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Discovering organic reactions with a
machine-learning-powered deciphering of
tera-scale mass spectrometry data

Konstantin S. Kozlov1,3, Daniil A. Boiko1,3, Julia V. Burykina 1,
Valentina V. Ilyushenkova1,2, Alexander Y. Kostyukovich 1, Ekaterina D. Patil1,2 &
Valentine P. Ananikov 1

The accumulation of large datasets by the scientific community has surpassed
the capacity of traditional processingmethods, underscoring the critical need
for innovative and efficient algorithms capable of navigating through exten-
sive existing experimental data. Addressing this challenge, our study intro-
duces amachine learning (ML)-powered search engine specifically tailored for
analyzing tera-scale high-resolution mass spectrometry (HRMS) data. This
engine harnesses a novel isotope-distribution-centric search algorithm aug-
mented by two synergistic MLmodels, assisting with the discovery of hitherto
unknown chemical reactions. This methodology enables the rigorous investi-
gation of existing data, thus providing efficient support for chemical
hypotheses while reducing the need for conducting additional experiments.
Moreover, we extend this approach with baseline methods for automated
reaction hypothesis generation. In its practical validation, our approach suc-
cessfully identified several reactions, unveiling previously undescribed trans-
formations. Among these, the heterocycle-vinyl coupling process within the
Mizoroki-Heck reaction stands out, highlighting the capability of the engine to
elucidate complex chemical phenomena.

The role of experiments is crucial to confirming hypotheses and
makingdiscoveries in chemical science.However, the procedures used
may take a long time due to limitations of the method, costs of
reagents/catalysts, difficulties in waste handling, operational delays,
and a considerable amount and complexity of the analyzed data.
Therefore, two strategies are primarily used to decrease time and
human resources for performing experiments: automation of data
acquisition (e.g., in automated chemical syntheses1–3, in mass
spectrometry-based proteomics4,5 or high-throughput microscopy6,7)
and automation of data interpretation (chemical space exploration8–10,
NMR data11–13, and mass spectrometry—MS—data14–18).

However, one can think about a third feasible strategy, to use
previous results (already existing data) for hypothesis testing, thus

reducing the number of experiments. The fundamental limitations of
the strategy include the possible lack of accessible scientific data and
its management with FAIR19 (findable, accessible, interoperable, and
reusable) principles. This disadvantage can be eliminated by main-
taining commonopendatabases of experimental data20,21 with detailed
descriptions of experiments within the laboratory or by using web
applications that enable remote collaborative research in a shared
analysis environment22. Another important disadvantage is the lack of
dedicated software for the implementation and deployment of che-
mically efficient algorithms to search/extract data.

In a typical organic synthesis workflow, chemists select particular
experimental conditions for the optimization of a reaction to achieve
the maximal outcome for the desired product (Figure S1, as an
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example). Next, the reaction and sample preparation are carried out,
followed by detection and characterization of the chemical composi-
tions of the studied system using an appropriate analytical system
(Fig. 1a). High-resolution mass spectrometry (HRMS) is an excellent,
very often used method to execute this strategy due to its high speed
of analysis, sensitivity and ease of data accumulation23. HRMS is widely
used in analytical chemistry24, organic25–27 and inorganic chemistry28,
proteomics29, metabolomics30, petroleomics31, metal complex
catalysis32–36, organocatalysis37, polymer science38, and material
science39, among many other directions.

Within a routine research pipeline, HRMS-equipped laboratories
produce mass spectral data every day. During a relatively short period
of time, data storage may contain tens of thousands of recorded files.
Some spectra weigh several gigabytes (e.g., reaction monitoring
spectra at high resolution), in overall, leading to terabytes of recorded
information being stored on computer drives. Currently, manual

analysis connects experiments with MS data (Fig. 1a). This approach
imposes serious limitations associated with incomplete interpretation
coverage of the analyzed data due to human factors. Mainly, only the
desired product and a few known byproducts are looked at, leaving
most MS signals unattended. Within a few years of experimental work
in the laboratory, terabytes of data are accumulated and stored.

