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Rare genetic associations with human
lifespan in UK Biobank are enriched for
oncogenic genes

Junyoung Park 1 , Andrés Peña-Tauber 1, Lia Talozzi1, Michael D. Greicius1,3 &
Yann Le Guen 2,3

Human lifespan is shaped by genetic and environmental factors. To enable
precision health, understanding how genetic variants influence mortality is
essential. We conducted a survival analysis in European ancestry participants
of the UK Biobank, using age-at-death (N=35,551) and last-known-age
(N=358,282). The associations identifiedwere predominantly driven by cancer.
We found lifespan-associated loci (APOE, ZSCAN23) for common variants and
six genes where burden of loss-of-function variants were linked to reduced
lifespan (TET2, ATM, BRCA2, CKMT1B, BRCA1, ASXL1). Additionally, eight genes
with pathogenic missense variants were associated with reduced lifespan
(DNMT3A, SF3B1, TET2, PTEN, SOX21, TP53, SRSF2, RLIM). Many of these genes
are involved in oncogenic pathways and clonal hematopoiesis. Our findings
highlight the importance of understanding genetic factors driving the most
prevalent causes of mortality at a population level, highlighting the potential
of early genetic testing to identify germline and somatic variants increasing
one’s susceptibility to cancer and/or early death.

Human lifespan is a complex trait influenced by both genetic and
environmental factors and their interactions1. According to previous
studies, genetics accounts for less than 10%2 or up to 25% of the
heritability of longevity3. Identifying the genetic variants that con-
tribute to earlier death or prolonged survival can highlight key bio-
logical pathways linked to lifespan and inform genetic testing for
general health and screening and enabling precision health. Previous
genome-wide association studies (GWAS) have identified over 20
associated loci including APOE4,5, CHRNA3/56, HLA-DQA1 and LPA7.
Recently, a burden analysis of protein-truncating variants from
whole-exome sequencing (WES) data identified four additional genes
(BRCA2, BRCA1, ATM, and TET2) linked to reduced lifespan8. How-
ever, most previous research on lifespan genetics has predominantly
used proxy data, such as parents’ age at death, due to a lack of
proband lifespan data. While proxy-based GWAS have been useful to
gain genomic insights into age-related diseases in cohorts primarily
composed of middle-aged individuals, and show some consistency

with associations related to lifespan8, they may fail to fully capture
the genetic influences that directly impact individual lifespan, parti-
cularly CHIP-related somatic variants9. On the other hand, some
studies have employed logistic regression models on cases of
extreme longevity and younger controls10–12. This approachmay offer
new insights by focusing on exceptionally long-lived individuals, yet
they can be limited and costly. Moreover, replication of borderline
significant variants remains an issue due to varying case definitions
across studies, with some defining cases as individuals who survive to
ages beyond 90 or 100 years or using the 90th or 99th survival
percentiles as the age cutoff.

In this study, we carried out a genetic analysis of direct mortality
data in the UK Biobank (UKB), the genetic database with the largest
number of reported deaths (35,551 subjects) and aged individuals
(344,237 subjects over 60 years old). To assess the association of
genetic variants with lifespan in a survival analysis, we performed
GWAS of common variants imputed from microarray data as well as
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burden/sequence kernel association test-optimized (SKAT-O) asso-
ciation of rare non-synonymous variants from WES data.

Results
Genome-wide association analyses in imputed array data
Our GWAS assessed 10,104,569 common variants (minor allele fre-
quency (MAF) ≥ 0.1%) using Martingale residuals on 393,833 indivi-
duals including 35,551 deceased subjects (mean age at death: 71.2
years) and 358,282 living subjects (mean current age: 70.7) from UKB
(Supplementary Table 1)13. Two loci reached genome-wide significance
(GWS) (p < 5:0× 10�8) on chromosomes 19 and 6 (Fig. 1A). On chro-
mosome 19, rs429358was the lead variant at theAPOE locus (β =0.013,
p = 3.9 × 10−45), MAF = 15.6%).We testedwhether the presence of APOE-
ε4wasenriched in certain primary causes ofdeath. Among the top four
causes of death, each representing over 5% of total deaths (Fig. 1B),
only those due to “Diseases of the circulatory system” (Chi-square
p = 1.6 × 10−16) and “Diseases of the nervous system” (p = 1.1 × 10−71)
showed a significant enrichment in the proportion of ε4 carriers
compared to the prevalence of ε4 carriers among all subjects (Fig. 1C).
On chromosome 6 locus overlapping ZSCAN23, the top genome-wide
significant variant was rs6902687, located 2.2 kb upstream of the
transcription start site (TSS) (rs6902687_C: β =0.004, p = 2.7 × 10⁻⁸,
MAF = 36.6%). This variant is in almost perfect linkage disequilibrium
(R² > 0.99)with three other significant variants in this region, including
rs13215804_G (located 4.2 kb upstream of the TSS), rs111859903_G
(located in an intron) and rs13190937_A (situated in the 5’ untranslated
region) (Fig. 1D).

To explore a potential regulatory function for variants at the
ZSCAN23 locus, we investigated whether the lead SNPs were expres-
sion quantitative trait loci (eQTLs) in the Genotype-Tissue Expression
Project (GTEx) v8 database. rs13190937 was significantly associated
with increased ZSCAN23 expression in pancreatic tissue and the GWAS
on Martingale residuals signal colocalized with the ZSCAN23 expres-
sion quantitative trait loci (eQTL) (posterior probability of colocaliza-
tion (PP4) = 0.934; Fig. 1E). Phenome-wide association study analysis
(PheWAS) using PheWeb14 based on UKB Neale v1 dataset shows that
the main associations of rs13190937 are with celiac disease and
intestinal malabsorption (p = 1.8× 10�57, OR = 1.003) (Supplemen-
tary Fig. 1).

