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Discoveryof novel ancestry specific genes for
androgens and hypogonadism in Million
Veteran Program Men

Meghana S. Pagadala 1,2,3, Craig C. Teerlink4,5, Guneet K. Jasuja6,7,8,
Madhuri Palnati6, Tori Anglin-Foote 4, Nai-Chung N. Chang 4, Rishi Deka1,9,10,
Kyung M. Lee 4, Fatai Y. Agiri4, Tiffany Amariuta11,12, Tyler M. Seibert 1,9,13,14,
Brent S. Rose1,9,15, KathrynM. Pridgen4, Julie A. Lynch 4,5, Hannah K. Carter 11,
Matthew S. Panizzon1,10,16,18 & Richard L. Hauger 10,16,17,18

Given the various roles of testosterone in men’s health, we conducted a multi-
ancestral genetic analysis of total testosterone, free testosterone, SHBG, and
hypogonadism in men within the Million Veteran Program (MVP). Here we
identified 157 significant testosterone genetic variants, of which 8 have sig-
nificant ancestry-specific associations. These variants implicate several genes,
including SERPINF2, PRPF8, BAIAP2L1, SHBG, PRMT6, and PPIF, related to liver
function. Genetic regulators of testosterone have cell type-specific effects in
the testes, liver, and adrenal gland and are associated with disease risk. We
conducted a meta-analysis amongst ancestry groups to identify 188 variants
significantly associated with testosterone, of which 22 are novel associations.
We constructed genetic scores for total testosterone, SHBG levels, and
hypogonadism and find thatmenwith higher testosterone genetic scores have
lower odds of diabetes, hyperlipidemia, gout, and cardiac disorders. These
findings provide insight into androgen regulation and identify novel variants
for disease risk stratification.

Testosterone is an anabolic steroid synthesized by the testes which
acts as the primary sex hormone in men1–3. Classical, well-established
roles of testosterone include regulating sexual development during
puberty, spermatogenesis, erythropoiesis, muscular strength, and

bone density mass4,5; however, testicular androgens also have exten-
sive physiological effects on cardiovascular, metabolic, hepatic,
immune, and brain function2,6–8. These effects are primarily mediated
by the androgen receptor (AR), which is encoded on the X
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chromosome and is widely expressed in many tissues throughout the
body, particularly in the testes, prostate, liver, adipose tissue, skeletal
muscle, heart, kidney, and brain2,9. Progressive reduction in testicular
androgen steroidogenesis begins in the third to fourth decade of a
man’s life, with a roughly 1–3% decrease in circulating levels of total
testosterone per year1,2,10,11. The development of age-related testos-
terone deficiency or hypogonadism contributes to sexual dysfunction,
frailty, sarcopenia, fatty liver disease, cardiovascular disorders,
chronic kidney disease, obesity, and metabolic dysregulation1,2,10–19.
Testosterone deficiency has also been linked to depression, neurode-
generation, cognitive impairment, and Alzheimer’s disease risk during
male aging20–25.

Given the various roles of testosterone in men’s health, ascer-
taining genetic determinants of testosterone is vital. Approximately
50–60% of the testosterone in circulation is bound to sex hormone-
binding globulin (SHBG), and 40–50% is bound to albumin10. Unbound
testosterone (1–2%), which is termed free testosterone, and SHBG also
function as important modulators of androgen action. To date,
genome-wide association studies (GWAS) of testosterone, SHBG, and
low testosterone levels have unveiled associations with variants in or
near genes such as SHBG, JMJD1C, FKBP4, REEP3, and FAM9B and sug-
gest that the SNP-based heritability for total and free testosterone is
~ 20% and ~ 15%, respectively26–34. These GWAS studies have been
conducted primarily in Europeanor Asian ancestry groups, despite the
differences in testosterone levels that have been observed in men of
different ancestries35–37. Few studies have analyzed ancestry-specific
and trans-ancestry genes regulating total testosterone, free testoster-
one, SHBG, and hypogonadism in a diverse male cohort.

In this study, we present a GWAS of total and free testosterone
levels, SHBG levels, and hypogonadism in theMillion Veteran Program
(MVP), a large, multi-ethnic genetic biorepository from a hospital-
based population. As a hospital-based population, MVP has a higher
disease prevalence of testicular dysfunction/hypofunction, type 2
diabetes, obesity, hyperlipidemia, prostate cancer, and cardiovascular
diseases compared to other population studies, thus offering unique
insights into the interaction of diseases and testosterone-regulating
genes in a clinical setting. We identify associations with total testos-
terone, free testosterone, SHBG levels, and hypogonadism risk within
European (EUR), African (AFR), admixed American (AMR), and East
Asian (EAS) ancestry groups. In colocalization analyses, we find that
several variants associatedwith testosterone levels and hypogonadism
risk are located in or near genes related to liver function (UGT2B17,
BRI3, PRMT6, PPIF). Lastly, we construct and validate genetic scores and
genetic risk scores (GS/GRSs) to estimate testosterone, SHBG levels,
and hypogonadism and find significant associations with metabolic
conditions, such as hyperlipidemia, gout, and diabetes, as well as
cardiac and liver disorders.

