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STANCE: a unified statistical model to detect
cell-type-specific spatially variable genes in
spatial transcriptomics

Haohao Su 1, Yuesong Wu1, Bin Chen 2,3,4 & Yuehua Cui 1

One of the major challenges in spatial transcriptomics is to detect spatially
variable genes (SVGs), whose expression patterns are non-random across tis-
sue locations. Many SVGs correlate with cell type compositions, introducing
the concept of cell type-specific SVGs (ctSVGs). Existing ctSVG detection
methods treat cell type-specific spatial effects as fixed effects, leading to tissue
spatial rotation-dependent results. Moreover, SVGs may exhibit random spa-
tial patterns within cell types, meaning an SVG is not always a ctSVG, and vice
versa, further complicating detection. We propose STANCE, a unified statis-
tical model for both SVGs and ctSVGs detection under a linear mixed-effect
model framework that integrates gene expression, spatial location, and cell
type composition information. STANCE ensures tissue rotation-invariant
results, with a two-stage approach: initial SVG/ctSVG detection followed by
ctSVG-specific testing. We demonstrate its performance through extensive
simulations and analyses of public datasets. Downstream analyses reveal
STANCE’s potential in spatial transcriptomics analysis.

Spatial transcriptomics (ST) has garnered rapidly increasing attention
in biology. Technologies such as 10x Visium1, Slide-Seq2, andMERFISH3

enable the profiling of the transcriptome at various spatial resolutions,
facilitating the investigation of spatial expression variation, cell-cell
communication, and many other areas of genome biology.

One significant challenge in analyzing spatial transcriptomics data
is to effectively and efficiently detect spatially variable genes (SVGs),
whose gene expression displays non-random spatial patterns in tissue
sections. The characteristics of SVGs indicate their critical roles in
deciphering spatial variations in gene expression across a tissue sec-
tion. Many computational methods have been developed to address
this challenge. Existing statistical methods for detecting SVGs can be
classified into two groups: (1) spatial regression methods, which treat
spatial coordinates as fixed effects with various transformations or
basis expansions4–6, and (2) distance-based methods, which use a
spatial kernel to convert spatial dissimilarity into a similarity matrix,
then estimate the spatial variance component for further testing7.
Methods such as SpatialDE8, SPARK9, and nnSVG10 fall into this

category. SPARK-X11 follows the same principle, but assesses how the
similarity between spatial locations corresponds to gene expression
similarity based on a nonparametric test. Readers are referred to Yan
et al. (2024)7 for a comprehensive review of 31 methods for SVG
detection.

In both sequencing- and imaging-based ST data, gene expression
variation across spatial spots often arises from differences in expres-
sion levels among distinct cell types. Since cell types are unevenly
distributed within tissues, disregarding cell type information can
obscure spatial patterns that extend beyond those driven by cell-type
composition7. Moreover, many SVGs with spatial expression variation
are closely associatedwith cell type categories or compositions, giving
rise to the concept of cell-type-specific spatially variable genes
(ctSVGs). ctSVGs are characterized by non-random spatial expression
patternswithin specific cell types.Notably, an SVGmay exhibit random
spatial patterns within individual cell types, and conversely, a ctSVG
may appear spatially random when considered more broadly,
emphasizing that an SVG and a ctSVG are not inherently
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interchangeable4. This distinction highlights the necessity of specia-
lized methods for ctSVG detection, which rely on integrating ST data
with external cell-type annotations for spatial spots.

Currently, there are three statistical methods available for
detecting ctSVGs7, all of which use cell type-specific fixed effects to
model spatial location information and apply a regression model to
link these fixed effects to gene expression patterns. Statistical
hypothesis tests are then conducted based on these fixed effects to
detect ctSVGs. Here, we briefly introduce these three methods.

CTSV4 is a statistical tool designed to detect ctSVGs using row
count data from spatial transcriptomics. Leveraging cell-type compo-
sition information from deconvolution, CTSV fits a zero-inflated
negative binomial regression model and treats the two spatial coor-
dinates as two separate covariates, denoted as h1 and h2, to assess
spatial effects. To identify ctSVGs for a specific cell type k, statistical
inference is performed on the coefficients βk1 and βk2, which corre-
spond to the fixed effects for h1 and h2, respectively, by testing whe-
ther they are zero for each gene. A gene is considered cell type-specific
if at least one of the effects is statistically significant. The authors also
considered the exponential transformation of the spatial coordinates
as new covariates.

C-SIDE5 is another statistical method used to identify cell type-
specific differential expression in spatial transcriptomics. C-SIDE
employs a Poisson regression model to capture the spatial pattern of
gene expression by introducing basis expansionof spatial coordinates.
The authors introduce L smooth basis functions, whose linear combi-
nations represent the overall smooth gene expression functions across
spatial locations. Each basis function is tested using a two-sided z-test,
and the L p-values are then adjusted and the minimum p-value is
chosen as the final one to declare significance. However, selecting the
appropriate number of basis functions L can be challenging due to the
lack of a consistent rule. The default number is set as L = 15 whichmay
be too large, leading to potentially overfitting with a large number of
degrees of freedom for testing, and consequently low statistical
testing power.

spVC6 also applies a Poisson regression model to capture the
spatial pattern of gene expression but constructs fixed effects differ-
ently. spVC uses a two-stage procedure to detect ctSVGs. In the first
stage, K cell type-specific non-spatial effects corresponding to K cell
types, along with a residual spatial effect, are introduced into the
model and tested to determine if they are equal to zero. Genes for
which the residual spatial effect and at least one cell type-specific non-
spatial effect are not zero are considered SVGs, indicating that at least
one cell type has a constant effect on gene expression. In the second
stage, a full model is fitted for these genes by adding another K cell
type-specific spatial effects, which are approximated through the
bivariate penalized spline approximation. For each gene and each cell
type of interest, the associated cell type-specific spatial effect is tested
to determine if the gene is anSVG specific to that cell type. However, as
noted in CTSV, an SVG does not necessarily have to be a ctSVG, and
vice versa. A gene can be a ctSVG but not an SVGwhen the expressions
of different cell types are mixed together. The first stage of spVC only
checkswhether the target gene is anSVG.Therefore, only thosectSVGs
that are also SVGs would be identified by spVC.

The aforementioned three statistical methods for ctSVGs detec-
tion treat cell type-specific spatial effects as fixed effects during
modeling. Thus, they all suffer from a critical issue: the hypothesis
testing results are not invariant to the rotation of spatial coordinates.
This means that if the tissue samples were examined at a different
angle from the original one, the testing results could be very different.
Tissue sections are often positioned randomly during sample pre-
paration (as an example, see Supplementary File Fig. S1 for four MOB
sample replicates from the same tissue), and different orientations
give different spatial coordinates which fail methods that treat spatial
coordinates as fixed effects, and consequently leading to high false

positives or false negatives. This issue is particularly problematic in the
context of multi-slice spatial transcriptomics data analysis, where sli-
ces are not spatially aligned. Ensuring rotation invariance is critical for
robust multi-slice integration. Consequently, treating spatial coordi-
nates (and their transformations) as fixed effects is statistically
unsound, highlighting the need for methods that account for rotation
invariance when modeling cell type-specific spatial effects.

Additionally, the complicated relationship between overall SVGs
and ctSVGs also poses challenges in real analysis when dealing with
SVG or ctSVG detection. In this work, we proposed STANCE (Spatial
Transcriptomics ANalysis of genes with Cell-type-specific Expression),
a unified statistical method that can identify both SVG and ctSVG. In
the first stage, STANCE performs an overall test to identify the pre-
sence of SVGs and ctSVGs, classifying genes that pass this test as
unified-type SVGs (utSVGs), which encompass both SVGs and ctSVGs.
These utSVGs are then subjected to a second stage analysis for ctSVG
detection. Our method uses spatial kernel matrices that rely solely on
the relative distance between spatial spots and guarantees that the
testing results are invariant to spatial rotation and transformation.
Through extensive simulation studies and analysis of three real data-
sets, we demonstrate the utility of our method which greatly enriches
the toolbox of ST data analysis.

