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Striatal arbitrationbetweenchoice strategies
guides few-shot adaptation

Minsu Abel Yang 1,2, Min Whan Jung 3,4 & Sang Wan Lee 1,2,5,6,7,8

Animals often exhibit rapid action changes in context-switching environments.
This study hypothesized that, compared to the expected outcome, an unex-
pected outcome leads to distinctly different action-selection strategies to
guide rapid adaptation. We designed behavioral measures differentiating
between trial-by-trial dynamics after expected and unexpected events. In
various reversal learning data with different rodent species and task com-
plexities, conventional learning models failed to replicate the choice behavior
following an unexpected outcome. This discrepancy was resolved by the
proposedmodel with two different decision variables contingent on outcome
expectation: the support-stay and conflict-shift bias. Electrophysiological data
analyses revealed that striatal neurons encode our model’s key variables.
Furthermore, the inactivation of striatal direct and indirect pathways neu-
tralizes the effect of past expected and unexpected outcomes, respectively, on
the action-selection strategy following an unexpected outcome. Our study
suggests unique roles of the striatum in arbitrating between different action
selection strategies for few-shot adaptation.

Common reinforcement learning (RL) models explain that animals
gradually learn to take specific actions to maximize the reward. This
also allows them to adapt to a changing environment. Several neural
substrates, including the prefrontal cortex (PFC)1, hippocampus2, and
striatum3, have been implicated in adaptive behavior.

Various reversal learning tasks are used to study adaptive
behavior4. In a probabilistic reward learning task, subjects learn to
associate action with a specific reward probability determined by the
task context, which remains constant for several trials. Then action-
reward probability is reversed without explicit cues, necessitating
adaptation to a new context.

During an experiment, rational subjectsmake choices they believe
will lead to rewards based on their estimated context. Receiving an
actual reward confirms their belief about the current context.

However, the absence of an expected reward does not necessarily
invalidate their context estimation. This unexpected outcome sug-
gests at least two possibilities: first, the context estimation remains
valid, and the lack of reward is simply a noisy event due to environ-
mental uncertainty. In this case, there’s no need to change the choice
behavior. Second, the context has actually changed, necessitating
rapid adaptation through inferring a new context and adjusting asso-
ciated choices. This thought experiment suggests that unexpected
outcomes may initiate complex behavioral dynamics associated with
context adaptation, which cannot be adequately explained by con-
ventional few-shot learning. We term this the unexpected event-driven
few-shot adaptation hypothesis.

As ameans to explore behavioral evidence of few-shot adaptation
guided by unexpected events, we designed measures, specifically,
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behavioral dynamics profiles that differentiate between trial-by-trial
dynamics after an unexpected event and those after an expected one.
The analyses using the proposed measures on the behavioral data,
collected from rats during the two-step task5, demonstrated that var-
ious reinforcement learning (RL) models’ predictions fail to explain
choice behavior after an unexpected event, compared to an expected
one. It strongly supports our hypothesis that animals often exhibit
abrupt and rapid changes in choice behavior depending on whether
the last event was expected.

To better understand complex behavioral dynamics of rapid
adaptation guided by expected and unexpected events, we propose a
computational model that learns two decision variables; the support-
stay bias and conflict-shift bias, called the support-stay, conflict-shift
(SSCS) model. The SSCS model successfully replicates the behavioral
patterns following both an unexpected and an expected event, quali-
tatively and quantitatively better than various RL models. The pre-
diction of the SSCS model is also confirmed by the multi-trial history
regression analysis, which explains the choice behavior after an
unexpected event as a function of past expected and unexpected
events, across different forms of reversal tasks (two-step task5, two-
armed bandit task6,7, and T-maze task8) and species (rat5,8 and
mouse6,7).

Using electrophysiological data from rats8, we found two pools of
medium-spiny neurons (MSNs) in the dorsomedial and ventral stria-
tum encoding the trial-by-trial changes of support-stay and conflict-
shift bias. Another behavioral data analysis on mice data under inac-
tivation of D1R- and D2R-expressing MSNs7 revealed that the respec-
tive inactivation substantially affects the effect of past expected and
unexpected outcomes on choice behavior after unexpected ones,
elucidating the dissociable roles of different MSN types in conveying

the associations between past outcomes and the action-selection
strategy after unexpected outcomes.

Results
Unexpected event-driven few-shot adaptation hypothesis
In a context-switching environment with binary choices and prob-
abilistic reward (Fig. 1a left), a subject who infers the current task
context as T1 (p1 > p2; marked as a red square in the reward probability
plot) is likely to choose the actionA1 since it leads to the outcome state
S1 with a higher reward probability (p1). Suppose a reward is not
offered, contrary to its expectation. Although this unexpected out-
come can be regarded as a noisy event due to the probabilistic nature
of the reward function, it could also indicate the context switching to
T2 (p2 > p1; marked as a blue square in the rewardprobability plot). This
cognitive processmight urge actionA2 at the trial right after, which can
lead to highly rapid adaptation. Such contextual behavior patterns
contradict the prediction of the conventional RL models that choices
are made based on values of decision variables accumulated over
several past trials.

Based on this thought experiment, we hypothesize that the
occurrence of an expected and unexpected event triggers a distinctly
different action-selection strategy. To examine this, we proposed
behavioral measures that can differentiate between trial-by-trial
dynamics after an unexpected event and those after an expected
event. As a prerequisite for ourmeasures, for each context, we defined
an action typically leading to a positive (or negative) outcome as the
positive (or negative) action. For example, in the task shown in Fig. 1a,
if the current task context isT1, thenA1 andA2 are positive andnegative
actions, respectively. The subject’s action is followed by transitioning
to a specific outcome state according to a certain transition

NegativePositive

Negative
Support

(S−)

Positive
Support

(S+)

Common
Rewarded

Su
pp

or
t

Uncommon
Omission

Negative
Conflict

(C−)

Positive
Conflict

(C+)

Common
Omission

C
on

fli
ct

Uncommon
Rewarded

Actions

Ev
en

ts

a Alternative role of the unexpected event b    Support and conflict events

c    The two-step task

Task (reversal learning) Action

Outcome
State

Expectation Outcome

=
≠

Support event
Conflict event

Agent

Update

Environment

Trials

Context

R
ew

ar
d 

Pr
ob

.

0

1

S1 S2Outcome
States

Action 1
(A1)

Action 2
(A2)

Initial State

Positive
Action (A1)

Negative
Action (A2)

S1 S2Outcome
States

1st step
Choice

2nd step
Transition

)

Transition type
Common
Uncommon

Initial State

Choice
States

Fig. 1 | Specialized action-selection strategy after experiencing the
unexpected event. a Alternative role of the unexpected event. Left for an example
reversal learning task with two contexts and two actions. p1/p2 is the probability of
receiving a reward after arriving at the outcome state S1/S2, respectively. Right for
the reward probability plot depicting the context reversal. At the task context

T1, p1 > p2. On the other hand, in the task contextT2, p1 < p2.b, cKey terminology for
behavioral measures. b The definition of action support/conflict events. c The two-
step task5; Left for the definition of positive/negative actions with the task diagram.
Here, the current task context is T1 (p1 > p2). Right for the summary table of 4
event types.
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probability. The outcome state is associated with a specific reward
probability. The event where the actual outcome matches (or mis-
matches) the subject’s expectation is defined as a support (or conflict)
event (Fig. 1b). Here, the subject interprets A1/A2 as a positive/negative
action, assuming the current context as T1. If a reward is received after
choosing A1, this event is classified as a support event. This is because
the actual outcomematches the subject’s expectation that A1 will lead
to a reward.

Reframing choice behavior from an event-type perspective
To examine whether animal choice behavior after support/conflict
events can be explained by the RLmodel, we analyzed the rat behavior
during the two-step task5 using various RL models (model-free (MF),
model-based (MB), and latent-state models). The two-step task is a
paradigm commonly used to distinguish between the influences ofMF
and MB reinforcement learning on animal behavior.

In each trial, the subject chooses between two actions, A1 and A2,
associated with the outcome state S1 or S2 (Fig. 1c left). Each action
leads to one outcome state with high probability (e.g., A1 leads to S1
with probability 0.8, a “common” transition) and to another outcome
state with low probability (e.g., A1 leads to S2 with probability 0.2, an
“uncommon” transition). S1 and S2 have different probabilities of

yielding a reward: p1 for S1 and p2 for S2, which is determined by the
task context at the current trial. The task context remains constant for
several trials before changing unpredictably and without explicit cues,
called “reversal.” When it occurs, the values of p1 and p2 become
switched.

Suppose the current task context is T1, where p1 > p2 (Fig. 1c left).
Here, A1 is defined as the “positive” action (the 1st column of Table in
Fig. 1c) because this action leads to a reward with a higher probability.
When a subject chooses a positive action (e.g., “I ammaking this choice
because I think the current context is T1.”), the “positive support” event
(S+ of Table in Fig. 1c) refers to the outcome confirming one’s pre-
diction about the context (e.g., “After the common transition, the
reward is given exactly as I expected, suggesting that current context is
T1”), whereas the “positive conflict” event (C+ of Table in Fig. 1c) is the
outcome contradicting one’s prediction (e.g., “After the common
transition, the reward was omitted contrary to my expectation, sug-
gesting that the context has switched to T2, where p1 < p2”).

In the samecontext T1,A2 it is defined as the “negative” action (the
2nd columnof table in Fig. 1c) as it is less likely to lead to a reward.When
the subject chooses a negative action for a certain reason, (e.g., “I am
making this choice because I suspect the context has switched from T1
toT2.”), the “negative support” event (S−of table in Fig. 1c) refers to the
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a–c Behavioral dynamics profiles. Left for the conceptual diagram of the individual
profile, middle for the result from the fitted model-based RL model behavior, and
right for the result from rat behavior. In the conceptual diagram, each event is
depicted as a rectangle above the trial axis, indicating when it happened (trial
index). S+ and C+ events are marked in gray and white, respectively. Each profile
consists of twocomponents: (1) the event sequence leading up to the last t − 1th trial,
represented by a bold line on the trial axis, and (2) the probe trial at the current tth

trial, where the probability of choosing the negative action is assessed; a Choice
inconsistency (CI). b Effect of conflict event (CE). c Conditional effect of conflict
event (Conditional CE). Decreases in behavioral dynamics profiles and their finite
differences were assessed using paired two-sample permutation tests. The differ-
encebetweenCE-C andCE-Swas examinedusing a linearmixed-effectsmodel,with
the number of S+ repetitions (NS) and type (CE-C or CE-S) as fixed factors and

subject as a random effect. The main effects were tested using paired two-sample
permutation tests. d Multi-trial history regression analysis; Left for the regression
weights estimated from the fitted model-based RL model behavior, and right for
the regression weights estimated from rat behavior. Regression weights were tes-
ted against zero using paired two-sample permutation tests. e Support-stay index
(SSI); Left for conceptual diagram, and right for SSI computed from the fitted
model-based RLmodel behavior and rat’s behavior. fConflict-shift index (CSI); Left
for conceptualdiagram, and right forCSI computed fromthefittedmodel-basedRL
model behavior and rat’s behavior. SSI and CSI were tested against zero using
paired two-sample permutation tests. All statistical tests were two-sided and cor-
rected for multiple comparisons using the Benjamini–Yekutieli procedure. All
panels showdata fromn = 21 rats. Error bars indicatemean± s.e.m. ***P <0.001. See
Supplementary Table 2 for full statistical information. Source data are provided as a
Source Data file.
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outcomeconfirmingone’s context prediction (e.g., “After the common
transition, the reward is given exactly as I expected, reinforcing my
prediction of T1 → T2.”), whereas the “negative conflict” event (C− of
table in Fig. 1c)means that the outcome is notwhat onepredicted (e.g.,
“After the common transition, the reward was omitted contrary to my
expectation, suggesting the current context is still T1.”)

This terminology enables us to classify all possible action-state
transitions of the two-step task (table in Fig. 1c). The episodes of (1)
being rewarded after a common transition (Common-Rewarded) and
(2) reward omission after an uncommon transition (Uncommon-
Omission) can be classified as support events (the 1st row of table in
Fig. 1c). Likewise, the episodes of (1) reward omission after a common
transition (Common-Omission) and (2) being rewarded after an
uncommon transition (Uncommon-Rewarded) are classified as conflict
events (the 2nd row of table in Fig. 1c).

RL models fail to predict animals’ choice behavior after an
unexpected event
To evaluate how much the animal’s actual behavior confirms the pre-
dictions of RL theory, an MB model was fitted to the rat’s behavioral
data since it was shown to be themost dominant behavior component
on this task following the analyses in ref. 5. After each trial, the model
first updates the outcome value V using the Rescorla-Wagner (RW)
learning rule:

V  V +αðr � V Þ,

where r is a binary variable indicating reward delivery, and α is a
learning rate. RW learning rule9, derived from the RW model10, has
been widely utilized to estimate the action values for the MF RL8,11–16

and the state values for the MB RL17–19.
The MB model computes the action value by multiplying the

transition matrix with the outcome value. This implies that the event
types (S+ orC+) affect the outcome value updates, which subsequently
affects the relative action value of the positive action, defined as a
positive action value minus a negative action value (relative action
value hereinafter)20.

Specifically, the S+ event leads to an increase in the relative action
value, whereas the C+ event decreases it. For instance, the model
chooses a positive action A1 in the current task context T1 and receives
the reward after a common transition (S+ event). The model increases
the outcome value V of the outcome state S1 by α(1− V), resulting in an
increase in the action value of A1 that commonly leads to S1. Conse-
quently, the relative action value increases. Likewise, when the reward
was omitted after an uncommon transition (S+ event), the outcome
value V of the outcome state S2 decreases to V + α(0 −V). This
decreases the action value of the negative action A2 that commonly
leads to S2. As a result, the relative action value increases.

First, to examine the dynamics behind rats’ choices when they
experienced S+ events consistently, we used the choice inconsistency
(CI; Fig. 2a), defined as the probability of choosing the negative action
(at trial t, marked as a blue rectangle) as a function of the number of S+
repetitions (NS), when the subject experienced S+ eventsNS times until
the last trial (from trial t −NS to t − 1, marked as a blue bold line on the
trial axis). The CI quantifies how often rats make a choice that con-
tradicts the supporting evidenceprovidedbypreceding trials (prior S+
events), even when the context remains unchanged.

