Although we cannot exclude that the enrichment of
these pathways is a microbiome adaptation to the medications taken
by PD patients, our findings align well with current epidemiological
data indicating that exposure to such environmental xenobiotics is an
important risk factor for developing PD4,39–42. There are several con-
ceivable ways in which the observed alterations in gut microbial
xenometabolism may be an adaptation to and/or actively modulate
environmental exposures.On theonehand, the compositionof the gut
microbiomemight be directly altered as a consequence of exposure to
these chemicals57,58. In agreement with this first hypothesis, recent
experimental data showed that rats exposed to TCE showed signs of
PD pathology41 and a concomitant gut microbiome enriched in Bifi-
dobacterium and a depleted in Blautia42, similar to the microbiome
changes we observed here in human PD patients. On the other hand, it
is an intriguing question if or to what extent gut microbial metaboli-
zation alters the toxic effects on dopaminergic neurons and the neu-
roinflammation that some of these chemicals induce41,42. Are gut
bacteria producing more or less toxic metabolites during the catabo-
lism of these xenobiotics? Besides a potential detoxification ability of
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the gut microbiome, it is not unlikely that, instead, some microbial
catabolitesmay have increased toxicity, as has been reported for some
industrial chemicals and food dyes57,58. Since the gut microbiome is
characterised by high inter-individual variability, it might represent a
person-specific risk modulator of xenobiotic exposures. This implies
that some people exposed to xenobiotics might have a higher like-
lihood of developing PD due to specific gut microbial metabolic cap-
abilities resulting in increased neurotoxicity, whereas others may
benefit from gut microbial detoxification of environmental chemicals.
Further work integrating exposure and microbiome data with experi-
mental work on microbial xenometabolism is warranted to shed light
on the complex interactions between these two important factors. In
summary, our data provide the most comprehensive overview to date
about the taxonomic and functional alterations of the gutmicrobiome
in PD patients and provide future reference for its use as a
diagnostic tool.

Methods
Selected datasets
We collected 16S rRNA gene amplicon (16S) and shotgun metage-
nomics (SMG) datasets related to case-control studies that compared
the composition of the gut microbiome between PD and control
groups. We include all studies irrespective of the inclusion/exclusion
criteria used, the typology and severity of PD, and the country of ori-
gin. We identified a total of 52 studies from which we excluded all
studies that profiled < 30 samples, did not make raw data available, or
for which it was not possible to assign the samples to patients or
controls due to the lack of basic metadata. We could match the study
of Hopfner et al. 59 with ENA’s Bioproject PRJEB14928 and included this
study in our analyses aswell. In total, we collected 22datasets, ofwhich
16 and 6 studies profiled the gut microbiome using 16S and SMG
sequencing, respectively. To perform a cross-disease comparison of
theMLmodels built for the 16S data, we additionally included datasets
related to multiple sclerosis60–64 and Alzheimer’s disease65–69. We per-
formed this test using only 16S data due to the limited availability of
SMG data for other neurodegenerative diseases.

Profiling of 16S amplicon and shotgun metagenomic data
All 16S data were analysed using the DADA2 algorithm70, yielding
amplicon sequence variants (ASVs). When present, primers were
removed either using cutadapt71 v_3.4 or within the DADA2 workflow.
Trimming parameters were adjusted for each dataset to meet the
different quality of thedata. Samples sequencedondifferent runswere
profiled independently to allow a run-specific estimation of the
sequencing error rates. The data fromWallen et al. 29 were sequenced
using two different approaches, one using 150bp and the other 250 bp
reads length. Hence, they were split (Wallen151 and Wallen251) and
analysed independently (which resulted in a total of 17 16S datasets).
Taxonomy was assigned using Naive Bayes classifiers and the GTDB
v_20772 database. Finally, data were combined at the genus level while
samples with < 2000 reads were discarded.

Taxonomyprofiling of the SMGdatawasperformedusingmOTUs
v_3.073. For simplicity, we here refer to mOTUs as species, unless
otherwise specified. The data from Boktor et al. 16 contained two
independent datasets, which we analysed separately (Boktor_1, Bok-
tor_2; which resulted in a total of 7 SMG datasets). The mOTUs tax-
onomy was then matched with the GTDB v_207 taxonomy using
previously published mapping files (https://github.com/motu-tool/
mOTUs/wiki/GTDB-taxonomy-for-the-mOTUs). Data were trans-
formed into relative abundances and “unassigned” read counts were
removed.