Thus, many new chemical products have already been accessed,
recorded, and stored with HRMS but remain undiscovered. There-
fore, the development of methods that can screen terabyte-scale
databases and collect molecular patterns opens the way for cost-
efficient and environmentally friendly chemistry discoveries while
operating on existing stored data with no new experiments needed.

In this study, we demonstrate that in the case of mass spectro-
metry, data analysis can be implemented as a search engine with
automated ion detection algorithms (Fig. 1b). An ultimate digital tool
for accelerated discovery would allow searching for automatically
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Fig. 1 | Overview of the “experimentation in the past” concept. a A commonly
used standard experimental workflow for reaction optimization with limited
manual human interpretation of results and incomplete reaction space investiga-
tion. As an example, we highlight analysis of high-resolution mass spectrometry
(HRMS) data that contains significant amount of information about reaction mix-
ture. b “Experimentation in the past” concept is achieved using amachine learning

(ML)-powered search engine with the discovery of new pathways inMizoroki-Heck
and hydrothiolation reactions in a large amount of already existing data. The
search consists of hypothesis generation using various methods (manual, auto-
mated fragment-based, and enabled by large language models, LLM), and search
itself, which uses already existing HRMS data.
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generated ion candidates in a vast array of existing complex mass
spectra with high accuracy in a reasonable amount of time and hard-
ware resources. The algorithm can not only search known/existing
products but also comprehensively search for unknown products,
transformation pathways, contaminants, etc. The proposed approach
makes already existing data a perfect source for reaction discovery in
advantageously Green and Sustainable ways (no chemicals are con-
sumed; no waste). Importantly, even though we only reveal the pre-
sence of ions with specific molecular formulas, the user may
supplement the study further by designing experiments to verify the
structure manually using either orthogonal methods such as
NMR (Nuclear Magnetic Resonance) spectroscopy, or by obtaining
tandem mass spectrometry (MS/MS) data. In our examples, we show
how this can be done.

In the case of this approach to achieve this aim, a powerful algo-
rithm to search compounds in large-scale MS data is a key require-
ment. To date, search algorithms for complex (with more than one
compound in the spectrum) mass spectrometry data have been
actively used, mainly inmetabolomics40–42 and proteomics43–48 studies.
The search is primarily based on matching peaks in the experimental
MS/MS spectrum with peaks in the theoretical spectrum obtained
from the peptide sequence49. There are also examples of structural
annotation and exploring genomics50 and metabolomics51–55 datasets
with MS/MS data. FastEI56 software uses Word2vec to transform the
electron ionization spectra into embeddings with further large-scale
spectrum matching. However, typical workflows have limited applic-
ability due to incomplete chemical space coverage, i.e., the narrow
application scope of such engines. Moreover, although already
implemented in some packages57,58, we would like to stress the
importance of isotopic distribution59 patterns, which leads to false
detections (see SI Section S2 for a relationship between the isotopic
distribution information and false positive rate).

Furthermore, annotated training data inaccessibility in supervised
machine learning (ML) for mass spectrometry continues to be a major
bottleneck due to the lack of human resources, time for labeling data,
andhighdimensionality ofmass spectra.Model learning requires up to
several thousand labeled ions to achieve good performance. Synthetic
data can be used to solve this problem (see SI Section S3 for details on
simulated spectra use). Artificially generated spectra were previously
used in ML model training and showed their applicability in MS tasks:
atomic pattern recognition60, deisotoping15, and the “inverse problem”

of molecular identification15. MS spectra augmentation techniques are
also widely studied61,62.