The MB model predicts that CI(NS) will decrease as NS increases.
Experiencing S+ events consecutively increases the relative action
value, reducing the probability of choosing the negative action (CI).
Further, the MB model estimates that its finite difference,
CI(NS) −CI(NS − 1), will also decrease as NS increases. The above theo-
retical predictions of the MB model are confirmed by the CI profile
measured from the simulated behavior of the fittedMBmodel (Fig. 2a,

middle). Both the CI and its finite difference continually decrease sig-
nificantly until NS = 5.

These trends are also observed in the rats’ profile (Fig. 2a, right)
until NS = 2. The lack of a significant decrease in other NS can be
attributed to the limited number of trials, both in the model’s simu-
lated behavior and the animal’s actual behavior. These results imply
that the RW learning rule can reliably describe the rats’ action selection
after they have experienced a sequence consisting solely of S+ events.

Next, we introduced a behavioral profile called the effect of conflict
event (CE) to examine the dynamics behind rats’ action-selection
strategy when a C+ event takes place following multiple S+ events
(Fig. 2b). The CE quantifies how often rats perceive a noisy event (C+
event), which is caused by a probabilistic transition or reward delivery,
as the evidence suggesting context-switching, even though the con-
text does not change. It is defined as the probability of choosing the
negative action (at trial t, marked as an orange rectangle) immediately
after the C+ event (at trial t − 1, marked as red on the trial axis) as a
function of NS, where NS(≥0) is the number of successive S+ events
(from trial t −NS − 1 to t − 2, marked as an orange bold line on the trial
axis) preceding the C+ event (at trial t − 1, marked as red on the trial
axis). NS = 0 means no S+ event occurred before the C+ event hap-
pened at trial t.

TheMBmodel predicts that, similar toCI, both theCE and itsfinite
difference will decrease as NS increases. These predictions are con-
firmed by the CE profile measured from the simulated behavior of the
fitted MB model (Fig. 2b, middle). The CE and its finite difference
decrease significantly untilNS = 3. These trends are also observed in the
rats’ profile (Fig. 2b, right) until NS = 2.

The action-selection strategy after the conflict event can be
understood by analyzing its interaction with events in multiple past
trials, rather than themost recent trial only. For this,wedefined amore
detailed behavioral profile based on CE, called conditional effect of
conflict event (Conditional CE; Fig. 2c). The conditional CE is divided
into two cases, depending on whether the event sequence of CE
(Fig. 2b, marked as an orange bold line on the trial axis) is preceded by
a C+ event (CE-C; Fig. 2c left top) or an S+ event (CE-S; Fig. 2c left
bottom) at trial t −NS − 2 (marked as red on the trial axis), where NS is
the number of successive S+ events (from trial t −NS − 1 to t − 2,marked
as a bold line on the trial axis) preceding the C+ event (at trial t − 1).

The MB model predicts the following about conditional CE: for
the sameNS, CE-Cwill be higher thanCE-S. The event sequence of CE-S
(Fig. 2c left bottom, marked as an orange bold line on the trial axis)
contains one more S+ event than the event sequence of CE-C
(Fig. 2c left top, marked as a yellow bold line on the trial axis). This
additional S+ event further increases the relative action value. Conse-
quently, the relative action value after experiencing the event
sequence of CE-S will be larger than that after CE-C. Thus, the prob-
ability of choosing the negative action in the former case (CE-S) will be
lower than in the latter case (CE-C).

Furthermore, as NS increases, the difference between CE-C and
CE-S (ΔCE) will be more reduced. The more successive S+ events that
occur, the greater the accumulated increase in the relative action
value. Here, in the context of this cumulative growth of the relative
action value, the effect of different initial events (C+ or S+ event,
marked as red on the trial axis) on the choice probability becomes
more negligible as NS increases (Fig. 2c middle).

The above theoretical predictions of theMBmodel are confirmed
by the conditional CE profiles measured from the simulated behavior
of thefittedMBmodel (Fig. 2cmiddle).ΔCE is significantly positive and
shows a decreasing trend at any NS.

These two predictions made by the MB model are in sharp con-
trast with those of rat data (Fig. 2c right). First, the rats’ CE-C was not
significantly higher than their CE-S at any NS. Second, ΔCE decreases
significantly only when NS changes from 0 to 1. Specifically, ΔCE is
insignificantly different from 0 at NS =0, but becomes significantly
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negative at NS = 1. To dismiss any potential biases, we balanced CE-S
with CE-C by excluding cases where the event sequence for CE-C is
preceded by the S+ event. Despite such adjustment, observed dis-
crepancies between the MB model and rats were consistent (Supple-
mentary Fig. 1).

Event-type-specific behavioral dynamics underlying few-shot
adaptation
Such behavioral patterns show defining characteristics of rats’ few-
shot adaptation: unexpected event-guided confirmation bias. At the
trial t −NS − 2 (Fig. 2c left, marked as red on the trial axis), rats become
more affected by the S+ event following their decision to stay with the
same action after a C+ event (affirming their belief despite the noisy
event), compared towhen they decided to simply stay after a S+ event.
This effect lasts until when rats experience the C+ event again, leading
to CE-C ≤ CE-S at NS ≥ 1.

The following example scenario can capture this explanation: At
trial t −NS − 2 (Fig. 2c left, marked as red on the trial axis), rats may still
choose the same action after experiencing a C+ event that signals a
potential context reversal. If it is followedby an S+ event, rats interpret
this sequence of events as evidence that the context does not change.
Thereafter, the unexpected event-guided confirmation bias weakens
the association between the conflict event and action switch. Rats are
less likely to interpret a following C+ event as a sign of the context
switch. Instead, they attribute it to the inherent randomness in reward
delivery and transition, decreasing the probability of switching to
negative action in response to future C+ events. This collectively
suggests that the action-selection strategy after the conflict event
should bedescribedbynot only the effect of the latest trial but also the
interaction effect between the latest and past trials.

We also investigated the MF model alongside the MB model by
analyzing how different conflict events influence the action-selection
strategy, finding that the MF model fails to replicate animal behavior
after the conflict event (Supplementary Fig. 2).

To further examine the behavioral dynamics underlying action-
selection strategy after a conflict event (Fig. 2b, c) in a more general-
ized setting that accommodates both positive andnegative actions, we
employed a multi-trial history regression analysis based on ref. 5. We
used a logistic regression model that approximates the action-
selection strategy after the conflict event, the conditional probability

of choosing the positive action (a+) given that the subject experienced
the conflict (C) event in the previous trial (P(at = a+∣et−1∈C)). The
regression model represents this action-selection strategy as a para-
metric function of recent trials and their event types (Fig. 2d top and
Supplementary Fig. 3).

Trials from the past are indexed by the variable τ. An event that
occurred τ trials ago can be one of two types: support (S) and conflict
(C) event. For each τ, each of these trial types is assigned a corre-
sponding weight (βS(τ) and βC(τ), respectively). A positive weight
indicates a greater likelihood that the subject will make the same
choice. For example, βS(2) > 0 indicates that the subject is more likely
to choose the same action that was made two trials ago, in which the
support event occurred. Conversely, a negative weight indicates a
higher likelihood that the subject will make the opposite choice to the
one made τ trials ago. Note that there is no βS(1) term in the logistic
regressionmodel (Fig. 2d top), as themodel focuses exclusively on the
effect of past events on the action-selection strategy when a conflict
event, rather than a support event, occurred one trial ago.

In terms of βS(τ), the MBmodel predicts that it will be positive at
any τ. After experiencing a support event, the MBmodel increases the
relative action value of the corresponding action, which increases the
probability of choosing the same action in the future. These predic-
tions are confirmed by the βS computed from the simulated behavior
of the fitted MB model (Fig. 2d, bottom left, blue curve). These trends
are also observed in the rats’ profile (Fig. 2d, bottom right, blue curve)
until τ = 4. To quantify the general effect of past support events (τ > 1)
on choosing the same action, we defined the support-stay index (SSI)
as the average of regression weights βS(τ > 1) (Fig. 2e left). We con-
firmed that SSIs computed from both the MB model and the rat are
significantly positive (Fig. 2e right). The MB model also predicts that
βC(τ) will be negative at any τ, which is confirmed by the βC measured
from the simulated behavior of the fitted MB model (Fig. 2d, bottom
left, orange curve). This prediction, however, does not at allmatchwith
the rat data (Fig. 2d, bottom right, orange curve) showing significantly
negative βC only at τ = 1 and positive otherwise. This result implies that
the effect of past conflict events on action-selection strategy after the
conflict event depends on when this past event occurred. A conflict
event 1 trial ago after choosing one action leads rats to switch to the
alternative action (βC(τ = 1) < 0). In contrast, a conflict eventmore than
1 trial ago leads them to repeat the sameaction (βC(τ > 1) > 0). Note that

a    Model basic mechanism b    Rat’s choice behavior after reversal and representations of SSCS model
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C � b�C

(Bottom). The positive andnegative actions are determinedby the context after the
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indicate mean± s.e.m. See Supplementary Table 2 for full statistical information.
Source data are provided as a Source Data file. SSCS, support-stay, conflict-
shift model.
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the MB model does not accommodate this effect. The effects of past
conflict events are also consistent with our interpretation of the dis-
crepancies observed at conditional CE, CE-C ≤CE-S at NS ≥ 1.

To quantify the general effect of past conflict events (τ > 1) on
choosing the alternative action, we defined the conflict-shift index
(CSI) as the average of regression weights βC(τ > 1) multiplied by −1
(Fig. 2f left). The CSI computed from the MB model is significantly
positive, whereas the CSI of the rat is significantly negative (Fig. 2f
right). This result corroborates our finding that the past conflict events
(τ > 1) guide rats to stay on this action, which cannot be explained by
the MB model.

Taken together, we found behavioral evidence that support and
conflict events guide animal action-selection strategies differently,
contradicting the predictions of conventional RL models. This moti-
vates us to design a dual-processmodel to accommodate support and
conflict events in a distinctly different manner (Fig. 3a).

Computational model for event-type-dependent action-
selection strategy
Wedesigned a support-stay, conflict-shift (SSCS)model to understand
how support and conflict events guide action-selection strategy dif-
ferently. In the SSCSmodel, each action is associatedwith twodecision

b    Behavioral dynamics profile comparison between animal and modelsa    Model predictability comparison

c    Model explainability (Regression weights - ) d    Model explainability (behavior measure – SSI)

f    Model explainability (behavior measure – CSI)e    Model explainability (Regression weights - )
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Fig. 4 | Event-type-dependent action-selection strategies explain rat’s few-shot
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likelihood, a white bar indicates a significantly lower value than the highest model
(P <0.05). In the time constant, a white bar indicates a significantly different value
than the rat’s time constant (P <0.05). b Comparison of behavioral dynamics
profiles between animal and top 2 models. Filled dots indicate significantly differ-
ent model predictions from rat behavior (P <0.05), while blank dots indicate
insignificant differences (P >0.05). c–f Model explainability comparison in multi-
trial history regression analysis by measuring similarity measures computed from
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d Model explainability comparison by measuring the RMSE and Spearman corre-
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cient, they represent mean ± bootstrap standard error. See Supplementary Table 2
for full statistical information. Source data are provided as a Source Data file. MF,
model-free RLmodel21; MB,model-based RLmodel22; LT, latent-statemodel23; MTL,
meta-learning model24; ABL, asymmetric Bayesian learning model25; RD, reduced
model5; SSCS, support-stay, conflict-shift model.
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variables: support-stay bias (support bias hereinafter) and conflict-
shift bias (conflict bias hereinafter). The first and the second variables
accommodate the patterns of CI (Fig. 2a) and conditional CE/βC
(Fig. 2c, d), respectively.

The support bias is defined as the likelihood of taking the same
action following a support event, encoding the association between
the support event and the chosen action. The conflict bias is defined as
the likelihood of switching to the other action following a conflict
event, encoding the association between the conflict event and the
chosen action.

In each trial, the model updates the conflict bias (gC: b
t
C ! bt + 1

C ,
Process 1 in Fig. 3a), based on the support/conflict event (et) and the
flag (ft). The flag is a simple gating function to determine whether the
model repeats the same action despite a previous conflict event. Note
that this update reflects behavioral patterns of conditional CE (Fig. 2c)
and the effect of past conflict events (βC of Fig. 2d). The model then
chooses the next action (at+1, Process 2 in Fig. 3a) based on the support
bias (bt

S) or the conflict bias (gCðbt
CÞ) following a support or conflict

event, respectively. The model then updates the support biases (gS:
bt
S ! bt + 1

S , Process 3 in Fig. 3a), specifically increasing the support bias
of the chosen action (at+1) and decreasing that of the alternative action.
Finally, a flag (ft+1, Process 4 in Fig. 3a) is set to indicate whether the
model repeats the same action in the next trial despite a conflict event.
The flag serves as amental note to bet on the possibility that there was
no context change.

To investigate how the SSCS model represents animal behavior,
we firstmeasured the rat’s choice behavior during the trials around the
context reversal and compared it with those from the simulated
behavior of the SSCS model. After the context reversal, rats rapidly
adapt to a new context. After 3 trials, the choice probability of the
positive action P(+) is significantly higher than that of the negative
action P(−). The exponential curve fitted to their difference (choice
bias), P(+) − P(−), converges to the upper asymptote with the average
time constant of 5 trials (Fig. 3b left black line). The SSCS model
accurately describes this adaptation (Fig. 3b left gray line). Both the
x-intercepts and the time constants from rat behavior and the SSCS
model were insignificantly different and showed a significant positive
correlation.

Among the two decision variables, the support bias was the one
that showed a faster response to the context reversal. After 4 trials, the
support bias of the positive action b+

S becomes significantly higher
than the support bias of the negative action b�S , and their difference
b+
S � b�S converges to the upper asymptote with the average time

constant of 6 trials (Fig. 3b right top).
On the other hand, the conflict bias exhibited slower dynamics.

After 8 trials, the conflict bias of the positive action b+
C becomes sig-

nificantly lower than the conflict bias of the negative action b�C , and
their difference b+

C � b�C converges to the lower asymptote with the
average time constant of 12 trials (Fig. 3b right bottom).

The SSCS model explains rat’s few-shot adaptation
The SSCS model was compared against the six other models; (1) the
model-free RL (MF) model21, (2) the model-based RL (MB) model22, (3)
the latent-state (LT) model23, (4) the meta-learning (MTL) model24, (5)
the asymmetric Bayesian learning (ABL) model25, and (6) the reduced
(RD) model5.