In sex-stratified GWAS (180,970 males and 212,863 females), the
APOE locus was again linked to reduced lifespan in both males and
females (Supplementary Table 1 and Supplementary Fig. 2A, B). In
males, a significant association with reduced lifespan was observed for
rs577106756_A located in intron of PRKD3 on chromosome 2 (β =0.09,
p = 3.2× 10�8, MAF = 0.1%). PheWAS analysis, based on the UKB Neale
v1 dataset, revealed that rs577106756_A was associated with ICD10
code C10.9, Malignant neoplasm of oropharynx, unspecified, as the
primary cause of death as the primary cause of death (p = 4.5× 10�8,
OR = 1.04), and self-reported “Stomach Cancer” (p = 6.1 × 10�7, OR =
1.003) (Supplementary Fig. 2C). Additionally, a borderline significant
association with reduced lifespan was observed at rs35705950_T,
located between MUC5AC and MUC5B on chromosome 11 (β =0.01,
p = 6.6× 10�8, MAF = 11.2%) (Supplementary Fig. 2D). This variant was
notably linked to increased MUC5B expression in lung tissue with the
GWAS on Martingale residuals signal colocalizing with a MUC5B eQTL
(PP4 = 0.99; Supplementary Fig. 2E). PheWAS analysis showed asso-
ciations with a diagnosis of pulmonary fibrosis (p = 4.4 × 10−13), OR =
1.002), “Other interstitial pulmonary diseases with fibrosis” as the
primary cause of death (p = 1.7× 10�5, OR = 1.001), and paternal history
of lung cancer (p = 2.1 × 10�4, OR = 1.004), but no association with
maternal history of lung cancer (p =0.07) (Supplementary Fig. 2F). In
female, a significant association with reduced lifespan was observed
for rs547541271_T, located in the intron of CELF2 on chromosome 10
(β =0.04, p = 3.1 × 10�8, MAF = 0.3%). PheWAS analysis indicated
rs547541271_T was associated with a diagnosis of “Myositis”

(p = 1.0× 10�6, OR = 1.002), and self-reported Polycystic Ovaries/Poly-
cystic Ovarian Syndrome (p = 2.5× 10�5, OR = 1.003) (Supplemen-
tary Fig. 2G).

Further validation of these significant variants was carried out
using data from the FinnGen and LifeGen cohorts. Specifically, for
common variants, we queried FinnGen (https://r11.finngen.fi/) and
obtained summary statistics15 from the LifeGen consortium via the
GWAS Catalog (https://www.ebi.ac.uk/gwas/downloads/summary-
statistics) to assess their association in independent datasets. In
FinnGen, rs13190937 was not significantly associated with the “Death”
phenotype (p =0.2), while it was significantly associated with a
decrease in “Parental age at death” in the UKB and LifeGen consortium
(p = 1.4× 10�4, β = −0.015). Similarly, rs35705950 showed a significant
association with increased death in FinnGen (p = 6.0× 10�3, β =0.034)
and with decrease in “Parental age at death” in the UKB and LifeGen
consortium (p = 6.6× 10�3, β = −0.023). However, neither rs577106756
nor rs547541271 showed a significant association with the “Death”
phenotype in FinnGen (p =0.55 and 0.93, respectively) (Supplemen-
tary Table 2).

Gene-based rare variant association analyses in whole-
exome data
Among26,230,624 variantswithMAF < 1%, a totalof 1,830,070variants
(17,174 genes) were annotated as loss-of-function (LoF) or missense
variants. We excluded 199 genes with fewer than 10 total variant car-
riers, resulting in 476,447 predicted LoF variants (15,908 genes with a
medianof 23 variants per gene), 751,523missense variants predicted as
damaging byAlphaMissense (15,212 genes with amedian of 37 variants
per gene), and 262,866 missense variants predicted as damaging by
rare exome variant ensemble learner (REVEL) (9231 genes with a
median of 15 variants per gene). Of variants classified by each, 23.4% of
AlphaMissense and 66.8% of REVEL variants were also pathogenic by
the other classifier. A list of SNPs list used for the gene-based analyses
is provided in Supplementary Data 1.

We identified six genes whose burden of LoF variants is sig-
nificantly associated with reduced lifespan: TET2 (p = 2.6× 10�34), ATM
(p = 6.4× 10�10), BRCA2 (p = 1.2 × 10�33), CKMT1B (p = 4.3× 10�7),
BRCA1 (p = 5.6× 10�12) and ASXL1 ðp = 1.3 × 10−51) (Fig. 2A and Table 1).
All of these but CKMT1B also showed gene-wide significance in a
direction-agnostic (SKAT-O) approach (Supplementary Fig. 3A). Addi-
tionally, in eight genes, the burden of missense variants predicted as
pathogenic by AlphaMissense was associated with reduced lifespan:
DNMT3A (p = 6.9× 10�12), SF3B1 (p = 1.9× 10�13), TET2 (p = 9.2× 10�8),
PTEN (p = 1.6× 10�8), SOX21 (p = 2.2× 10�8),TP53 (p = 8.6 × 10–17), SRSF2
(p = 1.8 × 10−94) and RLIM (p = 6.0× 10�7) (Fig. 2B). Lastly, three genes
showed gene-wide significance for burden of missense variants pre-
dicted by REVEL: DNMT3A (p = 5.2 × 10−11), PTEN (p = 1.2 × 10�7), and
TP53 (p = 2.2 × 10−9) (Supplementary Fig. 4 and Supplementary
Table 3). SKAT-O identified additional associations with pathogenic
missense variants predicted by AlphaMissense in C1orf52
(p = 7.2× 10�8) and IDH2 (p = 5.4 × 10−42) (Supplementary Fig. 3B), and
by REVEL in NMNAT2 (p = 6.7× 10�7) and TERT (p = 3.3× 10�10) (Sup-
plementary Fig. 3C and Supplementary Table 3).

