
Article https://doi.org/10.1038/s41467-025-56832-8

Model-constrained deep learning for online
fault diagnosis in Li-ion batteries over
stochastic conditions

Rui Cao, Zhengjie Zhang, Runwu Shi , Jiayi Lu, Yifan Zheng , Yefan Sun,
Xinhua Liu & Shichun Yang

For the intricate and infrequent safety issues of batteries, online safety fault
diagnosis over stochastic working conditions is indispensable. In this work, we
employ deep learning methods to develop an online fault diagnosis network
for lithium-ion batteries operating under unpredictable conditions. The net-
work integrates batterymodel constraints and employs a framework designed
tomanage the evolutionof stochastic systems, thereby enabling fault real-time
determination. We evaluate the performance using a dataset of 18.2 million
valid entries from 515 vehicles. The results demonstrate our proposed algo-
rithmoutperformsother relevant approaches, enhancing the true positive rate
by over 46.5% within a false positive rate range of 0 to 0.2. Meanwhile, we
identify the trigger probability for four safety fault samples, namely, electro-
lyte leakage, thermal runaway, internal short circuit, and excessive aging. The
proposed network is adaptable to packs of varying structures, thereby redu-
cing the cost of implementation. Our work explores the application of deep
learning for real-state prediction and diagnosis of batteries, demonstrating
potential improvements in battery safety and economic benefits.

Lithium-ion batteries (LiBs) are currently the preferred choice for
electric vehicles (EVs) known for their high specific energy, long life-
span, minimal self-discharge, and wide temperature range
applicability1–5. However, as the market share of EVs grows, safety
failures of battery packs have become a significant hurdle to their
development. Recent years have seen frequent battery failures, leading
to numerous market recalls, increasing user safety concerns, and
economic burdens6–9. Early prediction and real-time monitoring of
battery failures, particularly under complex stochastic operating
conditions, remain technological challenges10,11. Both in market
development and scientific research, an efficient online fault diagnosis
solution for batteries under stochasticoperating conditions is urgently
needed.

Under normal conditions, the microscopic electrochemical com-
position of LiBs degrades irreversiblywith increasing charge/discharge
cycles, leading to increased internal resistance and decreased capacity
until end-of-life recycling12,13. However, due to unpredictable operating

conditions and abuse tolerance, thebattery’s charging anddischarging
process may occasionally lead to abnormal failures such as leakage,
abnormal aging, and even severe safety incidents like short circuits,
fires, and explosions14–16. Battery failure is a process that evolves from
microscopic reaction abnormalities to macroscopic characterization
abnormalities, and then to an uncontrolled system17,18. However, the
unpredictable natureof failure in actual operating conditions results in
significant variability in failure duration and the randomness of critical
trigger points19. Coupled with the limited type and quality of mon-
itorable data during battery operation, this greatly increases the diffi-
culty of fault diagnosis.

Research on lithium-ion battery (LiB) fault diagnosis typically
involves analyzing the monitoring object for specific fault types and
designing corresponding diagnostic methods. Previous research has
primarily detected faults such as external short circuit, internal short
circuit (ISC), electrolyte leakage (EL), excessive aging (EA) (Capacity
<80%), and thermal runaway (TR)20–25. The main monitoring
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parameters include voltage, temperature, current, gasproduction, and
battery appearance images26. It’s worth noting that due to the limita-
tions of obtainable macroscopic characterization data, different fault
phenomena may exhibit similar macroscopic characteristics, such as
temperature rise and voltage drop27. The diagnostic methods used for
final decision-making can be categorized into three types28: ① Knowl-
edge-based: establish judgment methods such as numerical compar-
ison, fuzzy logic, graph theory, etc., based on experience, and
formulate judgment thresholds for decision-making29–31. ② Model-
based: construct a battery model, obtain model parameters through
parameter identification, state estimation, etc., and make judgments
based on the residual difference between actual and model
parameters32–35. ③ Data-based: make judgments through signal pro-
cessing ormachine learningmethods, based on extensive data analysis
and training36–38.

