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Small intestinal neuroendocrine tumors (siNETs) are rare bowel tumors arising
from malignant enteroendocrine cells, which normally regulate digestion
throughout the intestine. Though infrequent, their incidence is rising through
better diagnosis, fostering research into their origin and treatment. To date,
siNETs are considered to be a single entity and are clinically treated as such.
Here, by performing a multi-omics analysis of siNETs, we unveil four distinct
molecular groups with strong clinical relevance and provide a resource to
study their origin and clinical features. Transcriptomic, genetic and DNA
methylation profiles identify two groups linked to distinct enteroendocrine
differentiation patterns, another with a strong immune phenotype, and the
last with mesenchymal properties. This latter subtype displays the worst
prognosis and resistance to treatments in line with infiltration of cancer-
associated fibroblasts. These data provide insights into the origin and diversity
of these rare diseases, in the hope of improving clinical research into their
management.

Neuroendocrine cells are present throughout the body where they
secrete hormones that trigger long- and short-range cellular
responses. In the intestinal tract, they are known as enteroendo-
crine cells (EECs). EECs are involved in digestion and nutrient
uptake, as well as in intestinal motility*. Various EEC subtypes have
been described and were recently analyzed at the single-cell
level*”. The traditional nomenclature categorizes EECs according
to their localization and the hormone(s) they secrete: A cells

(secrete grelin and nestatin), G cells (gastrin), enterochromaffin-
like-cells (histamine) and P cells (leptin) were described in the sto-
mach; N cells (neurotensin), M cells (motilin), I cells (cholecystoki-
nin), S cells (secretin), and K cells (glucose-dependent
insulinotropic peptide) in the small intestine; L cells (glucagon-like
peptides 1 and 2, peptide YY, oxyntomodulin) in the colon; and D
cells (somatostatin) and enterochromaffin cells (serotonin) are
expressed throughout the gastro-intestinal tract®.

A full list of affiliations appears at the end of the paper.
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Neuroendocrine tumors of the small intestine arise from EECs and
are classified by the WHO as neuroendocrine tumors (NETSs) or neu-
roendocrine carcinomas (NECs) of the digestive system. The former
category comprises three groups based on histological analysis of cell
proliferation: NET-G1 (Ki67 index <3%), NET-G2 (3%-20%), and NET-G3
(>20%) constituted by well-differentiated neoplasms. Conversely,
NECs are poorly differentiated, clinically very aggressive and asso-
ciated with poor patient survival. SiNETs present indolent growth but
patients frequently relapse or present metastases at diagnosis, with a
5-year survival rate of 69% when metastatic, even following multiple
lines of treatment’. SiNETs also secrete neurotransmitters, like ser-
otonin, leading to the development of a carcinoid syndrome and car-
cinoid heart disease (CHD), which can result in patient death if no anti-
secretory treatment and rapid surgical replacement of the heart valves
is conducted®. Recently, omics-based analyses of NECs identified two
subgroups: a ductal and an acinar type, with a clear difference in
neuroendocrine origin in the same organ’. Conversely, siNETs are still
considered as a unique pathology both at the molecular and clinical
levels, and are thus treated as such. SiNETs are reported to be poorly
mutated and there is an unusual absence of somatic driver mutations
and of infiltration by immune cells'>"2. However, the section of the gut
between the duodenum, jejunum and ileum has scarcely been ana-
lyzed, despite the fact that (i) EECs are spatially different, for instance
gastrin-secreting cells are only located in the duodenum, and that (ii)
30-50% of patients present multiple forms of the pathology” from 2 to
over 100 tumors, which may imply differences between these tumors
and their cell-of-origin. We thus wondered whether different siNET
subtypes could be identified.

We herein conduct a large-scale analysis of a cohort of human
siNETs from 122 patients by integrating data from (i) RNA sequencing
of 206 separate intestinal samples or metastases, (ii) DNA methylation
arrays of 200 samples, (iii) genotyping arrays of 183 samples and (iv)
whole genome sequencing (WGS) of 37 samples. We unveil several
relevant subgroups of the pathology in terms of clinical response by
depicting molecular portraits at different omics levels. More specifi-
cally, we identify a group of well-differentiated tumors correlated with
good patient outcome, and a mesenchymal profile predictive of poor
prognosis and weak response to treatments linked with strong cancer-
associated fibroblast (CAF) infiltrations that we demonstrate as pro-
tumoral. This study argues in favor of considering siNETs as a group of
tumors comprising different subtypes, useful for their clinical man-
agement, and provides a valuable resource to study human tumoral
EECs and SsiNETs, offering practical insights for the research
community.

Results

A valuable resource for studying siNETs

In order to analyze the clinical and biological diversity of siNETs, we
collected 219 samples including primary tumors (from the duodenum,
jejunum or ileum; n=170), invaded mesenteric lymph nodes (n=22),
liver metastases (n=38), and others (blood, adjacent normal tissues,
adenomas, normal lymph node; n=19), from a cohort of 122 patients
including cases with multi- or unifocal forms (Fig. 1a; Supplementary
Figs 1, 2). All clinical parameters, including overall survival (OS) and
progression-free survival (PFS), were documented and samples were
verified by pathologists for the expression of typical NET markers,
such as Chromogranin A (CgA), to confirm diagnosis (Fig. 1b, c). To
analyze the clinical diversity of siNETs, we first performed a multiple
correspondence analysis (MCA) based on 20 clinical parameters of the
cohort such as age, sex, number of metastases and their location
(Supplementary Figs. 1a—c). This clearly showed that (i) many clinical
parameters were not discriminative in the two first axes of the MCA
(age, gender, tumor size, proliferative status...) (Supplementary
Figs. 1a-c), albeit (ii) patients with a functional tumor (secreting hor-
mones) displayed an uncontrolled carcinoid syndrome (p<0.001)

associated with the detection of CgA in blood at the time of surgery
(p<0.001) and the presence of metastases (p=0.015) (Fig. 1d).
Moreover, these parameters were also strongly correlated with worse
OS and PFS, highlighting the capacity of the database to link clinical
and biological features (Fig. 1d).