Functional profiling of the shotgun metagenomic data was per-
formed using gffquant v_2.10 (https://github.com/cschu/gff_
quantifier) in combination with a reduced version of the GMGC
human gut nr95 catalogue74 obtained by removing genes that only

occurred in less than 0.5% of samples used for building the original
human gut catalogue. This reduced the catalogue to 13,788,251 non-
redundant genes. Prior to functional profiling, raw reads were cleaned
using bbduk75 v_38.93 as follows: (1) low-quality trimming on either
side (qtrim = rl, trimq = 3), (2) discarding of low quality reads (maq=
25), (3) adaptor removal (ktrim= r, k = 23, mink = 11, hdist = 1, tpe =
true, tbo = true against the included bbduk adaptor library) and (4)
length filtering (ml = 45). The cleaned reads then were screened for
host contamination using kraken276 v_2.1.2 against the human hg38
reference genome with ribosomal sequences masked (Silva77 v_138).
The remaining reads were finally mapped to the reduced human gut
gene catalogue usingBWA-MEM78 v_0.7.17with default parameters and
name-sorted by samtools79 v_1.14 collate. The resulting alignments
were filtered to > 45 bp alignment length and > 97% sequence identity.
Reads aligning to multiple genes contributed fractional counts
towards each matching gene. Alignment counts for a gene were nor-
malised by the gene’s length, then scaled according to the strategy
employed by NGLess (https://ngless.embl.de/Functions.html#count)
and propagated to the functional features with which the gene is
annotated. The final counts were normalised by dividing against the
sumof allmapped readspassing ourfiltration criteria to obtain relative
abundances. ForKEGGKOs,we retainedonlyKOsofprokaryotic origin
according to KOFAMKoala80 prokaryotic HMMs. We additionally fil-
tered both KEGG pathways and modules by retaining those consisting
of at least 50% and 60% prokaryotic KOs, respectively.

Gutmicrobialmodules (GMMs)27 and gut-brainmodules (GBMs)28

were inferred based on KOs via the R package omixerRpm81 v_0.3.3
using default parameters and a pathway coverage (minimum.coverage)
of 0.5. We then used the KEGG mapper82 portal to map the differen-
tially abundant KOs onto the KEGG pathway maps and verify in which
xenobiotic metabolisms they are involved. Finally, we used the protein
sequence of the TyrDC enzyme encoded by Enterococcus faecium
(NCBI ID: QAV53956) to verify whether this enzyme is encoded in the
genomes of the lactic-acid producing bacteria enriched in PD. The
protein sequence was used to query the NCBI database through
blastp83.

Statistical analyses
All data analyses were performed in R84 v_4.2. For both taxonomic and
functional profiles relative abundances were used for further analyses.
First, for both 16S and SMGdata ordinations were built based on Bray-
Curtis dissimilarities using the phyloseq85 v_1.40 and vegan86 v_2.6.4 R
packages. Specifically, ordinations were built using distance-based
redundancy analysis (dbRDA) implemented in the capscale function
within phyloseq as previously described12, with and without con-
ditioning the data by study. The significance of the clustering (for
study of origin, disease condition, country, continent, and Western vs
Eastern origin) was tested on the Bray-Curtis dissimilarities using
permutationalmultivariate analysis of variance (PERMANOVA, adonis2
function; with 2000 permutations). PERMANOVA for the disease sta-
tus was performed by restricting the permutation within datasets.
Differences in Bray-Curtis dissimilarities within studies and between
studies were tested using a two-sample t test (two-sided).