Most existing battery fault diagnosis methods are explored in
experimental simulation scenarios. However, real-world monitoring
must consider various factors such as the number of sensors, data
quality, and random operating conditions, which often render
laboratory research methods inapplicable. The research of fault diag-
nosis algorithms requires in-depth analysis of extensive real-world full-
working condition data. Zhang et al. utilized deep learning to detect
anomalies in real charging scenarios and provided the collected
charging segment characterization data for future research39. How-
ever, data across all operating conditions is still missing. In addition,
severe faults such as ISC and TR can deteriorate rapidly within a short
timeframe, making real-time diagnostic functionality essential.
Therefore, the input samples for diagnostic algorithms must be com-
patible with random operating conditions and small sequential seg-
ments, which poses a significant challenge for current diagnostic
methods. Furthermore, the online battery fault diagnosis system
requires enhancement to enable not only risk identification but also
precise fault type diagnosis, thereby greatly improving subsequent
fault maintenance and response strategies.

In this study, we design a model-constrained neural network
(MCNN) capable of diagnosing battery faults under stochastic
working conditions and evaluating the trigger probabilities of four
typical safety faults. The algorithm’s development, training, and
testing are carried out using real vehicle datasets, with data sampled
at 30-s intervals per frame as input to ensure the algorithm’s real-
time performance and broad applicability. We publicly release a
dataset of 18.2 million valid entries from 515 vehicles collected by a
cloud-based data center, which we believe will contribute to future
battery-related data mining work. The framework design can be
summarized into four parts: constraint model construction, data
prediction, feature encoding, and diagnostic output. During this
process, we employ innovative detail designs such as distribution-
corrected pack modeling, model-constrained autoencoder (MC-
AE), and monitoring feature extraction to enhance the algorithm’s
performance for actual deployment. Our validation process covers
the entire dataset. The algorithm’s pack prediction results outper-
form the classical optimal scheme by 23.69%, while the cell pre-
diction results show a performance advantage of 0.80% without
specific training on the cell state. The results on fault point identi-
fication and fault type diagnosis also show a remarkable improve-
ment, with an area under the receiver operating characteristic
(AUROC) improvement of 49.0% to 63.7% in true positive rate (TPR)
results over false positive rate (FPR)∈ (0,0.2] compared to current
typical methods. We also discuss model transferring to ensure
efficient application to different pack types. In summary, our pro-
posed method overcomes the application limitations of LiB fault
diagnosis and enables online diagnosis ofmultiple fault types under
full life cycle and full working conditions, offering substantial real-
world benefits in power battery safety applications.

Results
Framework overview
Besides coping with the effects of online data fluctuations, the devel-
opment of this work requires overcoming two additional challenges.
The first is ensuring the real-time performance of the algorithm’s
decision-making, which means that the identified samples need to
meet the requirements of being independent of operating conditions
and time intervals. To address this, the input for our algorithm is data
sampled at every individual time point, without being restricted by
operating conditions. The second constraint is the lack of fault sam-
ples for algorithm training. To tackle this challenge, we divide the
entire algorithm framework into two objectives. The first is to predict
the state of each battery cell in normal conditions and achieve quan-
tifiable fault identification based on prediction residual; and the sec-
ond is to estimate the probability of different fault types at abnormal
moments. Of these, the first objectives only require data from normal
vehicle operation, which is relatively abundant, while the second step
estimates probabilities based on features at abnormal moments,
excluding regular operation moments. This approach significantly
reduces the reliance on fault samples for training.

To achieve the objectives, we utilize a model-constrained deep
learning approach to supplement the missing information regarding
the battery performance’s evolution. The MCNN embeds the relation-
ship between individual model evolution and overall system coordina-
tion into thenetwork’s structural design, and the input and loss function
also incorporate the model state. This enables the neural network to
integrate physical model constraints during the learning process for
optimization. Stochastic oscillations during training and application of
the network are effectively limited to achieve more stable and accurate
performance. The MCNN could be divided into three key stages: ①
modeling and state resolution of individual and overall control models;
② overall state sequence prediction; and ③ encoder reconstruction
based on the coupled relationship of themodel to predict future states.
These correspond to (a), (b), and (c) in Fig. 1.

As shown in Fig. 1a, a#, the state prediction of the battery pack and
individual deviation is conducted by a distributionally corrected bat-
tery pack model with a filtering processor. The prediction results are
then fed into the feature encoding module. To leverage the timing
characteristics of the data for more accurate feature prediction, we
design a timing prediction network module (Fig. 1b, b#) to predict the
pack state and output to the feature encoding module. The feature
encoding process is depicted in Fig. 1c, c#. We innovatively design the
MC-AE, which embeds the calculation of hidden variables in the prin-
ciple that the cell state is the sum of the pack state and the deviation
state. Initially, the pack state and vehicle state are compressed by a
compression layer. The low-dimensional pack state, vehicle state, and
deviation state are then fused in the hidden variables. The predicted
state of each cell is generated by the feature transformation fully
connected layer (FTL). The design of the encoder integrates the actual
physical modeling implications to ensure the physical interpretability
of the regression results.