Human siNETs comprise 4 different molecular traits

The disparity in clinical parameters and correlations obtained with
patient survival led us to speculate that siNETs may comprise different
subtypes. To test this hypothesis, we initially performed adequate
quality controls (QCs), before subjecting samples to mRNA sequen-
cing. Of note, there was no correlation between how long specimens
had been frozen and their quality. To limit bias due to the presence of
several samples from the same patient (in multifocal forms), we only
analyzed one sample per patient (n =111, discovery cohort), namely the
largest tumor, which would have been used at diagnosis to char-
acterize tumor stage. We thus performed an unsupervised clustering
analysis by selecting the top 10% variant protein-coding genes among
the whole discovery cohort. Consensus clustering analysis (CCP)
indicated that the optimal number of gene clusters was four. These
gene clusters were then identified by Leiden clustering, projected into
the UMAP first plan, and were submitted to pathway enrichment
analysis (Fig. 2a—c; Supplementary Data 3). In order to link tumors with
these four biological phenotypes, a ssGSEA scoring system was used to
label all samples as either positive or negative for the corresponding
representative gene cluster (Fig. 2d bottom tracks; Supplementary
Figs. 2a-d). Differential expression analyses were then carried out
between positive and negative samples regarding the four gene clus-
ters, in order to comprehensively characterize biological functions
underlying each of them. The first cluster (Epithelial Cluster or Epi,
green) included 431 genes and was characterized by an enrichment in
intestinal epithelial brush border cells displaying enterocyte features
(Fig. 2c, d; Supplementary Figs. 2a, 3a; Supplementary Data 4). The
second cluster (Vesicular Cluster or Vesi, red) comprised 913 genes
and displayed an enrichment in vesicular transport pathways, as well as
in synaptic and neural features, and co-occurred with classical EEC
markers, like neurotransmitters (Fig. 2c, d; Supplementary Figs 2b, 3b;
Supplementary Data 5). The third cluster (Immune, blue) was enriched
in immune cell markers (124 genes) (Fig. 2c, d; Supplementary Figs. 2c,
3c; Supplementary Data 6). The last cluster (Mesenchymal Cluster or
Mes, gold) encompassed 515 genes and displayed an enrichment in
pathways related to extracellular matrix remodeling and epithelial to
mesenchymal transition (EMT), and also exhibited fewer neuroendo-
crine markers (Fig. 2c, d; Supplementary Figs. 2d, 3d; Supplementary
Data 7). Survival analysis showed that a positive Mes status was asso-
ciated with the worst OS (p = 0.002). Conversely, a positive Vesi status
was predictive of a better OS (p = 0.055) (Fig. 2e). No difference in OS
was observed in the Epi and Immune signatures. We confirmed these
findings in the entire cohort (Supplementary Fig. 2e). Hence, our
analyses highlight four transcriptomic signatures in siNETs that relate
to specific clinical outcomes, expanding current knowledge in
this area.

A cell-of-origin phenotype for tumor enteroendocrine cells?

We were initially able to determine that tumors of the duodenum were
transcriptionally different from those of the ileum, implying that the
localization of EECs is important, and reinforcing the hypothesis that
siNETs are not a single and homogeneous population (Supplementary
Fig. 3e). We then investigated whether siNET subtypes and repre-
sentative signatures arose from a single type of EECs using ‘exclusive’
signatures previously obtained by single cell RNA sequencing analysis
of normal cells of the intestine'*". Some groups have shown that the
different types of EECs derived from LGR5" stem cells at the bottom of
the crypts. Two differentiations could then take place, separating
enterochromaffin and L, M, N, D, P, I and K type EECs>*'°. Patients
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Fig. 1| Clinical description of siNET pathology. A valuable resource for the study
of siNETs. a Schematic representation of the siNET cohort. SNP (Single Nucleotide
Polymorphism); FFPE (Formalin-Fixed Paraffin-Embedded). Created with BioR-
ender.com. b Representative hematoxylin and eosin (H&E) and Chromogranin-A
immunohistochemistry (IHC) staining for pT1, pT2 and pT3 statuses. All 122 cases
have undergone H&E staining and Chromogranin-A IHC for diagnosis. Scale bar

1 mm. ¢ Table of the clinical characteristics of the siNET cohort. WHO (World Health
Organization); G (grade); ENETS (European Neuroendocrine Tumor Society); UICC
(Unio Internationalis Contra Cancrum); LN (Lymph Node); SRI (Somatostatin

o
Axis_114%

Receptor Imaging); CI (Confidence Interval); NR (Not Reached) d left panels:
representation of four out twenty clinical variables used for the multiple corre-
spondence analysis (MCA) in the first two planes (functionality, uncontrolled car-
cinoid syndrome, Chromogranin A (CgA) dosage at surgery time and number of
metastatic sites variables) (see Supplementary Fig.1). Right panels: Kaplan-Meier,
log-rank test and Cox proportional hazards regression model methods were used
to study overall (OS) and progression-free (PFS) survival for the four selected
clinical features. The shaded areas represent 95% confidence intervals around the
curves; p-values are indicated below the graphs.

expressing the Epi signature (i.e., depicted by ssGSEA scores- bottom
lines) displayed an enrichment in enterocyte/goblet cell precursor
signatures, whereas a positive Vesi status was associated with enter-
ochromaffin properties (Fig. 3a). The Mes signature was correlated
with different types of progenitors with a more “stem-like” phenotype
(Fig. 3a). We analyzed the expression of transcription factors pre-
viously described in the literature as important in intestinal differ-
entiation. We identified that Vesi cells could be characterized as
LMXIA*; ATOHI which confirms their advanced enteroendocrine state
of differentiation. Epi cells were defined as ATOHI" which seems to
confirm the differentiation pathway that exists for normal EECs. Mes
cells seemed to correspond more to progenitor cells, defined as
DCLKT'. Duodenal cells formed a specific cluster defined by the ARX",
highlighting the specificity of this subgroup compared to other EECs
(Fig. 3b). Moreover, we analyzed the transcriptional expression of
hormones associated with EEC functions, as this was previously used as
a basis to dichotomize two normal types of EECs®'®. We unveiled a clear
distinction between the Epi and Vesi signatures. The former was
associated with neurotensin, pro-glucagon, PYY, cholecystokinin and
somatostatin expression, likely corresponding to an EEC origin,
whereas the latter was associated with the enzyme that generates
serotonin TPH1, PCSK1 and NUCB2, suggesting that these tumors
develop from enterochromaffin cells (Fig. 3c). Interestingly, the single
expression of PCSK1, pro-glucagon (GCG) or their absence was

sufficient to discriminate between the Epi, Vesi and Mes signatures
(Fig. 3d), as the latter was associated with the complete absence of
hormone expression, which may suggest a loss of neuroendocrine
characters consistent with a more stem/dedifferentiated phenotype
(Fig. 3c, d). Overall, these results suggest that parallel differentiations
that exist in normal EECs persist during tumorigenesis. The overall
clinical management of these groups is therefore questionable, since
only those least involved in differentiation showed a poor OS (i.e., the
Mes group that does not express hormones).