In addition, we validated these findings within the UKB dataset
using two approaches: an independent sample separate from our
discovery data and a five-fold cross-validation (CV) within the dis-
covery cohort. This independent validation included 73,281 subjects
who were not categorized as having European ancestry based on
genetic ethnic grouping. These participants were classified into five
groups based on their self-reported ethnicity (Field: 21000): White
(66.3%), Asian (14.4%), Black (9.9%), Other (5.7%), and Mixed (3.7%).
Among the 21 novel genes identified in the discovery, four achieved
significance under the Bonferroni correction threshold 1.1 × 10�3

(0.05/42) in this validation cohort: BRCA2 (p = 1.1 × 10�3, burden),
ASXL1 (p = 1.2 × 10�5, burden; p = 6.7× 10�6, SKAT-O) with LoF variants
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and (IDH2 p = 2.0× 10�7, SKAT-O) and SRSF2 (p = 9.2× 10�9, burden;
p = 2.2 × 10−10), SKAT-O) with pathogenic missense variants predicted
by AlphaMissense (Supplementary Table 4). To further validate our
findings, we performed five-fold CV within the discovery dataset of
393,833 individuals, dividing it into five folds. For each fold, 80% of the

data (315,066 individuals) was used for analysis. The results across
folds were highly consistent. For example, TET2, BRCA2, BRCA1, ASXL1
(LoF), SF3B1, DNMT3A, IDH2, TP53, SRSF2 (AlphaMissense) and
DNMT3A (REVEL) achieved gene-wide significance across all five folds.
Except for CKMT1B (LoF), C1orf52, TET2, RLIM (AlphaMissense) and

Fig. 1 | Association of Common Variants with Lifespan. AManhattan plot. B The
proportion of cause of death for the top 4 categories, each accounting for more
than 5% of total deaths. C Association of causes of death with APOE-ε4 genotype.

D LocusZoom and E colocalization plots at the ZSCAN23 locus, colocalized with
ZSCAN23 eQTL in pancreatic tissue in GTEx. PP4 posterior probability of
colocalization.
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NMNAT2 (REVEL), all other genes that showed significance in the main
analysis were significant in at least 3 out of 5 folds. This consistency
across folds confirms the robustness of the associations identified in
our study. Fold-specific results for each gene and variant category are
provided in Supplementary Data 2.

For sex-specific gene-based analysis, an additional four genes not
identified in the whole-cohort analysis showed gene-wide significance
in males by either burden or SKAT-O: CDKN1A and PTPRK (LoF); COA7
and TG (AlphaMissense) (Supplementary Figs. 5A, 6A and Supple-
mentary Table 5). In females, we identified five additional genes asso-
ciated with reduced lifespan: PORCN (AlphaMissense); UGT1A8, CBX3,
IFITM10, and OLIG1 (REVEL) (Supplementary Figs. 5B, 6B and Supple-
mentary Table 6).

Gene-burden survival analysis
For the 14 gene-wide significant genes in the burden analyses, we
assessed the association of variant carrier status with lifespan using
Cox proportional hazards regression. Carriers of LoF variants in six
genes were associated with decreased survival compared to non-car-
riers: CKMT1B (HR = 3.9, p = 2.6× 10�6), ASXL1 (HR = 2.5, p = 6.2 × 10−33)
(Fig. 3A), TET2 (HR = 2.3, p = 1.9 × 10−22), ATM (HR = 1.7, p = 3.0× 10�10),
BRCA2 (HR = 2.4, p = 9.7 × 10−39), and BRCA1 (HR = 2.2, p = 1.3 × 10�12)
(Supplementary Fig. 7A). Similarly, carriers of AlphaMissense-
predicted pathogenic variants exhibited significantly earlier mortality
compared to non-carriers on the following genes: DNMT3A (HR = 1.5,
p = 1.4× 10�9), SF3B1 (HR = 2.3, p = 4.4× 10�10), PTEN (HR = 4.0,
p = 1.1 × 10�9), SOX21 (HR = 1.9, p = 3.3× 10�8), TP53 (HR = 3.9,
p = 1.9× 10�14), SRSF2 (HR = 5.8, p = 3.3 × 10−61), RLIM (HR = 3.1,
p = 2.9× 10�4) (Fig. 3B) and TET2 (HR = 1.5, p = 8.4× 10�7) (Supple-
mentary Fig. 7B). Carriers of pathogenic variants predicted by REVEL
showed similar trends: DNMT3A (HR = 1.6, p = 2.4× 10�8), PTEN (HR =

4.8, p = 1.0× 10�9), and TP53 (HR = 2.5, p = 1.5× 10�8) (Supplemen-
tary Fig. 7C).