As depicted in Fig. 1d, d#, we extract monitoring features from the
encoder output by using a directional linear layer to monitor these fea-
tures and perform statistical regression on the samples to obtain quan-
tifiable safety fault detection results. Simultaneously, based on the
supplemented features of fault samples at abnormal moments, we
regress the trigger probability of the four safety faults through four
terminal fully connected layers, each directly corresponding to one type
of safety fault. Ultimately, thedesigneddeep learningnetwork candetect
and classify battery faults under online stochastic operating conditions.

Dataset analysis
In this study, we utilize data uploaded from vehicle onboard BMS for
network design. We have released the real vehicle dataset of 18.2
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million valid entries from515 vehicles collected by the BMSdata center
on the Beihang cloud, as shown in Fig. 2a. The dataset primarily
includes data from three battery manufacturers, which due to con-
fidentiality restrictions, are referred to as DTI, QAS, and GIS in this
paper. Figure 2b presents the statistics of valid data frames and the
number of vehicles. In addition to normal data samples, the dataset
also contains four types of hard-to-collect safety failure samples: TR,
EL, ISC, and EA, as shown in Fig. 2c. The labels of the failure samples are
determined byproduct engineers after disassembling the battery pack
samples and characterizing failures retroactively. The sample set
consists ofmultiple actual cases.The validationof thedataset allowsus
to evaluate the feasibility of the algorithm’s fault detection in terms of
the ROC effect. For specific categories of fault samples, we can
determine whether it is possible to predict the faults in advance and

the probability of occurrence of the fault category. The types of online
data that are generalizable are very limited. As depicted in Fig. 2d, we
only use six types of feature data related to battery status and vehicle
status (optional) as inputs, including voltage, temperature, current,
onboard SOC, speed, and mileage. The sampling intervals meet the
minimum data quality requirement of 30 s, ensuring the applicability
of the network. The most direct physical quantities in the online data
that reflect the battery state are voltage, current, and temperature.
Comparing the distribution of values between faulty and normal
samples, there is no significant difference in voltage, current, and
temperature. However, the battery failuremechanism is very complex,
and detecting the failure through limited types of data is challenging.
This underscores the value of realizing battery fault detection in online
data scenarios.
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Fig. 1 | Detection framework based on the model-constrained deep learning
network. The light blue part of the diagram constitutes theMCNN; aModeling and
state resolution of individual and overall control models: this model identifies real-
time states through a specially designed pack control model and state estimator.
The output state prediction parameters constrain the regression process of the
network. b Overall state sequence prediction: this network combines battery state
and vehicle state data to predict the pack state through a Bi-directional Long Short-
Term Memory (BiLSTM)-based network. c Encoder based on the model coupling

relationship: this encoder takes the outputs of (a) and (b), along with vehicle state
data, as network inputs. It compresses and fuses hidden variables based on the
physical significance of the model as a whole and deviations and obtains the single
predicted state through decompression. d Residual monitoring module: this
module extracts features from the outputs of (c), combining a directional linear
layer and statistical regression for fault detection and fault classification. (#)
Detailed presentation: this represents the corresponding network parts, including
corresponding data flow, processing algorithm, network composition, etc.
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Fault diagnosis
Battery degradation under real-world operating conditions takes var-
ious forms, with random triggering causes. Often, there is a certain
delay in the data’s ability to characterize obvious anomalies, so most
safety failure samples do not reflect a clear outlier state from the data
characterization. In Fig. 3a, we visualize the initial sample data of a
faulty vehicle input into the network. There is no relative separation
between faulty and normal sample points in the figure, making it
impossible to distinguish the faulty sample points. To address these
challenges, the network we design exhibits significant performance
advantages. In Fig. 3b, we visualize the network’s intermediate variable
(the monitoring feature in Fig. 1d). The faulty sample points of the
vehicle exhibit obvious clustering, creating clear spatial differences
from the normal sample points. Our proposed model-constrained
deep learning network identifies safety faults by outputting one-
dimensional time-series comprehensive determination indicators. The
time-series variation of these indicators also reflects the trend of the
battery’s state of health. Figure 3c–f sequentially shows the vehicle
identification results for four safety fault types: EL, EA, TR, and ISC. In
the fault identification process, three levels of alarm thresholds are
defined based on the degree of deviation from the model