SiNETs are poorly mutated but specific chromosomal rearran-
gements predict outcome

SiNETs were reported to display a low tumor mutational burden and
no obvious driver mutations>". We performed WGS analyses of nor-
mal tissue and tumor tissue from multi- or unifocal patients, metastatic
or not (n=37). We identified a few genes mutated in at least 2 samples,
including BCOR, FAT1, MUCSAC and MCAM, and detected previously
described genes like CDKNIB (Fig. 4). Overall, we found no correlation
between driver mutations or clinical indications, supporting the
uniqueness of these pathologies. In addition, we took advantage of
WGS analyses to investigate chromosomal rearrangements that are
recurrent in siNETs®?°, and revealed an enrichment in chr18 deletion
and chr4, 5,7, 10, 14 and 20 gains among WGS samples (Fig. 4). We thus
conducted an extensive copy number alteration (CNA) detection
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respectively in green, red, blue and gold. The shaded areas represent 95% con-
fidence intervals around the curves; the median survival rate is represented by
dotted line; p-values are indicated below the graphs.

analysis on 183 samples including 99 samples from the discovery
cohort, from which we established a global CNA landscape of siNETs
using genotyping arrays (Fig. 5a). We observed chromosomal rear-
rangements, including some previously reported, and identified a peak
of deletion in the RBI locus, a key suppressor gene in other NET
pathologies® but undescribed in siNETs (Fig. 5a). We then performed a
hierarchical clustering of CNAs of the discovery cohort and reported
their status for all tumors. Based solely on chromosome rearrange-
ments, four phenotypes were observed, the first completely lacked
rearrangement, the second encompassed siNETs with exclusive loss of
chromosome 18, the third with gain in chromosomes 4, 5, 7, 10, 14 and
20, and the last, in which loss of chromosome 18 was accompanied by
other deletions (Fig. 5b). The first group likely presented very few
cancer cells, as detected by the ASCAT model and putative existing
rearrangements were not detectable. Nevertheless, we maintained this
group in order to conduct unbiased analyses of our patients. Survival
was neither correlated with the level of global chromosome rearran-
gement (Fraction genome altered - FGA), nor with loss of chromosome
18, a major event associated with the disease® (Fig. 5¢; Supplementary
Fig. 4a). Nonetheless, gain of chromosomes 4, 10 and 14 were

predictive of poor outcome (p=0.013, p=0.025, p=0.0085, respec-
tively), and seemed to be associated with the Mes signature, especially
the amplification of chromosomes 10 and 14, but not with other clus-
ters (Fig. 5d; Supplementary Figs. 4b-e). In line with these data, we
created a chromosome amplification score based on the concomitant
gain of chromosomes 4, 10 and 14. This score was predictive of a worse
prognosis in OS and PFS (p <0.001; p =0.026 respectively) (Fig. 5d),
making this score a potential tool for patient diagnosis using Fluor-
escence In Situ Hybridization (FISH). Regarding our 4 representative
gene signatures, no rearrangement, loss or gain was significantly
associated with a given siNET signature, except for the Mes signature
which was associated with chromosome 10 and 14 rearrangements,
highlighting the key role of these events in siNETs of poor prognosis
(Supplementary Fig. 4f).

DNA methylation landscape of siNETs

As described above, unsupervised analysis of siNETs was conducted in
the discovery cohort (n=98) using the top 1000 most variable CpG
probes. This resulted in the identification of four patient DNA methy-
lation (DNAm) consensus clusters, designated as the FGA-enriched,
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or short list (d) across the entire siNETs cohort. CCK (Cholecystokinin); GAST
(Gastrin); GCG (Pro-glucagon: Glucagon-like peptide 1 et 2, Oxyntomodulin); GHRL
(Ghrelin); GIP (Gastric inhibitory polypeptide); HDC (Histidine decarboxylase); LEP
(Leptin); MLN (Motilin); NTS (Neurotensin); NUCB2 (Nesfatin-1); PCSKI (pro-
hormone convertase 1 for glucagon-like peptide 1 et 2, oxyntomodulin); PYY
(Peptide YY); SCTR (Secretin); SI (Small Intestine); SST (Somatostatin); TPHI
(Tryptophan Hydroxylase 1, biosynthesis of serotonin). Clustering method: Ward’s;
distance: Spearman. Recapitulative ssGSEA score of each gene cluster (epithelial,
vesicular, mesenchymal and immune) is indicated as bottom annotation. LN
(Lymph Node); MN (Mesenteric Node); T (Tumor); TPM (Transcripts Per Million).

epithelial-enriched, hypomethylated, and unifocal-enriched clusters,
containing 18, 23, 36, and 21 samples, respectively (Fig. 6a, Supple-
mentary Data 8). Clustering also resulted in 4 groups of probes,
designated DNAm A-D. The patient DNAm consensus clusters exhib-
ited significantly different mean levels of DNA methylation (Fig. 6b, c).
Notably, samples in the unifocal-enriched cluster exhibited sig-
nificantly lower average DNAm levels on CpGs in probe cluster B
compared to the other consensus clusters, suggesting that DNA
methylation levels on these CpGs may allow the identification of
multifocal disease (Fig. 6a, ¢).

The patient DNAm consensus clusters were significantly asso-
ciated with unifocality, deletions in chromosome 18, gains in chro-
mosomes 4, 10, and 14, as well as three of the four siNET groups
identified above based on unsupervised clustering of transcriptomics
results (Fig. 6b, c). The hypomethylated and unifocal-enriched clusters
overlapped extensively with the Vesi-cluster (26/36 of the hypo-
methylated and 20/21 of the unifocal-enriched clusters were also
classified as Vesi-positive), while the epithelial-enriched (18/23) and
FGA-enriched clusters (12/18) were primarily comprised of patients
classified as immune/epithelial-positive (Fig. 6a). Chr18 deletions were
frequently observed in the hypomethylated cluster (26/36). While it
may be tempting to postulate that deletions in Chrl8 may be respon-
sible for the observed lower levels of DNA methylation in this DNAm
consensus, we noted that the CpG mapping to chromosome 18 made
up only 26 of the 1000 most variable probes used in this consensus
clustering. Thus, it is unlikely that chromosome deletions are directly
responsible for the extensive variation in DNA methylation in the siNET

primary cohort. While gains in either of the tested chromosomes (4, 5,
7,10, 14, and 20) were not associated with any particular siNET sub-
type, at least one of the above listed chromosome gains was observed
in 14/18 patients clustered into the FGA-enriched cluster (Fig. 6b).

Integrated Multi-Omics analysis highlight key findings in tumors
In order to integrate all omics data types into a low-dimensional
representation, we performed an unsupervised decomposition of
SiNET molecular heterogeneity using Multi-Omics Factor Analysis
(MOFA)?, with transcriptomic, genomic and epigenetic layers of data
(Supplementary Fig. 5a). We identified seven independent latent fac-
tors individually explaining more than 10% of variation in at least one
molecular layer and some factors displayed strong correlation with
clinical features (Supplementary Fig. 5b, ¢). We focused specifically on
factor 1 that globally summarized 63.7% of the variation and which was
associated with both OS (HR =1.95; CI = [1.354, 2.810]; p = 0.000328)
and PFS (HR=136; CI = [1.098, 1.68]; p=0.005) (Supplementary
Fig. 5d, e). Enrichment analysis of gene features supporting factor 1,
both in terms of gene expression and methylation (promoter, enhan-
cer region and gene body) exhibited an enrichment of enterocyte
precursor genes for up-regulated or hyper methylated gene body or
hypo-methylated promoter or enhancer features and an enrichment of
enteroendocrine/enterochromaffin markers for down-regulated or
hypo-methylated gene body or hyper-methylated promoter or
enhancer features (Supplementary Fig. 5f, g). This highlighted that a
lesser neuroendocrine differentiation is correlated with a poor prog-
nosis, confirming our previous observations.
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Fig. 4 | Genomic landscape mutations of siNETs. Human siNETs are poorly
mutated without clear genetic drivers. OncoPrint of DNA somatic alterations from
24 tumors sequenced in whole genome. The percentage on the right indicates the
mutation frequency of each gene across samples. OncoPrint is split in 3 panels:
frequently altered genes across WGS cohort (top), frequently altered genes among
TCGA cancer pathways (middle), frequently altered whole chromosomes (bottom).