Toexplore the contributionof individual rare variants tomortality
in each gene-wide significant gene in the burden and SKAT-O tests, we
conductedCoxproportional hazards regression for each variantwith a
minor allele count (MAC) of three or more (Table 2). In total, 587
variants including LoF, AlphaMissense, and REVEL variants were
examined. After applying a Bonferroni correction for multiple testing,
setting the significance threshold at 8.3× 10�5 (0.05/599), we identi-
fied significant associationswith reduced lifespan for four LoF variants:
rs370735654 in TET2 (MAC= 17, HR = 7.9, p = 6.1× 10�10), rs587779834
in ATM (MAC= 113, HR = 2.5, p = 3.1 × 10�5), rs80359705 in BRCA2
(MAC= 13, HR = 11.4, p = 2.5× 10�9), and rs750318549 in ASXL1
(MAC= 201, HR = 2.8, p = 3.5× 10�19). Additionally, significant associa-
tions with AlphaMissense variants were noted in seven genes,
impacting lifespan: rs769009649 in C1orf52 (MAC =62, HR = 3.3,
p = 3.4× 10�7), rs147001633 in DNMT3A (MAC= 269, HR = 1.8,
p = 8.8× 10�6), rs377023736 in SF3B1 (MAC= 12, HR = 7.3, p = 2.5
× 10�9), rs121913502 in IDH2 (MAC= 45, HR= 6.8, p = 9.2× 10�25),
rs11540652 in TP53 (MAC= 5, HR = 11.5, p = 2.3× 10�5), rs751713049 in
SRSF2 (MAC = 51, HR = 6.7, p = 9.3× 10�31) and rs75871009 in RLIM
(MAC=6, HR = 6.2, p = 6.0× 10�7). For missense variants predicted by
REVEL, rs201746612 in NMNAT2 (MAC = 5, HR = 11.0, p = 1.7× 10�6),
rs1043358053 in TERT (MAC= 5, HR = 16.8, p = 1.7× 10�8), and
rs11540652 in TP53 (MAC= 5, HR = 11.5, p = 2.3× 10�5) were sig-
nificantly linked to reduced lifespan (Supplementary Table 7).

Phenome-wide association studies
For the nine novel genes identified in the burden test (CKMT1B, ASXL1,
DNMT3A, SF3B1, PTEN, SOX21, TP53, SRSF2 and RLIM), we examined the
burden of LoF or pathogenic missense variants through PheWASs

Fig. 2 | Associationof Rare Variant Burdenwith Lifespan.Rare variant burden associationwith lifespan, considering loss-of-functions (A) andAlphaMissense pathogenic
variants (B). Genes highlighted in red represent those not previously identified as significant in ref. 8. A gene-wide significance threshold of p = 7.4× 10�7 was applied.
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across 1670 UKB phenotypes including disease occurrences derived
from electronic health record, self-reported family history, and phy-
sical measures (Supplementary Fig. 8). The burden of LoF variants in
ASXL1 and AlphaMissense variants in DNMT3A, SF3B1, PTEN, TP53 and
SRSF2 were strongly linked to an increased risk of leukemia: acute
myeloid leukemia (ASXL1: Odds Ratio (OR) = 1.05; p = 8.6× 10�170;
DNMT3A: OR = 1.03, p = 2.1 × 10�150; SRSF2: OR = 1.3, p = 1.2× 10�195;
TP53: OR = 1.05, p = 4.7× 10�35), monocytic leukemia (DNMT3A: OR =
1.01, p = 2.5 × 10−9), chronic lymphoid leukemia (SF3B1: OR = 1.07,
p = 4.1 × 10�68) and acute lymphoid leukemia (PTEN: OR = 1.01,
p = 2.1 × 10�14). Additionally, the burden of LoF in CKMT1B was asso-
ciated with hypopharynx cancer (OR = 1.03, p = 3.9× 10�26), vertigi-
nous syndromes (OR = 1.03, p = 3.0× 10�17) and salivary glands cancer
(OR = 1.03; p = 3.2× 10�12). SOX21 burden was associated with
increased acne (OR = 1.01, p = 6.9× 10�7) and spinocerebellar disease
(OR = 1.01, p = 2.3× 10�6). Lastly, the burden of AlphaMissense variants
in RLIM were associated with chromosomal anomalies and genetic
disorders (OR = 1.02, p = 4.2× 10�16), other and unspecified congenital
anomalies (OR = 1.02, p = 8.2× 10�11), malignant neoplasm of small
intestine, including duodenum (OR= 1.02, p = 3.5× 10�6) and cancer of
oropharynx (OR = 1.02, p = 1.3 × 10�5).

Somatic mutation and clonal hematopoiesis of indeterminate
potential
We computed the variant allelic fraction (VAF) per carrier for each
variant included in the analysis. Generally, germline variants have a
mean VAF close to 50%, while somatic variants’ mean VAF will be
lower16. Thus, when an association is linked to clonal hematopoiesis of
indeterminate potential (CHIP),weexpect thedistributionof VAF tobe
left-shifted compared to a normal distribution centered at VAF = 50%.
Considering LoF variants, TET2 (mean VAF across variants [95% boot-
strap confidence interval for the mean VAF] = 0.33 [0.31,0.34]) and
ASXL1 (mean VAF = 0.32 [0.31,0.33]) burden test associations are sup-
ported by variants with a left-shifted VAF distribution (Supplementary
Table 6 and Supplementary Fig. 9A). Similarly, considering pathogenic
AlphaMissense variants, in DNMT3A (mean VAF =0.24 [0.23–0.24]),
TET2 (mean VAF = 0.36 [0.34,0.38]), TP53 (mean VAF =0.28
[0.24,0.34]), SRSF2 (mean VAF = 0.30 [0.28,0.31]) and SF3B1 (mean

VAF =0.31 [0.26,0.37]) are also left-shifted and the observed associa-
tions may be linked to CHIP (Supplementary Table 8 and Supple-
mentary Fig. 9B).

Discussion
In this study, we report several known and novel findings related to
genetic risks associated with lifespan analyzing 393,833 European
participants from the UKB. In the common variant GWAS, five inde-
pendent loci associated with increased mortality risk were identified.
In the gene-based analysis of rare non-synonymous variants, 16 genes
were associated with lifespan via burden or SKAT-O tests.