Considering the disadvantages above, this work proposes an
approach for searching in large stored arrays of mass spectral data
with a focus on reaction discovery (Fig. 1b). The models were trained
on syntheticdata. The key contributionof thework is the development
of a search engine, called MEDUSA Search, that allows the finding of
ion isotopic distributions in a tera-scale database (in our case, more
than 8 TB of 22 000 spectra) of multicomponent HRMS spectra with
different resolutions in an acceptable time (see the “Reaction dis-
covery approach” section for dataset description). The engine is able
to confirm basic hypotheses of the presence of ions of interest in a
wide range of applications (i.e., support all possible ion formulas with
different charges). As an illustrative example, we applied the devel-
oped algorithm to HRMS data accumulated by many research groups
studying a large scope of diverse chemical transformations, including
the well-known and industrially relevant Mizoroki–Heck reaction
(see SI Section S1). The data were collected over a few years and
remained abandoned. We demonstrate that new transformations may
be discovered upon automated search of archived data. Since this
reaction has been widely known and studied numerous times pre-
viously by various scientific groups, it is important to demonstrate the
advantage of the developed computational approach to reveal

“surprising” transformations, which have been overlooked in manual
analysis for years.

In this way, the concept of “experimentation in the past”, an
approach to research when a researcher uses experimental data made
earlier instead of conducting a new experiment, was achieved with the
discovery of novel catalyst transformation pathways in cross-coupling
and hydrogenation reactions. Importantly, data reuse and repurposing
are already common in fields such as proteomics and metabolomics.
However, research related to organic chemistry is quite limited21.

Results and discussion
Overview of the search engine
To proceed with the reaction discovery workflow, it is first necessary to
develop a search engine, which underlies the proposed approach. The
Machine-Learning-Powered search pipeline developed in MEDUSA
Search consists offive overall steps, as illustrated in Fig. 2 and described
in the text below. The multilevel architecture of the system is inspired
by existing web search engines and is crucial to achieve satisfactory
search speeds (see SI Section S4 for search speed tests).

Importantly, all the ML models were trained without the use of
large number of annotated mass spectra. This was done by generating
synthetic MS data with the construction of isotopic distribution pat-
terns frommolecular formulas and the followingdata augmentation to
simulate measurement errors of the instrument (see SI Section S3 for
details).

Before searching,we need to generate a list of hypothesis reaction
pathways on the basis of our prior knowledge about the reaction
system (Fig. 2, step A). Here, we design this system around breakable
bonds and the recombination of corresponding fragments. If a user
understands which bonds may break and form, they may supply
individual fragments that will be automatically combined to create a
query ion. However, we also allow BRICS63 fragmentation or the use of
multimodal LLMs to perform this fragmentation (see Section S5 for
examples of generated hypotheses). The development of new
hypothesis generationmethods is anopen problem, and any newwork
in the field can be easily integrated into this system.

Input information about the chemical formula and charge allows
us to calculate the theoretical “isotopic pattern” of the ion. The two
most abundant isotopologue peaks are searched in inverted indexes
(see SI Section S6.1 for details) with an accuracy of 0.001m/z (Fig. 2,
step B). Mass spectra that contain these peaks are called candidates.
The following isotopic distribution search will be performed on them.

After a coarse spectra search, an isotopic distribution search of
the query ion is performed for each candidate spectrum. This step
includes 1) initial ion presence threshold estimation; 2) in-spectrum
isotopic distribution search; and 3) filtering false positive matches.
Descriptions of each step are given below.

The in-spectrum isotopic distribution search algorithm returns the
cosine distance as a metric of similarity between theoretical and mat-
ched isotopic distributions (see SI Section S6.2 for algorithm details).
The automatic decision ofwhether there is an ion in the spectrumor not
depends on the estimated maximum cosine distance (i.e., ion presence
threshold), which depends on the formula of the query ion (see
Figure S8d for the threshold/formula relationship). A machine learning
(ML) regressionmodel is implemented (Fig. 2, step C1) to determine the
ion presence threshold with the input ion formula (see SI Sections S3,
S6.3, and S6.4 for data generation, data encoding and performance
evaluation, and hyperparameter tuning, respectively).