All differential abundance analyses were conducted on filtered
features, retaining only those for which a minimum prevalence of 5%
was observed, with the exception of the analyses done for the GMMs
and GBMs for which data were not filtered. This corresponded to 202
genera (obtained from 16S data), 1808 mOTUs, 7632 KO, 581 KEGG
modules, 144 KEGG pathways, 103 GMM, and 49 GBM. Agresti gen-
eralised odds ratios (genodds87 v_1.1.2 Rpackage)were used to estimate
effect sizes and standard errors in each independent dataset. This
statistic, analogous to the U statistic underlying the Mann–Whitney
test, is based on ranks and does not make strong assumptions about
data distributions. It calculates the odds of the second group having a
higher value of the outcome (taxa abundances in our case) than the
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first group if a pair of observations are randomly selected from a
dataset. We used the default settings for tie splitting to obtain odds
ratios that are equivalent to the Wilcoxon-Mann-Whitney odds ratios.
Estimates were then pooled using random effectmeta-analysis (meta88

v_6.2.1 R package), with p-values adjusted using the
Benjamini–Hochberg method (False-Discovery Rate, FDR). Adjusted
p-values are referred to as q-values here. For the functional data, we
additionally performed a gene set enrichment analysis using the gen-
eric enricher function in the R package clusterProfiler89 v_4.4.4. This
was used to perform independent hypergeometric tests on the subset
of KOs enriched either in PD or in CTRL with the aim of estimating
which KEGG pathways were significantly enriched in differentially
abundant KOs. Background genes (or universe) were defined as all KO
within the KEGG pathways that were represented in our dataset.
Enrichment tests were run using minGSSize = 5, maxGSSize = 500,
p-values were adjusted using FDR, and alpha was set to 5%. Finally,
Pearson correlations were calculated to assess consistency between
Ridge regression relative weights and the generalised odds ratios.

Due to the sparsity of available metadata, we used a subset of
datasets to perform a sensitivity analysis and identify microbiome
features that might potentially be confounded by donor covariates
such as age, sex, or medication usage (SMG: 50% of the datasets pro-
vided sex and age information, 17% medication; 16S: 56% sex and age).
Although age and sex are risk factors for PD and thus intrinsically
associated with the disease1,4, we included them in this analysis to
account for sampling biases. These analyses were performed for all
microbiome features we detected associated with PD in our meta-
analyses. To test the effect of medication usage we applied two inde-
pendent strategies. First, we selected all metadata related to medica-
tion usage available from Wallen et al.15. We then retained only
medications used in at least 20% of the participants (11 medications in
total) and used them to perform a variable selection using the
regsubsets function in the leaps90 v_3.1 R package. Thiswas done for the
regression analysis modelling the abundance of the features as a
function of medications and disease status, allowing models with a
maximum of 12 variables (including all medications and the disease
status). We then selected the variables defining the regressions with
theminimumMallow’s Cp value and used them to build the final linear
models (lm_covariates; feature ~medications + PD; where the term
medications can include up to the 11 medications we considered).
Additional baseline linear models were built for the same dataset
including only the disease status (lm_pd; features ~ PD). FDR-corrected
p-values were then compared between model types (lm_pd vs lm_co-
variates). All features with a significant association with PD (q-values in
the lm_pd models < 0.05) which were affected by the correction for
medication intake (PD q-value in the lm_covariates ≥0.05) were con-
sidered as potentially confounded. Second, we selected all metadata
on PDmedications available for the study of Boktor et al.16,91 and build
linear mixed models for each medication (feature ~ medication + (1 |
cohort)). After correctingp-valuesusing FDR,we selected aspotentially
confounded all those features that had a statistically significant asso-
ciation with at least one PD medication. While these analyses sug-
gested some features to be confounded (Supplementary Datas 6–9),
we need to note that in particular for PD medication this analysis may
not be well-powered to detect all confounding effects. For a more
thorough confounder analysis,more complete data on themedication
of PD patients is required. Finally, we tested the confounding effect of
sex and age by comparing the significance of the association between
microbiome features and PD before (baseline models; feature ~ PD +
(1 | cohort)) and after accounting for covariates (feature ~ sex + age +
PD + (1 | cohort)). This analysis was performed for both SMG15,16,18 and
16S21,24,25,29,92–96 datasets with available metadata. Metadata from the
study of Bedarf et al. 18 were obtained from the repository related to
the study of Boktor et al. 91. After correcting p-values using FDR, we
selected as potentially confounded all those features having a

significant association with PD in the baseline models (q-value < 0.05)
which became statistically non-significant after accounting for cov-
ariates (q-value ≥0.05). All the above analyses were conducted on log-
transformed relative abundances, and linear models were built using
either the lm from the stats84 v_4.2.3 R package or the lme function
from the nlme97,98 v_3.1.162 R package.