comprehensive index. When the first-level alarm threshold is trig-
gered, the probability of fault types will be calculated for the alarm
points. The t-SNE visualization plots of the case samples for the four
fault types, along with the corresponding battery state data and
resultant data, are visualized in Figs. S10–S13. The comprehensive
determination indicators of the network outputs in the final results all
show a clear rise. Additionally, by delimiting the distribution range of
the indicators, we can also adjust the warning advance of the fault
samples.

Performance testing
To validate the progressiveness of our proposed algorithms, we
compare them with typical algorithms in terms of receiver operating
characteristics (ROC), and the prediction error of pack state versus cell
state on the validated dataset. Firstly, we compare the ROC perfor-
mance of four popular machine learning fault diagnosis algorithms on
the test samples, as shown in Fig. 4a. These include variational auto-
encoder (VAE), sparse autoencoder (SAE), principal component ana-
lysis (PCA), and AE (implementation details provided in ST3). The
results show that existing methods often fail to meet application
requirements due to a high FPR in fault detection of full-condition
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Fig. 2 | Onlinedata acquisition anddataset analysis. a EV cloud data flow. Vehicle
status data and battery status data are collected by multiple sensors and uploaded
to the T-box. These data are then transmitted to the vehicle manufacturer’s basic
Telematics Service Provider (TSP) platform via Transmission Control Protocol
(TCP)/Internet Protocol (IP), Kafka, and Hypertext Transfer Protocol (HTTP)/
HTTPS protocols. It is subsequently sent to the data middle-end platform, where
operations such as triage (Kafka), caching (Redis), pre-cleaning (Spark), and
archiving (HBase) are performed. The data then flows into a cloud database for
visualization (Cloudera) and storage (MySQL/Clickhouse). The proposed network
retrieves the resulting data from the cloud database, outputs the results, and
interacts with the front-end server through the corresponding API gateway. b Data
frame range and vehicle number distribution. This dataset, which includes normal

and faulty samples, is derived from three manufacturers: DTI, QAS, and GIS. The
graph shows the range of data frames and the distribution of the corresponding
number of vehicles. c Statistics on the sample count of different fault types in the
database. The four digits of the fault type number represent TR, EL, ISC, and EA,
with 1 indicating the presence of a fault. d Network input sample sequences. These
include voltage, temperature, and current with on-board SOC for the battery state,
and speed and mileage for the vehicle state. The horizontal axis represents the
number of sampled frames at 30-s intervals. e Battery state data distribution
comparison. This comparison is between normal and faulty samples, including
battery voltage, current, and temperature. The samples are taken from a random
set of 100,000 data points from 10 normal/faulty vehicles. Source data are pro-
vided as a Source Data file.
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online data. In contrast, our proposed method shows a 46.5%–63.7%
TPR enhancement compared to the comparison method for
FPR∈(0,0.2], demonstrating significant performance advantages and
stronger applicability. Second, we evaluate the prediction error of the
battery pack state, as shown in Fig. 4b, comparing four typical multi-
dimensional data encodermethods: VAE, SAE, and AE (specific scheme
in SN5 and ST3). Due to actual data fluctuations, existing methods

cannot achieve reliable pack/cell state prediction, with their average
RootMean Square Error (RMSE) above 22.42% and themaximumRMSE
error exceeding 35.28%. In contrast, our proposedmethod reduces the
maximum error to 9.81% and the average error to less than 6.3 times,
significantly improving prediction accuracy and robustness. We also
discuss the cell results in the pack prediction of our proposedmethod
by comparing the performance of four typical temporal prediction
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Fig. 3 | Effectiveness of safety fault detection. a, b present the t-SNE visualization
of the inputs and outputs of the proposed network. The axes represent the two-
dimensional space into which the data is compressed. Blue dots represent normal
moment samples, while red dots represent fault moment samples. The left side of
c–f display the time-series data of battery voltage and temperature variations, as
well as the output results of themodel comprehensive index for four safety-faulted
vehicles, namely, ISC, EA,TR, andEL, respectively. Theoutput results of threshold 1,