The in-spectrum isotopic distribution search algorithm (Fig. 2,
step C2) matches peaks from the experimental candidate mass spec-
trum with peaks from the theoretical isotopic distribution; at each
step, the cosine distance is calculated,which allows the selection of the
most similar peaks. If no peak is found, it is replaced with a peak with
an intensity equal to themedianof the noise. If thefinal cosinedistance
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is less than the ion presence threshold, estimated on Step C1, the ion is
considered to be found (for more details, see SI Section S6.2).

An additional ML classifier (Fig. 2, step C3) detects false positive
ion presence verification with information about neighboring peaks
(see SI Section S3 for training data generation). This problem usually
appears as selecting the searched distribution as a part of another
distribution. One of the most prominent examples starts with M+ 1,
while M is also present (see SI Section S6.5 for performance and
interpretability studies; Section S6.6 for hyperparameter tuning; Sec-
tion S7 for false positive examples).

To facilitate the work with the search engine, the Command Line
Interface (CLI) was developed using the Click Python package (see SI
Section S8 for more information).

Reaction discovery approach
Having various hypotheses about the course of possible new reactions,
it is necessary to cover as much chemical space as possible. In this
work, combinatorial generation of molecular formulas of proposed
products (i.e., rule-based generation ofmolecular formulas with unique
structures but different substituents) was performed to connect reac-
tion discovery with the automated mass spectral ion search in already
existing data. The FAIR description data from previous experiments
(Fig. 1b) are also essential for validating the search results in practice.

The search for novel reactions included more than 20,000 mass
spectra without any prior knowledge of their composition (Fig. 3b).
The search procedure placed no limitations on the filename, the
researcher’s name, who recorded the spectrum or any other aspect of

decreasing the search space. One commonly used method for visua-
lizing complex data is through the application of the t-SNE dimen-
sionality reduction technique64. To demonstrate the high diversity of
the archiveddata set, two t-SNEplotswere created. As shown in Fig. 3a,
the compounds registered in the analyzed mass spectra cover the
chemical space well. In Fig. 3b, each point represents a spectrum, and
similar mass spectra are located close to each other on the plot (see SI
Section S9 for t-SNE plot generation details and to see the enlarged
version of the t-SNE map). It is evident that various workers record
diverse spectra that contrast fromoneanother.Moreover, one can also
see common projects, where multiple people record similar spectra.
Instrument operator C has the most widespread distribution of mass
spectra, whichmatches their primary role— recording data for sample
drop-off service for the entire institute.

The discovery of intermediates in organic reactions is essential to
understand the mechanism and propose new strategies for reaction
design and optimization. Electrospray ionization mass spectrometry
(ESI-MS) is widely used in these studies65–68. It is also used as a method
to characterize synthetized products69,70. To demonstrate the applic-
ability of the developed search engine, it was used to find new trans-
formation pathways in Pd/NHC-catalyzed (NHC=N-heterocyclic
carbene) reactions71 with the combined generation of ion formulas
(Fig. 3c). For each formula component (functional group or NHC-
ligand), which is contained in one of the 13 analyzed structural cores
(Fig. 3d), the molecular formula was calculated. The total number of
generated ion formulas was 520, and 400 out of which had unique
mass. Importantly, HRMS without fragmentation techniques can
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provide information only about molecular formulas; thus, structural
isomers cannot be distinguished.