Results
Method overview and simulations
The schematic overview of STANCE is displayed in Fig. 1. The technical
details are provided in the Methods section and Supplementary File.
We developed a two-stage testing procedure for STANCE: (1) Stage 1
test: the STANCE overall test for utSVGs and (2) Stage 2 test: the
STANCE individual test for ctSVGs. Rejecting the overall test leads to
the conclusion of utSVGs which include both SVGs and ctSVGs. We
then proceed to test if a utSVG is a ctSVG by the stage 2 test. Down-
stream analyses with STANCE include generating variance plots to
display the relative variance of a ctSVG across different cell types,
performing spatial domain detection using utSVGs or ctSVGs, and
conducting functional enrichment analysis to gain further biological
insights.

We conducted a simulation study to evaluate the statistical
robustness of existing methods, C-SIDE, spVC, and CTSV, in the
detection of ctSVG (Simulation details are provided in Supplementary
File “Spatial Rotation Simulation” section). Thesemethods treat spatial
locations as fixed effects, which compromises spatial rotation-
invariance in their analyses. Our findings revealed inconsistencies in
testing results for these methods before and after spatial rotations at
various angles, despite the expectation that outcomes should remain
unaffected by such rotations. Notably, testing results varied system-
atically with changes in the rotation angle. These inconsistencies
underscore the unreliability of these methods for ctSVG detection,
indicating their unsuitability for robust ctSVG analysis.

We also designed two sets of simulations to assess the efficacy of
STANCE and compared it to existing methods in detecting spatial
variability in spatial transcriptomics data (Simulation details are pro-
vided in METHODS). Figure 2 displays the scenarios of different cell
type compositions and the expression pattern images of different
domains from different cell types of a representative gene. As STANCE
relies on cell type composition information for detecting SVGs and
ctSVGs, we tested STANCE using both true cell type composition
(STANCE-oracle) and deconvolved cell type composition from the
reference-based deconvolution method RCTD12 (STANCE-RCTD). We
also evaluated the false positive control of STANCE when the cell type
composition information is misspecified.

The first set of simulations evaluated the performance of the
STANCE overall test for utSVG detection. We compared it with SPARK-
G (the Gaussian version of SPARK) and SPARK-X, both of which are
designed to detect SVGs.
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Under the null of no spatial genes (Supplementary File Fig. S2),
STANCE-oracle effectively controlled the type I error across all the
scenarios and under different data dispersions (Fig. 3a). The figures
also show the empirical type I error rates for different methods. When
using the deconvolved cell type compositions with RCTD, STANCE-
RCTD produced testing results comparable to STANCE-oracle, indi-
cating STANCE’s robustness through deconvolution. In each scenario,
SPARK-G also performed well, though its results were slightly con-
servative. Conversely, the p-values produced by SPARK-X were much
more conservative, potentially resulting in low statistical testing
power. SPARK-X gains computational efficiency by suffering from
power loss, a result aligning well with the original observation of
SPARK-X. Overall, there was no significant difference in the testing
results under different scenarios of cell type compositions.

We also conducted a sensitivity analysis for type I error rate
control under misspecified cell type compositions. Instead of decon-
volving to three cell types (the grand truth), we assume therewere four
cell types with equal proportions across the spatial locations. Under
themisspecified cell type compositions, STANCE-misspecified can still
effectively control the type I error across different settings (Supple-
mentary File Fig. S3), showcasing the robustness of STANCE in type I
error control. Additionally, there was no significant difference in
testing results in different scenarios.

Alternative Case 1 considered genes that were both SVGs and
ctSVGs, i.e., utSVG (Supplementary File Fig. S4). Under this case,
STANCE-oracle, STANCE-RCTD, and SPARK-G exhibited comparable
testing power across a range of FDR values, while SPARK-X was less
powerful in detecting utSVGs (Fig. 3b). The fold change in expression
mean significantly impacted testing power, with power increasing as
the relative distance of gene expression mean from the baseline
increased (Supplementary File Fig. S5). Additionally, power increases
as the dispersion increases (larger dispersion means lower variance).

In Alternative Case 2, which involved only ctSVGs (Supplementary
File Fig. S6), SPARK-X nearly had no testing power, and SPARK-G per-
formed slightly better (Fig. 3c). This is expected as both were not
designed to detect ctSVGs. STANCE-oracle outperformed STANCE-
RCTD under low dispersion, indicating that the accuracy of deconvo-
lution has an impact on the statistical power of STANCE. But when the
dispersion increased to 1.5, deconvolution had little impact on the
testing power. Additionally, STANCE became more powerful with an
increased proportion of the cell type corresponding to the ctSVGs
(Scenario 3).

In Alternative Case 3, involving only SVGs (Supplementary File
Fig. S7), both STANCE-oracle and STANCE-RCTD demonstrated
superior performance compared to SPARK-G and SPARK-X (Fig. 3d),
even though detecting SVGs is the primary function of SPARK-G and
SPARK-X. STANCE-oracle and STANCE-RCTD yielded closely matched
testing results, indicating its robust performance for SVG detection.
Similar to Alternative Cases 1 and 2, the statistical power of detecting
SVGs increased with increased dispersion. Additionally, the mean fold
change from the baseline expression significantly affected testing
power; as the fold change deviated away from 1, the statistical power
also increased (Supplementary File Fig. S8). The results show that
STANCE is more effective in scenarios with higher fold changes in
expression levels and lower variance.

The power analysis results across all three alternative cases
demonstrate a common trend: statistical power increases as the var-
iance decreases (or the dispersion increases). This observation is bio-
logically and statistically intuitive. Lower variance in gene expression
reduces noise, making the differences in expression levels between
distinct spatial domains more consistent and reliable. As a result, the
underlying gene expression patterns become more pronounced and
easier to detect. This enhanced stability allows for more robust iden-
tification of differentially expressed genes associated with specific

Fig. 1 | Overview of STANCE. STANCE is a unified statistical model designed to
detect both spatially variable genes (SVGs) and cell-type specific spatially variable
genes (ctSVGs) in spatial transcriptomics. Utilizing cell type composition infor-
mation obtained from cell type deconvolution, STANCE constructs a kernel matrix
that links gene expression patterns with spatial locations through a linear mixed
effect model incorporating K cell type-specific spatial random effects. In the 1st
step, both SVGs and ctSVGs are identified throughanoverall test, whichdetermines

if all K cell-type specific spatial variance components are non-zero. Genes passing
this unified test are termed utSVGs. In the 2nd step, for each cell type of interest,
ctSVGs are determined from the utSVGs by conducting individual tests to check if
the corresponding spatial variance component is non-zero. The relative variance
contribution of cell types can be visualized through a stacked variance plot.
Downstream analysis of STANCE includes spatial domain detection using utSVG or
ctSVG and cell-type specific gene set enrichment analysis.
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spatial regions. In biological systems, reduced variability often reflects
tightly regulated processes or well-defined spatial organization, which
can further amplify the signal-to-noise ratio and improve the detect-
ability of spatially variable genes. Thus, the observed relationship
between dispersion, variance, and power aligns with expectations
from both biological mechanisms and statistical principles.

The second set of simulations aimed to evaluate the performance
of the STANCE individual test in detecting ctSVGs. Although the ctSVG
detection method spVC is not spatial rotation-invariant and not sui-
table for ctSVG detection, we still include it into the comparison.
Figure 4 displays the composition of different ctSVGs and the
expression pattern images of a representative gene under differ-
ent cases.

Essentially, STANCE-oracle effectively controlled the type I error
across two different dispersion settings (Fig. 5a). When using the
deconvolved cell type compositions through RCTD, STANCE-RCTD
produced testing results comparable to STANCE-oracle that used true
cell type compositions, indicating STANCE’s robustness under
deconvolution. In contrast, both spVC-oracle and spVC-RCTD exhib-
ited slightly inflated p-values under true null scenarios, indicating
weaker type I error control compared to STANCE. These findings
highlight STANCE’s superior ability tomaintain statistical rigor in type I
error control. Additionally, the analysis revealed no significant differ-
ences in type I error control across the different dispersion settings,
further showcasing the robustness of both STANCE configurations to
variations in data dispersion.