The MF model selects the next action based on the action value
updated following the RW learning rule. TheMBmodel is based on the
MF model, except that its action value prediction incorporates the
model of the environment. The LTmodel selects the next action based
on the most probable task context, while its probability is inferred by
the Bayesian update rule. The MTL model builds upon the MB model
but modulates RPE magnitude and negative outcome learning rate
based on expected and unexpected uncertainty. The ABL model is
extended from the LT model by assuming that the task context

inference is asymmetrically influenced by the receipt and omission of
rewards. The RD model adopts a mixture-of-agents approach, where
the action value is calculated by aweighted average of several different
’agents’ implementing different behavioral strategies, including
model-based planning, novelty preference, bias, and perseveration.

Baseline models were chosen to ensure a comprehensive and fair
comparison by incorporating a broad spectrum of computational
perspectives. First, we grounded our selection in empirical evidence,
choosing models that have been recognized as the “best" in previous
studies for specific tasks analyzed in our work. In the two-step task, we
adopted the reducedmodel as detailed in ref. 5. Next, considering that
the two-step task incorporates the transition uncertainty between the
chosen action and the arrived outcome state, we considered different
action-selection strategies used in popular value-based decision-mak-
ing tasks. The models include model-free21, model-based22, Bayesian
ideal observer23,25,meta-learning24, andmixture-of-agents approaches5.

Each model was fitted to the behavioral data of each animal
individually. The normalized BIC score and the normalized cross-
validation likelihood were used to compare the different models’
predictability. We confirmed that all models showed significantly
higher scores than the chance level in bothmeasures. TheRDandSSCS
models showed the highest scores, followed by the ABL, MTL, MB, LT,
andMFmodels (Fig. 4a top for normalized cross-validation likelihood,
Supplementary Fig. 4 for normalized BIC score).

To measure the adaptation speed of the animal or the fitted
model, we computed the choice bias (Fig. 3b left) and fitted the
exponential curve to it. The comparison between the time constant of
the exponential curve between the animal and fitted models (Fig. 4a
bottom) showed that the models following the MB strategy exhibited
significantly smaller time constants than that of the rat (MB, LT, RD
models), compared to other types of RL models (ABL, MF, MTL
models).

It implies that conventional models capable of adaptation predict
unrealistically fast adaptation compared to animal behavior. Notably,
our SSCS model has nearly the same time constants as the one from
animal behavior. This result underscores the capability of the SSCS
model to accurately reflect the temporal dynamics of behavioral
adaptation in a manner that closely approximates the natural pro-
cesses observed in animal behavior.

We also ran behavioral recoverability tests, inwhichwe computed
behavioral dynamics profiles (CI, CE, and conditional CE) from the
simulated behavior of the fitted models and compared them with
those of rats. Ourmodel showed themost similar behavioral dynamics
profiles to rats (Supplementary Figs. 5 and 6). Specifically, the SSCS
model exhibited a quantitatively better prediction than the RDmodel,
especially in CI and ΔCE profiles (Fig. 4b). The results suggest that the
two key variables of our model serve to predict rapid context-
switching behavior, above and beyond the predictions made by pre-
viously known variables of the RD model, including novelty pre-
ference, bias, and perseveration.

Next, we conducted behavioral recoverability tests, in which we
computed βS and βC from the simulated behavior of fittedmodels and
compared them with those of rats. We found that various models
replicate βS with similar accuracy (Fig. 4c, and Supplementary Fig. 7a).
By and large, the SSCS model and various baseline models exhibit
similar explainability of SSI (Fig. 4d and Supplementary Fig. 7c). On the
other hand, the SSCSmodel replicates βC (Fig. 4e, and Supplementary
Fig. 7b) most accurately. The direct comparison of CSI between rats
and the fitted models showed that the SSCS model explains CSI most
accurately (Fig. 4f and Supplementary Fig. 7d).

In addition to these cognitivemodels, we considered two types of
biologically plausible neural networks implementing the PFC-basal
ganglia function25,26. In both models, PFC recurrent networks learn to
infer the hidden task context by predicting an upcoming state, while
basal ganglia rectified linear units learn the corresponding value and
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simple main effects tests. SSI and CSI computed from mouse and model behavior
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statistical tests were two-sided and corrected for multiple comparisons using the
Benjamini–Yekutieli procedure. b–f show data from n = 6 mice. Error bars indicate
mean ± s.e.m., while for the repeated-measures correlation coefficient, they
represent mean± bootstrap standard error. *P <0.05, **P <0.01, ***P <0.001. See
Supplementary Table 2 for full statistical information. Source data are provided as a
Source Data file. MF, model-free RL model21; SLRP, stochastic logistic regression
policy model6; SSCS, support-stay, conflict-shift model.
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appropriate action using the RL mechanism. In one network model
(NN model with direct input), the PFC network received full informa-
tion, the preceding state, and action26. On the other hand, the PFC
network of another model (NN model with gated input) received only
the information about the preceding state, gated by whether the
reward was given25.

After training these models to maximize their reward, we con-
ducted additional analyses computed from the simulated behavior.
First, we examined whether the behavioral dynamics profiles of the

two trained neural network models can replicate the trends shown in
rats’ profiles (Supplementary Fig. 8a–c). Although the model’s pre-
dictions are by and large aligned with the rats’ behavioral profiles, the
NN model with direct input shows that [CE-C]>[CE-S] significantly at
NS =0 and 1 (Supplementary Fig. 8c middle), which does not match
with the rats’ profile, [CE-C] ≤ [CE-S] at every NS (Supplementary
Fig. 8c left).

Second, to validate whether two events (CO and UR events) in the
C+ category differently affect the action-selection strategy, we
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Fig. 6 | Neural representation of the support-stay, conflict-shift model. a Task
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within a single trial. bDistribution of neurons encoding decision and task variables
(n = 201 neurons from 3 rats). c Behavioral dynamics profiles from rats and fitted
SSCS model (n = 3 rats). CI, CE, and Conditional CE from the left. The difference
between CE-C and CE-S was examined using a linear mixed-effects model, with the
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mentary Table 2 for full statistical information. Source data are provided as a
Source Data file.
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compared the behavioral dynamics profiles from the trained models.
Here, in every profile of the NN model with gated input, we observed
that there are significant differences between CO and UR events
(Supplementary Fig. 8d–f right), which do not align with the rat
behavior (Supplementary Fig. 8d–f left).

Furthermore, when we compared βC and CSI, both NNmodels do
not replicate the rat’s result (Supplementary Fig. 8h). Taken together
(Supplementary Fig. 8), we found that two NN models could not
replicate the animal behavior in the two-step task, especially in terms
of representing the action-selection strategy after the conflict event.

In conclusion, we introduced the SSCS model, a computational
framework that captures how animals leverage support and conflict
events to guide their action-selection strategies. The SSCS model
outperformed existing models in explaining animal behavior, parti-
cularly while describing the animal’s action-selection strategy after the
conflict event (Fig. 3b and 4a–b, e–f). These findings strongly support
our hypothesis that animals differentiate their action-selection stra-
tegies following conflict events compared to those following support
events, especially within a context-switching environment.

The SSCS model characterizes the behavior of different species
in simpler tasks
To test whether our findings are replicated in another experiment, we
conducted the same analyses on an independent dataset where mice
perform a two-armed bandit task with context reversal6. In each trial,
the mouse chooses between two actions, A1 and A2. A1 and A2 have
different probabilities of yielding a reward: p for A1 and 1 − p for A2,
which is determined by the task context at the current trial. When the
context reversal happens, the reward probabilities allocated to each
action become switched. The same mice performed several sessions
with different values of higher reward probability p, fixed to one of
three values (0.7, 0.8, 0.9) during each session (Fig. 5a). In this task, we
also classified possible events into four categories. After choosing the
positive action, we classified the event when the reward was given or
omitted as an S+ event and a C+ event, respectively.

Fromanalyses of behavioral data,we found thatmice also showed
behavioral patterns observed in the two-step task consistently across
different values of p; consecutive decreases in CI (Supplementary
Fig. 9a) and reversal of the sign of the difference between CE-C and
CE-S (Supplementary Fig. 9c).

In the two-armed bandit task6, we considered the stochastic
logistic regression policy (SLRP)model as the bestmodel based on the
BIC score comparison detailed in the original study6. Unlike the two-
step task, this task does not involve transition uncertainty from the
chosen action to the outcome state, confining ourselves with models
that do not utilize transition information, such as the MF model21.

As a result, we compared our SSCSmodel with two other models:
(1) theMFmodel21, which selects the next action basedon action values
updated using the RW learning rule, and (2) the SLRP model6, which
uses a logistic regression model incorporating choice and choice-
reward interaction terms to capture mice’s stochastic and efficient
action-switching behavior after context reversal.

All themodels were fitted to the behavioral data of each animal in
different values of p individually. Detailed comparisons showed that
the SSCSmodelmost accurately predicts various profiles (CE,ΔCE, SSI,
βC) in every value of p (Fig. 5b–f and Supplementary Fig. 10). These
results support that our model, which is based on the policy arbitrates
between support and conflict bias, better describes the animal beha-
vior in context reversal consistently across different species, task
complexity, and environmental parameters.

The SSCS model explains the activity of medium-spiny neurons
After confirming that the SSCS model accurately replicates the event-
type-dependent action-selection strategy across species and task
complexity (Figs. 4 and 5, Supplementary Figs. 1, 4–7, 10), we sought to

investigate its neural substrates. During value-based decision-making,
the striatum is known to integrate reward-related information8, eval-
uate the value of different options16, and execute appropriate actions
based on expected rewards7. Especially dorsomedial striatum (DMS)
has been traditionally implicated in action selection in context-
changing environments7,8, and it is known to be associated with flex-
ible behavior during value-based decision-making27.

Various RL models, such as the model-free RL (MF) model21, and
the differential forgetting Q-learning (DFQ) model28, are frequently
employed to investigate whether neurons encode the decision vari-
ables, such as action value or state value, during reversal learning
tasks11,15,20,27,29,30. However, these models have not been tested for their
ability to replicate the animal’s event-type-dependent action-selection
strategies. We hypothesized that the striatum guides the event-type-
dependent action-selection strategy. To examine this, we reanalyzed
previously published datasets of rat behavior during a T-maze task
with context reversal, a spatial navigation task that resembles the
previous two-armed bandit task (Fig. 5)8. In this experiment, the
activities of medium-spiny neurons (MSNs) in the DMS were simulta-
neously recorded (Fig. 6a left).

To validate this hypothesis at the behavioral level, we conducted
behavioral dynamics profiles and multi-trial history regression ana-
lyses. We classified possible events into four categories identical to
those used in the two-armed bandit task. For the T-maze task with
context reversal8, we considered the differential forgetting Q-learning
(DFQ)28 model as the best model, in accordance with the BIC score
comparison conducted in the original study8. Similar to the two-armed
bandit task6, this task does not involve transition uncertainty from the
chosen action to the outcome state, for which casemodels that do not
account for probabilistic transition are suitable, suchas theMFmodel21

for comparative purposes.
Therefore, our SSCS model was compared with: (1) the MF

model21, which uses the RW learning rule to update action values, and
(2) the DFQ model28, which extends the MF model by incorporating a
forgetting rate for the unchosen action and applying distinct update
rules to the chosen action based on whether it was rewarded.

The analysis of the rat’s behavioral dynamicsprofiles revealed that
CE-C is significantly lower than CE-S (Fig. 6c top, 3rd column). The SSCS
model is the only model that successfully replicates this trend (Fig. 6c
bottom, 3rd column), unlike the MF (Supplementary Fig. 11b top, 3rd

column) and DFQ (Supplementary Fig. 11c top, 3rd column) models,
which exhibited that CE-C is significantly higher than CE-S at every NS.
Second, frommulti-trial history regression analyses, we observed that
rat’s βC significantly fluctuates, crossing zeros, across different τ
values. It was significantly negative only at τ = 1, but became sig-
nificantly positive from τ = 2 onward (Fig. 6d top right). Once again,
only the SSCSmodel accurately replicates this finding (Fig. 6d bottom
right), in contrast to the MF (Supplementary Fig. 11f right) and DFQ
models (Supplementary Fig. 11g right).

These results (Fig. 6c, d and Supplementary Fig. 11) demonstrate
that rats utilized the event-type-dependent action-selection strategy.
The RLmodels, including theMF and DFQmodels that are widely used
to decode the neural representation of decision variables, failed to
replicate the action-selection strategy after the conflict event. In con-
trast, our SSCS model successfully replicated these behavior patterns.

We then examined MSN activity to determine whether the stria-
tum represents the event-type-dependent action-selection strategy by
analyzing their correlations with the key decision variables of the SSCS
model, the support, and conflict biases. The entire T-mazewas divided
into four sections; prepare, action, reward, and update (Fig. 6a right).
The average firing rates of MSNs were computed during each trial. For
each trial and each section, the average firing rates of MSNs were also
computed while rats were passing over the corresponding section.

To accommodate temporal correlations for identifying striatal
representation31, we employed the autoregressive exogenous (ARX)
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model, a mathematical framework for time series analysis and system
identification. TheARXmodel explains such correlations by adding the
autoregressive term inside the fittingmodel32. This approach has been
validated in30 for effectively mitigating false identifications related to
temporal correlations.

For each neuron, we fit an ARX model to evaluate how much the
average firing rates of neural data are explained by the decision vari-
ables (support and conflict bias) of the SSCS model and task variables
(choice and reward as confounding variables) on a trial-by-trial basis. A
neuron was considered to represent a specific variable if the ARX
regression coefficient associated with that variable was significantly
different from zero, as determined using a block-wise permuta-
tion test8.

As well as choice and reward-encoding neurons previously
reported, we found two sets of neurons encoding trial-by-trial changes
of support bias (Fig. 6b, 6e and Supplementary Fig. 12a) or conflict bias
(Fig. 6b, f, and Supplementary Fig. 12b). We observed that distinct sets
of neurons representing either support or conflict biases were

consistently identified in each section of the T-maze (Fig. 6b, e, f, and
Supplementary Fig. 12a, b). Notably, we also found that a proportion of
MSNs in the ventral striatum (VS) also represent the support bias or
conflict bias (Supplementary Fig. 12c, d).

Taken together, these findings demonstrate that the striatum
represents the event-type-dependent action-selection strategy, cap-
tured by the SSCS model. Especially, the striatum represents the dis-
tinct action-selection strategy after the conflict event, the behavior
dynamics overlooked by the other models.