Consistent with previous reports, rs429358, determining the
APOE-ε4 allele dosage, was associated with decreased lifespan across
both sexes. APOE-ε4 is well known for its associations with Alzheimer’s
Disease17 and cardiovasculardisease18. In our dataset, the proportionof
ε4 carriers was significantly higher for deaths caused by “Disease of the
circulatory system” and “Diseases of the nervous system” compared to
the general prevalence of ε4 carriers, which could explain the effect of
ε4 on lifespan. Examining the subcategories of these ICD-10 chapters,
“Disease of the circulatory system” includes cardiovascular disease
(I51.6), while “Diseases of the nervous system” covers Alzheimer’s
disease (G30). We also identified a genome-wide association at the
ZSCAN23 locus, which,while not previously reported in human lifespan
studies, has been associated with rheumatoid arthritis19,20, multiple
sclerosis19, and COVID-1920 in other studies. Our colocalization analysis
revealed that the lifespan-associated signal colocalizes with a ZSCAN23
eQTL in pancreatic tissuewith increased expression observed inminor
allele carriers. Although the role of ZSCAN23 remains unclear, recent
studies have linked its expression to pancreatic tumors, supporting
our colocalization findings21. Sex-specific GWAS in males identified a
significant association in PRKD3, which PheWAS linked to neoplasms
and stomach cancer. PRKD3 has been highlighted as a potential
oncogene in various cancer types22,23. Additionally, a borderline sig-
nificant association was found in males betweenMUC5AC andMUC5B,
which highly colocalizes with aMUC5B eQTL in lung tissue, and several
studies have linked this variant to pulmonary disease like idiopathic
pulmonary fibrosis24,25 and COVID-1926,27. In females, sex-stratified
GWAS identified a variant in CELF2 associated with reduced lifespan.

Table 1 | Significant genes for rare variants association with burden and SKAT-O tests (p<7.4× 10�7)

Variant class Chr Gene # of variants # of carriers Burden
p value

SKAT-O
p value

LoF 4 TET2 243 563 2.6 × 10�34 1.2 × 10�60

11 ATM 247 1170 6.4 × 10�10 5.0 × 10�11

13 BRCA2 245 1271 1.2 × 10�33 3.5 × 10�41

15 CKMT1B 15 40 4.3 × 10�7 1.5 × 10�6

17 BRCA1 120 456 5.6 × 10�12 1.6 × 10�11

20 ASXL1 72 533 1.3 × 10�51 6.8 × 10�54

AlphaMissense 1 C1orf52 23 175 2.5 × 10�5 7.2 × 10�8

2 DNMT3A 167 1229 6.9 × 10�12 6.7 × 10�13

2 SF3B1 64 195 1.9 × 10�13 2.6 × 10�18

4 TET2 159 826 9.2 × 10�8 1.4 × 10�7

10 PTEN 50 71 1.6 × 10�8 5.9 × 10�11

13 SOX21 52 463 2.2 × 10�8 3.2 × 10�8

15 IDH2 89 349 1.4× 10�4 5.4 × 10�42

17 TP53 35 90 8.6 × 10�17 6.2 × 10�17

17 SRSF2 14 141 1.8 × 10�94 1.9 × 10�114

X RLIM 25 51 6.0 × 10�7 2.9 × 10�9

Genes names in bold font represent those not previously identified as significant in ref. 8.
LoF loss of function, Chr chromosome.
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CELF2, an RNA-binding protein, is a candidate gene for certain neu-
rological disorders28–30, and its activity has also been implicated in the
development of ovarian and breast cancers31,32. Previously reported
SNP associations with lifespan were concordant in our dataset but
none of these passed the GWAS suggestive threshold (p = 1.0× 10�5)
except for those at the APOE locus (Supplementary Table 9). This
phenomenon likely resulted from previous studies relying on proxy
data such as parental age at death, whichmay capture a different set of
genetic factors than direct proband mortality data.

In our gene-based rare variant analysis, 16 genes achieved gene-
wide significance (p < 7.4× 10�7) in either the burden or SKAT-O test.
Four of these, TET2, ATM, BRCA2, and BRCA1, were reported in a pre-
vious rare-variant analysis of lifespan in UKB8. We identified 13 novel
genes associated with lifespan—CKMT1B, ASXL1, C1orf52, DNMT3A,
SF3B1, PTEN, SOX21, IDH2, TP53, SRSF2,RLIM,NMNAT2 andTERT—when
assessing variants causing genetic LoF or missense variants classified
as pathogenic by REVEL or AlphaMissense. ASXL1 was missed by a
previous study considering protein truncating variants8, as they
excluded variants annotated as end-truncation, notably the main
ASXL1 variant driving CHIP (rs750318549 in Table 2). Of note, LoF and

missense variant analyses identified mostly separate genes with only
one overlap (TET2). This supports the use of both categories in rare
variant analyses and may indicate that missense variants as classified
by AlphaMissense capture a wider range of variationmissedwhen only
assessing LoF variants, which are generally interpreted as resulting in
haploinsufficiency. Importantly, missense variants may lead to
increased or decreased protein function. In our analyses, IDH2was not
gene-wide significant with the burden test (p = 1.4× 10�4, Table 1) but
was highly significant with SKAT-O (p = 5.4× 10�42, Table 1). Since
SKAT-Odoes not lose power when variants have differing directions of
effect, this suggests that different mutations in IDH2 can lead to either
increased or decreased lifespan. These results underline the gain in
information achieved when studying rare missense variants as well as
LoF using appropriate statistical techniques.