When detecting ctSVGs, STANCE-oracle exhibited strong testing
power across a wide range of FDR levels. Although the power of
STANCE-RCTDwas slightly lower than that of STANCE-oracle due to the
reduced accuracy of deconvolved cell type compositions, it still per-
formed robustly. In comparison, STANCE consistently outperformed
spVC in detecting ctSVGs across nearly all scenarios of data dispersion
and cell type proportions. Notably, the power to detect ctSVGs
increased as the proportion of the cell types corresponding to the
ctSVGs increased (Fig. 5b). This trend is reasonable, as higher propor-
tions provide more information, thereby enhancing the detection
capability. Additionally, we observed that statistical power improved
with higher dispersion settings (low variances), further underscoring
the effectiveness of STANCE in various data conditions. These results
collectively highlight the advantages of STANCE in detecting ctSVGs,
particularly under diverse and challenging conditions.

Real data analysis: human breast cancer data
We applied STANCE to three ST datasets to demonstrate its perfor-
mance and compared the results with othermethods such as SPARK-G
and SPARK-X. Additional details about the data sources and data
processing can be found in Supplementary File.

We first examined the 10x Visium spatial transcriptomics dataset
from the human HER2-positive breast cancer tumors13. We used sam-
ple H1 as the main analysis example, which contains gene expression
count data for 15,030 genes and 613 spots. The original study applied
Stereoscope14, a scRNA-seq reference-baseddeconvolutionmethod, to

Scaled gene expression

a b

c

d

Fig. 2 | Overviewof Simulation 1 and schematic illustrationof different cases of
ctSVG and SVG. a The simulated tissue contains three domains (D1, D2 and D3)
whose location and size are randomly generated (light blue = D1, light purple = D2,
and light yellow =D3).b Spatial pattern of randomcell type distributions under the
three scenarios. Left: Scenario 1. Middle: Scenario 2. Right: Scenario 3. c The three
scenarios of cell type composition. d The spatial expression pattern of a

representative gene. For each case, the four patterns correspond to Cell Type
1-specific pattern (top left); Cell Type 2-specific pattern (top right); Cell Type
3-specific pattern (bottom left); and the combined pattern (bottom right). Alter-
native case 1 shows that a gene is both SVG and ctSVG. Alternative case 2 shows that
a gene is cell-type 1 and 2 ctSVG but not cell-type 3 ctSVG and not SVG. Alternative
case 3 shows that a gene is not ctSVG but is SVG.
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Fig. 3 | Results of Simulation 1. a. Simulation results under Simulation 1 null case
with the fourmethods. TheQ-Qplots of the observed�log10p against the expected
�log10p for different methods are displayed across various dispersion parameters
and scenarios, where p represents the p-value from the score test. False positive
rates (type I error rates) for eachmethod are displayed in the top-left corner of each
panel, with colors corresponding to the legend. The light gray region represents the
95% error band, illustrating the range in which 95% of points are expected to fall
under the null hypothesis, assuming the p-values follow the expected uniform
distribution. b Simulation results under Simulation 1 alternative case 1, which
involves both SVGs and ctSVGs. The plots display power values across a range of

false discovery rates for different methods, considering various dispersion para-
meters and cell-type composition scenarios. c Simulation results under Simulation
1 alternative case 2, which involves only ctSVGs. The plots display power values
across a range of false discovery rates for different methods, considering various
dispersion parameters and cell-type composition scenarios. d Simulation results
under Simulation 1 alternative case 3, which involves only SVGs. The plots display
power values across a range of false discovery rates for different methods, con-
sidering various dispersion parameters. Source data are provided as a Source
Data file.
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annotate the cell type composition of each spot. We used the major
tier annotationwith 8 cell types, includingmyeloid cells, T cells, B cells,
epithelial cells, plasma cells, endothelial cells, cancer-associated
fibroblasts (CAFs), and perivascular-like cells (PVL cells). We then
removed 21 genes identified as ring-pattern technical artifacts in the
original study following14, low-expressed genes that do not express at
more than 10% spots, resulting in 10,053 genes.

This dataset contains spatial domain annotation by pathologists
based on H&E images, consisting of in situ cancer, invasive cancer,
breast glands, adipose tissue, immune infiltrate, connective tissue, and
other spots in the undetermined region. After removing spotswith less
than 10 total counts and genes expressed in less than 10% spots fol-
lowing the SPARK’s QC steps, we ended up with 607 spots and 2816
genes for further analysis.

Cell type marker genes

CT1: 100 genes
(4-fold-change)

CT2: 100 genes
(4-fold-change)

CT3 : 100 genes
(4-fold-change)

Non-spatial genes 100 genes
(baseline mean)

CT 1-specific SVGs

4-fold-change: 50 genes

2-fold-change: 50 genes

1/2-fold-change: 50 genes

1/4-fold-change: 50 genes

CT 2-specific SVGs

4-fold-change: 50 genes

2-fold-change: 50 genes

1/2-fold-change: 50 genes

1/4-fold-change: 50 genes

CT 3-specific SVGs

4-fold-change: 50 genes

2-fold-change: 50 genes

1/2-fold-change: 50 genes

1/4-fold-change: 50 genes

Only for deconvolution

For evaluating power of CT 1-specific test;
For evaluating type I error control of CT 2-
specific test & CT 3-specific test

For evaluating power of CT 2-specific test;
For evaluating type I error control of CT 1-
specific test & CT 3-specific test

For evaluating power of CT 3-specific test;
For evaluating type I error control of CT 1-
specific test & CT 2-specific test

Scaled gene expression

a

b d

c

Fig. 4 | Overview of Simulation 2. a The scheme of Simulation 2. Under each
dispersion parameter, 1,000 genes are generated, where 300 of them are cell type
marker genes and 600 of them are ctSVGs. Specifically, each cell type has 100
distinct marker genes and 200 ctSVGs. For each cell type, the testing results of its
associated individual test on its ctSVGs are used to evaluate type I error, while the
testing results of the other two cell type-specific individual tests on its ctSVGs are
used to evaluate testing power. b Spatial pattern of cell type composition. c The

simulated tissue contains two domains whose location and size are randomly
generated. d The spatial patterns of single-cell gene expression of a representative
gene. Top left: cell type 1-specific pattern (not a ctSVG). Top right: cell type
2-specific pattern (not a ctSVG). Bottom left: cell type 3-specific pattern (ctSVG),
high expression in domain SD than in domain D. Bottom right: the combined pat-
tern (SVG), high expression in domain SD than in domain D.
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We applied STANCE, SPARK-G and SPARK-X to this dataset. The
STANCEoverall test identified 330genes, with p-values adjustedby the
Benjamini-Yekutieli method15 to meet an FDR of p = 0.05. These genes
are considered utSVGs, a mixture of SVGs and ctSVGs. SPARK-G
identified 315 SVGs, of which 254 were also identified by the STANCE
overall test. SPARK-X identified 1470 SVGs, with 299 overlapping with
those detected by STANCE (Supplementary File Fig. S11). For the 330
utSVGs detected by the STANCE overall test, we further conducted
cell-type-specific individual tests for each of the 8 cell types, and
identified a total of 286 ctSVGs across all 8 cell types. The number of
ctSVGs in each cell type is shown in Fig. 6a. Epithelial cells has themost
ctSVGs with 204 genes, while endothelial cells has the fewest, with 19
genes. Some of the ctSVGs show significant expression in different cell
types and overlapping results are shown in Fig. 6b. Among which, cell
type CAFs had the least overlapped genes with other cell types. This
may be due to the specialized role of CAFs in the tumor micro-
environment. CAFs are involved in extracellular matrix remodeling,

immune modulation, and supporting cancer progression, leading to
the expression of unique genes tailored to these functions. This dis-
tinct gene expression pattern reflects the specific signaling pathways
and interactions CAFs engage in within their niche, making their gene
profile less similar to other cell types. spVC was also applied to this
dataset as a comparativemethod. Interestingly, it failed to identify any
ctSVGs, as no genes passed its initial filtering step. This unexpected
outcomesuggests that spVCmay exhibit excessive conservativeness in
certain datasets or analysis scenarios, particularly during its initial
screening process. Such stringency could limit its ability to detect
ctSVGs under specific conditions, potentially overlooking biologically
meaningful results.