threshold 2, and threshold 3 correspond to sequences of 3σ, 4.5σ, and 6σ,
respectively. The red point indicates the triggering threshold fault point. The four
types of safety faults are recognized in advance to varyingdegrees. The right side of
c–f show the real-time probability estimation results for four types of battery safety
faults. Fill with blue when the probability is greater than 60%, and fill with green
when the probability is less than or equal to 60%. Source data are provided as a
Source Data file.
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neural networks (Fig. 4c), including Convolutional Neural Networks
(CNN), Gated Recurrent Unit (GRU), Recurrent Neural Networks
(RNN), and Long Short-TermMemory (LSTM) (specific scheme in ST4).
Without targeted training in a single state, the average RMSE (3.90%)
and the maximum RMSE (6.64%) of our proposed scheme are still
lower than the other schemes (the lowest average RMSE is 4.70% and
the lowest maximum RMSE is 8.86%). In summary, our proposed deep
learning method shows advantages in terms of pack/cell state pre-
diction accuracy and ROC performance at the application level. This
performance is attributed to the optimization of the distribution of
constraintmodel, the networkdesign for timing prediction, the design
of the physically augmented encoder, and the overall framework of the
network. To demonstrate this, we discuss the distributional optimi-
zation of constraint model and the design of the network for timing
prediction in Fig. 4d, which presents the ablation results with different
numbers of timing prediction network layers and inverse Gaussian
distribution correction. The comparison of the RMSE of the pack state
prediction shows that the optimal timing network structure with sta-
tistical correction is crucial for the performance of the algorithm (the
RMSE can be optimized from 0.32% to 4.01%). It is only by combining

all the design details that the performance advantage of the current
algorithm is achieved.

Fault type probability estimation
The comprehensive index can effectively present the overall potential
risk, which can be regarded as the generalized index for diverse fault
alerts. Based on the identified anomaly points, we perform probabil-
istic identification of the fourmost typical types (ISC, EA, TR and EL) of
safety failures at the moments of anomaly. The detection results are
shown in Fig. 4e. For a clearer demonstration, we present each type of
fault separately. For each fault class, the left part of the figure in blue
represents the fault sample, while the greenmeans the sample without
the current fault. It should be noted that all of the data sample used for
the training of the detector has at least one fault, and some samples
may even have three faults simultaneously. Furthermore, the occur-
rence probability of different fault types is different, among all data
samples, the amount of ISC fault is the most, while the EL samples are
the scarcest. For the most common fault, the ISC, in the dataset, most
of the samples have been successfully detected, while some of the
normal samples are wrongly given a higher probability. The detection
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performance advantages. b Comparison of RMSE distribution in pack state pre-
diction for four methods, where AE, SAE, and VAE are typical neural networks used
for multidimensional reconstruction. The samples are sourced from 392 random
vehicles, each providing one result. c Comparison of RMSE distribution in cell state
prediction for five methods, where CNN, GRU, RNN, and LSTM are typical neural
networks used for time-series prediction. The samples are sourced from60 random
vehicles, each providing one result. dComparison of six structures in the proposed
network framework, discussing the statistical correction of constraint model and

the number of layers in the BiLSTM timing network. BM1, BM2, Proposed, BM3, and
BM4 perform statistical correction, and the timing network corresponds to one to
five layers of BiLSTM in sequence. BM5 does not perform statistical correction, and
the timing network has three layers of BiLSTM. The samples are sourced from 60
randomvehicles, eachprovidingone result.e Probability estimation results for four
types of battery safety faults: (1), (2), (3), (4) represent theprobability estimation for
ISC, EA, TR, and EL faults, respectively. The x-axis represents the samples identified
as triggering faults. The blue part indicates the presence of the current fault type,
and the green part indicates the absence of the current fault type. The y-axis
represents the probability of the fault. The comparison of probabilities between
blue and green parts can verify the network’s recognition performance for the four
types of safety faults. Source data are provided as a Source Data file.
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results are obviously better when it comes to the other following
samples, the probability of accurately detecting the fault class is higher
overall. The accuracy of the fault class detection is 80.50%, 80.83%,
89.60%, and 97.76%, for ISC, EA, TR and EL, respectively.