Strikingly, most of the genes we identified carrying lifespan-
associated rare variants have been previously linked to cancer. TET2,
ASXL1, DNMT3A, and SF3B1 are all known to harbor causal leukemia
variants33–36, and somatic variants in SRSF2 have been described in
myelodysplastic syndrome37. ATM, BRCA2, and BRCA1 mutations have
been well characterized in breast, ovarian, and other cancers38–40. RLIM

Fig. 3 | Survival Analysis of Carriers vs Non-Carriers for Burden of Variants in
Significant Genes. Survival curves comparing carriers and non-carriers of variants
on genes with a significant burden of loss-of-function (A) and AlphaMissense

pathogenic (B) variants. For each gene, the survival curve includes Cox regression
hazard ratio (HR), p value, the number of carriers, and their proportion within the
total sample. A gene-wide significance threshold of p = 7.4× 10�7 was applied.
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appears to be a regulator of estrogen-dependent transcription, an
important pathway in breast cancer41, and has been recently described
as a potential tumor suppressor42. PTEN and TP53 are well studied due
to their critical role in genomic stability and are the twomostmutated
genes in human cancer43. IDH2 is also frequently mutated in many
kinds of cancer44. The antisense long noncoding RNA SOX21-AS1, but
not SOX21, has been linked to oral, cervical, and breast cancer45–47. A
recent study found potential for CKMT1B expression as a prognostic
biomarker in glioma48. NMNAT2 expression has been found to be
upregulated in colorectal cancer49. Finally, variation in both the coding
and promoter sequences of TERT has been associated with a variety of
cancer types50,51.

Our PheWAS results also suggest that most of these genes are
associated with cancer, specifically blood-based tumors such as mye-
loid leukemia. Combined with the common ZSCAN23 locus we identi-
fied, associatedwith pancreatic tumors, this points to cancer being the
major genetic factor currently affecting lifespan in UKB. This is con-
sistent with a previous study of health span that found cancer to be the
first emerging disease in over half of disease cases in UKB52. These
results likely reflect the characteristics of the cohort, comprised of
predominantly middle-aged individuals, with age-at-death ranging
from 40.9 to 85.2 years and last-known ages between 52.6 and
88.7 years.

For sex-specific rare variant analyses, we identified four novel
genes (CDKN1A, PTPRK, COA7, TG) in males and five genes (PORCN,
UGT1A8, CBX3, IFITM10 and OLIG1) in females. Some of these genes
have been found to be associated with sex-specific diseases. In one
study, advanced prostate cancer patients had a higher frequency of a
variant on the 3’UTR of CDKN1A53 and the gene has received attention
as a potential therapeutic target for prostate cancer54. PORCN is loca-
ted on the X chromosome and mutations on it can cause Goltz-Gorlin
Syndrome55, but it has also been found to regulate a signaling pathway
that controls cancer cell growth56. UGT1A8 expression is altered in
endometrial cancer57 and amino acid substitutions in it may modulate
estradiol metabolism leading to an increased risk of breast and
endometrial cancer58.

SinceUKB collectedDNA fromperipheral bloodmononuclear cell
samples, we explored whether the variants were potentially of somatic

origin, picked up by WES genotyping due to CHIP. The VAF distribu-
tion of variants included in our analysis emphasizes that several
associations are likely linked to CHIP and notably include the well-
established CHIP-related genes TET2, ASLX1, DNMT3A, SF3B1, TP53 and
SRSF2. While WES heterozygote genotypes for these variants will not
include all variants with some degree of CHIP within these genes, it
does capture CHIP-related somatic variants sufficiently to establish
robust associations with lifespan. In UKB the mean duration between
the primary visit (blood draw date) and death is currently 9.2 years ( ±
3.8) and suggests thatWES screening for CHIP variants may be used as
a precision health tool to contribute to earlier cancer detection by
assessing individuals with higher susceptibility risks59. In addition to
known cancer variants, such as breast cancer-related BRCA1/BRCA2,
our study highlights novel associations that should be considered in
cancer susceptibility screenings.

While our study lacks an independent external replication and
only a small number of genes formally replicated in the independent
test set within UKB, the stability of the burden test association to five-
fold CV suggests that these results are not due to outliers and are
robust within the UKB.

By combining large-scale GWAS with rare variant analysis, this
study enhances our understanding of the genetic basis of human
lifespan. Our results emphasize the importance of understanding the
genetic factors driving the most prevalent causes of mortality on a
population level, highlighting the potential for early genetic testing to
identify germline and somatic variants that place some individuals at
risk of early death. Understanding the biological pathways through
which these genes influence cancer and aging, as well as the environ-
mental factors interacting with these pathways, will be essential for
developing therapeutic targets aimed at extending a healthy lifespan.
Our study’s implications thus extend beyond genetics, as they touch
on the broader aspects of health care, public health policy, and pre-
ventive strategies against age-related diseases.