We further analyzed the 286 ctSVGs detected by STANCE. The
spatial domain analysis illustrated that important biological signals,
absent in SVGs, are well-preserved in utSVGs, the combination of SVGs
and ctSVGs. We compared domain detection accuracy using utSVGs
and ctSVGs identified by STANCE, as well as SVGs detected by SPARK-

Fig. 5 | Results of Simulation 2. a Simulation results of type I error control under
Simulation 2. The Q-Q plots of the observed�log10p against the expected�log10p
for different methods are displayed across various dispersion parameters, where p
represents thep-value from the score test. False positive rates (type I error rates) for
each method are displayed in the top-left corner of each panel, with colors corre-
sponding to the legend. The light gray region represents the 95% error band,

illustrating the range in which 95% of points are expected to fall under the null
hypothesis, assuming the p-values follow the expected uniform distribution.
b Simulation results of testing power under Simulation 2. The plots display testing
power across a range of FDR levels for different methods, considering various
dispersion parameters and cell type proportions. Source data are provided as a
Source Data file.
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G, as input features. SpatialPCA16, SeuratPCA17, BayesSpace18, stLearn19,
and SpaceFlow20 were applied as domain detection algorithms. The
adjusted Rand index (ARI)21 was used for evaluation, following the
SpatialPCA’s procedure, excluded the undetermined region and trea-
ted the remaining regional annotations as ground truth. Across all
conditions, utSVGs and ctSVGs consistently outperformed SPARK-G
SVGs. We present the SpatialPCA results (Fig. 6c) as an illustration due

to its superior domain detection performance, with results from other
algorithms provided in Supplementary File Fig. S12.

Using SpatialPCA, we achieved an ARI of 0.45 with utSVGs (com-
prising both SVGs and ctSVGs) identified by STANCE. When ctSVGs
alone were used as input features, the ARI was 0.42, while SPARK-G
SVGs yielded the lowest accuracy with an ARI of 0.39. SPARK-G SVGs
failed to distinguish between connective tissue and invasive cancer in
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the lower-left corner, whereas both utSVGs and ctSVGs preserved this
critical information. These findings highlight that including ctSVGs
significantly enhances domain detection accuracy and demonstrates
the value of STANCE in facilitating this process. Similar conclusions
can be drawn when using the other four domain detection algorithms
(see Supplementary File Fig. S12).

For each gene, we estimated the cell-type-specific spatial effects.
We plotted the top 20 ctSVGs to show the relative proportion of var-
iances explained by cell type-specific effects and the error variance
through stacked bar plots for each of the 8 cell types (Supplementary
File Fig. S13). Among endothelial cells, significant ctSVGS included
genes such as RAMP3, PLVAP, CLDN5, VWF, EGFL7, ENG, AQP1, ICAM1,
and ACVRL1, pivotal for endothelial function. Notably, RAMP3 reg-
ulates vascular tone and angiogenesis by interacting with G protein-
coupled receptors22, while PLVAP is crucial in fenestrated endothelia
for diaphragm formation23. In plasma cells, genes like IGHA2, IGLV3-21,
IGHA1, IGLC3, IGKC, IGHG1, IGLC2, andMZB1 are essential for antibody
production and immunoglobulin secretion (Fig. 6e). Additionally, the
top gene IL10RA in T cells (Fig. 6e), expressed on the surface of T cells
and other immune cells, is involved in signaling pathways regulating
immune responses24, while SPINT2 (serine peptidase inhibitor, Kunitz
type, 2), the top ctSVG of epithelial cells, is expressed in epithelial cells
and functions as an inhibitor of serine proteases, playing a role in
maintaining epithelial integrity25. Furthermore, other cell types show
strong correlations between specific genes and their functions: CD37
andTCIRG1 in B cells,COL6A3, POSTN,AEBP1,OLFML3, FN1, andMXRA8
in cancer-associated fibroblasts (CAFs), FOXM1, TACSTD2, RXRA,
TPD52, and CDH1 in epithelial cells, TYROBP, IFI27, C1QB, CD14, and
PFKL in myeloid cells, and CSPG4, SLPI, and ERP29 in perivascular-like
(PVL) cells. These identified genes may serve as valuablemarker genes
with cell type-specific spatial patterns to further enhance domain
detection in downstream analyses.

For the top ctSVG of each cell type, we generated spatial pattern
plots of their scaled expression and outlined spots with colors based
on thedomain annotation (SupplementaryFile Fig. S14). The top ctSVG
for T cells, IL10RA, is highly expressed in the region of cancer in situ in
HER2+ breast tumors (Fig. 6d). The IL10RA gene encodes the alpha
subunit of the receptor for interleukin-10 (IL-10), a cytokine involved in
anti-inflammatory responses and immune regulation. IL-10 and its
receptor are crucial in modulating immune responses by limiting
inflammation and promoting immune tolerance. This mechanism
could help tumor cells remain undetected and confined to their site of
origin, explaining the high expression of IL10RA in the cancer in situ
region26. Additionally, the IGHA2 gene, which is the top ctSVG for
plasma cells and encodes the heavy chain constant region of IgA2 (one
of the two subclasses of immunoglobulin A), shows higher expression
in the domain of breast glands compared to other domains (Fig. 6d). In
normal breast tissue, especially within the glands, IGHA2 expression is
expected due to its role in local immunity and secretion into breast
milk. However, in the context of a HER2+ breast tumor, the expression
patterns of many genes, including IGHA2, might be altered due to
changes in the local immune microenvironment and the overall dis-
ruption of normal tissue architecture and function caused by the
tumor27. These findings highlight the necessity of ctSVG detection for
understanding transcriptomic mechanisms through both spatial and

cell-type information. They also demonstrate the effectiveness of
STANCE in detecting ctSVGs.

We also conducted gene set enrichment analysis to assess the
significance of pathways associated with each group of ctSVGs. For
each cell type, we identified its top 10 pathways, most of which
deemed particularly meaningful (Supplementary File Fig. S15). Among
plasma cells, specialized B cells responsible for producing antibodies,
some pathways like “B cell receptor signaling pathway”, “immunoglo-
bulin mediated immune response”, “B cell mediated immunity”, and
“humoral immune responsemediated by circulating immunoglobulin”
(Fig. 6f) are notably specific, while some other pathways like “com-
plement activation (both classical pathway and general)” and “anti-
microbial humoral response” arenot exclusive to plasma cells; they are
closely associated with plasma cells due to their role in antibody-
mediated immune responses and complement system activation28–34.
In B cells, all top 10 pathways identified are highly relevant to this cell
type, given their crucial roles in the immune system. Specifically, the
third pathway “adaptive immune response based on somatic recom-
bination of immune receptors built from immunoglobulin superfamily
domains” refers to the process by which B cell receptors (BCRs), which
are immunoglobulins, are generated through somatic recombination
of gene segments. This process is unique to B cells and results in a
diverse repertoire of BCRs capable of recognizing a wide array of
antigens35. The significant pathways enriching ctSVGS, detected by
STANCE, suggest promising future applications in diagnostic approa-
ches for breast cancer.

Real data analysis: human kidney cancer data
We examined the 10x Visium spatial transcriptomics dataset from
human kidney cancer tumor core36, containing expression count data
for 36,601 genes across 3008 spots. We used CARD, a reference-based
cell-type deconvolution tool, to obtain cell-type composition infor-
mation. Specifically, we followed the default quality control procedure
of CARD to remove low-expressed genes and spots. We obtained the
cell type proportions for 12 cell types, including B cells, plasma cells,
T cells, natural killer (NK) cells, endothelial cells (EC), renal cell carci-
noma (RCC) cells, non-proximal tubule epithelial (Epi_non-PT) cells,
proximal tubule epithelial (Epi_PT) cells, fibrobalast cells, myeloid
cells, plasmacytoid dendritic cells (pDC), as well as mast cells, across
2917 spots. We then removed mitochondrial genes and low-expressed
genes that do not express at more than 10% spots, resulting in
7270 genes.

The STANCE overall test identified 4158 genes, with p-values
adjusted by the Benjamini–Yekutieli method to meet an FDR of
p = 0.01. These genes are considered utSVGs, a mixture of SVGs and
ctSVGs. SPARK-G identified 4011 SVGs, 3781 of which were also iden-
tified by the STANCE overall test. SPARK-X identified 6292 SVGs, with
4067 overlappingwith thosedetected by STANCE (Supplementary File
Fig. S16).