Once the hypothesis set was generated, the method was applied
to attempt to verify themusing previously collected data and retrieved
laboratorynotebooks. A searchpipeline (Fig. 2)was run for eachof 520
generated ions through the entire tera-scale HRMS database (see SI
Section S9 for data set information), with a total computational timeof

3–4 days (8–11minutes per ion). As a result, the engine detected many
isotopic distribution patterns. However, most of the search engine
answers could not be validated because of the lack of FAIR description
data needed for recognition of the initial composition of the reaction
mixture. Nevertheless, some samples were checked via laboratory
notebooks. The collected results (see SI Section S10 for MS spectra)
included the following:
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spectra used in the research. Source data are provided as a Source Data file;b t-SNE
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version). Each point represents a unique mass spectrum. Different colors indicate
instrument operators (coded by letters) who recorded mass spectra. Operator C

registersmass spectra for the entire institute. Source data are provided as a Source
Data file; c Functional groups and ligands, which were used in the generation
process; NHC—N-heterocyclic carbene, Ar — aryl group, Nu — nucleophile,
EWG — electron-withdrawing group. d The generation of ion formulas involves a
complete enumeration of all functional groups and ligands for each core; e Bar
chart illustrating the number of detected ions, categorized by the type of trans-
formation. Source data are provided as a Source Data file.
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1. The presence of corresponding azolium salts (m/z 147) in all
reactions associated with M/NHC catalysis72 (Fig. 4a);

2. The presence of known [phenyl-NHC]+ ions73 (m/z 223) in cross-
coupling reactions (Fig. 4a);

3. The presence of a recently discovered [ethynyl-NHC]+ ion74 (m/z
247) in the Sonogashira reaction (Fig. 4a);

4. The presence of an unknown [ethyl-NHC]+ ion (m/z 251) in the
Sonogashira reaction (Fig. 4a);

5. The presence of unknown [vinyl-NHC]+ (m/z 273) and [vinyl-phe-
nyl-NHC]+ (m/z 591) ions75 in the Pd/NHC-catalyzedMizoroki-Heck
reaction in the spectra recorded by different researchers in
different years (Fig. 4b);

6. Thepresence of an unknown [vinyl-NHC]+ ion (m/z325) in Pd/NHC
catalyzed the hydrogenation reaction (Fig. 4c).

Figure 3e presents statistics regarding the number of ions detec-
ted during the search procedure. All of these ions had unique masses.
The preferred type of transformation is phenyl–NHC coupling. Com-
pared with other types of transformations, vinyl-NHC coupling is
infrequent. Theobtained results are correlatedwith quantumchemical
study of transformation pathways (see SI Section S15 for full infor-
mation about quantum chemical study). Notably, the validation of the
search results using laboratory notebooks was only possible for a
limited number of mass spectra. For most ions, it is unclear in which
reactions they were discovered and if they truly correspond to the
assumed structural formula. Thus, further experimental validation is
needed (Fig. 5).

In addition to the main search procedure employed for the
identification of previously unknown products in Pd/NHC-catalyzed
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reactions, an alternative example of search engine capabilities was
pursued through the discovery of nickel-catalyzed hydrothiolation
reaction side products76 (see Section S10.2 for details).

Experimental validation
The formation of the catalyst transformationproducts shown inFig. 3d
is strongly related to the corresponding reaction mechanism. Pre-
viously, we conducted several Mizoroki-Heck and cross-coupling
reactions (e.g., Sonogashira, Suzuki, Buchwald-Hartwig, etc.) cata-
lyzed by Pd/NHC complexes with different NHC ligands and halogen
substituents. During the investigation of the reaction mechanisms via
ESI-MS spectra of the reaction mixtures, the coupling products [NHC-
H]+, [NHC-Ph]+, [NHC-O]+, and [NHC-N]+ were found. On the basis of
these observations, the key role of R-NHC coupling and M-NHC bond
cleavage in the evolution of M/NHC complexes under catalytic reac-
tion conditions was revealed73. The formation of catalytically active
molecular M/NHC catalysts and “NHC-free” cocktail-type catalysts,
including the formation of H-NHC salts77 and O-NHC coupling78, was
described first in terms of the number of C‒C coupling reactions.

In the Sonogashira reaction, the previously unknown product of
the ethynyl-NHC coupling product was isolated, and possible reaction
pathways were described74. The ethynyl-NHC coupling product is very
reactive and may undergo various transformations. Using the descri-
bed approach for hydrogenated derivatives of the product revealed
the presence of the [NHC-(CH2)2-Ph]

+ product in the ESI-MS spectra of
the Sonogashira reaction mixtures (Fig. 4a). Presumably, the process
occurs via a kind of transfer hydrogenation reaction.