In conclusion, this study enhances our understanding of the
genetic basis of human lifespan by combining large-scale GWAS with
detailed rare variant analysis. The novel loci identified warrant further
exploration to understand their biological roles and interactions with
environmental factors, which will be crucial for unraveling the

Table 2 | Lead variant association per gene among significant genes in the burden and SKAT-O tests

Variant class Chr Gene Variant MA MAC AM HR p value Reported

LoF 4 TET2 rs370735654 T 17 – 7.9 6.1 × 10�10 –

11 ATM rs587779834 A 113 – 2.5 3.1 × 10�5 Prostate Cancer78

13 BRCA2 rs80359705 A 13 – 11.4 2.5 × 10�9 Breast Cancer79

15 CKMT1B rs1355844751 T 8 – 4.7 7.0 × 10�3 –

17 BRCA1 rs80356991 A 11 – 3.7 3.4 × 10�3 Breast Cancer80

20 ASXL1 rs750318549 AG 201 – 2.8 3.5 × 10�19 Leukemia81

AlphaMissense 1 C1orf52 rs769009649 A 62 0.876 3.3 3.4 × 10�7 –

2 DNMT3A rs147001633 T 269 0.995 1.8 8.8 × 10�6 Leukemia82

2 SF3B1 rs377023736 A 12 0.999 7.3 2.5 × 10�9 –

4 TET2 rs76428136 G 5 0.913 9.4 1.0 × 10�4 –

10 PTEN rs587782350 T 3 0.941 14.7 7.2 × 10�3 Gastric Cancer83

13 SOX21 rs1172148601 A 67 0.856 2.4 1.0 × 10�3 –

15 IDH2 rs121913502 T 45 0.987 6.8 9.2 × 10�25 Leukemia84

17 TP53 rs11540652 T 5 0.996 11.5 2.3 × 10�5 Breast Cancer85

17 SRSF2 rs751713049 T 51 0.982 6.7 9.3 × 10�31 –

X RLIM rs75871009 G 6 0.861 6.2 6.0 × 10�7 –

Only variants with at least 3 minor alleles are reported. A significance threshold of p = 8.3× 10�5 was applied after a Bonferroni correction for multiple testing. The “Reported” column indicates
published studies that associated the highlighted variants with specific diseases, curated from ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/).
Chr chromosome,MAC minor allele count, AM AlphaMissense score, HR hazard ratio.

Article https://doi.org/10.1038/s41467-025-57315-6

Nature Communications |         (2025) 16:2064 7

https://www.ncbi.nlm.nih.gov/clinvar/
www.nature.com/naturecommunications


complex nature of aging and developing strategies to mitigate its
adverse effects.

Methods
Study participants
The UKB is a large population-based longitudinal cohort study with
recruitment from 2006 to 2010 in the United Kingdom60. In total,
502,664 participants aged 40–69 years were recruited and underwent
extensive phenotyping including health and demographic ques-
tionnaires, clinic measurements, and blood draw at one of 22 assess-
ment centers, of whom468,541 subjects have been genotyped by both
SNP array and WES.

We restricted our analysis to 393,833 individuals who self-
reported their ethnic background as “white British” and were cate-
gorized as European ancestry based on genetic ethnic grouping (Field:
21000). Among them, 35,551 subjects were reported deceased, and
their ages at death were recorded from the UK Death Registry (Field:
40007). For the other 358,282 subjects without death records, we
assumed they were still alive by the latest censoring date (November
30, 2022). We determined their last known ages by subtracting their
year and month of birth (Field: 33) from the censoring date.

All participants provided written informed consent, as outlined in
the UK Biobank ethics framework (https://www.ukbiobank.ac.uk/
learn-more-about-uk-biobank/governance/ethics-advisory-
committee).

SNP array genotyping and QC
A total of 488,000 UKB participants were genotyped using one of two
closely relatedAffymetrixmicroarrays (UKBAxiomArray or UKBiLEVE
Axiom Array) for approximately 850,000 variants. The genotyped
dataset was phased using SHAPEIT3 and imputed with IMPUTE4,
leveraging referencepanels fromUK10K, 1000Genomes Project phase
3, and Haplotype Reference Consortium reference panels, resulting in
approximately 97 million variants61. Additionally, we removed SNPs
with imputation quality score <0.3, genotype missing rate >0.05,
minor allele frequency (MAF) < 0.1%, and Hardy-Weinberg equili-
brium p < 1:0× 10�6.

Genome-wide association studies
We performed linear regression analyses using BOLT-LMM (v.2.3.4)62,
which employs a linear mixed-effects model to test the association of
common variants (MAF ≥ 0.1%) with lifespan for the entire cohort, as
well as stratified by sex. For all three analyses, we used Martingale
residuals calculated using the Cox proportional hazards model as the
outcome variable. The procedure for calculating Martingale residuals
was as follows. First, a Cox proportional hazards model63 was fitted
without genotype:

H tjzð Þ=H0ðtÞeZβ
0

where H0ðtÞ is the baseline hazard function at time point t given the
age at enrollment (Field: 54), last-known age and dead/alive status,
Z = ½Z1, . . . , Zk � is a covariatematrix, and β= ½β1, . . . ,βk � is a coefficient
matrix for Z. Here, we included sex and the first 40 principal
components (PC) and geographic covariates (Field: 20118) under the
Geographical and Location category (100113) as covariates, but for sex-
specific analyses, sex was excluded. Then, Martingale residuals were
calculated as:

cMi = δi � cH0ðtÞeZ
bβ

0

where δi is the dead/alive status (0= alive, 1 = dead) of the i th subject
and β̂ is the estimated coefficient matrix. We adapted the coxph
function from the survival (v.3.2.13)64 in R (v.4.1.3) package to compute
the Martingale residuals. Genome-wide significance threshold was set

at the standard GWAS level (p = 5:0× 10�8). We used LocusZoom65 to
generate regional plots and Python v.3.7 to create Manhattan plots.

Gene expression and colocalization analysis
To evaluate the effect of the significant loci identified in our
GWAS, we examined expression quantitative trait loci (eQTLs) across
49 tissues having at least 73 samples from the Genotype-Tissue
Expression Project (GTEx) version 866. Bayesian colocalization ana-
lysis was employed using the COLOC package (v.5.2.3)67 in R and the
posterior probability of colocalization (PP4) was calculated between
GWAS findings and eQTL associations within a 1 megabase (Mb)
window. Additionally, colocalization was visualized using the
locuscompareR package68.