Discussion
The scarcity of EV fault data and the random complexity of real-world
operating conditions make online battery safety monitoring a sig-
nificant application challenge. Although there aremany advanced fault
diagnosis algorithms available, there are still two major limitations in
the real-time fault diagnosis of EV batteries: the lack of performance
adaptationof the algorithms in real-world stochastic scenarios, and the
high input requirements of the algorithms, which hinder real-time
diagnosis. These issues highlight a research gap in the field of real-time
fault diagnosis for EV batteries. When dealing with these constrained
online scenarios, the model-constrained deep learning method pro-
posed in this paper plays a crucial role. In theMCNN, the integration of
input-output with the loss function incorporates the state of the cell
model, while the latent variable resampling process is closely aligned
with the overall model’s synergy. The network fully leverages the
constraint relationships of the battery’s physical model, enabling
training and decision-making without operational limitations and with
minimal data requirements. The result effectively clusters fault sam-
ples and achieves fault detection in different categories via one-
dimensional indicators. The superiority of the network is validated in
terms of ROC, pack state prediction error, and cell state prediction
error. Compared with typical methods, the proposed method shows a
46.5–63.7% TPR improvement for FPR∈ (0,0.2], demonstrating sig-
nificant performance advantages.

The algorithm can also adjust the output threshold to achieve
hierarchical fault determination and meet different application needs,
such as early warning and high recall rate. Furthermore, the occur-
rence probabilities of four typical safety fault types (ISC, TR, EL, EA)
can be innovatively regressed from process data, highlighting the
capability to identify fault typeswith limiteddata. Besides, the network
can be efficiently transferred across different battery packs. This
proves that the proposed network can be quickly applied to different
battery packs, significantly reducing the development cycle during the
application process.

Additionally, the dataset of 18.2 million items from 3 manu-
facturers and 515 vehicles, with 9 types of fault tags, collected by our
data platform is disclosed online. This dataset will pave the way for
developing larger and more powerful ML models for real-world LiB
application scenarios.

The proposed method is based on the model relationship
between the evolutionof individual cells and theoverall synergywithin
a battery pack. This network’s application scope is not limited to bat-
terymodules but can also be adapted to similar industrial components
where multiple units operate in coordination, such as generators,
pumps, and other critical industrial products. In termsof functionality,
under real-world constraints such as data quality and parameter
quantity, it can not only be applied to battery fault detection but also
be more effectively utilized in other engineering applications, such as
mechanical equipment state prediction, energy system optimization,
etc. This will undoubtedly promote the application of deep learning in
real industrial scenarios, paving the way for broader performance
optimization and safer use of industrial equipment.

Methods
Model-constrained neural network
To address the issue of missing labeled data, fault identification is
performed using an unsupervised learning approach. The goal of the
MCNN is to reconstruct the future state of individual cells within the
monitoring system. Based on the residuals from the network’s results
and the information from latent variables, the steps for fault detection

and fault type probability calculation are designed and implemented
sequentially, achieving fault diagnosis functionality.

Modeling and state resolution of individual and overall
control models
We select two equivalent circuit control models to model the overall
and individual deviations of the battery pack. During the pack mod-
eling process, the voltage distribution often skews due to influences
from different battery production batches or local cells within the
circuit. We opt for the inverse Gaussian distribution to fit the voltage
probability distribution40. The distribution probability of the obtained
cell voltage is as follows:

f ðUijμ, λÞ= ½λ=ð2πUi
3Þ�1=2 * exp½�λðUi � μÞ2=ð2μ2UiÞ� ð1Þ

Where μ=Um, λ=μ
3=VarðUiÞ, Ui is the parallel module (or single)

voltage, Um is the mean value of Ui. Based on the inverse Gaussian
distribution, the model is modified to obtain the pack model terminal
voltage UT ,p and the cell model terminal voltage ΔUi, as illustrated
below. where k represents the sampling time.

UT ,p, k = ðf ðUi, kÞ *Ui, kÞ=
X

f ðUi, kÞ ð2Þ

ΔUi, k =Ui, k � UT ,p, k ð3Þ

Thus, we obtain the output of the battery pack as a whole and for
each individual cell. Given the input variable current, we can construct
controlmodels for both the overall system and individual cells. On this
basis, the strong tracking Kalman filter algorithm is used to solve the
current state (including voltage Ui, k and SOC xi, k) of the model and
predict the next time step41. The modeling method we adopt sig-
nificantly reduces the number of parameters for cell modeling, while
emphasizing the deviation comparison of different cells in the pack.
Weprovide a detailed demonstration of the generalmethod’s specifics
in SN1.