Mice exhibit event-type dependent action-selection strategy,
independent from MSN inactivations
We further examined the possibility the different types of MSNs could
provide a more detailed account of the striatal representation of the
event-type-dependent action-selection strategy. We considered two
types of MSNs, D1 receptor-expressing MSNs (D1-MSNs) and D2
receptor-expressing MSNs (D2-MSNs), distinguished by their con-
nectivity and expression profile of dopaminergic receptors33. D1-MSNs
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Fig. 7 | Effect of type-specific inactivation of MSNs to event-type-dependent
action-selection strategy. a Description of the two-armed bandit task with
reversal task and reversible inactivation used in the experiment7. b–d Behavioral
dynamics profile comparisons between themice in the control condition and fitted
MF model (n = 39 mice). Left for results from simulated behavior of fitted MF
model. Right for results from mice behavior in control condition; b Choice
inconsistency (CI). c Effect of conflict event (CE). d Conditional effect of conflict
event (Conditional CE). e–g Behavioral dynamics profiles from mice behavior in
inactivation condition. Left for results from mice behavior in D1-MSN inactivation
(n = 20 D1R-Cremice). Right for results frommice behavior in D2-MSN inactivation

(n = 19 D2R-Cre mice). e CI. f CE. g Conditional CE. Decreases in behavioral
dynamics profiles and their finite differences were assessed using paired two-
sample permutation tests. The difference between CE-C and CE-S was examined
using a linearmixed-effects model, with the number of S+ repetitions (NS) and type
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cedure. Error bars indicate mean ± s.e.m. See Supplementary Table 2 for full sta-
tistical information. Source data are provided as a Source Data file. MF, model-free
RL model21.
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arepart of the direct pathway, facilitating desired actions and selecting
actions that lead to positive outcomes. On the other hand, D2-MSNs
are part of the indirect pathway, associated with inhibiting competing
actions and suppressing actions linked with negative outcomes34–36.
The balance between the direct and indirect pathway activity is crucial
for flexible behavior and adaptive decision-making since it helps to
optimize the behavior in response to changing environments7,35,36.

These functional segregations could be related to the action-
selection strategy after the conflict event, a key process underlying
flexible behavior in a context-switching environment. This moti-
vated us to investigate another behavioral study in which mice
performed a two-armed bandit task with context reversal (Fig. 7a
left) while they were under reversible inactivation of D1-MSNs or D2-
MSNs in DMS, respectively (Fig. 7a right)7. The analysis aimed to
assess if MSN inactivation leads to deficits in this strategy, as well as
to explore the differential contributions of D1-MSNs and D2-MSNs
to this process.

In the two-armed bandit task with MSN inactivation7, we con-
sidered the MF model as the best model based on the BIC score
comparison performed in the original study7. Additionally, previous
studies employing this task8,37 have demonstrated that the DFQmodel
outperforms the MF model, prompting us to also include the DFQ
model for comparison.

Our model was evaluated against: (1) the MF model21, which
updates action values through the RW learning rule, and (2) the DFQ
model28, which extends the MF model by incorporating a forgetting
mechanism for the unchosen action and separate update rules for the
chosen action depending on whether it was rewarded. All the models

were fitted to the behavioral data of each animal individually and
separately for different pharmacological conditions.

To investigate whether mice employ different action-selection
strategies after a conflict event compared to after a support event, we
applied the behavioral dynamics profiles to themouse behavior under
the control condition. We classified possible events into four cate-
gories identical to those used in the two-armed bandit task (Fig. 7a
middle). Unlike the two-step task incorporating the probabilistic
transition from a chosen action to an outcome state, the two-armed
bandit task with context reversal does not have such uncertainty.
Therefore, we selected the MF model as a baseline. The MF model
increases the relative action value after experiencing an S+ event and
decreases it after a C+ event. Also, after each trial, the MF model
updates its action values based on the RW learning rule. Therefore, the
MF model yields the same predictions as those demonstrated by the
MB model in the two-step task (Fig. 2).

First, the MF model predicts that CI(NS) and its finite difference
will decrease asNS increases. Thesepredictions are confirmedby theCI
profile measured from the simulated behavior of the fitted MFmodel.
Both CI and its finite difference continually decrease significantly until
NS = 5 (Fig. 7b left). These trends are also observed in the mice profile
until NS = 2 (Fig. 7b right).

Second, the MF model predicts that CE(NS) and its finite differ-
ence will decrease as NS increases. These are confirmed by the CE
profile measured from the simulated behavior of the fitted MFmodel.
Both CE and its finite difference continually decrease significantly until
NS = 4 (Fig. 7c left). These trends are also observed in the mice profile
until NS = 1 (Fig. 7c right).

d Effect of inactivation on

a Effect of inactivation on

e Effect of inactivation on (SSCS model predictions)

b Effect of inactivation on (SSCS model predictions)

f Effect of inactivation on CSI and SSCS model predictions

D1+ D1- D2+ D2- D1+ D1- D2+ D2-

-0.3

-0.2

-0.1

0

0.1

C
SI

Mouse SSCS

ModelData

***
**

c Effect of inactivation on SSI and SSCS model predictions

D1+ D1- D2+ D2- D1+ D1- D2+ D2-

0.15

0.2

0.25

0.3

0.35

0.4

0.45

SS
I

Mouse SSCS

ModelData

**
**

g Model explainability (SSI, Spearman correlation coefficient) h Model explainability (CSI, Spearman correlation coefficient)

Model

-0.5

0

0.5

1

Sp
ea

rm
an

 c
or

re
la

tio
n

co
ef

fic
ie

nt

CSI (D1+)

MF

DFQ

SSCS

Model

-1

-0.5

0

0.5

1

CSI (D1-)

MF
DFQ

SSCS

Model
-1

-0.5

0

0.5

1
CSI (D2+)

MF DFQ

SSCS

Model
-1

-0.5

0

0.5

1

CSI (D2-)

MF
DFQ

SSCS

Model
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Sp
ea

rm
an

 c
or

re
la

tio
n

co
ef

fic
ie

nt

SSI (D1+)

MF

DFQ SSCS

Model
0.2

0.4

0.6

0.8

1

SSI (D1-)

MF DFQ

SSCS

Model

0.2

0.4

0.6

0.8
SSI (D2+)

MF
SSCS

DFQ

Model

0.4

0.6

0.8

1
SSI (D2-)

MF DFQ

SSCS

Fig. 8 | Effect of type-specific inactivation of MSNs to the association between
past events and the action-selection strategy after the conflict event. a–c Effect
of type-specific inactivation to the regression weight βS and SSI; a, b Effect of type-
specific inactivation to the regression weight βS. βS before and after D1-MSN inac-
tivation, and βS before and afterD2-MSN inactivation from the left; aβS frommouse
actual behavior. b βS from simulated behavior of fitted SSCSmodel. c The effect of
inactivation on SSI and replications of the SSCS model. d–f Effect of type-specific
inactivation to the regression weight βC and CSI; d, e Effect of type-specific inac-
tivation to the regression weight βC. βC before and after D1-MSN inactivation, and
βC before and after D2-MSN inactivation from the left; d βC from mouse actual
behavior. e βC from simulated behavior of fitted SSCS model. f The effect of inac-
tivation on CSI and replications of the SSCS model. g, h Model explainability
comparison by measuring the Spearman correlation coefficient between the
measure computed from the mouse behavior and simulated behavior of the fitted
model. D1+, D1−, D2+, and D2− from the left. gModel explainability comparison on

SSI. h Model explainability comparison on CSI. In the Spearman correlation coef-
ficient, white bars indicate significantly lower values than the highest model
(P <0.05). SSI and CSI comparisons between control and inactivation conditions
were evaluated using paired two-sample permutation tests. Spearman correlation
coefficients between models were compared using Dunn and Clark’s Z tests. All
statistical tests were two-sided and corrected for multiple comparisons using the
Benjamini–Yekutieli procedure. Panels show data from n = 20 D1R-Cre mice (D1+/
D1−) or n = 19 D2R-Cre mice (D2+/D2−). Error bars indicate mean ± s.e.m., while for
the Spearman correlation coefficient, they represent mean ± bootstrap standard
error. *P <0.05, **P <0.01, ***P <0.001. See Supplementary Table 2 for full statis-
tical information. Source data are provided as a Source Data file. MF,model-free RL
model5; DFQ, Q-learning with different forgetting model28; SSCS, support-stay,
conflict-shift model; D1+, D1-MSN control; D1−, D1-MSN inactivation; D2+, D2-MSN
control; D2−, D2-MSN inactivation.
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Third, theMFmodel predicts that CE-C(NS) will be higher thanCE-
S(NS) for anyNS. Thesepredictions are confirmedby the conditional CE
profile measured from the simulated behavior of the fitted MFmodel.
CE-C is significantly higher thanCE-S untilNS = 2 (Fig. 7d left). But in the
mice profile, CE-CandCE-Swere insignificantly different (Fig. 7d right).

The alignment observed in CI/CE (Fig. 7e, f) and discrepancies
observed in conditional CE (Fig. 7g) also manifested in mice behavior
during the inactivation of D1-MSNs or D2-MSNs. Especially, after D1- or
D2-MSN inactivation, CE-C becomes significantly lower than CE-S.
Furthermore, the direct comparison of mice behavioral dynamics
profiles between control and inactivation conditions revealed that D1-
MSN inactivation significantly increases CI (Supplementary Fig. 13a
left), CE (Supplementary Fig. 13b left), and CE-S (Supplementary
Fig. 13d left). Importantly, D1-MSN inactivation did not significantly
alter CE-C (Supplementary Fig. 13c left), demonstrating the specificity
of the observed effects. D2-MSN inactivation did not significantly
influence any of the assessed behavioral dynamics profiles (Supple-
mentary Fig. 13a–d right).

The findings suggest that mice exhibit a different action-selection
strategy after the conflict event (Fig. 7), consistent with our previous
analyses involving various tasks (Figs. 2, 4–6). Moreover, it is note-
worthy that such utilization also appears after D1-MSNs or D2-MSNs
are inactivated (Fig. 7e–g). However, only the inactivation of D1-MSNs
specifically increases some behavioral dynamics profiles, thereby
implying the distinct roles of D1- and D2-MSNs in the event-type-
dependent action-selection strategy of mice (Supplementary Fig. 13).

The SSCS model replicates type-specific contributions of MSNs
to the action-selection strategy after the conflict event
To further investigate the dissociable contributions of D1-MSNs and
D2-MSNs to the event-type-dependent action-selection strategy, we
examined how past events influenced the action-selection strategy
following a conflict event and how these relationships were altered by
MSN inactivation.

First, to investigate the effect of past support events, we com-
puted the regression weights βS and SSI from the actual behavior of
mice under control and inactivation conditions. βS showed continual
decay, regardless of inactivation (Fig. 8a).

After the inactivation of D1-MSNs, the SSI from mice behavior
decreases significantly (Fig. 8c 1st column). In contrast, the effect of D2-
MSN inactivation on SSI wasmarginal (Fig. 8c 2nd column). This implies
that the effect of past support events on choosing the same action
becomes attenuated after D1-MSN inactivation specifically.

Second, to investigate the effect of past conflict events, we com-
puted the regression weights βC and CSI from mouse behavior under
control and inactivation conditions. Regardless of targeted types (D1-
MSN or D2-MSN) and conditions (control or inactivation), mice’s βC
starts from a value nearby 0, increases significantly at τ = 2, and con-
tinuously decays as τ increases (Fig. 8d).

After the inactivation of D1-MSNs, the change in CSI from mouse
behavior was insignificant (Fig. 8f 1st column). On the other hand, after
the inactivation of D2-MSNs, the CSI from mouse behavior decreases
significantly (Fig. 8f 2nd column). This implies that the effect of past
conflict events on choosing the same action increases after D2-MSN
inactivation specifically.

To investigate whether the SSCS model can replicate these find-
ings, we performed multi-trial history regression analyses on the
simulated behavior of the fitted SSCS model. We found that the SSCS
model accurately replicated (1) similar trends in βS (Fig. 8b) and βC
(Fig. 8e) regardless of conditions (D1+, D1−, D2+, and D2−), (2) a spe-
cific decrease in SSI after D1-MSN inactivation (Fig. 8c 3rd column), and
(3) a selective decrease in CSI after D2-MSN inactivation (Fig. 8f 4th

column). Furthermore, the SSI and CSI values from the SSCS model
showed significant positive correlations with those of themice (Fig. 8g

for SSI, Fig. 8h for CSI) across different conditions (D1+, D1−, D2+,
and D2−).

Collectively, these results suggest neural substrates conveying the
associations between past events and the action-selection strategy
after the conflict event. D1-MSNs selectively transfer the effect of past
support events, whereas D2-MSNs specifically transfer the effect of
past conflict events.

To validate whether the observed deficits following MSN inacti-
vations are specifically attributed to impairments in the event-type-
dependent action-selection strategy represented by the SSCS model,
we conducted model explainability comparisons. Specifically, we
performed multi-trial history regression analyses on simulated beha-
viors of different models and compared these regression results with
those derived from actual mouse behavior.

First, we computed the regression weights βS and SSI from the
simulated behavior of the fittedmodels under control and inactivation
conditions. All models exhibited a continual decay in βS regardless of
inactivation (Supplementary Fig. 15a for D1-MSN, Supplementary
Fig. 15f forD2-MSN),mirroring the trends observed inmice. Consistent
with this, the cosine similarity of βS between mice and the fitted
models did not differ significantly across the different models (Sup-
plementary Fig. 15b for D1-MSN, Supplementary Fig. 15g for D2-MSN).

A selective decrease in SSI following D1-MSN inactivation (Sup-
plementary Fig. 15c), but not D2-MSN inactivation (Supplementary
Fig. 15h), was observed across simulations of all three models. Com-
paring model explainability for SSI under D1-MSN manipulation
(Supplementary Fig. 14a, c), themodels showed similar performance in
terms of RMSE (Supplementary Fig. 15d) and Spearman correlation
coefficient (Supplementary Fig. 15e), regardless of inactivation. This
pattern was also observed for D2-MSN manipulations (Supplementary
Fig. 15i for RMSE, and Supplementary Fig. 15j for Spearman correlation
coefficient).

Second, we computed the regression weights βC and CSI from the
simulated behavior of the fittedmodels under control and inactivation
conditions. Across all targeted MSN types (D1-MSN or D2-MSN) and
conditions (control or inactivation), the SSCS model most accurately
replicated the βC trends (Supplementary Fig. 16a 4th column for D1-
MSN, Supplementary Fig. 16f 4th column for D2-MSN) observed inmice
(Supplementary Fig. 16a 1st column for D1-MSN, Supplementary Fig. 16f
1st column for D2-MSN). This was supported by significantly higher
cosine similarity of βC betweenmice and the fitted SSCSmodel relative
to the other models across conditions (Supplementary Fig. 16b for D1-
MSN, Supplementary Fig. 16g for D2-MSN).