Machine learning approaches
Machine learning models were built using the SIAMCAT v_2.0 and
v_2.10 toolbox23. Model accuracy was assessed using a 10-times repe-
ated 10-fold cross-validation (10 × 10 CV) unless otherwise stated. We
built models using all machine-learning algorithms provided through
SIAMCAT (Ridge regression, Elastic Net, LASSO, Random Forest, as
well as Ridge regression and LASSO as implemented in LibLinear99).
SIAMCAT workflows included an internal hyperparameter tuning step
(via a cross-validation approach that is applied to the respective
training data and nested into the out cross-validation). We assessed
model performances on data normalised using either log transfor-
mation (log.std) or centred log ratios (clr). The performance of all ML
models was quantified by the area under the receiver operating char-
acteristics curve (AUC). For repeated cross-validation, sample classi-
fication probabilities were averaged across repeated runs and used to
estimate a final AUC. The effect of feature filtration on model accura-
cies was assessed by building models using all the above-indicated
algorithms on datasets filtered to retain only the most commonly
detected and prevalent taxa. Specifically, we used datasets filtered by
discarding all taxa detected in less than 5%, 10%, 20%, and 30% of the
samples in 10 and 2 datasets for the 16S and SMG data, respectively.
For all ML algorithms tested, study-to-study validation (cross-study
validation; CSV) was performed by testing the models built on each
dataset on every other dataset. Leave-one-study-out (LOSO) validation
was performed by combining all but one dataset at a time. The com-
bined data were then used to train Ridge regression models in 10 × 10
CV following the strategy implemented in SIAMCAT. The left-out study
was used to test model performances. From the 10 repetitions of
within-study CV and the resulting 100 models of each LOSO run,
averages and standard deviations of AUCs were computed and dis-
played in Supplementary Fig. 6. Differences in AUCs between valida-
tion strategies and ML approaches were tested using a two-sample
Welch t test (two-sided), the correlation betweenAUCs and training set
sizes were assessed using Pearson correlations. Finally, we identified a
subset of species (mOTUs) that could robustly discriminate PD from
controls. To do this, we conducted a feature selection based on a
differential abundance analysis independently for each of the 7 train-
ing sets used for the LOSO validation. Within each training set, we
identified differential features using a two-sided Wilcoxon-Mann-
Whitney (WMW) test with blocking by study (Rpackage coin100 v_1.4.2).
Within eachof the 7 training sets,we then selected the 20 featureswith
the highest absolute effect size (test statistic from the WMW test) and
significant difference between PD and controls (FDR adjusted
p-values < 0.05), and used them to perform new LOSO validations as
explained above.

To investigate the effect of dataset pooling on LOSO validation
accuracy, we performed 7 independent combinatorial analyses of
training set composition, one for each SMG study used as a hold-out
test set. In this approach, we trained a single Ridge regression model
on every possible combination of pooled datasets, progressively
increasing the number of combined studies from two to six. This
resulted in a total of 57 different training sets and, hence, in 57 inde-
pendent Ridge regressionmodels tested on the same hold out set. The
association between LOSO AUCs and a number of samples was then
assessed using linearmixed-effectmodelswith the test set as a random
intercept. Marginal R2 (corresponding to the proportion of variance
explainedby thefixed effect, number of samples in this case), aswell as
the intraclass correlation coefficient (which can be interpreted as the
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proportion of variance explained by the mixed effect alone), were
extracted using the R package performance101 v_0.11. For this analysis,
the number of samples used for training was first log-transformed and
then scaled. Finally, to directly compare model performances derived
from 16S and SMG data, we used the data from Jo et al. 19 where both
data types had been generated from the same samples. We built Ridge
regression classifiers using 10 × 10 CV with identical sample splits
between testing and training sets for each data type. Model perfor-
mances were then directly compared using AUCs, as previously
specified.