Overall state sequence prediction
By combining the battery pack and vehicle status time series data, we
performpredictions for theoverall state of thebattery. LSTMnetworks
are widely used in battery state prediction42–45. In this part, BiLSTM is
chosen as the core unit for predicting the overall state. The input data
is a 7-dimensional matrix composed of total voltage Uall

k current Ik ,
vehicle speed vk , vehicle mileagemk , average battery temperature Tk ,
board end SOC xend

k and vehicle operating status xendk . This matrix is
processed through a three-layer BiLSTM network to output an 18-
dimensional prediction matrix pk . The output results are dimension-
ally reduced through a linear layer. The prediction result at the current
moment is a two-dimensional statematrixp*

k , which serves as the input
for the feature encoding part. The overall battery model state of the
next frame, represented by a two-dimensional matrix consisting of
voltage and SOC, is set as the p*

k regression target. More details are
shown in SN2.

Autoencoder based on model coupling relationships
The overall prediction state compensates and corrects the overall
model state, and the overall and deviation model states are super-
imposed to map the individual cell states. The MC-AE design is based
on this coupling relationship and consists of three parts: encoder,
latent space sampling, and decoder46. The process is as follows, where
W representsmodel coefficient vector, b represents network bias, and
σ represents sigmoid activation function:
(1) The encoder integrates the overall model state with the state

prediction results, which can be formulated as follows, where
x�k = ½xpre1p ,Upre1

p , xpre2
p ,Upre2

p �, xpre1
p and Upre1

p is the predicted
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value of SOC and voltage in the overall control model, xpre2
p and

Upre2
p is the overall SOC and voltage prediction obtained from

the sequence prediction:

f ek =W
e
1x

�
k +be

1 ð4Þ

cek = σeðWe
2xk + b

e
2Þ ð5Þ

This aims to effectively circumvent issues related to low model
accuracy and poor neural network robustness, thereby achieving
higher accuracy. Simultaneously, the current battery status data and
vehicle status data are compressed andusedas a correction term in the
latent space, serving to correct weakly related physical quantities.
(2) In the latent space sampling, we combine the encoder output

latent variable with the battery deviation state to obtain the
sampling points corresponding to the number of cells. The
calculation process is as follows, where

Δs�k =
Δx�1, k Δx�2, k � � � Δx�n, k
ΔU�

1, k ΔU�
2, k � � � ΔU�

n, k

� �
2 ×n

, Δx�i, k and ΔU�
i, k are the

deviation prediction SOC and voltage in cell control model
respectively. I is an all-ones vector of the samedimension asΔs�k :

y�k =Δs�k + ðf ek + cekÞ � IT ð6Þ

The calculation of hidden variable sampling points incorporates
the logic that the single state is the sum of the pack state and the
deviation state. These sampling points will be utilized by the decoder
to generate new data points.
(3) The decoder’s task is to map the sample points from the latent

space to the data space of the system’s future state. The design
of the decompression network is as follows:

y*k = σdðWd
1 y

�
k +bd

1 Þ ð7Þ

In this process, σd is an activation function designed based on
battery operating conditions to prevent gradient explosion during
training.

Diagnostic output
We carry out feature extraction on the single prediction state output by
MC-AE. Taking r*k = y*k � s*k

�� �� as input, the extracted feature matrix is

ewu, ewx, zu1, zx1, zu2, zx2
� �

.Where s*k =
x1, k x2, k � � � xn, k
U1, k U2, k � � � Un, k

� �
2 ×n

.

The calculating process of each dimension feature is as follows:

zu1ðkÞ= max½ðu*
k � μu

kÞ=σu
k � ð8Þ

zx1ðkÞ= max½ðx*k � μx
kÞ=σx

k � ð9Þ

zu2ðkÞ= ðu*
max , k � u*

secmax, kÞ=σu
k ð10Þ

zx2ðkÞ= ðx*
max , k � x*

secmax, kÞ=σx
k ð11Þ

Where, u*
max , k and x*max , k, are the maximum values of r*k ½1, :� and

r*k ½2, :� respectively, while u*
secmax, k and x*secmax, k, are the second lar-

gest values of r*k ½1, :� and r*k ½2, :� respectively. ewu and ewx are the
EWMA signals of u*

max , k and x*max , k respectively47. For directional
dimensionality reduction of features, we refer to the principal com-
ponent analysis method. We select feature vectors that contain 95%
of the eigenvalue proportions to form a new feature space. The
Hotelling’s T2 statistics and SPE statistics of the feature data map-
ping results are used to obtain the final comprehensive evaluation48.