For the 4158 utSVGs detected by the STANCE overall test, we
conducted STANCE cell-type-specific individual test for each of the 12
cell types and identified a total of 2094 ctSVGs (at the 0.01 significance
level) (Fig. 7a). Fibrobalast cells had the most ctSVGs with 676 genes,
while plasma cells had the fewest, with 67 genes. Figure 7c displays the
spatial expression pattern of two example genes DCUN1D4 in pDC and

Fig. 6 | Results of the Her2+ breast cancer data. a The bar plot displays the
numbers of detected ctSVGs for each cell type. b The heatmap displaying the
intersections of ctSVGs between cell types. c Domain detection results display the
true and estimated domain annotations by SpatialPCA. Top left: Ground truth. Top
right: Based on utSVGs by STANCE. Bottom left: Based on ctSVGs by STANCE.
Bottom right: Based on SVGs by SPARK-G. d Spatial pattern plots of scaled gene
expression for two ctSVGs (Left: IGHA2; Right: IL10RA). Spots are outlined with
colors indicating the domain annotation. e The stacked bar plots display the

variance explained by 8 cell type-specific spatial effects and random error, illus-
trating the top 20 ctSVGs for each cell type. Top: Plasma cells. Bottom: T cells. f The
gene set enrichment analysis results on two groups of ctSVGs detected by STANCE.
The top 10 significant pathways are shown. The enrichment is given as
�log10(adjusted p-value) followed by the BY multiple testing adjustment proce-
dure. Left: gene set enrichment analysis results on T cells. Right: gene set enrich-
ment analysis results onplasmacells. Sourcedata are provided asa SourceDatafile.
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Fig. 7 | Results of the human kidney cancer tumor core data. a The bar plot
displays the numbers of ctSVGs for each cell type. b The heatmap displaying the
intersections of ctSVGs between cell types. c Spatial pattern plots of scaled gene
expression for two example ctSVGs. Spots are outlined with colors indicating the
domain annotation. Left: DCUN1D4. Right: IKZF3. d The stacked bar plots display
the variance explained by 12 cell-type-specific spatial effects and random error,
illustrating the top 20 ctSVGs for each cell type. Top: T cells. Bottom: plasmacytoid

dendritic cells (pDC). e The gene set enrichment analysis results on two groups of
ctSVGs detected by STANCE. The top 10 significant pathways are shown. The
enrichment is given as�log10(adjustedp-value) followedby the BYmultiple testing
adjustment procedure. Left: gene set enrichment analysis results on pDC. Right:
gene set enrichment analysis results on T cells. Source data are provided as a
Source Data file.
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IKZF3 in T-cell. The plots of other top genes in each cell type are shown
in Supplementary File Fig. S19.

spVC was also implemented on this dataset as a compared
method, which identified 95 ctSVGs under the original tissue pattern,
94 of which overlapped with those identified by STANCE. After a 30°
rotation of the tissue, spVC detected 104 ctSVGs, including 86 that
overlapped with those from the original pattern. Following a 60°
rotation, spVC identified 110 ctSVGs, with 86 shared with the original
pattern and 91 overlapping with the 30° rotated pattern (Supplemen-
tary File Fig. S17). The inconsistent ctSVGs detected under different
spatial rotations by spVC highlight a potential issue with treating
spatial effects as fixed, suggesting that such an approach should be
avoided in practical applications.

We further analyzed the 2094 ctSVGs detected by STANCE. We
assessed the variance explained by the 12 cell-type-specific spatial
effects and random error, visualizing the top 20 ctSVGs with the
highest variance explained through stacked bar plots for each of the 12
cell types (Supplementary File Fig. S18). Among the top 20 ctSVGS in
myeloid cells, notable genes such as MAFB, CD163, CPVL, C3AR1,
PLXNC1,HLA-DOA, CEBPA, CD53, LY96,MS4A7, and ADA2 are known for
their significant roles in myeloid cell function, differentiation, and
immune response. Similarly, in pDCs, genes like IRF8, MXI1, MOGS,
EIF5A, IRF7, TIMM23, PDIA5, KDM3B, LIFR, and SLC17A5, among others,
play crucial roles in development, function, and immune response
activities (Fig. 7d). T cells exhibit high expression or strong correlation
with genes such as TNFRSF9, CXCR3, CCL5, SH2D1A, CD3G, CCR5,
IL15RA, ITM2A, LCK, and MAP4K1, influencing T cell activation, signal-
ing, and migration (Fig. 7d). Furthermore, the top gene XBP1 in B cells
is involved in B cell differentiation into plasma cells and the unfolded
protein response (UPR) during plasma cell differentiation37, while
DEFB1, the top ctSVG of RCC, is down-regulated and linked to tumor
progression38. Additionally, other cell types show strong correlations
between specific genes and their functions: CD37 in B cells, FGR in NK
cells, ENPP2, PTPRB, PLXDC1, and F2R in endothelial cells, FXYD2,
SLCO4C1, PHKA2, and TCTA in kidney epithelial cells, SLC47A1, CDHR5,
and NAT8 in proximal tubule epithelial cells, PTGS1, LAMA1, FGFR4,
IL4I1, and SERPINF2 in fibroblast cells, and SP3, NDUFS3, HBB, OCRL,
and PRPF38A in mast cells. These identified genes serve as valuable
marker genes with cell-type-specific spatial patterns for enhancing
domain detection in further analyses.

We conducted gene set enrichment analysis to assess the sig-
nificance of pathways associated with each group of ctSVGs. For each
cell type, we identified its top 10 pathways, with 3 to 10 pathways per
cell type deemed particularly meaningful (Supplementary File
Fig. S20). In T cells, pathways such as “lymphocyte activation”, “T cell
activation”, “immune system process”, “immune response”, “cell acti-
vation”, “leukocyte activation”, “regulation of immune system pro-
cess”, “regulation of cell activation”, and “leukocyte differentiation”
were predominant (Fig. 7e), highlighting their crucial roles in immune
system functions and responses39. Among pDCs, specialized in anti-
viral immunity and immune regulation, pathways such as “antigen
processing and presentation of exogenous peptide antigen via MHC
class II” and “antigen processing and presentation of peptide antigen
via MHC class II” were notably specific (Fig. 7e). These pathways
underscored pDCs’ unique capabilities in antigen presentation, crucial
for their role in immune regulation and response. Additional pathways
related to antigen processing, such as “antigen processing and pre-
sentation of peptide or polysaccharide antigen via MHC class II”, were
also prominent, reflecting pDCs’ function in capturing and presenting
antigens to T cells via MHC class II molecules40,41.

Furthermore, the pathway “anatomical structuremorphogenesis”
emerged prominently for fibroblast cells, highlighting their pivotal
role in the morphogenesis and remodeling of connective tissues and
extracellular matrix components. This function is essential for tissue
development, repair, and maintenance, emphasizing the structural

integrity and organization contributed by fibroblasts42. The significant
pathways enriched by ctSVGS, detected by STANCE, suggest promis-
ing future applications in diagnostic approaches of kidney cancer.

Real data analysis: mouse olfactory bulb data
The third data set we examined was the 100 μm2 resolution spatial
transcriptomics data of the mouse olfactory bulb (MOB)43. There are a
total of 12 tissue samples from the same subject. The spatial orienta-
tions of the 12 samples are all different, highlighting the importance of
analyzing ST data with spatial rotation invariant methods. We focused
on MOB replicate #8, which consists of expression count data for
15,928 genes across 262 pixels (spots). We then deconvolved the MOB
data using STdeconvolve44, a reference-free and unsupervised cell-
type deconvolution tool. Before cell type deconvolution, we followed
the procedure of the original article of STdeconvolve to clean the
dataset, resulting in 7365 genes and 260 spots. With STdeconvolve, 12
cell types were identifiedwith their compositions at each spot.We also
made a heatmap to visualize the transcriptional correlation between
deconvolved cell types and cell clusters (Supplementary File Fig. S22).
According to the heatmap, deconvolved cell type 4 and granular cell
layer, deconvolved cell type 11 and mitral cell layer, deconvolved cell
type 8 and outer plexiform layer, deconvolved cell type 2 and glo-
merular layer, and deconvolved cell type 12 and olfactory layer, are
highly correlated with a correlation greater than 0.6.