Mutation counts (substitutions and small indels) and COSMIC mutational sig-
natures distribution per sample were inferred from whole genome data. Phyloge-
netic relationships between primary and metastasis samples are indicated with a
solid line above the tissue annotation track. Tumor purity, ploidy and fraction of
genome altered (FGA) were estimated from FACETS analysis. LOH (Loss Of Het-
erozygosity); MN (Mesenteric Node); T (Tumor).

Multiple tumor forms are not linked with a transcriptional
subtype, but express specific markers and are characterized by
distinct methylation groups

One of the most intriguing features of siNETs is the formation of
multiple forms of tumors. Elias and colleagues elegantly showed that
they all arose from independent tumors”. We first confirmed this
result after WGS analysis of tumors within the same patient (Fig. 7a).

We analyzed the transcriptomic divergences between unifocal and
multifocal forms, and identified 239 differentially expressed coding
genes (p adj<0.05). We then established a signature containing 9
genes that clearly discriminated between uni- and multifocal tumors (p
adj<0.01 and |log2(FoldChange)| >1), namely SEMA3E, CAMKKI,
NWD2, PLA2G2C, LIPF, mainly expressed in multifocal forms, and NCR1,
ATPS8B3, PI3KC2G and HOXC10 mainly expressed in unifocal forms (Fig.

Nature Communications | (2025)16:2197


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-57305-8

1y cohort - 9 sam

a ) Discovryconort 55 sampls
: wel I UN | N UDN BN BT I VI NENTE NI

Primary.Site
Metastasis.Nb
Functionality
Carcinoid.Synd

e gy I., He

RB1 locus

‘Sunval probabity

T p=ost p=092

e 104 gans < N0 - ves et 1014 gans 10 < ves

ehr20
a2t
2z

st
Frp—

chrig.del
chrd.gain

Type
unifocal

- s W muttifocal
= Primary.Site
- - - ILEUM
= Il DUODENUM
I = JEJUNUM
Metastasis.Nb
4
- | B
1
N S L} L] Functionality
|2 non-functional
M functional
- - Carcinoid.Synd
. | ] = 10
3 = W YES
— - CNA level
. = L} = - = -0 1
il - purity
- mc - - - -- — "
[ ~ ploidy
2253354
= I [
= L} FGA
o |
——— - o L = I N 0 20 40 60
= epithelial.genes.score
1
neg cut-off pos

veslculargenes score

purty Hlj:ﬂ]]FP:q
ploidy
FGA

_:I:l:l]:l_-:--:c"eg e

immune.genes.score

| e chrs.gain

1 =0.00069 =0.026 .
B B chr7.gain

g cut-off pos

chr10.gain

chrid.gain

chr20.gain

epithelial genes.score

70 60 3% " 0| T & il ¥ " vesicular.genes.score

e e Y™ Ly ]

» 2 " . of Eilm s 10 s o mesenchymal.genes.score

immune.genes.score

Fig. 5 | Chromosomal rearrangements delineate distinct profiles and their
association with siNETs survival. siNETs can be defined by specific chromosomic
rearrangements. a Frequency plots of DNA gains (yellow) and losses (blue) in the
discovery cohort. RB1 (Retinoblastoma 1). b Unsupervised hierarchical clustering of
copy number alterations in the ileum discovery cohort. A20260 genes x 99 samples
matrix encoded with -1 (loss), O (no alteration), +1 (gain) was used (see Methods).
Tumor purity, ploidy and fraction of genome altered (FGA) were estimated from
ASCAT analysis. Recapitulative ssGSEA score of each gene cluster (epithelial,

vesicular, mesenchymal and immune) is indicated as bottom annotation. CNA
(Copy Number Alterations). Clustering method: Ward’s; distance: binary.

¢, d Kaplan-Meier, log-rank test and Cox proportional hazards regression model
methods were used to study overall (OS) and progression-free (PFS) survival for
chr18.del and chr4.10.14.gains statuses. chr4.10.14.gains was set to YES if at least
one of chromosomes 4, 10 or 14 was gained, NO otherwise. The shaded areas
represent 95% confidence intervals around the curves; p-values are indicated below
the graphs.

7b, ¢). We were unable to determine any association with the four
SiNET Epi, Vesi, Immune and Mes signatures, though a slight associa-
tion was observed between the Vesi signature and unifocal tumors (Fig.
7¢). Differential methylation analyses revealed that 836 individual CpG
sites and 1115 genomic regions were significantly differentially
methylated when comparing unifocal tumors with multifocal forms
(Fig. 7d, e; Supplementary Data 9, 10). Genomic regions hypermethy-
lated in the multifocal tumors were associated with 68 unique genes,
while hypomethylated regions were associated with 841 unique genes.
As highlighted in the heatmap representation, multifocal tumors dis-
played lower levels of DNA methylation in the DMPs (differentially
methylated probes) and DMRs (differentially methylated regions)
compared to unifocal tumors (Figs. 6a, 7d, e). Interestingly, the tran-
scriptional expression of several hormones, such as G/P and SST, also
discriminated unifocal vs multifocal forms implying that they could be
used as a diagnostic test (Fig. 7f).

The tumor microenvironment influences siNET subgroups

The tumor microenvironment (TME) plays a major role in tumor
growth, including infiltrating immune cells and cancer-associated
fibroblasts. To investigate the role of the TME in siNETs, we conducted
several deconvolution methods to analyze the subpopulations within
the TME*, Three different profiles could be isolated, and remarkably
they segregated with the 4 molecular signatures (Fig. 8a). A first profile
was closely correlated with the Vesi signature, the second myeloid
profile segregated with the Epi signature, and the last profile con-
taining few immune cells, abundant CAFs and endothelial cells was
close to the Mes signature (Fig. 8a). We also observed a group

constituted of about 10% of patients who highly expressed immune
checkpoint markers (ICM), strongly correlated with the Immune sig-
nature and who would be the most likely to respond to these therapies
(Supplementary Fig.6). Of note, Epi and Vesi did not express the same
ICM, which also underlines the difference between these molecular
groups.