Whole-exome sequencing and QC
Whole-exome sequencing (WES) data was available for 469,835 UKB
participants. The dataset was generated by the Regeneron Genetics
Center69. Details about the production and QC for the WES data was
previously described69. We restricted the WES analysis to rare var-
iants (MAF < 1%).

Rare variant annotation
Rare variants in WES data were annotated using Variant Effect Pre-
dictor (v. 112) provided by Ensembl70. We defined LoF variants as those
with predicted consequences: splice acceptor, splice donor, stop
gained, frameshift, start loss, stop loss, transcript ablation, feature
elongation, or feature truncation. Missense variants were annotated
using AlphaMissense71 and REVEL72 plugins and included if they had an
AlphaMissense score ≥ 0.7 or REVEL score ≥ 0.75. All annotation was
conducted based on GRCh38 genome coordinates.

Gene-based rare variant association studies
For testing groups of rare variants, genotype matrices were first
transformed into a binary variable describing whether samples carry a
variant of a given class as follows:

Gi =
1, if

Pk
j = 1 gij >0

0, if
Pk

j = 1 gij =0

8

<

:

Where gij is the minor allele count observed for subject i at variant j in
the gene and k is the number of variants in the gene.

To account for relatedness and population structure, Martingale
residuals were first adjusted using a linear mixed model approach
implemented in fastGWA (--save-fastGWA-mlm-residual)73. The adjus-
ted residuals were then used as the phenotype for the rare variant
analyses, ensuring the robustness of the results in the presence of
related individuals and population stratification.

We carried out two gene-based tests: the burden test and
sequence kernel association test-optimized (SKAT-O)74. The burden
test is amean-based test that assumes the same direction of effects for
all variants within a gene. On the other hand, SKAT-O employs a
weighted average of the burden test and SKAT75, the latter a variance-
based test that does not lose power when variants have opposing
directions of effect.

Association tests were performed for each gene and rare variant
class separately, including LoF variants, missense variants with an
AlphaMissense score ≥ 0.7, and missense variants with a REVEL score
≥ 0.75, usingMartingale residuals as the phenotype as in the common
variant analyses.We excluded geneswith fewer than 10 variant carriers
to ensure the reliability of our analyses. A gene-wide significance
threshold was established at p = 7.4× 10�7 based on the Bonferroni
method accounting for the number of genes, variant classes, and sta-
tistical methods. Gene-based analyses were carried out using the SKAT
package (v.2.2.5) in R.
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To characterize the impacts of gene burden in significant genes,
we compared lifespan survival depending on gene burden using
Kaplan–Meier survival curves, andCox proportional hazard regression
analyses. Additionally, we performed Cox proportional hazards
regression to assess the effect of each rare variant in a gene. The sur-
vival (v.3.2.13) package in R (v.4.1.3) was utilized for the survival ana-
lysis and the lifelines package (v.0.28.0) in Python v.3.7 was used for
generating Kaplan–Meier survival curves.

Phenome-wide association studies
For gene-wide significant genes, we conducted phenome-wide asso-
ciation studies (PheWAS) of variant carrier status across 1670 pheno-
types in the UKB derived from binary, categorical, and continuous
traits using the PHEnome Scan ANalysis Tool76. Phenotypes included
the International Classification of Disease 10 (ICD-10) codes, family
history (e.g., father’s illness, father’s age at death), blood count (e.g.,
white blood cell count), blood biochemistry (e.g., Glucose levels),
infectious diseases (e.g., pp 52 antigen for Human Cytomegalovirus),
physical measures (e.g., BMI), cognitive test (e.g., pairs matching) and
brain measurements (e.g., subcortical volume of hippocampus). For
ICD-10 codes, we excluded phenotypes from the following ICD-10
chapters: “Injuries, poisonings, and certain other consequences of
external causes” (Chapter XIX), “External causes of morbidity and
mortality” (Chapter XX), “Factors influencing health status and con-
tacts with health services” (Chapter XXI), and “Codes for special pur-
poses” (Chapter XXII). The ICD-10 codes were then converted into
Phecodes (v.1.2)77 which combine correlated ICD codes into a distinct
code and improve alignment with diseases commonly used in clinical
practice.

For binary traits, we removed phenotypes with fewer than 100
cases, and for continuous traits, thosewith fewer than 100participants
were excluded. Depending on the phenotype, we employed various
regressionmodels including binary logistic regression, ordinal logistic
regression, multinomial logistic regression, and linear regression. All
analyses included age and sex as covariates. Phenome-wide sig-
nificance threshold was set at p = 2:9× 10�5 based on the number of
phenotypes.

Variant allelic fraction
To investigate whether some gene-level associations are enriched for
somatic variants, we computed the variant allele frequency (VAF) for
each heterozygous sample, reporting the mean VAF and VAF dis-
tribution per gene per variant class. VAF is defined as the number of
reads with an alternate allele divided by the read depth at a given
variant position. We also calculated the confidence interval for the
mean VAF per gene using 10,000 bootstrap samples to ensure robust
statistical analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
GWAS summary statistics and rare variant results from SKAT-O and
burden tests are available in the GWAS Catalog database under
accession codes GCST90551884–GCST90551889. All phenotypic and
genotypic data supporting the findings of this study are available from
the UK Biobank (https://www.ukbiobank.ac.uk/enable-your-research/
register). Access to these data is available from the authors with UKB
permission.

Code availability
The codes used for analyses in the present study are available at the
following link: https://github.com/Junkkkk/Lifespan-studies. The code

for PheWAS analysis was utilized from https://github.com/MRCIEU/
PHESANT.
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