We applied STANCE, SPARK-G, SPARK-X, and spVC to this dataset.
The STANCE overall test identified 828 genes, with p-values adjusted
by the Benjamini-Yekutieli method to meet an FDR of p = 0.05. These
genes are considered utSVGs, a mixture of SVGs and ctSVGs. SPARK-G
identified 188 SVGs, 187 of which were also identified by the STANCE
overall test. SPARK-X identified 2,321 SVGs, with 447 overlapping with
those detected by STANCE. In total, 127 genes were detected by all
three methods (Supplementary File Fig. S21). Subsequently, we per-
formed the STANCE cell type-specific individual test on the 828 genes
identified by the overall test and analyzed each of the 12 cell types. In
total, 809 genes were identified as ctSVGs specific to at least one cell
type (Fig. 8a). Cell Type 12 had the most ctSVGs with 319 genes, while
Cell Type 1 had the fewest, with 47 genes. Surprisingly, spVC was
unable to identify any ctSVG on this dataset.

We evaluated the variance explained by the 12 cell type-specific
spatial effects and random error, illustrating the top 20 ctSVG through
stacked bar plots for each of the 12 cell types (Fig. 8c and Supple-
mentary File Fig. S23). Furthermore, for the top ctSVG of each
deconvolved cell type, we generated spatial pattern plots of their
scaled expression and outlined spots with colors based on the cluster
assignment associated with coarse cell layers (Supplementary File
Fig. S24). Notably, the spatial patterns for the top ctSVGs of decon-
volved cell types 2, 4, 9, 11, and 12 align with high transcriptional cor-
relations (Supplementary File Fig. S22), suggesting that these top
ctSVGs are likely marker genes for their respective cell types. This
alignment demonstrates the effectiveness of STANCE in identifying
cell type marker genes with non-random spatial patterns, reinforcing
its potential utility in cell type deconvolution.

Discussion
We have introduced STANCE, a unified statistical model developed to
detect ctSVGs in spatial transcriptomics. By integrating gene expres-
sion, spatial location, and cell type composition through a linear
mixed-effect model, STANCE enables the identification of both SVGs
and ctSVGs in an initial stage, followed by a second stage dedicated to
ctSVG detection. Its design ensures robustness in complex scenarios
and maintains invariance to spatial coordinate rotation.

STANCE offers several distinct advantages over other SVG and
ctSVG detection methods. Unlike other ctSVG approaches such as
CTSV, C-SIDE, and spVC, STANCE is spatially rotation-invariant. When
compared to popular SVG detection methods like SPARK and SPARK-
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X, STANCE performs equally well or better in detecting SVGs, as evi-
dencedby the results fromAlternativeCase 3 in our simulation studies.
Moreover, STANCE uniquely provides the ability to estimate individual
variance components, which are visualized through a stacked variance
plot that displays the relative variance of a gene within each cell type.
Additionally, utilizing utSVGs or ctSVGs identified by STANCE enhan-
ces spatial domain detection compared to SVGs detected by other
methods such as SPARK, as demonstrated in the analysis of theHuman
breast cancer dataset. Finally, the downstream functional enrichment
analysis further underscores the advantages of using STANCE.

STANCE canbe easily extended to single-cell resolution STdata by
modifying the πk vector. If the ith cell belongs to the kth cell type, then
πik = 1, otherwise πik = 0. The same estimation and testing procedures
can then be applied.

Despite its strengths, STANCE has areas for improvement. Firstly,
it does not directly model raw count data, instead relying on a

normalization procedure thatmay impact its power.We have created a
generalized version of STANCE that models raw count data using a
Poisson or negative binomial mixed-effect model. However, this
increases the computational cost significantly. Therefore, we propose
only the Gaussian version of STANCE to balance accuracy and com-
putational efficiency. Future implementations may include techniques
like low-rank approximation of kernels to enhance computational
efficiency.

Additionally, STANCE’s accuracy depends on the precision of cell-
type deconvolution results. While STANCE is robust against mis-
specifications in cell type composition for its type I error control,
inaccurate estimates can affect its testing power in certain cases. For
the Gaussian kernel, selecting an appropriate bandwidth parameter is
crucial. For datasets with a small number of spots (e.g., fewer than
1000), one can adopt the approach used in SPARK by choosing a set of
bandwidth parameters and aggregating the p-values across different

Fig. 8 | Results of the mouse olfactory bulb data. a The bar plot displays the
numbersof ctSVGs for each cell type.bTheheatmapdisplaying the intersections of
ctSVGs between cell types. c The stacked bar plots display the variance explained
by 12 cell type-specific spatial effects and random error, illustrating the top 20
ctSVGs for each of the 5 cell types with the highest matching with the layer

annotation. Top left: deconvolved cell type 2. Topmiddle: deconvolved cell type 4.
Top right: deconvolved cell type 8. Bottom left: deconvolved cell type 11. Bottom
right: deconvolved cell type 12.d Spatial patternplots of scaled gene expression for
5 example ctSVGs. Spots are outlined with colors indicating the layer annotation.
Source data are provided as a Source Data file.
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bandwidths to enhance power. For datasets with a large number of
spots, the computational cost can be prohibitive. In such cases,
applying a rule-of-thumb criterion45,46 can save computational time,
albeit with a trade-off in accuracy.

Methods
The model
Our goal is to identify genes that exhibit spatial expression patterns,
referred to as utSVGs, and further test if they are specific to certain cell
types (i.e., ctSVGs). Suppose we have spatial transcriptomics expres-
sion data for q genes from n spots (or pixels) of a 2D tissue, with their
spatial locations denoted as s= ðsi1, si2Þn × 2, i = 1, ⋯ , n. The original
gene expression count data of n spots are collected and normalized
through various methods to yield continuous gene expression data,
denoted as y= ðy1, � � � , ynÞT . Additionally, we assume that all the cells in
the tissue belong to K cell types, and for each spot, the cell type
compositions have been estimated using existing cell type deconvo-
lution tools (either reference-based or reference-free), denoted by
Π= ðπi1, � � � ,πiK Þn×K , i = 1, ⋯ , n.

With this information, we establish a variance componentmodel47

to elucidate the relationship between the spatial pattern of gene
expression and cell type composition, i.e.,

yðsÞ=XðsÞβ+ γðsÞ+ εðsÞ, ð1Þ

where β are non-spatial fixed effects with X(s) being a n × p-
dimensional design matrix for covariates and β= ðβ1, � � � ,βpÞT being
a p-dimensional vector of associated coefficients (when there is no
covariate, X(s) contains elements of ones); γ(s) are the spatial random
effects; εðsÞ= ðε1, � � � , εnÞT is a n-dimensional vector of random effects
for residual errors, following a multivariate normal distribution, i.e.,
MVNð0,σ2

ε InÞ. We further decompose the spatial random effects γ(s)
into K cell-type-specific components, i.e.,

γðsÞ=π1 � γ1ðsÞ+ � � � +πK � γK ðsÞ, ð2Þ

where γk(s) is a n-dimensional vector of spatial random effects con-
tributed by cell type k, k = 1, ⋯ , K; πk = ðπ1k , � � � ,πnkÞT is the k-th
column of Π, whose (i, k)-th element πik is the proportion of a specific
cell type k on spot i, i = 1, ⋯ , n; ⊙ is the Hamadard element-wise
product. We assume that cell-type spatial random effects are
independent of each other and each cell-type spatial random effect
follows a multivariate normal distribution, i.e.,

γkðsÞ= ðγkðs1Þ, � � � , γkðsnÞÞT � MVNð0, τkKÞ, k = 1, � � � ,K, ð3Þ

where K is an n × n kernel matrix capturing the spatial similarity
between spots; τk is the variance component of spatial effect corre-
sponding to cell type k. Combining formulas (1) and (2), we obtain

yðsÞ=XðsÞβ+π1 � γ1ðsÞ+ � � � +πK � γK ðsÞ+ εðsÞ: ð4Þ

which is the complete form of STANCE model. Then, the covariance
matrix of y is given by

Cov ðyÞ � V=
XK

k = 1

τkΠkKΠ
T
k + σ

2
ε In =

XK

k = 1

τkΣk + σ
2
ε In, ð5Þ

where Πk = diag{πk} and Σk =ΠkKΠ
T
k for k = 1, ⋯ , K.