Next, we focused on the most aggressive Mes signature. We
speculated that it was linked either to EMT activation or to the pre-
sence of mesenchymal tissue, and studied the genes contributing to
this signature like ZEBI, a widely recognized transcription factor with a
key role in EMT?. By IHC we observed the presence of nuclear ZEB1 in
fibroblasts but not cancer cells, indicating that EMT is likely not
involved in this particular phenotype (Supplementary Fig. 7a). The
mesenchymal cluster was also defined by the expression of smooth
muscle-related genes. Estimation of cancer cell purity in the tumors
with a positive Mes status indicated that this was not due to con-
tamination of healthy tissue. CAFs are known to express these markers,
in particular the smooth muscle actin gene. Interestingly, the CAF
signature was strongly correlated with the Mes signature, which dis-
played abundant CAF infiltration observed in bioinformatics analysis
and confirmed by IHC on patient tumor samples (Fig. 8b; Supple-
mentary Figs. 7b, ¢), and this was predictive of a strong decrease in
long-term survival and PFS, reflecting treatment resistance (Fig. 8c). To
analyze this finding functionally, we isolated CAFs from 4 different
siNETs from patients and cultured them (Fig. 8d). Given that CAF
secretions are considered to be at the origin of tumor progression, we
cultured the only available siNET cell line, GOT-1, in conditioned
medium from these CAFs and analyzed tumor proliferation at 2
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months. CAF secretions significantly increased siNET proliferation (Fig.
8e), unveiling the relevance of our resource dataset both in terms of
diagnosis and therapy, as anti-drugs are already under development to
target CAFs and could thus constitute siNETs treatments.

Discussion

In the present paper, we classified a cancer so far considered as a single
pathology in four major molecular subgroups with high clinical sig-
nificance. We identified a so-called Vesicular group, with the most
differentiated enteroendocrine cells phenotype that had retained
strong neuroendocrine features with typical enterochromaffin marker
expression (i.e., serotonin). This group displayed an overall signature
related to vesicle transport and secretion/synapse and had the best OS.
The Epithelial-group displayed a brush border phenotype which may
be an intermediate state of neuroendocrine differentiation, arising
from a distinct differentiation pathway as attested by the different
hormones expressed. The Immune group was characterized by an
immune cell infiltrate in the tumor bulk, suggesting that this group is
the most likely to respond to immune checkpoint inhibitors in future
clinical treatments®. This group was highly correlated with the Epi-
cluster, from which it derives. The Mesenchymal group had the worst
prognosis. This cluster was characterized by a very low hormonal
secretion with a more “stem-like” phenotype associated with pro-
genitor markers. This phenotype implies that resistance to che-
motherapies is genetically intrinsic to the primary tumor and not
acquired following treatment cycles -i.e., the gene signature of the
removed primary tumor was predictive of death and patient-free sur-
vival 10 years after surgery. Of note, the Mesenchymal subtype was not
associated with any of the tested clinical parameters. The Mes tumor
microenvironment was characterized by the presence of CAFs and by

an overall absence of immune infiltrate. We were able to determine by
RNA sequencing and IHC analyses that this CAFs infiltration was
correlated with a very poor patient prognosis. We trust that this
parameter could become a relatively simple criterion for pathologists
to predict severe siNET cases at the time of surgery. Indeed, specific
markers of CAFs have been widely described”?°, however the
description of these CAF subtypes was beyond the scope of our study.
Therapies targeting CAFs also seem promising in this group of
patients®, as we were able to functionally show by isolating patient
CAFs that they promote the growth of siNETs, making them ther-
apeutic targets for future studies. Further analyses to improve our
understanding of tumor heterogeneity, for example using single cell/
spatial transcriptomic technologies, will be necessary to clarify these
mechanisms in mixed groups, to understand if EMT or CAFs are acti-
vated/infiltrated only in some spatially-defined compartments of the
tumors. These same studies will be important to define specific mar-
kers of differentiation of the different tumor subtypes, such as specific
expression of transcription factors, which we determined within bulk
RNAseq and may therefore be non-specific to tumor cells. The results
of our current study did not yield statistically significant findings
regarding metastatic lesions. This outcome is likely attributable to the
limited sample size, which constrained the statistical power of our
analysis. The modest number of samples in our study may have pre-
vented the detection of meaningful patterns or correlations that could
elucidate the characteristics and behaviors of metastatic lesions. Given
these limitations, it is imperative to conduct further research with
larger cohorts to obtain more robust and generalizable data. Increased
sample sizes will enhance the ability to discern subtle differences and
provide a more comprehensive understanding of the metastatic
process.
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d Volcano plot for multifocal (n =44) vs unifocal (n=54) differential methylation
(DM) analysis; p-values are indicated on the y-axis (two-tailed T-test with Benjamini-
Hochberg correction). e Hierarchical clustering based on the 836 significantly dif-
ferentially methylated probes (delta(Beta)>10%, pval.adj < Se-2). f Multifocal
(n=45) vs unifocal (n = 57) boxplots of gene expression for endocrine hormones or
converting enzymes (log2TPM). GAST (Gastrin); GCG (Pro-glucagon: Glucagon-like
peptide 1 et 2, Oxyntomodulin); GIP (Gastric inhibitory polypeptide); HDC (Histi-
dine decarboxylase); NTS (Neurotensin); SST (Somatostatin). Boxplots: center

line = median, box range 25th-75th percentile, minimum/maximum denoted by
whiskers. Significance was determined by Mann-Whitney U tests. Clustering
method: Ward’s; distance: Spearman. Recapitulative ssGSEA score of each gene
cluster (epithelial, vesicular, mesenchymal and immune), chr18.del and
chr4.10.14.gains statuses together with methylation subtypes are indicated as
bottom annotations. FGA (Fraction genome altered); TPM (Transcripts Per Million).

Our study raises several puzzling issues, including the differences
observed in other NETs in terms of etiology and therapies***. The
absence of recurrent driver mutations specific to siNETs implies that
the role of chromosome rearrangements in the pathology must be
decisive. These did not segregate randomly (chrl8 del; mixed or gain
chromosome 4, 5, 10, 14, 20) but were not related to expression clus-
ters. These rearrangements affect a very large number of genes,
making it very complicated to understand the reasons for these
modifications. Furthermore, the DNA methylome analysis of siNETs
also demonstrated the existence of four distinct subtypes of siNETs
which reflected unifocal tumors (mainly Vesi), the four observed
transcriptomic clusters and the occurrence of chromosomal 4, 5,7, 10,
14, and 20 gain and probably explains previous work in the field*.
Differentially methylated sites and unsupervised analysis of methyla-
tion status indicated that unifocal vs multifocal tumors can be isolated
at the molecular level, suggesting two different diseases. Multifocal

forms showed characteristic hypomethylation, suggesting that sig-
nificant global perturbations in the epigenetic regulation of siNETs are
involved in the emergence of multifocal tumors.