ML models for the functional profiles were built by applying the
prevalence filtration described above at the 5% threshold. For the
GMMs and the GBMs, no filtration was applied. For model building
from KOs, we initially run Ridge regression models using a 5 × 5 CV to
identify the best subset of features to use for training. Using a nested
supervised feature selection based on the Wilcoxon test within
SIAMCAT (as described above), we built models allowing from 500 to
4000 features (in steps of 500). We then selected the number of fea-
tures that resulted in the highest median AUC across datasets (AUC =
75.3, 2500 features), and used it to build and evaluate final 10 × 10 CV
models. The samenumber of featureswas also used toperformaLOSO
validation with a nested supervised feature selection as described
above. Differences in AUCs across SMG profiles was assessed through
linear models using the nlme97,98 v_3.1.162 R package with the training-
test set combination as a random intercept. Contrasts were extracted
using the emmeans102 v_1.8.5 R package and p-values were adjusted
using FDR.We additionally investigated the effect of differences in age
and sex distribution between cases and controls, as well as geo-
graphical study origin (Western vs Eastern) on the AUCs of within-
study CV and CSV accuracies obtained for the taxonomic profiles of
both 16S and SMG data. As a summary statistic for age, we computed
the ratios of the average ages of PD and control donors within studies.
For sex instead, we first calculated the ratios of the number of female
(F) and male (M) donors in PD and controls within studies. We then
used these F/M values to compute ratios between the control and PD
samples. All AUCs for the CSVwere then split based on the (Western vs
Eastern) origin of the training and test set (e.g., W_W when both
training and test set came fromWestern populations). Similarly, AUCs
of the within-study CVs were divided based on the W/E origin of the
studies. The associations between these population features and AUCs
were then assessed using linear models (e.g., AUC ~ age.ratio) and R2

were extracted. Finally, for all Ridge regression models derived from
single datasets, we extracted the model’s weights (Ridge regression
coefficients) and divided them by the absolute sum of all feature
coefficients to calculate relative weights. Relative weights for each
feature were then summarised in the figures by average and standard
deviation calculated across datasets. To visualise model similarity
across studies, the coefficients were further used to create a non-
metric multidimensional scaling (NMDS), based on Canberra dis-
tances. The effect of the continent of study origin on the clustering of
the models (one for each study) was tested using PERMANOVA.

To test the effect of sequencing depth on the accuracy of the 16S-
based models, we additionally rarefied the data to a depth of 2000
reads using the rtk103 v_0.2.6.1 R package. ML models were then built
and evaluated through the sameworkflow as described above (both CV
and CSV) and compared to models built on non-rarefied data using a
paired t test. For all the t-tests performed in this study, Cohen’s D effect
sizes and their 95% confidence intervals, were estimated using the
cohens_d function in the rstatix104 v_0.7.2 R package. Moreover, the
removal of study heterogeneity from the 16S data was performed using
the function adjust_batch with default parameters in the MMUPHin105

v_1.10.3 R package as well as the function ba in the bapred106 v_1.1. R
package using the methods: meanceter, which centres the variables
within batches (datasets in our case) to have zero means (to remove
negative values we added to the data the negation of the lowest

corrected abundances); ratiog, which divides the variables by the batch-
specific geometric mean of the corresponding variable; ratioa, which
divides variable values by the batch-specific arithmetic mean of the
corresponding variable. A batch is here considered equivalent to a
study. For each batch correction method, we used the study-specific
models to perform independent CSV. Differences in AUCs across ML
methods was assessed through linear models using the nlme97,98

v_3.1.162 R package with the training-test set combination as random
intercept. Contrasts were extracted using the emmeans102 v_1.8.5 R
package and p-values were adjusted using FDR. Correlations between
rarefied and not rarefied data were tested using the cor.test R function
(Pearson correlation). Finally, to perform a cross-disease validation, we
tested all study-specific and LOSO 16S Ridge regression models on
additional 16S datasets obtained for other neurological diseases. False
positive rates (FPR), representing the proportion of samples in the test
dataset predicted wrongly as PD were then extracted as previously
described by Wirbel et al. 13. For the LOSO models, the FPRs were
extracted from the held-out test set. We restricted this analysis to 16S
datasets due to the scarcity of SMGdata for other neurological diseases.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in the article are either publicly available or have been
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