A selective decrease in CSI following D2-MSN inactivation (Sup-
plementary Fig. 16h), but not D1-MSN inactivation (Supplementary
Fig. 16c), was also consistent with simulations from the SSCS model.
When comparing the model explainability of CSI for D1-MSN manip-
ulations (Supplementary Fig. 14b, d), the SSCS model demonstrated
significantly lower RMSE under inactivation condition (Supplementary
Fig. 16d right) and higher Spearman correlation coefficient across both
conditions (Supplementary Fig. 16e) compared to the other models.
Furthermore, the SSCS model exhibited significantly lower RMSE
(Supplementary Fig. 16i) and higher Spearman correlation coefficient
(Supplementary Fig. 16j) for both D2-MSN control and inactivation
conditions.

These results indicate that the observed behavioral changes in
mice following striatal inactivation are specifically linked to impair-
ments in the event-type-dependent action-selection strategy, provid-
ing causal evidence for its essential role. Given this causal evidence and
our findings that the striatum represents the event-type-dependent
action-selection strategy (Fig. 6), these results underscore that the
striatum encodes the event-type-dependent action-selection strategy.
This highlights its critical function in guiding flexible, context-driven
behavior.
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Discussion
This study demonstrated how rodents achieve flexible behavior at the
behavioral, computational, and neural levels. We hypothesized that
the animal achieves this by operating different action-selection stra-
tegies after experiencing support and conflict events, respectively.
Using behavioral dynamics profiles to track the trial-by-trial dynamics
of the action-selection strategy after one type of event, we showed that
conventional RL models fail to explain the action-selection strategy
after the conflict event (Fig. 2). On the other hand, the computational
model, which implements our inferred learning rules from behavioral
dynamics profiles, makes quantitatively successful predictions about
flexiblebehavior patterns in the four independent datasets5–8 (Figs. 3–7
and Supplementary Figs. 1, 4–7, 10–11, 14–16). Interestingly, MSNs in
both DMS and VS were found to encode not only choice and reward
information but also the two key decision variables of our computa-
tional model, suggesting a possibility that the striatum serves as the
information hub of flexible behavior (Fig. 6 and Supplementary
Fig. 12). Moreover, our model explains the exclusive contributions of
different MSN types on the action-selection strategy after the conflict
event; D1-MSNs selectively transfer the effect of past support events
(Fig. 8c and Supplementary Fig. 14a, c), whereas D2-MSNs specifically
transfer the effect of past conflict events (Fig. 8f and Supplementary
Fig. 14b, d).

Previously, several regression-based behavioral profiles5,38,39 have
been proposed, but they mainly targeted to distinguish between MF
and MB RL5,39 and have several limitations23,40. The proposed beha-
vioral dynamics profiles can characterize the trial-by-trial dynamics of
the action-selection strategy following events that support or conflict
with the subject’s inferred task context. Moreover, these profiles
reflect how one model updates its decision variable, such as action
value, outcome value, or belief. Therefore, these profiles can compare
the update rules between different models and evaluate whether the
model’s update rule reflects the animal behavior. Using these mea-
sures,we found that the animals’ action-selection strategy following an
unexpected event does not match conventional RL models; this result
corroborates an alternative view that the animals might have different
action-selection strategies to handle the support event and conflict
event. Furthermore, our behavioral measures can serve as com-
plementary tools along with traditional methods, such as likelihood-
based model comparison.

Another significant contribution of our work is that we general-
ized the idea of behavioral flexibility, which earlier discussions have
mainly focused on discrimination tasks41–44. To understand this, we
investigated the dynamics of the action-selection strategy after the
conflict event, which is vital to achieving behavioral flexibility. In
general, it is hard to evaluate whether twomeasures quantify different
aspects of the same behavioral policy, potentially leading to
multicollinearity45–47. To explain the action-selection strategy after the
conflict event better without such issues, we introduced multi-trial
history regression, which discriminated between the effect of past
support events and conflict events on the action-selection strategy
after the conflict event. Notably, our model consistently replicated the
effect of past support events and past conflict events computed from
animal behavior of independent datasets across different species and
task complexities5–8.

Our support-stay, conflict-shift model underpinning the animal
behavior in reversal learning tasks has been evaluated at the beha-
vioral, computational, and neural levels. Specifically, a proportion of
MSNs in both DMS and VS reflects the gain control effect of the two
decision variables of our computational model, support and conflict
bias, and the striatal direct and indirect pathways are shown to con-
tribute to maintaining flexible behavior differentially.

The robust neural evidence solidly supports our conclusions
regarding the striatum’s pivotal role in the action-selection strategy
following the conflict event. The results from behavioral and neural

analyses in rats (Fig. 6 and Supplementary Figs. 11 and 12) reinforce the
idea that the striatum encodes the distinct action-selection strategy
after the conflict event, which previous models had overlooked.
Through analyses of mice behavior that assessed the impact of selec-
tive inactivation of D1- and D2-MSNs, we have clarified the striatal
association with the action-selection strategy after the conflict event
(Figs. 7 and 8). Collectively, these findings strongly support the
hypothesis that the striatum engages in the action-selection strategy
after the conflict event, as evidenced across different species (rat for
MSN recording, mouse for MSN inactivation), methodologies (elec-
trophysiology for MSN recording, pharmacogenetics for MSN inacti-
vation), and tasks (T-maze task for MSN recording, two-armed bandit
task for MSN inactivation).

Previously, numerous studies had related different types of
dopamine receptors with behavioral flexibility36,48–50 respectively, but
they mainly focused on manipulating neurons and examining simple
behavioral effects. On the contrary, we linked the neuron/circuit level
activities with our model implementing support and conflict bias with
their update rules inferred from animal behavior. This could provide
an integrative framework capable of producing more viable predic-
tions. For example, our model can explain the recent finding investi-
gating the role of striatal direct and indirect pathways in goal-directed
behavior in updating action selection35, including a pathway-specific
association of task variables to neuronal signals and results of opto-
genetic stimulation. In the long run, the support-stay, conflict-shift
model can help us deepen the understanding of how the striatal
dopaminergic system manages flexible behavior.

It would be interesting to show that our model can generalize to
situations accommodating various choices and a hierarchical structure
between adjacent states. Recently, several papers have discussed the
generalization of binary choices to multiple ones by incorporating the
Bayesian ideal observer model51. However, such inductive reasoning
requires an assessment by objective behavioral measures to preclude
any hasty generalization fallacy. In this regard, one experiment52

showed that the Bayesian ideal observer model could not explain
captured discrepancies in a three-alternative visual categorization task.

There are twomajor directions towhich insights fromourfindings
can be extended. What neurons encode depends on both the brain
region they locate and how much experience accumulated inside the
task environment. First, since dorsal and ventral striatum receive and
send different inputs53–55 and outputs56,57 respectively, it is necessary to
investigate how the distribution of neurons encoding decision vari-
ables modulates across the dorsoventral axis58–60 and how their
dynamics are changing throughout training61,62.

Second, without explicit cues indicating different contexts, sub-
jects must actively infer the task structure63–65 based on their past
experiences66–69. After continual evaluations to determine whether the
inferred structure can explain underlying variances17,70–74, this reason-
ing may lead to the true task structure26,75. While the SSCS model fits
the broader definition of model-based RL models by utilizing task
structure, it can be viewed as a form of meta-learning, as it learns to
choosebetween contexts/tasks and associated actions simultaneously.
Furthermore, our model advances the concept of biological meta-RL
by providing detailed computational principles underlying event-type-
dependent action-selection for rapid animal adaptation15.

Overall, our support-stay, conflict-shift model can provide an
expanded interpretation of the action-selection strategy after the
conflict event guiding behavioralflexibility and shed light on themulti-
dimensional role of the striatum and related dopaminergic control in
driving flexible behavior.

Methods
Terms for behavioral analyses
Our study considers behavioral datasets derived from various
research5–8. These tasks share five key components:
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• Action: The task contains two possible actions.
• Transition: Each action leads to an outcome state according to
the state-action-state transition probability.

• Outcome state: Each action leads to one of two potential out-
come states.

• Reward: After reaching an outcome state, a reward is allocated
based on a probabilistic schedule.

• Task context: The task consists of two distinct contexts, each
favoring a different, non-overlapping outcome state by allocating
a higher reward probability to it.

During a given session, only one context is active at a time and
controls the reward system. However, the active context can switch
randomly during the session, a process we refer to as a “reversal". We
define a sequence of trials where the context remains unchanged as
a “block".

Within a block, where the task context remains constant, there are
some inherent stochastic elements. These include (1) the transition
between action and outcome state and (2) the reward probability.
Given these uncertainties, we categorize an action leading to a reward
with a higher probability as a “positive action" (a+) and one leading to a
reward with a lower probability as a “negative action" (a−).

The event is the sequence, which consists of the action chosen
(positive or negative), the transition type fromthe chosen action to the
arrived outcome state (common or uncommon), and the actual out-
come (rewarded or omission). After choosing one action X, the set of
events when the actual outcome matches the subject’s outcome
expectation is defined as a “support event" of the action X, SX. For
example, suppose that the subject experiences a common transition
after choosing the action X. It will predict that there will be a reward
because it chooses the best action based on its assumed task context
and arrives at the outcome state that has a higher probability of

receiving a reward under the context. If there is an actual reward, this
event belongs to the support event of action X, SX. On the contrary,
after choosing one action X, the set of events when the actual outcome
mismatches the subject’s outcome expectation is defined as a “conflict
event" of action X, CX.

For several analyses, wedefined two terms, the “task variable" and
the “decision variable". A task variable is an observable object in animal
behavior, such aswhat choice the subjectmade or whether the subject
was rewarded or not. On the contrary, a decision variable is a latent
object, often assumed to explain the animal behavior, such as action
value or state value.

Summary of datasets and sources
Table 1 provides clarity on the datasets analyzed in this study, con-
firming that the results are based on a comprehensive reanalysis of
existing datasets from previous research5–8. The table summarizes
each dataset, its corresponding section in the manuscript, and the
figures representing the analyzed data.

Experiment details
The two-step task (Figs. 2–4). The experimental procedures descri-
bed below were adopted from the original study5 where the dataset
was first published and made publicly available.

Subjects. All subjects (n = 21) were adult male Long-Evans rats (Taco-
nic Biosciences, NY), placed on a restrictedwater schedule tomotivate
them to work for water rewards. Some rats were housed on a reverse
12-h light cycle and others on a normal light cycle; in all cases, rats were
trained during the dark phase of their cycle. Rats were pair-housed
during behavioral training. Animal use procedures were approved by
the Princeton University Institutional Animal Care and Use Committee
and carried out in accordance with NIH standards.

Table 1 | Summary of datasets utilized in the analyses

Source Species Task Data Result section Figure

5 Rat The two-step task Behavior “RL models fail to predict animals’ choice
behavior after an unexpected event” and
“Event-type-specific behavioral dynamics
underlying few-shot adaptation” sections

Fig. 2

Supplementary Fig. 1

Supplementary Fig. 2

Supplementary Fig. 3

“Computational model for event-type-
dependent action-selection strategy” section

Fig. 3

“The SSCS model explains rat’s few-shot
adaptation” section

Fig. 4

Supplementary Fig. 4

Supplementary Fig. 5

Supplementary Fig. 6

Supplementary Fig. 7

Supplementary Fig. 8

6 Mouse The two-armedbandit task Behavior “TheSSCSmodel characterizes the behavior of
different species in simpler tasks” section

Fig. 5

Supplementary Fig. 9

Supplementary
Fig. 10

8 Rat The T-maze task Behavior neural recordings “The SSCS model explains the activity of
medium-spiny neurons” section

Fig. 6

Supplementary Fig. 11

Supplementary Fig. 12

7 Mouse The two-armedbandit task Behavior before and after the inactivation “Mice exhibit event-type dependent action-
selection strategy, independent from MSN
inactivations” section

Fig. 7

Supplementary Fig. 13

“The SSCS model replicates type-specific
contributions of MSNs to the action-selection
strategy after the conflict event” section

Fig. 8

Supplementary Fig. 14

Supplementary Fig. 15

Supplementary Fig. 16
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Task design. In this experiment, rats performed the task in a beha-
vioral chamber outfitted with six nose ports arranged in two rows of
three ports each. Choice ports were located on the left and right sides
of the top row, and reward ports were located on the left and right
sides of the bottom row.

In the first step of the task, rats initiated each trial by entering the
center port on the top row and then indicated their choice by entering
one of the choice ports. Each choice port led to one reward port with
an 80% probability (common transition, Fig. 1c) and to another reward
port with a 20% probability (uncommon transition, Fig. 1c). Such
transitions were guided by an auditory stimulus that indicated which
reward port became available.

In the second step, rats first entered the center port on the bottom
row, followed by entering the reward port. After visiting the reward
port, rats either received (reward) or did not receive (omission) a bolus
of water. Reward probabilities were allocated differently for each
reward port, and this allocation was determined by the context of the
current block (Fig. 1a). The number of trials in each block was 10 plus a
random number drawn from a geometric distribution with a
mean of 50.

The two-armed bandit task with context reversal (Fig. 5). The
experimental procedures described below were adopted from the
original study6 where the dataset76 was first published and made
publicly available.

Subjects. Wild-type mice (n = 6, C56BL/6N from Charles River and
bred in-house) aged 6–10 wk were water restricted to 1–2mL per day
prior to training and maintained at >80% of full body weight. All
training sessions were conducted in the dark or under red-light con-
ditions. Experimental manipulations were performed in accordance
with protocols approved by the Harvard Standing Committee on
Animal Care, following guidelines described in the NIH Guide for the
Care and Use of Laboratory Animals.

Task design. In each session, the mouse had the freedom to move
around in a chamber that had three ports (Fig. 5a). Theseports allowed
the mouse to interact with the task by poking its nose into them. One
of the side ports, called the high port, had a reward probability of p,
while the other side port, called the low port, had a reward probability
of 1 − p. Therewere three different task conditions,withp values of 0.7,
0.8, and 0.9, representing different reward probabilities for the high
port. The value of p remained constant within a session but changed
across different sessions.

At the beginning of each trial, an LED above the center port was
activated, indicating to the mouse that it could start a trial by
poking its nose into the center port at any time. This action trig-
gered the activation of LEDs above the two side ports, prompting
the mouse to choose between the left or right port. The mouse had
2 s to make its selection. After entering a side port, the decision to
deliver a water reward or not was determined by the corresponding
port’s reward probability. The trial ended when themouse withdrew
from the side port, and a new trial began after a 1-s inter-trial interval
(ITI). During the ITI, there was a 0.02 probability of a context
reversal, which determined whether the high and low ports would
switch positions. This random process resulted in blocks of con-
secutive trials where the position of the high port remained the
same, with an average block length of 50 trials. After the ITI, the LED
above the center port turned on. Each behavior session lasted
for 40 min.