Overall, our study provides sheds light on the heterogeneity of
siNETs. The identification of a subpopulation of patients with a poor
prognosis highlights an aspect that contrasts with the perceived
homogeneity of these tumors from a pathologist’s point of view. CAFs
thus seem to play a major role in the aggressiveness of siNETs, and this
will certainly be very important to study in the future. There are,
however, some shortcomings, such as the need to place EEC differ-
entiation in a more general context of the intestine with other epi-
thelial cell subtypes®~°. Issues such as inflammation in the small
intestine’’ and, more generally, the immune system, could not be
addressed in our study, nor could intestinal metabolism and the
microbiota®**. Given the comprehensive nature of the dataset we
generated, our analysis represents only an initial exploration, and
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Fig. 8 | Cancer-associated fibroblasts induce resistance to treatments, enhance
cancer cell proliferation and decrease survival. CAFs favor severe forms of
siNETs. a Unsupervised clustering of MCPcounter scores estimating the abundance
of immune and stromal cells infiltrate across the full siNETs cohort (n=206).
Clustering method: Ward’s; distance: Spearman. X-cell derived Immune and Stro-
mal Scores, recapitulative ssGSEA score of each gene cluster (epithelial, vesicular,
mesenchymal and immune), chr18.del and chr4.10.14.gains statuses together with
methylation subtypes are indicated as bottom annotations. LN (Lymph Node); MN
(Mesenteric Node); T (Tumor). Clustering method: Ward’s; distance: Spearman.

b Representative anti-alpha-smooth muscle actin (aSMA) immunohistochemistry
(IHC) staining illustrating CAF infiltration of siNETs (low CAF score vs high CAF
score). Twenty-one tumors have undergone aSMA IHC. Scale bar 100 um.

¢ Prognostic value for OS (Overall Survival) and PFS (Progression Free Survival)
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of the CAFs score in siNETs tumors. A cut-off in EPIC-related CAF scores distribution
was applied (score=0.025) to label samples either as low (below cut-off) or high
(above cut-off) for CAF infiltration. Kaplan-Meier, log-rank test and Cox propor-
tional hazards regression model methods were used to study overall (left) and
progression-free (right) survival. The shaded areas represent 95% confidence
intervals around the curves; the median survival rate is represented by dotted line;
p-values are indicated below the graphs. d Schematic representation of purifica-
tion, culture and production of conditioned media from patients’ siNETs associated
fibroblasts and transfer to the GOT-1 cell line. Created with BioRender.com.

e Analysis of 2-months proliferation of GOT-1 cells treated with CAF conditioned
medium (p = 0.0286). Two-tailed exact p-value was calculated using a Mann-
Whitney U test. Error bars represent means + SEM, n = 4. Source data are provided
as a Source Data file. RLU (Relative Light Units).

future studies should investigate the role of these events in siNET
pathology.

Methods

Statement of ethics

This study follows the laws set by the 1975 WMA Declaration of Helsinki
and was approved by both the Medical Ethics Research Committee of
Hospices Civils de Lyon (June 14, 2021, No 21.390) and the National
Data Protection Commission (November 6, 2015, No. 15-111 of the
Commission nationale de linformatique et des libertés, CNIL). Written
information was given and signed by each patient included in the
study. Their consent is not required by French law, but patients were
informed about their right to withdraw their data from the cohort
(Reference Methodology MR-004 according to 2016-41 law dated 26
January 2016 on the modernisation of the French health system).

Human tumor samples

Human samples were collected from a cohort of 122 consecutive
patients with small-intestinal neuroendocrine tumors (siNETs). Inclu-
sion criteria were patients who underwent resection of at least one
primary siNET (poorly differentiated neuroendocrine carcinoma and
non-neuroendocrine tumor were not included), by the same surgeon
(GP) between 10/09/1998 and 31/07/2019, in Lyon EURACAN/ ENETS
Center of Excellence, according to the French regulations on the
protection of persons (French Ethics Committee). Exclusion criteria
were patient refusal and insufficient material for molecular analysis.
Briefly, based on the previously described operative protocol*’, med-
ian laparotomy was performed to explore the full length of the small
intestine visually and by digital palpation and compression in order to
find multiple siNETs. The clinico-morphological and pathological data
are summarized in Supplementary Fig. 1la. All participants were
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included without financial compensation. Only the sex of the partici-
pants (not the gender) was presented in this study. The sex of the
participants was self-reported.

siNET surgical specimens were reviewed by VH, TF and JYS, three
members of the national French TENpath pathological network
(Reseau national d'expertise pour le diagnostic anatomopathologique
des tumeurs neuroendocrines de ladulte, familiales et sporadiques).
Samples were stored within the “Tissu-Tumorothéque Est” (CRB-HCL,
Hospices Civils de Lyon Biobank, BB-0033-00046). The biobank works
in strict accordance with French ethical and regulatory issues.

Following patient agreement, primary tumors were obtained after
surgery, and were directly frozen before storage. Fresh tissue samples
were stored in liquid nitrogen until use and grinded to a fine powder
using a cryogenic mill. All Prep DNA/RNA Mini kit (Qiagen, 80204) was
then used for a simultaneous purification of genomic DNA and total
RNA from a maximum of 30 mg of the same tissue sample, following
the manufacturer’s instructions.

Tissue samples for diagnostic purposes were fixed in 10% buffered
formalin and embedded in paraffin wax. 4-um-thick sections were then
prepared according to conventional procedures.

Immunohistochemistry

Immunohistochemistry was performed on Benchmark and Discovery
systems (Roche). Tissue sections were first subjected to antigen
retrieval. The proliferation index of the tumors was determined by
counting the number of Ki67-positive nuclei among 1,000 cells. The
following antibodies were used: anti-Chromogranin A (Dilution 1/
1000; DAK-A3, Dako, M0869, lot 41257389), anti-Zeb-1 (Dilution 1/300;
Bethyl IHC-00419, lot #2), anti-Smooth Muscle Actin (Dilution 1/1500
;1A4, Dako MO0851, lot 41415169).

Statistical analyses

All analyses and statistical tests were carried out with the R software
(v4.1.0) (R Core Team, 2021). Plots were generated either with R base
functions or with ggplot2 R package (v3.3.6). Figures were assembled
with GraphPad Prism 9 (San Diego, California), drawings were made
using BioRender (BioRender.com) and Servier Medical Art (smart.-
servier.com). All statistical tests were two-tailed and p-values were
corrected, when indicated (“p-adjust”), with the Benjamini-Hochberg
method*. Venn diagrams were performed using ggVennDiagram R
package (v1.2.2). Multiple correspondence analysis (MCA) was carried
out on twenty clinical variables for all 122 patients with ade4 R package
(v 1.7-19). Co-occurrence and mutual exclusivity were tested using
Fisher’s exact test. Survival analyses, Kaplan-Meier curves and log-rank
tests were conducted using survival (v3.4-0) and survminer (v0.4.9) R
packages. OS (overall survival) corresponds to the length of time
between diagnosis and death (censored by last follow-up date in case
of survival), while PFS (progression-free survival) represents the
duration between surgery treatment and progression or relapse event
(censored by last follow-up date in case of absence of progression or
relapse).