Similar to the discovery of ethynyl-NHC and aryl-NHC coupling
products, we envisioned the possibility of the formation of two dif-
ferent vinyl-NHC coupling products (Fig. 4b) before and after
the insertion step in the Mizoroki–Heck reaction. Both products
were observed in the experimental reaction mixtures. Here, we
also aimed to perform experimental validation of the observed
reaction. To do that, original lab notebooks were retrieved,
and corresponding experiments were found. Mass spectrometry
analysis of the reaction mixtures of the Mizoroki–Heck reaction
between p-methoxyiodobenzene and butyl acrylate, catalyzed by the
Pd/NHC complex [BIMePh]+[BIMePdI3]

-, revealed the formation of
[BIMe(CH)2COOBu]+ (Fig. 5a). The molecular formula was confirmed
with ultrahigh-resolution mass spectrometry. The experiment invol-
ving the formation of [IPrCHC(Ph)COOBu]+ was a mercury test for
distinguishing between homogenous and heterogeneous catalysis.
We excluded mercury to avoid interference with reactive species79

and kept other conditions as in the original experiment. The mole-
cular formula was also confirmed with ultrahigh-resolution mass
spectrometry (Fig. 5b); the chemical structure was verified with MS/
MS experiment (Fig. 5c).

We also conducted experiments using different NHC ligands (see
SI Section S11 for experimental details). The possibility of vinyl-NHC
coupling in the process of Pd/NHC transformation under the
Mizoroki–Heck reaction was tested with five different NHC palladium
complexes, as illustrated in Figure S35. We used Pd complexes with
different co-ligands to prove the generality of vinyl-NHC coupling
under catalytic conditions. The scope is summarized in Fig. 5d. The
vinyl-NHC coupling products were registered, confirming the pro-
posed reaction (see SI Section S12.1 “Ultrahigh-resolution mass spec-
tra”, Figures S37–S45). The vinyl-NHC product was found in all studied
cases, independent of the ligand in the complex, with an ultrasmall
definition error for all of them. Along with vinyl-NHC, ethyl-NHC was
also detected in all the investigated reaction mixtures, for (BIMe)
PdI2Py, (SIMes)PdCl(allyl), and (PIPr)PdCl(allyl), with very low errors
m/z errors of less than0.3 ppm and low errors of less than 1 ppm in the
case of the (IMes)PdCl(allyl) and (SIPr)PdCl(allyl) complexes. In all MS
experiments, we set configurations to prevent transformations during
the recording of mass spectra (see SI Section S13 for more

information). Pressure sample infusion ESI-MS reactionmonitoring for
the discussed vinyl–NHC coupling process was also performed to
confirm that ions can be observed across multiple modalities of the
reaction data collection (see SI Section S12.2).

Finally, in the transfer hydrogenation reaction (Fig. 4c), another
type of ethynyl-NHC coupling could be observed. Indeed, the search
revealed the formation of the corresponding product. The described
transformation sheds light on the dynamic nature of catalytic systems
and opens opportunities for the development of Pd-catalyzed imida-
zole ring functionalization reactions.

To gain insights into the mechanisms of the discovered transfor-
mations and additionally confirm their feasibility from a theoretical
point of view, a DFT quantum chemical study was performed, which
confirmed the reaction channel for the vinyl-NHC coupling and iden-
tified the possibility of this newly discovered reaction occurring (see SI
Section S15 for the computational results).