The T-maze task with context reversal (Fig. 6). The experimental
procedures described below were adopted from the original
study8 where the dataset77 was first published and made publicly
available.

Subjects. Young male Sprague Dawley rats (n = 3, 9–11 weeks old,
250–330 g) were used. Initially, they had unlimited access to food and
water.With the start of behavioral training, water access was limited to
30 min post-session daily. Experiments took place during the dark
phase of a 12-h light/dark cycle. The experimental protocol was
approvedby the Ethics ReviewCommittee forAnimal Experimentation
of the Ajou University School of Medicine.

Task design. Each trial began as the subject returned to the central
stem of a modified T-maze. Inside the maze, there were photo-beam
sensors that alarmed the moment when the subject entered the cor-
responding spot. By the intervals between sensors, we divided a single
trial into four different sections: prepare, action, reward, and
update (Fig. 6a).

After a delay of 2–3 s, the central bridge was lowered (action
offset), allowing the subject to navigate forward and choose freely
between the two goal locations to obtain a water reward. The begin-
ning of the reward section was the time when the animal broke the
photo-beam that was placed 6 cm ahead of the water-delivery nozzle.
The central connecting bridge was raised at the onset of the reward
section. The beginning of the update section was the time when the
animal crossed an invisible line 11 cm away from the water-delivery
nozzle. The beginning of the prepare section in the next trial waswhen
the animal broke the central photo-beam that was placed 13 cm from
the proximal end of the maze.

The neural activity of each rat was recorded for a total of
4–18 sessions, and each session consisted of four blocks of trials. Each
block was associated with one of four different reward probability
pairs (left:right = 0.72:0.12, 0.63:0.21, 0.21:0.63, or 0.12:0.72). The
sequence of blocks was randomly determined with the constraint that
the higher probability target changes its location at the beginning of
each block. The number of trials in each block was 35 plus a random
number drawn from a geometric distribution with a mean of 5, while
the maximum number of trials was set at 45.

Unit recording. Single unit activities were recorded from the left (n = 1)
or right (n = 2) DS and VS. For the DS recording, unit activity was
recorded from the dorsomedial striatum, and for the VS recording,
activitywasmostly recorded from the core of thenucleus accumbens. A
microdrive array loaded with 12 tetrodes was lowered aiming the dor-
somedial striatum (1.2mm anterior, 1.7mm lateral from bregma) with
six tetrodes implanted in the DS [3.0mm ventral (V) from the brain
surface] and the other six implanted in the VS (6.0mmV from the brain
surface) under deep anesthesia. The identity of unit signals was deter-
mined based on the clustering pattern of spike waveform parameters,
averaged spike waveforms, baseline discharge frequencies, auto-
correlograms, and interspike interval histograms. For those units that
were recorded for two ormore days, the session inwhich the units were
most clearly isolated from background noise and other unit signals was
used for analysis.

Single units were isolated by examining various two-dimensional
projections of spike waveform parameters, and manually applying
boundaries to each subjectively identified unit cluster using custom
software (MClust 3.4). Only those clusters that were clearly separable
fromeachother and frombackgroundnoise throughout the recording
session were included in the analysis. Unit signals were recorded with
the animals placed on a pedestal (resting period) for 10min before and
after experimental sessions to examine the stability of recorded unit
signals. Unstable units were excluded from the analysis. Post-record-
ing, marking lesions confirmed recording sites histologically.

Unit classification. Units were categorized as either putativemedium-
spiny neurons (MSNs) or interneurons based on their firing rates and
spike widths. The majority of the analyzed units were putative MSNs.
were MSNs. We analyzed the activity of MSNs only.
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The two-armed bandit task with MSN inactivation (Figs. 7 and 8). In
our study, we used the behavioral data78 during the two-armed bandit
task, described as the dynamic TAB task in the original study7. There-
fore, in this section, we only introduced the subject information and
manipulation related to our analyses. The full experimental proce-
dures are detailed in the original study7 where the dataset78 was first
published and made publicly available.

Subjects. C57BL/6J BAC transgenic mouse lines expressing Cre
recombinase under the control of dopamine D1R or D2R (Drd1-EY217
and Drd2-ER44, respectively) were obtained from Gene Expression
Nervous System Atlas. The animals were extensively handled and then
water-deprived so that their body weights were maintained at 80% of
ad libitum levels throughout the experiments. Eachmousewas housed
in an individual home cage, and all experiments were performed in the
dark phase of a 12 h light/dark cycle. 21 D1R-Cre and 20 D2R-Cre mice
were used for expression of h4DMi-mCherry in the striatum.Onlymale
mice were used in the present study and all were 10–15 wk old at the
time of virus injection surgery. All animal care and experimental pro-
cedures were performed in accordance with protocols approved by
the directives of the Animal Care and Use Committee of Korea
Advanced Institute of Science and Technology (approval number
KA2018-08).

Virus injection. Mice were anesthetized with isoflurane (1.0–1.2% [vol/
vol] in 100% oxygen), and two burr holes were made bilaterally at
0.3mm anterior and 2.0mm lateral to bregma. AAV8-based, modified
human M4 muscarinic receptor (AAV8-hSyn-DIO-hM4Di-mCherry)
expression constructwas injectedbilaterally at adepthof 3.0mmfrom
the brain surface at a rate of 0.05ml/min (total volume, 2ml). The
injection needle was held in place for 15min before and after the
injection.

Task design. At the beginning of each trial, an LED in the center port
was activated. A nose poke in the central port turned off the central
LED and turned on the LEDs in the both left and right ports. The animal
was free to choose between the two lit nose-poke ports at this stage. A
nose poke in either the left or right port turned off the both left and
right LEDs and turned on the center LED. After entering one port, the
decision to deliver a water reward (30ml) or not was determined by
the corresponding port’s reward probability.

In this task, one session consisted of four blocks of trials, each of
which consisted of 35–50 trials (one session per day; 24 h apart); The
block length for one block was determined randomly among 35, 40,
45, or 50 trials. In each block, one port deliveredwater with a relatively
high probability (72%), and the other port delivered water with a
relatively low probability (12%). The reward probabilities in the first
block were determined randomly and were reversed across block
transitions (Fig. 7a). Before the experimentwith inactivation started, all
mice had been trained extensively in the same task 3 weeks
beforehand.

Pharmacogenetic intervention. To examine the effects of inactivating
D1R- or D2R-expressing striatal neurons, mice were intraperitoneally
injected with dimethyl sulfoxide (DMSO, 2.5−3%, 0.5ml/kg, control)
and clozapine-N-oxide (CNO, 5mg/kg, inactivation) on alternate days
40min prior to daily sessions. The behavioral data under control or
inactivation conditions were collected for 10 sessions each. The order
of drug injection was counterbalanced across animals.

Determination of steady-state
To account for the potential influence of variable learning rates caused
by increased uncertainty immediately following a reversal79,80, we
established a criterion for determining the steady-state while investi-
gating the decision variable and its update rule through behavioral

dynamics profiles. This steady-state period represents the phasewhere
the subject shifts toward exploitation over exploration and stabilizes
its tendency to choose the positive action rather than the negative
action consistently.

First, we estimated the binomial probability of repeating positive
action p+ and negative action p− at trial index t. Here, the trial index is
the counter variable that resets to 0 when the reversal occurs.

p+ tð Þ=P at�1 =at =a+ jt
� �

p� tð Þ=Pðat�1 =at =a�jtÞ

Then, we fitted g, the exponential function with linear asymptote
to represent p+ and p− as functions of the trial index,

p + tð Þ � g + tð Þ=A+ exp B+ t
� �

+C + t +D+

p� tð Þ � g� tð Þ=A� exp B�t
� �

+C�t +D�:

We defined the “steady-state" using a plateau detection
method81,82. First, for each fitted curve g+ and g−, we drew a line l
connecting the initial point and the endpoint (Supplementary Fig. 17b,
Bold lines). The endpoint (or asymptotic point) is defined as t = t∞,
where t∞ is the 95th percentile of the block length distribution for each
subject’s data.

Next, for the stay probability of the positive action, we defined the
positive steady-state criterion t +S (Supplementary Fig. 17b left, Vertical,
dotted line) as the point where the derivative of the function g+
(Supplementary Fig. 17b left, Diagonal, dotted line) is closest to s+, the
slope of the line l drawn on g+.

t +S = argmin
τ2 0 t1½ �

∣g 0+ τð Þ � s + ∣, s + =
g + t1

� �� g + 0ð Þ
t1 � 0

:

Likewise, we defined the negative steady-state criterion t�S (Sup-
plementary Fig. 17b right, dotted lines).

t�S = argmin
τ2 0 t1½ �

∣g 0� τð Þ � s�∣, s� =
g� t1

� �� g� 0ð Þ
t1 � 0

:

Finally, for each subject, we computed the steady-state criterion tS
as the average of t +S and t�S . The steady-state period is defined as a set
of trials with indices greater than tS.

Behavioral dynamics profile
We designed behavioral dynamics profiles to achieve two main
objectives: (1) to characterize the animal’s action-selection strategy
after a specific event type in detail and (2) to compare it with the
prediction of different models. When defining these measures, we
denoted the action that subjects chose and the event subjects
experienced at trial t as at and et, respectively.

Behavioral dynamics profiles are defined as the conditional
probability of choosing the negative action at trial t (probe trial) given
the sequence of past events until trial t − 1 (event sequence). Since all
the data analyzed in this work has only the discrete binary choice data
indicating whether the subject chose a negative action after experi-
encing the corresponding event sequence up to the last trial, we esti-
mated this action probability value from the binary choice data.

To reduce the influence of variable learning rate due to
uncertainty79,80, we considered the subject behavior during the steady-
state and estimated the binomial probabilities from the trials included
in the steady-state. We focused on the trial in which subjects chose the
negative action during the steady-state because it implies that subjects
might suspect the context change even if the actual context does not
change.
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Choice inconsistency (CI, Fig. 2a). The choice inconsistency at length
k, denoted as CI(k), is defined as the conditional probability of
choosing the negative action given that the subject had experienced
the positive support (S+) events k times in a row, most recently.

CIðkÞ=P at =a�jet�k:t�1 2 S+
� �

Effect of conflict event (CE, Fig. 2b). The effect of conflict event at
length k, denoted as CE(k), is defined as the conditional probability of
choosing the negative action given that the subject experienced the
positive conflict (C+) event most recently after it had experienced the
positive support (S+) events k times in a row.

CEðkÞ= P at =a�jet�k�1:t�2 2 S+ , et�1 2 C+
� �

Conditional effect of conflict event (conditional CE, Fig. 2c). There
are two types of conditional effects of conflict event to quantify the
effect of past events on the action-selection strategy after the conflict
event. First, CE-C at length k is given by

CE� C ðkÞ=P at = a�jet�k�2 2 C+ , et�k�1:t�2 2 S+ , et�1 2 C+
� �

:

Second, CE-S at length k is given by

CE� S ðkÞ=P at = a�jet�k�2 2 S + , et�k�1:t�2 2 S+ , et�1 2 C+
� �

:

Filtering behavioral dynamics profiles. To address the inherent lim-
itations of binomial probability estimationwith small sample size data,
we implemented a robust filtering process for analyses using beha-
vioral dynamics profiles. Consider a behavioral dynamics profile X at
length k, denoted as X(k), where X can be any behavioral dynamics
profile, such as CI, CE, CE-C, and CE-S. For each subject, we estimated
the valueofX(k), representing thebinomial probability of choosing the
negative action, while varying k. To filter out unreliable estimates, we
utilized the confidence interval as a criterion, as it is known to be a
reliable measure of the estimation’s uncertainty.

Suppose that a subject chooses the negative actionm times out of
n trials, following an event sequence of X(k). A common approach to
calculating the confidence interval involves using the normal approx-
imation to the binomial distribution. However, this approximation
requires that both m and n are sufficiently large, typically m > 10
and n > 2083.

As k increases, it becomes hard to meet this condition since the
event sequence of X(k) must contain k consecutive S+ events. This
creates two specific issues:
1. Decrease in n: The probability that a subject experiences k con-

secutive S+ events decreases, leading to a decrease in n.
2. Decrease in m: After experiencing k consecutive S+ events, sub-

jects generally refrain from choosing the negative action, result-
ing in a decrease in m.

Therefore, we cannot resort to the normal approximation for
calculating the confidence interval since it becomes invalid for large k
due to unmet assumptions. To address this issue, we can use f(p), the
posterior probability distribution of p = X(k), given the observed data
m and n84.

Derivation of f(p). Assuming that the choice behavior follows a Ber-
noulli process, the likelihood of observing m negative actions in n
trials, given p is:

Pr mjp½ �= n

m

� �
pm 1� pð Þn�m / pm 1� pð Þn�m:

Since we are only interested in p and the binomial coefficient
n
m

� �
is constant with respect to p, we can omit it in the likelihood

function (as it will cancel out in the posterior distribution).
We do not have any prior knowledge about p; therefore, the prior

distribution of p is the uniform distribution over the interval 0, 1½ �, i.e.,
Pr p½ �= 1. Applying Bayes’ theorem, the posterior distribution of p given
m and n is:

Pr pjm½ �= Pr mjp½ � � Pr p½ �
Pr m½ � =

pm 1� pð Þn�mR 1
0 p

m 1� pð Þn�mdp
:

The denominator is the normalization constant, which is the
integral of the numerator over p 2 0, 1½ �.

Pr m½ �=
Z 1

0
pm 1� pð Þn�mdp=

Z 1

0
pðm+ 1Þ�1 1� pð Þðn�m+ 1Þ�1dp=Bðm+ 1,n�m + 1Þ,

where B denotes the beta function. Therefore, the posterior distribu-
tion f(p) is a beta distribution with parameters α =m + 1 and β = n −
m + 1:

f pð Þ= pm 1� pð Þn�m
Bðm+ 1,n�m+ 1Þ :

Recall that f(p) is the posterior probability distribution of p = X(k),
given the observation that the subject chooses the negative action m
times our of n trials. Based on f(p), we can calculate themost probable
value of X(k), which is the expectation.