Sample selection for discovery cohorts

In order to analyze gene expression, DNA copy-number alterations and
DNA methylation across siNET samples in an unbiased manner, we
built discovery cohorts composed exclusively of tumor samples, from
which we retained only one sample from each patient (in case of
multifocal pathology or multi-sampled unifocal patients). The selec-
tion was based on (i) the biggest tumor size in case of multifocal dis-
ease, (ii) RNAseq, SNP array and methylation array data availability for
unifocal patients associated with more than one sample and multifocal
cases with equivalent tumor sizes and (iii) the highest SNP array-based
tumor purity estimation (through ASCAT analysis) in case of equiva-
lent tumor sample size and data availability. It is of note that lesion size
did not differ significantly between unifocal and multiple tumors. The

discovery cohorts for each sequencing and array data were thus
composed of 111 samples for RNAseq, 99 for SNP array and 107 for
methylation (the initial complete cohorts were composed of 206, 183
and 200 samples, respectively, for a total of 219 processed samples.
Healthy tissue samples for WGS analysis, adenoma and lymph node
were also included in the total number of samples. All these sample-by-
sample data, together with the Omics performed, are compiled in
Supplementary Data 2.

RNAseq and Whole Genome sequencing (WGS)

RNA quality was assessed on a TapeStation system (Agilent) in the
Centre Léon Bérard Genomic Facility in 206 samples. Libraries were
then prepared using a TruSeq Stranded mRNA kit (Illumina) following
the manufacturer’s recommendations. The key steps include PolyA
mRNA capture with oligo dT beads to isolate 1 g total RNA, cDNA
double strand synthesis, and ligation of adaptors, library amplification
and sequencing. Sequencing was performed using the NovaSeq6000
lllumina sequencer in 75 bp paired-end in the CRCL genomic facility
(Lyon, France). All WGS were generated in Centre National de
Recherche en Génomique Humaine - CNRGH (Evry, France) on Nova-
Seq6000 machines with a 2x151bp paired-end protocol.

RNAseq data processing

Sequencing control metrics were computed using FastQC (v4.0.0)*%
For careful QC and batch effect analyses, raw data were aligned on the
human genome (GRCh38) with STAR (v2.7.0f), and RNA control
metrics were evaluated using RSeQC (v4.0.0)*>**. Gene expression was
then quantified with Salmon (1.4.0) from the raw sequencing reads,
using gencode v37 comprehensive annotation set*‘. Further gene
expression analyses were restricted to protein-coding genes.

Gene expression analysis

Starting from log2 transformed TPM normalized data, unsupervised
analyses were conducted by selecting the top 10% most variable
protein-coding genes as input data. The optimal number of clusters
(k=4) was identified through consensus clustering with the Con-
sensusClusterPlus R package. Selected genes were then clustered with a
Leiden clustering from the leiden R package using “modularity”
objective function and setting the resolution parameter to 0.3 to
produce k =4 gene clusters. Principal component analysis (PCA) was
completed with the R package ade4*. Differential expression analyses
were performed on ileal tumor samples (n =102) using the R package
DESeq2 (v1.32.0)*¢, with the Wald test, sequencing batches correction
and apeglm shrinkage estimator (v1.14.0)*” All heatmaps were gener-
ated with the Ward.D clustering method, using the R package Com-
plexHeatmap (v2.8.0)*.

Microenvironment analysis

Microenvironment analysis was conducted using MCPcounter?,
Xcell”® and EPICS* methods through Immunedeconv R package.
Immune checkpoint genes list was obtained from literature review*.

SNP array data processing and analysis

Genotyping of the cohort was performed at the CNRGH. Before gen-
otyping, a QC was systematically performed on the samples, including
a quantification in duplicate (Quant-It kits, Thermofisher) and an
assessment of the quality of the DNAs (10% of the samples). After QC,
DNAs were aliquoted in 96-well plates (JANUS liquid handling robot,
Perkin Elmer) for genotyping; sample tracking was ensured by a sys-
tematic barcode scanning for each sample. Two DNA positive controls
were systematically inserted in a random fashion into the plates.
Genotyping was performed on a high throughput Illumina automated
platform, using the GSA-MD v3 array and standard automated proto-
cols from Illumina ® (Illumina ®, San Diego, USA). Reading of the chips
was performed on iScan+ scanners (lllumina®, San Diego, USA) and
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primary analysis of the results was done using the GenomeStudio
software (Illumina®, San Diego, USA). The analysis of the internal
controls provided by Illumina and the randomly distributed positive
controls allowed the validation of the technological process. The QC of
the genotypes was performed for each marker by measuring the
deviation from the expected Hardy-Weinberg genotypic proportions
for each individual, by measuring the success rate, the average het-
erozygosity and detecting duplications and outliers. Low quality
probes were removed from the analysis as well as probes localized on
chromosome X and Y, resulting in 652339 final probes for analysis.
Log-ratio (LR) and B-allele frequency (BAF) signals for each sample
were then extracted from the Genome Studio processed files and
analyzed through ASCAT R package (v3.0.0, https://github.com/
VanLoo-lab/ascat) using hg37 reference files. Tumor purity and
tumor mean ploidy estimation for each sample were derived from
ASCAT model. Gains and losses were determined upon ASCAT seg-
mentation using a rounded value of tumor mean ploidy as a reference.
Reference ploidy was defined as follows: if mean ploidy was lower than
3 then reference ploidy was set to 2. For mean ploidy greater than 3,
reference ploidy is the closest integer to mean ploidy.

WGS data processing

Raw sequencing data (FASTQ files) were aligned to the GRCh38 pri-
mary assembly (downloaded from GENCODE and PAR regions masked
on chrY) of the human reference genome with bwa (v0.7.17) aligner.
Duplicate alignments were subsequently marked using biobambam
(v2.0.89). To check for putative sample swaps and to confirm relat-
edness of sequenced DNA samples, identity monitoring was per-
formed with NGSCheckMate (commit 8ea2c04 from https://github.
com/parklab/NGSCheckMate). Coverage quality metrics were
obtained using mosdepth (v0.2.9).

Point mutations and mutational signatures analysis

Somatic point mutations and small indels (<100 bp) were called with
Mutect2 from GATK software suite (v4.1.2.0) in a tumor/normal set-
ting. A panel of “normal tissues” of 75 patients sequenced in the same
conditions was used to remove systematic sequencing artifacts and
variants were annotated with ensembl-vep (v98.3) using its internal
cache to identify and account for recurrent technical artifacts as
recommended by the Broad Institute (https://gatk.broadinstitute.org/
hc/en-us/articles/360035890631-Panel-of-Normals-PON). Per sample
mutational signatures deconvolutions were obtained using SigProfi-
lerSingleSample (v0.0.0.27) and COSMIC (v3.3) signatures repertoire.

Copy number alterations analysis (WGS)

Somatic copy number alterations (CNA) from WGS were detected with
Facets (0.5.14). Due to the absence of heterozygous SNPs on chrX for
male patients, a manual curation was applied in some cases to correct
erroneously called homozygous deletions. One copy of chrX for male
(normal status) was labelled “hemizygous chrX” in Fig. 5. Reference
ploidy was determined as the most represented copy number level.
Gains and losses were then called relatively to this reference ploidy.