STANCE incorporates spatial information by constructing a
distance-based kernel matrix, denoted as K, using spot coordinates.
The (i, j)th-entry of this kernel matrix,Ki,j, is expressed as a function of
the Euclidean distance ∥si − sj∥ between the i-th and j-th spots, where
si = ðsi1, si2ÞT and sj = ðsj1, sj2ÞT represent their respective coordinates,
i.e., Ki,j = K(∥si − sj∥). When the spatial coordinates are rotated by an

angle θ, the transformed coordinates of the i-th and j-th spots are given
by ~si =Rsi and ~sj =Rsj , where the rotation matrix R can be defined as

R =
cos θ

180π
� � � sin θ

180π
� �

sin θ
180π
� �

cos θ
180π
� �

" #

The matrix R is an orthogonal matrix, satisfying RTR = I2, where I2 is a
2 × 2 identity matrix.

After rotation, the Euclidean distance between the i-th and j-th
spots becomes

k ~si � ~sj k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~si � ~sjÞT ð~si � ~sjÞ

q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRsi � RsjÞT ðRsi � RsjÞ

q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsi � sjÞTRTRðsi � sjÞ

q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsi � sjÞT ðsi � sjÞ

q

= k si � sj k :

The above calculation demonstrates that the Euclidean distance
∥si − sj∥ remains unchanged under rotation. Consequently, the
distance-based kernelmatrixK is invariant to various degreesof spatial
rotations. Therefore, STANCE is theoretically rotation-invariant.
Examples of rotation-invariant kernels are Gaussian kernel, Laplacian
Kernel, and Matern Kernel.

Hypothesis testing
Based on the STANCE model(4) with K components representing the
random effects on the spatial pattern of gene expression contributed
by each of the K cell types, we developed a unified two-stage testing
procedure to systematically detect both spatially variable genes (SVGs)
and cell type-specific spatially variable genes (ctSVGs).

First, we conduct an overall test for all the cell type-specific var-
iance components with the hypotheses

Hð1Þ
0 : τ1 = � � � = τK =0

Hð1Þ
1 : at least one parameter is not zero

(
ð6Þ

Under this null hypothesis, the model(4) simplifies to:

yðsÞ=XðsÞβ+ εðsÞ,

which is a linear model with only fixed effects and an error term,
indicating that the gene expression is unrelated to spatial locations. If
the null hypothesis is rejected for a specific gene, it means that at least
one τk ≠ 0, suggesting that at least one cell-type spatial effect
contributes to the gene expression. This confirms the spatial variability
of the gene, though the specific cell-type spatial variability remains
undetermined. For the genes passing the stage 1 test, we call them
utSVGs, which include both SVGs and ctSVGs. A score statistic is
constructed for detecting utSVGs, and the corresponding p-value can
be computed through approximation by a scaled chi-square
distribution48–51. We examine one gene at a time, and once the
p-values for all genes are obtained, a false discovery rate (FDR) control
procedure (e.g., the Benjamini-Yekutieli procedure) is performed
across all genes to declare the final significant gene list.

After obtaining the list of utSVGs, the next goal is to identify cell
type-specific SVGs among them. Since the spatial effect of gene
expression is decomposed into K components, detecting the ctSVGs
for a specific cell type k involves testing whether its corresponding
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variance component equals zero, that is,

Hð2Þ
0 : τk = 0

Hð2Þ
1 : τk >0

(
ð7Þ

Similarly, a score statistic is constructed to detect ctSVGs for
specific cell types, and the associated p-value can also be computed
through approximation by a scaled chi-square distribution48–51. For
each cell type of interest, one gene is examined at a time. Finally, we
obtain an n × K p-value matrix. The details about the estimation and
testing can be found in Supplementary File.

Simulation 1: evaluation of the overall test
Simulation 1 is to evaluate the performance of the STANCE overall test
for both SVG and ctSVG detection. We first simulated single-cell
resolution spatial transcriptomics data. We used a random-point-
pattern Poisson process by utilizing the rpoispp function in the ‘spat-
stat’ package to generateN = 10, 000 cells randomly distributedwithin
a unit square with each of them assigned precise spatial coordinates.
Then, the assignment of these 10, 000 cells to 3 spatial domains,
denoted as D1 − D3 (Fig. 2a), is performed through the following pro-
cedure. All cells were initially categorized under domain D1. From the
total N cells, we randomly selected two without replacement to serve
as the centers for domainsD2 andD3. The radii for thesedomainswere
independently assigned by sampling from a uniform distribution
between 0.1 and 0.5, introducing variability in domain sizes and
influences. Cells were then reassigned to the closest domain center,
based on the calculated radii, with an initial default to D1. In instances
of overlapping domains, cells within such intersections were assigned
to the domain with the smallest radius. This prioritizes more densely
concentrated domains, potentially highlighting areas of higher biolo-
gical significance.

We assumed the presence of 3 distinct cell types and simulated
the expression of 1000 genes per cell using a series of negative bino-
mial distributions characterized by specific mean and dispersion
parameters. In this parameterization of negative binomial distribution,
the variance is given by μ+ μ2

ϕ . This relationship shows that the variance
is directly influenced by the value of the dispersion parameter ϕ.
Specifically, as the dispersion parameter ϕ increases, the variance of
the generated negative binomial random count numbers decreases.
We developed several simulation cases to assess the type I error rates
and testing power under scenarios of different cell type compositions
and gene expression dispersion (with higher dispersion denoting
smaller variation).

Spot-resolution spatial transcriptomics data were then simulated
based on the single-cell resolution data generated from the procedure
as described above. We created grids of size 0.03125 to split the unit
square into n = 1, 024 spots. For all cells inside each spot, we aggre-
gated the expression counts to serve as the spot-level expression of
this specific spot and also calculated the cell type compositions.
Besides, the coordinates of each spot were constructed based on the
means of the x and y coordinates of all the cells within this spot. The
count data were then normalized for further analysis.

The null case. Each cell was assigned to one of three cell types
based on a categorical distribution, with probabilities varying across
three distinct scenarios (Fig. 2b). Specifically, in Scenario 1, the dis-
tribution was heavily skewed towards cell type 3, which had a 70%
probability, while cell types 1 and 2 each had a 15% probability. In
Scenario 2, the proportion for cell types 1, 2, and 3 was respectively set
as 30%, 30% and 40%, respectively, while in Scenario 3, the proportion
was set as 45%, 45% and 10%. The expression of 1000geneswas initially
simulated using a series of negative binomial distributions, char-
acterized by a mean of 1 and dispersion parameters of 0.7 and 1.5, and
were subsequently normalized for further analysis. The spatial

patterns of cell type distributions under the three scenarios were dis-
played in Fig. 2c.

We selected 300 out of 1000 genes serving as cell type marker
genes, in which each of the three cell types has 100 unique marker
genes (for the deconvolution purpose). For each specific cell type, we
set the expression of their marker genes with a fold change of 4 (i.e.,
multiplying the mean parameter of the negative binomial distribution
by 4, regardless of their domain assignment). This resulted in the
distribution of the 1000 genes into two categories: a cell-type marker
gene group and a non-spatial gene group, with expected counts of 300
and 700 genes, respectively. The performance of the STANCE overall
test in controlling the type I errorwas evaluated using the 700genes in
the non-spatial group. For each dispersion parameter and scenario, we
simulated five replicates and combined the p-values across these
replicates.

We also conducted a sensitivity test for the type I error control
under the mis-specification of cell type compositions. Following the
procedure described above, we replaced the true or estimated cell-
type proportions with mis-specified ones. We assumed that the cell
type composition of each spot was mis-specified by “a terrible
deconvolution tool” to be a mixture of four cell types, with the pro-
portions being four randomnumbers between 0 and 1 that sum to 1. In
this scenario, either the number of cell types or the cell type propor-
tions were mis-specified. Similar to the null case without mis-specifi-
cation, we evaluated the performance of the STANCE overall test for
type I error control on the 700genes in the non-spatial group. For each
dispersion parameter and scenario of true cell type composition, we
simulated 5 replicates and combined the p-values across replicates.

Alternative case 1: utSVGs (both SVGs and CTSVGs). We followed
the procedure of the null case to carry out cell type assignment and
generated 300 cell typemarker genes. Then, we assigned another 600
genes (serving as spatially variable genes) to three domains each with
200 unique domain-specific genes. For each specific domain, we
modified the expression of the first 50 domain-specific genes with a
fold changeof 4 for cells locatedwithin this domain, regardless of their
cell type, the next 50 genes with a fold change of 2, followed by 50
genes with a fold change of 0.5, and the last 50 domain-specificmarker
genes with a fold change of 0.25. Due to the distribution of cell types,
these spatially variable genes are also cell type-specific spatially vari-
able genes. The testing power was also evaluated under different fold
changes. The spatial expression pattern of a representative utSVG is
displayed in Fig. 2d and Supplementary File Fig. S4.