Calculating E p½ �. The expectation of p is:

E p½ �=
Z 1

0
p � f pð Þdp=

Z 1

0
p � pm 1� pð Þn�m

Bðm+ 1,n�m+ 1Þdp=
R 1
0 p

m+ 1 1� pð Þn�mdp
Bðm+ 1,n�m+ 1Þ :

The numerator is the beta function with parameters m + 2 and
n −m + 1:

Z 1

0
pm+ 1 1� pð Þn�mdp=

Z 1

0
pðm +2Þ�1 1� pð Þðn�m+ 1Þ�1dp=Bðm+2,n�m+ 1Þ:

Then, the expectation E p½ � becomes:

E p½ �=
R 1
0 p

m+ 1 1� pð Þn�mdp
Bðm+ 1,n�m+ 1Þ =

Bðm+2,n�m+ 1Þ
Bðm+ 1,n�m+ 1Þ :

Using the property of the beta function,

Bðm,nÞ= m� 1ð Þ! n� 1ð Þ!
m+n� 1ð Þ! :

We can simplify:

Bðm+ 2,n�m+ 1Þ= m+2½ � � 1ð Þ! n�m+ 1½ � � 1ð Þ!
m+2½ �+ n�m+ 1½ � � 1ð Þ! =

m+ 1ð Þ! n�mð Þ!
n+2ð Þ! :

Bðm+ 1,n�m+ 1Þ= m+ 1½ � � 1ð Þ! n�m+ 1½ � � 1ð Þ!
m+ 1½ �+ n�m+ 1½ � � 1ð Þ! =

mð Þ! n�mð Þ!
n+ 1ð Þ! :

Thus,

E p½ �= Bðm+ 2,n�m+ 1Þ
Bðm+ 1,n�m+ 1Þ =

m+ 1ð Þ!
n+2ð Þ! �

n+ 1ð Þ!
mð Þ! =

m+ 1
n +2

:

Calculating the confidence interval for X(k). The confidence interval
of X(k) can be derived from the cumulative density function (CDF) of
the distribution f(p). Since f(p) is a beta distribution, the CDF is the
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regularized incomplete beta function Ip m+ 1,n�m+ 1ð Þ. The c × 100%
confidence interval T = pL,pU

� �
for X(k) is determined by:

IpL
m+ 1,n�m+ 1ð Þ= 1� cð Þ

2
, IpU

m+ 1,n�m+ 1ð Þ= 1 + cð Þ
2

:

TofindpL andpU, weuse the inverseof the regularized incomplete
beta function I−1:

pL = I
�1
1�cð Þ=2 m+ 1,n�m+ 1ð Þ, pU = I�11 + cð Þ=2 m+ 1,n�m+ 1ð Þ:

Therefore, the c × 100% confidence interval T for X(k) is:

T = pL,pU

� �
= I�11�cð Þ=2ðm+ 1,n�m+ 1Þ, I�11 + cð Þ=2ðm+ 1,n�m+ 1Þ
h i

:

The width ℓ(T) of the confidence interval T is determined by the
difference between the upper and lower bounds of the interval T:

‘ðTÞ= I�11 + cð Þ=2ðm+ 1,n�m+ 1Þ � I�11�cð Þ=2ðm+ 1,n�m+ 1Þ:

By using the Bayesian approach with the beta distribution, we can
accurately estimate the confidence intervals for X(k) even whenm and
n are small. This method addresses the limitations of the normal
approximation in the context of small sample sizes and provides a
more reliable measure of uncertainty in our estimates. Based on the
confidence intervals described above, we implemented a robust fil-
tering process, which can be used for in-depth analyses of behavioral
dynamics profiles.

Upon computing each X, two interconnected matrices, P and L,
are generated to capture the aggregated data across all subjects.
Matrix P contains the estimated binomial probabilities, while L holds
the widths of the corresponding 95% confidence intervals. Specifically,
each entry P(k, i) and L(k, i) jointly represent the estimate and its
confidence interval while estimating X(k) for ith subject.

To enhance the reliability of our estimates, we set the acceptance
threshold from the distribution of widths stored in L. Estimates
accompanied by confidence intervals exceeding this threshold were
excluded from further analysis. In other words, we discarded P(k, i) if
its corresponding L(k, i) exceeded the threshold.

As an additional step to ensure the robustness of our statistical
analyses, we employed a listwise deletion strategy as a preprocessing
procedure. If a subject had one or more discarded values, the entire
dataset corresponding to that subject was excluded from the analysis
using the behavioral dynamics profile X. More specifically, if any ele-
ment in ith columnof P was discarded, the entire columnwas removed.

Lastly, we confirmed that our results remained stable across a
reasonable range of acceptance thresholds for confidence interval
widths. This was validated through sensitivity analyses across different
threshold values, although these data are not presented. For the ana-
lyses conducted in this paper, the acceptance threshold was set at the
median, except for analyses of the two-armed bandit tasks (Fig. 5) and
the T-maze task (Fig. 6), where it was the 60th percentile.

Multi-trial history regression analysis
We quantified the effect of past support or conflict events on the
action-selection strategy after the conflict event using logistic regres-
sion analysis (SupplementaryFig. 3).Wedefinedvectors for eachof the
two possible event types: support event (S), and conflict event (C),
each taking on a value of +1 for trials of their type in which the subject
selected the positive action, a value of−1 for trials of their type inwhich
the subject selected the negative action and a value of 0 for trials of
other types. We defined the following regression model:

logit P at =a + jet�1 2 C
� �� �

=
XT
τ = 1

βC τð Þ � C t � τð Þ+
XT
τ = 2

βS τð Þ � S t � τð Þ,

whereβC and βS are row vectors of regressionweights thatquantify the
tendency to repeat the action that was made τ trials ago, which
resulted in the corresponding event type, and T is a parameter gov-
erning the number of past trials used by the model to predict
upcoming choice. Unless otherwise specified, T was set to 5 for all
analyses. To evaluate the behavioral similarity between the subject and
the fitted model, we first individually computed the normalized
regression weight bβC and calculated the cosine similarities between bβC

from the subject and the fitted model. Second, we individually com-
puted the normalized regression weight bβS and calculated the cosine
similarities between bβS from the subject and the fitted model.

bβC =
βC

βC

�� �� , bβS =
βS

βS

�� �� ,
Support-stay index (SSI). We defined the support-stay index as the
average regression weights βS to represent the general effect of past
support events on choosing the same action,

SSI =
1

T � 1

XT
τ = 2

βS τð Þ:

Conflict-shift index (CSI). We defined the conflict-shift index as the
average regression weights βC multiplied by −1 to represent the gen-
eral effect of past conflict events on choosing the alternative action,

CSI =
�1

T � 1

XT
τ = 2

βC τð Þ:

Model proposal
Based on observed discrepancies between animal behavior and rein-
forcement learning (RL) models in behavioral dynamics profiles and
multi-trial history regression analyses (Fig. 2), we design a model to
accurately describe different action-selection strategies after the
conflict and support events. Here, we assumed that the animal
understands the task structure well through extensive training,
including anti-correlated reward probabilities for two output options
and the likely outcomes it will experience after choosing one action
under specific contexts.

Suppose there are two possible actions, X and Y. Note that the
model cannot guarantee which one is the positive andwhich one is the
negative action. This is because the model cannot know the ground-
truth context currently active. Instead, themodel only estimates it. For
each possible action a 2 X , Yf g, the model contains two decision
variables, support-stay bias (support bias) ba

S and conflict-shift bias
(conflict bias) ba

C. Specifically, when the model chooses action a and
experiences the support event of action a (Sa), the support bias of the
action a,ba

S, governs the action selection for the next trial, explaining
the action-selection strategy after the support event, observed in CI
(Fig. 2a). On the other hand, when the model experiences the conflict
event of the action a (Ca), the conflict bias of the action a,ba

C, governs
the action selection for the next trial, explaining the action-selection
strategy after the conflict event, observed in conditional CE (Fig. 2c)
and βC (Fig. 2d).

At the initialization of the model, the support bias of all actions is
set to 0.5, and the conflict bias of all actions is set to b0

C, the constant
parameter representing the innate valueof conflict bias. At the current,
tth trial, suppose the model chooses action X (at = X) and experiences
the event, which can occur after choosing action X (et ∈ SX ∪ CX). After
each trial, ourmodel performs four operations; (1) conflict bias update,
(2) action selection, (3) support bias update, and (4) flag update.

Conflict bias update. The model updates the conflict bias of the
chosen action X using the modified Rescorla-Wagner (RW) learning
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rule9,

bX
Cðt + 1Þ= bX

CðtÞ+αCðtÞ λCðtÞ � bX
CðtÞ

	 

, ð1Þ

where αC(t) and λC(t) refer to the trial-varying learning rate and
asymptote10 of conflict bias, respectively. Both variables depend on
two factors: (1) the type of event et and (2) the flag ft, the Boolean
variable indicating whether the model repeats the same action,
although it led to a conflict event in the last trial. The flag serves as a
mental note to bet on the possibility that there was no context change.
Mathematically, these factors can be represented as the indicator
functions Ye and Yf, respectively;

YeðtÞ=1 et 2 SX
h i

, Y f ðtÞ=1 f t = 1
� �

=1 et�1 2 CX
h i

: ð2Þ

For different combinations of Ye and Yf, we used different pairs of
αC and λC. Specifically, for each trial, the values of αC(t) and λC(t) are
determined by the current combination of Ye(t) and Yf(t). This
approach was used to characterize the observed results from the
comparisonbetweenCE-CandCE-Swhile varyingNS (Fig. 2c), aswell as
the results observed from βC while varying τ (Fig. 2d).

In addition to the update mechanism described in Eq. (1), we
incorporated a forgetting mechanism to address scenarios where the
model does not consistently adhere toone actionover successive trials
(at ≠ at−1). This situation indicates that themodel lacks a strongbelief in
any particular context. If such a condition persists, the difference
between the conflict biases of two actions - representing the model’s
contextual belief shapedbypast experiences - shouldconverge toward
0. We assumed that this converge occurs as the conflict bias of all
actions gradually converges to b0

C, the initial value of the conflict bias.
We set the forgetting rates of the action chosen and unchosen at the
current trial differently,

ba
C t + 1ð Þ  

ba
C t + 1ð Þ+ωch

C b0
C � ba

C t + 1ð Þ
	 


, a=X

ba
C t + 1ð Þ+ωunc

C b0
C � ba

C t + 1ð Þ
	 


, a≠X

8><>: , ð3Þ

where ωch
C and ωunc

C are constants representing the forgetting rates of
the conflict bias for the chosen and unchosen actions, respectively.

Action selection
After the action support event. After experiencing an action support
event (et ∈ SX), the model chooses whether to stay with the current
action (at = X) based on the support bias. The stay probability is given
by

P at + 1 =X jet 2 SX
	 


=
exp βbX

S ðtÞ
	 


P
i2 X , Yf g

exp βbi
SðtÞ

	 
 , ð4Þ

where bX
S is the support bias of action X, and β is an inverse tempera-

ture parameter, which is constant.

After the action conflict event. After experiencing an action conflict
event (et ∈ CX), the model chooses whether to shift from the current
action based on the conflict bias. The stay probability is given by

P at + 1 =X jet 2 CX
	 


= 1� bX
Cðt + 1Þ, ð5Þ

where bX
C is the conflict bias of action X.

Support bias update. After selecting the action for the next trial, at+1,
the model updates the support bias of the two actions based on what
action has been chosen. The support bias of the chosen action
increases towards 1, while the support bias of the action not chosen

decreases towards 0.Mathematically, it follows the RW learning rule as

ba
S t + 1ð Þ= ba

S tð Þ+αS 1� ba
S tð Þ� �

, a=at + 1

ba
S tð Þ+αS 0� ba

S tð Þ� �
, a≠at + 1

(
, ð6Þ

where αS is a constant learning rate of support bias. In addition, the
support biases of two actions are always anti-parallel, by definition.
That is, the sum of support biases is fixed to 1, and each support bias
can be represented by the support bias difference solely.

Flagupdate. After selecting the action for the next trial,at+1, themodel
updates the flag. Despite that the action conflict event occurred
(et ∈ CX), if the model chooses the same action for the next trial
(at+1 = at), the flag for the next trial is set to True. Mathematically,

f t + 1 =1 et 2 CX
	 


& at + 1 =at

� �h i
:

Baseline models
In this section, we listed the update mechanism of baseline models
used for comparative analyses in different tasks. At the current, tth trial,
suppose the model chooses action at, arrives at the outcome state ot,
and observes rt. Here, rt is a binary variable indicating whether
rewarded.

Model-freeRL (MF)model. TheMFmodel21maintains the action value
of each action,Qa, as well as the outcome value of each outcome state,
Vo. After each trial, these quantities are updated according to

Qat ðt + 1Þ = Qat ðtÞ+α Vot ðtÞ � Qat ðtÞ� �
+αλ rt � Vot ðtÞ� �

,

Voðt + 1Þ = VoðtÞ+α rt � VoðtÞ� �
, o= ot

VoðtÞ+α 1� rt � VoðtÞ� �
, o ≠ ot

(
,

where α and λ are learning-rate and eligibility-trace parameters
affecting the update process.

Q-learning with differential forgetting (DFQ) model. The DFQ
model28 maintains the action value of each action, Qa. After each trial,
these quantities are updated according to:

Qaðt + 1Þ=
ζQaðtÞ, a≠at

QaðtÞ+α κR �QaðtÞ� �
, a=at , rt>0

QaðtÞ+α �κO �QaðtÞ� �
, a=at , rt ≤0

8><>: ,

where ζ is the forgetting rate parameter for the action unchosen, α is
the learning rate parameter for the selected action, κR represents the
strength of reinforcement by reward receipt, and κO represents the
strength of aversion resulting from the reward omission.

Model-basedRL (MB)model. TheMBmodel22maintains the outcome
value of each outcome state Vo. It plans the next action based on the
action value computedbymultiplying the outcome value by T(o∣a), the
transition probability withwhich each actionwill lead to eachoutcome
state:

QaðtÞ=
X
o

VoðtÞ � TðojaÞ,

where T(o∣a) is fixed to the true transition function (0.8 for common
and0.2 for uncommon transitions). After each trial, the outcomevalue
for both outcome states is updated according to:

Voðt + 1Þ= VoðtÞ+α rt � VoðtÞ� �
, o = ot

VoðtÞ+α 1� rt � VoðtÞ� �
, o≠ot

(
,
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where α is a learning-rate parameter.

Reduced (RD) model. The RD model5 is the mixture-of-agents model.
It computes its action value as a weighted average of the action values
of individual agents A, each of whom implements different behavioral
strategies:

Qa
TotalðtÞ=

X
A2P

βAQ
a
AðtÞ,

whereP represents a set of agents, and each β is a weight determining
the influence of each respective agent. The setP contains four agents:
the MBmodel, novelty preference, perseveration, and bias. After each
trial, these agents update their action values. Previously, we intro-
duced the update mechanism of the MB model; here. we explain the
remaining three agents.