DNA methylation profiling

DNA methylation profiling was conducted on 200 samples using the
Infinium MethylationEPIC BeadChip arrays (HM850K, Illumina) by
Diagenode (Seraing, Belgium) (genomic DNA extraction, purity and
quantity determination, conversion and processing by microarray).
Data were analyzed using the methylkey R package (v1.0, accessible at
https://github.com/IARCbioinfo/methylkey). Briefly, raw intensity data
files were preprocessed and normalized using the minfi Bioconductor
package (v.3.17). Quality checks on all samples profiled were con-
ducted. Beta-values, which measure the proportion of methylated
alleles at any given locus, were generated for each CpG site. CpG sites
for which detected signals were not significantly different from

background levels (p > 0.02) and for which data were missing in >20%
of the samples were excluded. Cross-reactive probes, probes located
on the X and Y chromosomes and at chromosome locations associated
with known SNPs were also excluded, resulting in a final dataset of
792,079 CpG probes.

Methylation consensus clustering

Unsupervised clustering of the top 1000 most variable CpGs by stan-
dard deviation in beta-values across the primary cohort was conducted
using the Consensus Cluster Plus R package (v. 1.62.0) with Euclidean
distance and k-means clustering. The association between clinical
features across clusters was tested using Fisher’s exact test, while the
difference in DNA methylation levels between clusters was compared
using Kruskal-Wallis test.

Differential methylation analysis

Beta-values were transformed to M-values for differential methylation
analysis, which was conducted using robust linear regression as
implemented in the limma R package (v.3.57.6). Differential methyla-
tion analysis between multifocal vs unifocal tumors was conducted on
a sub-cohort of 98 ileum samples which excluded normal tissue sam-
ples and included only one representative sample for each patient with
multifocal tumors. CpG sites were considered to be significantly dif-
ferentially methylated probes (DMPs) if the difference between multi-
and unifocal tumors was significant after false discovery rate (FDR)
correction (g < 0.05) and the average between-group difference in beta
values was above 0.10. Regional analyses were conducted using the
DMRcate package.

Multi-omics factor analysis (MOFA)

MOFA models were performed using the r/bioconductor package
mofa2 version 1.10.0 on 3 omics data: (i) for SNP data, gains and
losses matrices (derived from ASCAT) were summarized into
chromosome gain and loss ratio (number of probes gained (resp.
lost) relative to total number of probes by chromosome); (ii) for
RNA expression data, the 5% most variant genes were selected from
the log2-abundance matrix; (iii) for methylation profiling, the
M-value matrix was split according to 3 modalities (promoter,
enhancer and gene body methylation) from IlluminaHumanMethy-
lationEPICanno.ilm10b2.hgl9 version 0.6.0 annotations. A probe
associated with several modalities was assigned a promoter,
enhancer or gene body label in this order of priority. For each
modality, the 5 % most variant methylation probes were selected
from the input matrix (log2-scale).

Default parameters for model training (number of factors = 15,
convergence mode = “slow”, maxiter = “2000”, seed = “42”) were used.
We investigated whether any of the inferred latent factors were related
to clinico-morphological and pathological data by using Pearson cor-
relation with Benjamini-Hochberg correction.

Survival analysis has been performed using Cox’s proportional
hazard model from which the significance of the hazard ratio
between the reference and the other levels has been evaluated using
Wald tests. We assessed the global significance of the model using
the logrank test statistic (R package survival version 3.5-5) and drew
Kaplan-Meier and forest plots using the R package survminer (ver-
sion 0.4.9).

After we ran feature set enrichment analysis with the MOFA ver-
sion slightly modified of the pcgse function. It computes the statistical
association between GO C8 gene sets (msigdbr version 7.5.1) and
positive or negative RNA Factors.

Then to have an overview of implication of each modality Gene
ontology over-representation test between GO C8 gene sets and gene
associated with weight factor 1: > 0.2 RNA expression, > 0.2 methyla-
tion gene body, < -0.2 methylation promoter gene, <-0.2 methylation
enhancer gene are done.
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Pathway enrichment analysis and score computation
Enrichment of lists of genes in specific biological pathways were
tested using clusterProfiler (v4.0.2) and msgidbr (v7.4.1) R
packages®®'. All tested pathway lists originated from MSigDB
(Molecular Signatures Database): Hallmark (H) gene sets®?, C5 gene
sets (encompassing GO pathways) and C8 gene sets (relative to cell
type signatures identified in single-cell RNASeq data). Single sample
GSEA (ssGSEA) scores were computed on TPM normalized data
through gsva R package®. Gaussian finite models were performed
with Rmixmod R package (v2.1.8).

CAFs isolation and conditioned media

Patients’” CAFs were obtained by tumor mincing and subsequent
digestion with DNase | and Collagenase I. Fibroblasts were isolated by
consecutive trypsinizations and cultured in 10% fetal bovine serum
containing RPMI media for at least 3 passages before preparation of
the conditioned media.

CAFs were then seeded in Petri dishes, and the culture medium
was replaced with 2% FBS medium containing RPMI when the cells
reached 80% confluence. Conditioned media were collected 72 hours
later, filtered through 0.45 um pore membranes, aliquoted, and stored
at —80 °C until use.

Cell culture and viability assay

GOT1 cells were a kind gift from Ola Nilsson (Sahlgrenska Cancer
Center, University of Gothenburg, Sweden) and are usually cultured in
10% fetal bovine serum containing RPMI media with 5 pg/mL of both
insulin and transferrin®**. In our experiment, GOT1 cells were cultured
for at least 60 days in our CAFs conditioned media or in a control
medium (2% FBS medium containing RPMI) supplemented with 8%
FBS, insulin and transferrin.

Ten thousand cells per well were plated in white 96-well plates.
Cell viability was evaluated as previously described* after three days
using the CellTiter-Glo® kit (Promega, Charbonniéres-les-Bains,
France) according to manufacturer’s instructions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The methylation arrays data generated in this study have been
deposited in the Gene Expression Omnibus (GEO) database under
accession code GSE229203. The sequencing data that support the
findings in the article are deposited and available at the European
Genome-Phenome Archive (EGA; https://ega-archive.org), which is
hosted by the European Bioinformatics Institute (EBI) and the Centre
for Genomic Regulation (CRG), through the primary accession study
code EGAS50000000642. The transcriptomic [https://ega-archive.
org/datasets/EGAD50000000906], WGS [https://ega-archive.org/
datasets/EGAD50000000907] and genotyping arrays [https://ega-
archive.org/datasets/EGAD50000000905] data are available under
restricted access due to ethical and legal reasons. Data use conditions
attached to this EGA dataset limits its use to approved users at a spe-
cific institution for a specific a health/medical/biomedical project and
dictates that useful results should be made available to the wider sci-
entific community. All data are available after agreement of the sci-
entific committee as required by the French law on data
protection. Source data are provided with this paper.

Code availability

The code used for analysis and figure generation is available on
request. Other requests can be addressed to Dr. Benjamin Gibert
(benjamin.gibert@lyon.unicancer.fr).
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