In thiswork, a robustML-based computational engine for reaction
discovery was developed. First, we start with automated methods for
compound hypothesis generation. The selected candidates are then
passed to the search engine. The combination of an isotopic
distribution-based algorithm with two additional machine learning
models made it possible to reduce false positive ion detection, which
was crucial to increase search performance in databases of various
objects of study. The steps of the search workflow were optimized,
synthetically and experimentally validated. The interpretability of the
models allowed us to obtain an understanding of how these models
behave. A reduction in the ion search space with the account of iso-
topic distribution patterns proved the advantage of the isotope-
distribution-centric approach.

The ability of the engine to use a wide range of ions with different
compositions showed the excellent applicability of the system. An ion
search can be performed on all MS instruments with a resolution that
allows the observation of the isotopic distribution. A combination of
the developed system with other computational techniques (e.g.,
algorithms for the prediction of ion fragments by structural formula or
peptide sequence, different adduct calculators) can become a pow-
erful analytical tool for comprehensive screening, which is vital for
accelerated discovery in various scientific fields.

Moreover, even though the presence of FAIR data description is a
major requirement of our approach, users can perform multiple
queries to reduce the false positive rate of the system. For example,
searching not only for the expected product but also for the corre-
sponding reagents will significantly narrow down the scope for
experimentation. However, ultimately, we consider this work an
important step in raising awareness of how critical proper data col-
lection and description are.

As an example, the developed search engine allowed the dis-
covery of previously unknownM/NHC-catalyzed reaction byproducts,
saving the resources needed to confirm hypotheses with the concept
of “Experimentation in the past”. In this approach, two degrees of
novelty were achieved:
1. Reaction pathway novelty — the reactions unexpected for this

particular process but known and reported for other catalytic
processes. In this work, we showed the formation of H-NHC salts
and ethynyl-NHC coupling products. For these processes, the
findings of our computational approach can be validated by
comparisonwith those of othermethods, includingNMR spectro-
scopy and single-crystal X-ray analysis. These findings are
important to connect the studied reaction with other processes
and enhance catalyst development principles with relationships
documented for other processes.

2. Totally new reactions/products (never reported before). Here, we
demonstrated the possibility of a vinyl–NHC coupling process in
the Mizoroki–Heck reaction. [BIMe(CH)2COOn-Bu]

+[X]- and
[IPrCHC(Ph)COOn-Bu]+[X]- are new compounds that have never
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been reported and are absent from the SciFinder and Reaxys
databases. The discovered transformation appears probable on
the basis of general chemistry knowledge.Moreover, we observed
various hydrogenated products that raise questions about the
mechanism of their formation.

Here, we demonstrated that analysis of unused (old or aban-
doned) data with the developed computational algorithm can reveal
pathways and reactions that were not described previously. Both
degrees of novelty were verified, and the feasibility of the computa-
tionally revealed reactions was confirmed.

The discovered reaction pathways and reactions/products were
rigorously verified by independent replication of experiments with
different ligands and ultrahigh resolution MS measurements withm/z
errors less than 1 ppm. To ensure that not only the molecular but also
the structural formulas are correct, MS/MS ultrahigh resolution mass
spectrometry analysis was performed.Mechanistic considerations and

DFT study have increased confidence in the discovered reactions even
more (see SI Section S15 for more details).

We plan to continue to work on the problem of interpretation of
mass spectra and hope that in the future, automated analysis of MS
data will become a major source of discoveries in chemistry.

Methods
General considerations
All startingmaterials, catalyst precursors and solvents were purchased
from the commercial sources.

Mass spectra were measured using Bruker maXis instrument
equipped with an electrospray ionization source (ESI) with Time-
of-Flight (TOF) analyzer and spectra were recorded with m/z 50–1500
range. Capillary Voltage was set: for the positive ion mode to –4.5 kV,
Spray Shield Offset was set to –0.5 kV. For calibration of the mass
spectra a low-concentration tuning mix solution by Agilent Technol-
ogies was utilized. Nitrogen was applied as a nebulizer gas (0.4 bar)
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Fig. 5 | Experimental validation of the discovered reaction pathway. a The
formation of [BIMe(CH)2COOBu]+ ion was proven with ESI-HRMS; b the formation
of [IPrCHC(Ph)COOBu]+ ion was proven with ESI-HRMS; c MS/MS spectrum of
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and dry gas (4.0 L ×min−1, 250 °C). Bruker Data Analysis 5.1 software
package was used.