Novelty preference This agent updates its action values based on
whether an uncommon transition occurred in the last trial. Here, xt is a
binary variable indicating whether an uncommon transition occurred.

Qa
npðt + 1Þ=

xt , a=at

1� xt , a≠at

�
:

Perseveration This agent tends to repeat at.

Qa
prsvðt + 1Þ=

1, a=at

0, a≠at

�
:

Bias This agent tends to select the same action a* in every trial.

Qa
biasðt + 1Þ=

1, a=a*

�1, a≠a*

(
,

Latent-state (LT) model. The LT model23 treated the task as having a
hidden context state h ∈ {Left, Right}, which determined the reward
probabilities given the outcome state reached on the trial. The model
maintained an estimate PL, the probability the task was in the context
Left. After each trial, the model first applies the Bayes rule to PL to
incorporate the information obtained such as the outcome state it
arrives (ot) and whether it gets a reward (rt).

~P
Lðt + 1Þ= Pðrt jot , Left Þ � PLðtÞ

PðrtÞ
,

where P(rt) is the marginal probability considering both contexts as
follows:

PðrtÞ= Pðrt jot , LeftÞPLðtÞ+Pðrtjot, Right ÞPRðtÞ:
The conditional reward probability given the context and the

outcome state is fixed to the true value. After the Bayesian update,
the model next updates PL considering the possibility of block
reversal:

PLðt + 1Þ= ð1� Pð rev ÞÞ~PLðt + 1Þ+Pð rev Þ~PRðt + 1Þ,

where P(rev) is the probability of block reversal. After updating PL, the
model chooses the left action at the next trial with the probability
calculated as:

Pðat + 1 = L Þ= 1� Pð lapseÞ� � � PLðt + 1Þ+Pðlapse Þ � 1
2
,

where P(lapse) is the probability of lapse, choosing the action with
uniform probability.

Asymmetric Bayesian learning (ABL) model. The ABL model25

implements a variant of the LT model. This treated rewards in each
outcome state as different observations but considered reward omis-
sion at different outcome states as the same observation. The model
maintained an estimate PL, the probability the task was in the context
Left. After each trial, the model first applies the Bayes rule to PL fol-
lowing ot and rt as:

~P
Lðt + 1Þ= Pðrt , ot j Left Þ � PLðtÞ

Pðrt , otÞ
,

where P(rt, ot) is the marginal probability considering both contexts as
follows:

Pðrt ,otÞ=Pðrt ,ot j LeftÞPLðtÞ+Pðrt, otjRight ÞPRðtÞ:

The conditional reward probability given the context is fixed to the
true value. After the Bayesian update, the model next updates PL

considering the possibility of block reversal:

PLðt + 1Þ= ð1� Pð rev ÞÞ~PLðt + 1Þ+Pð rev Þ~PRðt + 1Þ,

where P(rev) is the probability of block reversal.
After updating PL, themodel computes the outcome values of the

outcome states,

Voðt + 1Þ=Pðr = 1, oj LeftÞPLðt + 1Þ+Pðr = 1, ojRight ÞPRðt + 1Þ,

and the action values using the transition probability,

QaðtÞ=
X
o

VoðtÞ � TðojaÞ,

where T(o∣a) is fixed to the true transition function (0.8 for common
and 0.2 for uncommon transitions). Then, the model plans the next
action based on the action values with bias and multi-trial persevera-
tion, following the best model shown in ref. 25.

Meta-learning (MTL) model. We adopted and modified the meta-
learning strategy outlined by ref. 24 for application to the two-step
task. The MTL model is based on the MB model, but it modulates RPE
magnitude and negative outcome learning rate based on expected and
unexpected uncertainty. After each trial, the model calculates the
reward prediction error (RPE) δ(t), which is an actual reward (rt) minus
the outcome value of the arrived outcome state (ot):

δðtÞ= rt � Vot ðtÞ:
Based on δ(t) and ϵ(t), the estimate of expected uncertainty cal-

culated from the history of unsigned RPEs, the model calculates υ(t),
the unexpected uncertainty:

υðtÞ= jδðtÞj � ϵðtÞ
ϵðt + 1Þ= ϵðt + 1Þ+αυðtÞ

,

where αυ is the parameter that controls the rate of RPE magnitude
integration.

Large υmay indicate that an environmental change has occurred,
which should drive learning for adaptive behavior. Consequently, α−
varies as a function of how surprising recent outcomes are:

α�ðtÞ=
α�ðt � 1Þ, δðtÞ>0
ψ υðtÞ+α�ð0Þ
� �

+ ð1� ψÞα�ðt � 1Þ δðtÞ<0

(
,
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where α−(0) is the baseline learning rate from no reward, and ψ is the
parameter that controls the integration rate of unexpecteduncertainty
to α−. After surprising no-reward outcomes, α− increases and was not
allowed to be less than 0.

After updating υ, ϵ, and α−, the outcome value for both outcome
states is updated according to:

Voðt + 1Þ=
ζVoðtÞ, o≠ ot
VoðtÞ+α + δðtÞ 1� ϵðtÞ½ �, o= ot , δðtÞ>0
VoðtÞ+α�ðtÞδðtÞ 1� ϵðtÞ½ �, o= ot , δðtÞ<0

8><>: ,

where ζ is the forgetting rate parameter.

Stochastic logistic regression policy (SLRP) model. The SLRP
model6 selects the next action given its past history of events:

Pðat + 1ja1:t , r1:tÞ= σ ψðt + 1Þ½ �,

where σ is the logistic function andψ is the log odds. After each trial, it
calculates ψ as:

ψðt + 1Þ=αct +
X5
i=0

βict�irt�i

where ct = 2ct � 1, and ct is a binary variable indicatingwhether at is the
left action. Consequently, ct equals 1 when the left action was chosen,
and −1 for when the right action was selected.

Model fitting
For model fitting, we utilized the pattern search algorithm, which is a
derivative-free, global optimization algorithm. It is because we cannot
guarantee the existence of smooth and continuous derivatives over
the likelihood landscape, the key assumption of various derivative-
based optimization solvers85.

For model comparison, we used different baseline models for
different tasks due to variations in task complexity. The two-step
task incorporates probabilistic transitions from a chosen action to
an outcome state, adding uncertainty that necessitates models
accounting for transitions. In contrast, the two-armed bandit and
T-maze tasks do not have this complexity, so we compared our SSCS
model with baseline models that do not rely on transition
information.

The two-step task. We prepared 6 different RL models as a baseline;
the model-free (MF) RL model21, the model-based (MB) RL model22,
the latent-state model23, the meta-learning model24, the asymmetric
Bayesian learning model25, and the “reduced model"5. For each
subject, we repeated the procedure 40 times with different
random seeds.

Two-armed bandit task with context reversal. As a baseline, we
prepared 2 different RLmodels; themodel-free (MF) RLmodel21 and
the stochastic logistic regression policy (SLRP) model6. For each
subject and each value of p (representing the reward probability),
we separately inferred the parameters of the SLRP model. For the
SLRP model, we utilized the Bayesian logistic regression, as con-
ventional algorithms with maximum likelihood estimation can
induce abnormal fitting results with a small number of trials. The
parameters of the model-free RL model and the SSCS model were
estimated in the following manner. First, for each subject, we gen-
erated 40 different initial priors by fitting the model with random
seeds to the concatenated dataset, which includes three datasets
from different p values. This preprocessing ensured that our prior
distribution of parameters could explain the variances shared
across different values of p. Second, from these 40 initial seeds, we

conducted fine-tuning of the parameters by fitting the pretrained
model to the dataset from a single value of p. By this procedure,
we narrowed down the parameter distribution from the one
capable of explaining common properties of one subject to the
distribution specialized in explaining the dataset under a specific
condition.

T-maze task with context reversal. We prepared 2 different RL
models as a baseline; the model-free (MF) RL model21 and the DFQ
model28. For each subject, we repeated the procedure 40 times with
different random seeds.

Two-armed bandit task with MSN inactivation. To analyze the
behavior in7, we prepared 2 different RL models as a baseline; the
model-free (MF) RL model21 and the DFQ model28. First, for each sub-
ject, we generated 200 different initial priors by fitting the model with
random seeds to the concatenated dataset, which includes both con-
trol and inactivation datasets, starting from random seeds.

We performed such preprocessing to ensure that our prior
distribution of parameters can explain the variances within both
control and inactivation conditions. Second, from these 200 initial
seeds, we conducted fine-tuning of the parameters by fitting the
pretrained model to the dataset from a single condition. By this
procedure, we narrowed down the parameter distribution from the
one capable of explaining common properties of one subject to the
distribution specialized in explaining the dataset under a specific
condition.

Model predictability comparison
To compare the accuracy of different models, we utilized two statis-
tical measures: the normalized BIC score and the normalized cross-
validation likelihood. First, to compare the accuracy of specificmodels
while controlling for different model complexity, we computed the
normalized BIC score of each model for every subject using the
equation below,

nBIC= exp � 1
2n
� BIC

� 

= exp

1
n
ln bL	 


� k
2n

ln nð Þ
� 


where k is the number of parameters of the model, n is the number of
total trials performedby each subject, andbL is themaximum likelihood
function of the given model.

Next, to compute the normalized cross-validation likelihood, we
used two-fold cross-validation by dividing the data from entire ses-
sions for each rat into even- and odd-numbered sessions. After calcu-
lating the log-likelihood of each partial dataset using parameters fit to
the other, we computed the normalized cross-validated likelihood by
summing the log-likelihoods from the two partial datasets, dividing it
by the total number of trials, and computing its exponentiation. These
two metrics can be interpreted as the average per-trial likelihood with
which the model would have selected the action that the rat actually
selected.

Neural network models
For the neural network modeling in the two-step task, we utilized two
versions of the neural network model as described in ref. 25. The
architecture, inputs, outputs, loss functions, optimizer, and training
hyperparameters are identical to those used in the original study25.
However, instead of the task environment used in ref. 25, we employed
the task environment used in ref. 5 to enable direct comparisons
between rat behavior and model behavior.

The models were trained in episodes that terminated after 500
trials or 1200 time steps, whichever occurred first, with network
weights updated between episodes. For each model version, we
conducted 17 simulation runs using different random seeds, each
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trained for 500 episodes. These runs served as the experimental
unit for statistical analysis, analogous to subjects in animal experi-
ments. After training, the models underwent an additional 100,000
trials for further analyses.

Identification of neurons encoding task and decision variables
We used regression models to analyze neural spikes and identify cor-
responding neurons related to support bias or conflict bias. For each
subject, we inferred the trial-by-trial values of support bias and conflict
bias from the SSCS model with parameters showing the lowest
BIC score.

From several considerations that the current methodology to
identify neurons encoding decision variables can be
problematic30,31,86, we sought to resolve these issues with the auto-
regressive model, which is traditionally utilized to investigate the
relationship between two time series. Among various options, we
chose the autoregressive exogenous (ARX)model32. After fitting our
SSCS model to the subject’s behavior, we computed trial-by-trial
fluctuations of three decision variables: the support bias difference
between the right and left action△bS(t), the conflict bias of the left
action bL

C tð Þ, and the conflict bias of the right action bR
C tð Þ at trial t.

Then, with task variables (choice and outcome), we fitted the
regression model Z to the average firing rates of each neuron within
four different sections, separately,

Z ðtÞ=
XL
k = 1

β�kZ t � kð Þ
" #

+βchCðtÞ+βrwRðtÞ+βSΔbSðtÞ+βL
Cb

L
CðtÞ+βR

Cb
R
CðtÞ,

whereC(t) and R(t) represent the animal’s choice (0 for left, 1 for right),
and its outcome (0 for unrewarded, 1 for rewarded) at trial t, respec-
tively. In addition, the length of the autoregressive term L is auto-
matically adjusted based on the result of the partial autocorrelation
test for individual neurons.

To test the significance of the difference of each regression
coefficient from 0, we performed the block-wise permutation test8.
For this, we randomly shuffled spike data 1000 times across dif-
ferent trials within each block while preserving the original block
sequence.

For the estimation of the single-trial firing rate of decision
variable-encoding neurons within each section, we utilized the Baye-
sian adaptive kernel smoother87. Since the length of the section is not
constant, we focused on activity during fixed periods after the section
starts and before the section ends. The length of these periods was
fixed to half of the minimum section latencies for individual neurons
across different trials.

To visualize the modulation of single-trial firing rate dependent
on the decision variable X 2 ΔbS, b

L
C, b

R
C

n o
during each section, we

collected the firing rates across different trials for each neuron indi-
vidually. After sorting them based on the value of the paired decision
variable, which is estimated by our model, we grouped them into 6
bins and computed the average single-trial firing rate for each bin
separately.

Statistical analyses
All data are represented as mean ± s.e.m, while Spearman correla-
tion coefficients are represented as mean ± bootstrap standard
error. Data were analyzed using MATLAB R2023a (The Mathworks,
Inc., Natick, MA), R (Ver. 4.1.2, R Core Team, R Foundation for Sta-
tistical Computing, Vienna, Austria), and JASP (Ver. 0.18.3, JASP
Team). The statistical significance level was set at p < 0.05. The
number of permutations for entire permutation-based tests was set
at N = 105. To compare two correlations based on dependent groups
(e.g., the same group), where two correlations are overlapping (they
have a variable in common), and perform a test of significance for

the difference between two correlations, we applied the Dunn and
Clark’s Z test88. In order to control for Type I errors arising from
multiple comparisons, we applied the Benjamini–Yekutieli (BY)
False Discovery Rate (FDR) adjustment method89. For more details
and a description of the test used for each figure, see Supplemen-
tary Tables 2 and 3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw behavioral data of rats in the two-step task are publicly
available on GitHub, https://github.com/kevin-j-miller/MBB2017-rat-
two-step-task. The rawbehavioraldata ofmice in the two-armedbandit
task with context reversal are publicly available at the Harvard Data-
verse (https://doi.org/10.7910/DVN/7E0NM5)76. The raw data of rats in
the T-maze task with context reversal are publicly available in the
Dryad Digital repository (https://doi.org/10.5061/dryad.gtht76hj0)77.
The raw behavioral data of mice in the two-armed bandit task with
MSN inactivation are publicly available in the Dryad Digital repository
(https://doi.org/10.5061/dryad.4c80mn5)78. All of the source data used
to create the figures in this paper are available as a Source Data
file. Source data are provided with this paper.

Code availability
A reproducible run can be performed on Code Ocean at https://doi.
org/10.24433/CO.5313303.v190, where the code is accompanied by a
compatible software environment.
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