Consequently, the 1000 genes were categorized into three
groups: cell type marker gene group (300), spatially variable gene
group (600), and non-spatial gene group (100). The performance of
the STANCEoverall test to detect both SVGs andCSVGs is evaluated on
the 600 genes in the spatial gene group. Similarly, for each dispersion
parameter and each scenario, we simulated five replicates.

Alternative case 2: only ctSVGs. We followed the procedure of the
null case to carry out cell type assignment and generated 300 cell type
marker genes. Then, we treated the remaining 700 genes as cell type-
specific spatially variable genes. We chose cell type 3 as the reference
cell type when calculating the fold change. We picked two domains as
spatially variable domains (D1 andD2). For cells in cell type 1, themean
expressions of these ctSVGs were two times higher in domain D1 than
in D3 and were set to 0 in domain D2. On the contrary, for cells in cell
type 2, the expressions of these ctSVGs were set to 0 in domainD1 and
were two times higher indomainD2 than inD3. That is, the expressions
of these genes are complementary in D1 and D2. Thus, for cell type 1
and 2, these 700 genes show cell type-specific spatial variation (hence
ctSVGs), but for cell type 3 they do not show spatial variation (non-
ctSVGs).When combining the three cell types together, these genes do
not show spatial variation (thus non-SVGs). The spatial expression
pattern of a representative ctSVG is displayed in Fig. 2d and Supple-
mentary File Fig. S6.
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Theperformanceof the STANCEoverall test to detect only ctSVGs
is evaluated on the 700 ctSVGs. Similarly, for each dispersion para-
meter and each scenario, we simulated five replicates.

Alternative case 3: SVGs but not ctSVGs. Each cell was assigned to
one of three cell types based on a categorical distribution, with
probabilities varying across three distinct scenarios. In this case, the
cell type compositions vary across domains, where each domain
consists of only two cell types with equal proportions. That is, domain
D1 consists of only cell types 1 and 2, domain D2 consists of only cell
types 2 and 3, and domain D3 consists of only cell types 1 and 3. The
expressions of 1000 genes were initially simulated using a series of
negative binomial distributions, characterized by a mean of 1 and
dispersion parameters of 0.7 and 1.5, like the other three cases above.
The spatial expression pattern of a representative SVG is displayed in
Fig. 2d and Supplementary File Fig. S7.

We selected 600 out of 1,000 genes serving as cell-type marker
genes, in which each of the three cell types has 200 unique marker
genes. For each specific cell type, we modified the expression of their
first 50 marker genes with a fold change of 4 for cells in that cell type,
regardless of their domain assignments, the next 50marker geneswith
a fold change of 2, followed by 50 marker genes with a fold change of
0.5, and the rest 50marker geneswith a fold changeof 0.25.As a result,
the 1,000 genes were categorized into two groups: the cell-type mar-
ker gene group (600), and the non-spatial gene group (400). Due to
the spatial distribution of cell types, the 600 cell-type marker genes
display spatial patterns across all cell types, implying that they are
SVGs but not ctSVGs. The performance of the STANCE overall test to
detect only SVGs was evaluated on the 600 marker genes. For each
dispersion parameter, we simulated five replicates.

Simulation 2: evaluation of cell-type-specific test
Simulation 2 aims to evaluate the performance of the STANCE indivi-
dual test in detecting ctSVGs. Similar to Simulation 1, we generated
4000 cells randomly distributed within a unit square, each assigned
precise x and y coordinates. These cells were divided into two spatial
domains: the spatially variable domain (SD) and the non-spatially
variable domain (D) (Fig. 4c), following the procedure outlined below.
First, one of the 4000 cells was randomly selected to serve as the
center of SD. The radius of this domain was then independently sam-
pled from a uniform distribution between 0.2 and 0.4. Any cell that fell
within this circular area was assigned to the SD domain, while the
remaining cells were assigned to the D domain.

Each cell was assigned to one of three cell types based on a
categorical distribution, with probabilities of 10% for cell type 1, 30%
for cell type 2, and60% for cell type 3, reflecting low,medium, andhigh
proportions, respectively (Fig. 4b). We simulated the expression of
1000 genes per cell using a series of negative binomial distributions
with a mean of 1 and dispersion parameters of 0.7 and 1.5. Spot-
resolution spatial transcriptomics data were then simulated based on
the single-cell resolution data generated from the above procedure.
The unit square was divided into 400 spots using a grid size of 0.05.
For each spot, we aggregated the expression counts of all cellswithin it
to determine spot-level expression and calculated cell type composi-
tions. Additionally, the coordinates of each spot were based on the
mean x and y coordinates of the cells within that spot.

Out of the 1000 genes, 300 were selected as cell-type marker
genes, with 100 unique marker genes for each of the three cell types.
We modified the expression of these marker genes with a fold change
of 2 for their respective cell types, independent of domain properties.
Next, we selected another 600 genes to serve as ctSVGs, with each of
the three cell types having 200 unique ctSVGs. For example, for cell
type 1, we adjusted the mean expression of its first 50 ctSVGs with a
fold change of 4 for cells located within the spatially variable domain
(SD), the next 50 ctSVGs with a fold change of 2, the following 50
ctSVGs with a fold change of 0.5, and the last 50 ctSVGs with a fold

change of 0.25. We applied a similar procedure to cell types 2 and 3,
and simulatedfive replicates for eachdispersion value to aggregate the
p-values across replicates (Fig. 4a).

To evaluate the STANCE individual test’s performance in con-
trolling type I error, we combined the test results for detecting the
other two cell types’ specific SVGs in each cell type. Specifically, we
combined the STANCE cell types 2 and 3 test results on cell type
1-specific genes, the STANCE cell types 1 and 3 test results on cell type
2-specific genes, and the STANCE cell types 1 and 2 test results on cell
type 3-specific genes. These tests, which should not be rejected, were
used to assess the type I error control.

The testing power of different methods were evaluated based on
the testing results for detecting each cell type’s ctSVGs. Figure 4d
shows the spatial expression pattern of a cell type 3-specific ctSVG.
Specifically, the test results on cell type 1-specific ctSVGs assess testing
power under a low cell type proportion, the test results on cell type
2-specific ctSVGs assess power corresponding to a medium propor-
tion, and the test results on cell type 3-specific ctSVGs assess power
under a high proportion, with the results demonstrating the impact of
cell type proportion on the testing power.

Compared methods
Although the three methods (CTSV, C-SIDE and spVC) designed for
ctSVG detection are not spatial rotation invariant and can lead to high
false positives or false negatives, we still considered them in the con-
text of Simulation 2 to provide a comprehensive comparison. How-
ever, practical constraints limited the inclusion of CTSV and C-SIDE in
the final analysis. For CTSV, the required computational time was
prohibitively long, making it impractical to include in the simulation
comparison. For C-SIDE, it is tightly integrated with the deconvolution
tool RCTD, whichmust be run prior to performing C-SIDE. However, in
our simulation setting, RCTD filtered out a substantial percentage of
ctSVGs, resulting in a failure to produce testing results for these genes.
As a result, only spVC was included in Simulation 2. For this method,
the full model was fitted on all simulated ctSVGs, and p-values for the
spatially varying effects of three covariates (cell types) were collected.
These p-values were subsequently combined for type I error rate
control and power analysis, enabling a focused evaluation of spVC’s
performance in the simulation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human HER2+ breast cancer tumor dataset13 can be found at
https://zenodo.org. The human kidney cancer dataset can be found at
https://data.mendeley.com. Themouse olfactory bulb (MOB) dataset43

can be found at https://www.spatialresearch.org. Source data are
provided with this paper.

Code availability
The R code used to develop the model, perform the analyses and
generate results in this study is publicly available on GitHub at https://
github.com/Cui-STT-Lab/STANCE, under GPL-3.0 license. All citable
codes of the present study52 are publicly available at https://zenodo.
org/records/14768010.
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