We quantify the normal/abnormal degree of the sample through a
one-dimensional comprehensive evaluation index and can output
the grading results of abnormal monitoring. The calculation process
of indicators is shown in SN3.

Subsequently, we extracted the intermediate parameters in the
statistical index calculation process to form a supplementary classifi-
cation featurematrixΘ (More details in SN4). To facilitate the handling
of emergencies, considering the different levels of urgency and trou-
bleshooting methods, we construct a fault class detector that can
output the probability of the fault class. Because of the informative
feature vector of the decoder layer, the detector contains just one
linear layer with 10 trainable weights and biases for each fault type, by
which the detector can separately estimate each fault type probability.

Model training
The proposed framework is trained in three modular networks, cor-
responding to the sections in Fig. 1: (b) sequence network correction,
(c) MC-AE, and (d) diagnostic output. The training dataset used in (b)
and (c) consists of 200,000 normal vehicle operating data points with
no anomalies. The sample distribution of the training set is shown in
SF2. During the training process for (b), we set the batch size to 100
and select the Adam algorithm as the training optimizer. In the
sequential network, we set the learning rate to 1e−4. The training
input data is normalized by xn =

x�μ
σ , where xn and x represent the

physical parameters before and after normalization, and μ and σ
represent the mean and standard deviation of the parameters in the
training dataset. The loss function is the mean squared error, which is
shown as follows:

loss1 = 1=t
Xt

k = 1

ðp*
k � u*

kÞ
2 ð12Þ

In (12), u*
k = UT ,p, k + 1, xT ,p, k + 1

h i
and p*

k represent output, where
UT ,p, k + 1 is the terminal voltage at time k + 1 of the pack model, and
xT ,p, k + 1 is the pack model SOC at time k + 1. During the training of (d)
part, the learning rate is set to 5e−4, and the network training loss uses
the MSE function shown as follows:

loss2 = 1=t
Xt

k = 1

ðy*k � s*kÞ
2 ð13Þ

In (13), y*k represent network output. After training, we use the
data from all 515 vehicles in the dataset as the test set to validate the
performance of the MCNN.

For the training of the fault type probability estimation network in
section (d), the training set is composed of feature samples from
abnormal moments with known fault type labels. The fault label con-
sists of four digits, with each digit representing a type of fault corre-
sponding to separate trainable linear layer. The dataset consists of
1135 sampleswith ground truth labels.We split thedataset into training
and testing sets with a 3:1 ratio, resulting in 851 samples for training
and 285 samples for testing. The final learning rate is set to 1e−4, and
the Binary Cross Entropy Loss (BCE) is adopted loss function. All
training processes of the model are completed on an NVIDIA GeForce
RTX 3090.

Transfer learning
During the application process, battery cells of the same type are
often integrated into power cells with different pack structures. In
such cases, reselecting the training set and retraining can be costly
and may lack precision. To address this, we discuss the network
transferring process under different pack structures to significantly
shorten the model development cycle. During the process, the
module state prediction and fault type probability estimation parts
are not affected by the number of cells and can be generalized to
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moduleswithdifferent structures. For theMC-AE part, we replace the
feature conversion layer of the pre-trained network’s model-
constrained encoder with a new fully connected layer correspond-
ing to the pack dimension.When implementing the network, only the
new FTL layer is trained. We experiment with transferring a model
trainedon amodulewith 110 cells to amodulewith 99 cells. Using the
network trained on the 110-cell module as the pre-trained model, we
train for an additional 50 epochs and achieve the desired results. The
weight distribution of the FTLs before and after transferring is shown
in Fig. 5a. The architecture of the network and the position of the
transferred layer is shown in Fig. 5b. By comparing the pack state
prediction performance before and after transferring, it is evident
that the accuracy of transferred network accuracy has significant
advantages in terms of accuracy and robustness compared to direct
training, as shown in Fig. 5c.

Data availability
Theprocessed EVdata in this study have beendeposited in the Zenodo
database under accession code49. Source data are provided with
this paper.

Code availability
The main code are available in the Zenodo database50.
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