Ultrahigh-resolution mass spectra were recorded on a Bruker
solariX XR (ICR mass analyzer, a 15 T superconducting magnet) mass
spectrometer equipped with an ESI source. The m/z scanning range
was 100–1500. The number of scans was 256, with 8M data points.
External calibration of the mass scale was carried out using a sodium
trifluoroacetate solution (0.1mg/mL in a 1:1 acetonitrile/water mix-
ture). The measurements were carried out in positive ion mode (+)
(ground spray needle, 4500V high-voltage capillary; HV end plate
offset: –500V). Nitrogen was used as the nebulizer gas (0.5 bar), and
dry gas was used (4.0 L/min, 180 °C).

The chromatographic analysis was carried out on a chromato-
graph Agilent 1200 equipped with analytical column ZORBAX SB-C18
(2.1 × 50mm); the size of the particles of the stationary phase 1.8μm,
mobile phase acetronitrile – 0.1% water solution of formic acid, 9:1,
elution in the isocratic mode, flow rate 0.25mlmin-1, temperature
25 °C, the volumeof injected sample 0.01μl. The analyzedmixturewas
dissolved in acetonitrile (Merck, HPLC grade).

Experimental procedure for pressure sample infusion ESI-MS
reaction monitoring (PSI-MS)
The mixture of Pd/NHC complexes (SIPr)PdCl(allyl) (0.015mmol,
10mg) and (PIPr)PdCl(allyl) (0.015mmol, 10mg) (see Figure S35 for
structure details), n-butylacrylate (0.042mmol, 6μl) and dimethyl-
formamide (2mL) were mixed in Schlenk tube. Potassium tert-
butoxide (0.06mmol, 7mg) was dissolved into isopropanol (600μl)
and the solution was added to the mixture. One side of Schlenk with
reactionmixturewas closedwith a septum, the second side equipped a
tap was connected with a «double» balloon with argon. An ion source
of spectrometer was connected with the Schlenk by red PEEK capillary
through the septum. The reaction monitoring has been carried out
during 50minutes at 140 °C. The spectra were acquired in positive ion
mode and formation of the vinyl-NHC coupling products were
observed at after 10minutes of the start.

Computational details
DFT calculations were carried out in the Gaussian 16 (revision C.01)
program80 via the PBE1PBE hybrid functional81. The 6-31 G** (for H,
C, N, O, and Br atoms)82 and Def2TZVP (for Pd atom)83 basis sets
were employed in the calculations. The empirical Grimme correc-
tion (GD3BJ)84 was used to take into account dispersion interac-
tions. The influence of the solvent was taken into account via a
polarizable continuum model (PCM)85. N,N-Dimethylformamide
was used as the solvent. The geometry was optimized with sub-
sequent calculation of vibrational frequencies and thermodynamic
parameters for all the structures. All transition state structures had
one negative vibrational frequency corresponding to the con-
sidered reaction path. The remaining structures had no imaginary
vibrational frequencies and represented a minimum on the poten-
tial energy surface.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in Figshare86.
The data repository also contains a 9 GB ZIP-archive of mass spectra
with all mentioned found products. It is also enriched with additional
reaction mass spectra and can be used to test the functionality of the
developed search engine. The list of data in which the search was
performed, and the results were not found, cannot be shared publicly
due to confidentiality/IP considerations. The list of data can be
accessed with instructions obtained from the authors upon request

and being a subject of confidentiality/IP owners approval. Source data
are provided with this paper.

Code availability
The code under GPL-3.0 license is available on GitHub at https://
github.com/Ananikov-Lab/medusa-search. Additionally, it was depos-
ited to Zenodo87.
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