Results
Curation of Laboratory Measures and Identification of
Hypogonadism
We identifiedmale participants within theMVPwith documented total
testosterone levels (n = 265,038), free testosterone levels (n = 110,627),
and SHBG levels (n = 43,325). After initial data curation and pre-
processing, morning total testosterone, free testosterone, and SHBG
levels were available for 139,226, 49,709, and 19,635 men, respectively
(Supplementary Fig. S1 and Table 1). MVP phenotyping data is
dependent on endocrine lab tests being ordered in a clinical setting,
resulting in different sample sizes for each hormone level. Average
total testosterone (avg +/− std dev: 389 [196–582] ng/dL), free testos-
terone (9.4 [− 26–45] ng/dL), and SHBG (42 [15–68] nmol/L) levelswere
within the physiologically normal range for men (Supplementary Fig.
S2A–C). Notably, our analysis confirmed thewell-documented trend of
decreasing total and free testosterone levels and increasing SHBG
levels with age (Supplementary Fig. S2D–F)38,39.

MVP ancestry groups were assigned using a recently published
random-forest clustering with the 1000 Genomes Project and the
Human Genome Diversity Project (1kGP +HGDP) reference panels40.
Differences in total testosterone, free testosterone, and SHBG levels
based on ancestrywere small (Supplementary Fig. S2G–I). Significantly
higher total testosterone levels were observedwithin the AFR ancestry
group (406.6 [200.5–612.7] ng/dL) compared to EUR (382.9
[193.5–572.4] ng/dL), EAS (382.8 [201.8–563.7] ng/dL), and AMR (395.1
[201.9–588.4] ng/dL) ancestry groups (p <0.001) (Supplementary
Fig. S2G). In addition, the EAS ancestry group had lower SHBG levels
(30.8 [12.4–49.3] nmol/L) compared to other ancestry groups (EUR:
42.7 [16.9–68.6] nmol/L, AFR: 41.2 [11.3–71.2] nmol/L, AMR: 36.4
[11.9–60.9] nmol/L; p <0.001) (Supplementary Fig. S2I).

We extended our analysis to hypogonadism, a condition char-
acterized by abnormally low testosterone levels. Based on our criteria
for hypogonadism diagnosis (Methods), ~ 25% of the study population
have hypogonadism; the incidence was higher in the AFR and AMR
ancestry groups and lower in the EAS ancestry group (Supplementary
Fig. S2J). We confirmed that men with hypogonadism had lower total
testosterone levels compared to matched controls (Supplementary
Fig. S2K).

Before conducting GWAS, we estimated heritability or the pro-
portion of phenotypic variance due to genetic variance for testoster-
one phenotypes using linkage disequilibrium score regression (LDSC)
analysis41. Total testosterone, SHBG, and hypogonadism heritability
estimates were 9–12%, 20–50%, and 5–9%, respectively (Supplemen-
tary Table S1). The positive genetic correlation was observed for total
testosterone with free testosterone and SHBG levels in the EUR
ancestry groups, while negative genetic correlations were observed
between total testosterone and hypogonadism in the EUR, AFR, and
AMR ancestry groups (Supplementary Table S2).

Genetic associations of laboratorymeasures and hypogonadism
We conducted GWAS with total testosterone levels, free testosterone
levels, SHBG levels, and hypogonadism within MVP ancestry groups40.
We identifiedmenof EUR (95,184), AFR (27,521), AMR (13,443), andEAS
(1816) ancestry for total testosterone analysis. Cohort sizes for free
testosterone, SHBG, and hypogonadism are given in Table 1.

We discovered 157 significant genetic associations for total and
free testosterone, SHBG, and hypogonadism (Supplementary Fig. S3
and Supplementary Data 1). Of these, the most significant associations
were from analyses of EUR (98) and AFR (35) ancestry groups; how-
ever, significant associations in AMR (16) and EAS (8) groups were also
identified. Eight variants had significantly different effect size esti-
mates when comparing ancestry groups (“Methods”); most variants
had different effect sizes in the EAS (5) ancestry group compared to
EUR (0), AFR (1), andAMR (2) ancestry groups (Supplementary Fig. S4).
Generally, however, variants had similar effects on hormone levels
across ancestry groups.

Table 1 | Sample Sizes for GWAS Analysis of Testosterone
Levels and Hypogonadism

Ancestry
Groups

Genotype Total Free SHBG Hypogonadism

All 588177 139226 49709 19635 146720

European 421613 95184 33470 13893 102635

African 105305 27521 9863 2960 27736

Admixed
American

50829 13443 5256 2081 13328

East Asian 9154 1836 545 471 1690

Table of sample sizes for all EUR, AFR, AMR, and EAS MVP men used for GWAS of total testos-
terone (total), free testosterone (free), SHBG, and diagnosis of hypogonadism. Also, included
number of individuals for which genotypes were available.
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Weperformed a SuSiE fine-mapping analysis of 157 associations to
determine the proportion of variants with a high probability of being
causal. An important advantage of SuSiE is that this analysis method
allows for multiple causal variants in a region, in contrast to other
causality inference methods42. The associations of 49 (31.2%) lead
variants had a high PIP > 0.10. Several of these variants were missense
variants, implicating genes, such as SERPINA1, NR2F6, FKBP4, SLCO1B1,
HGFAC, and UGT2B15.

To replicate our results, we compared significant associations
from MVP EUR GWAS with total testosterone, free testosterone, and
SHBG associations from the UK Biobank analyses performed by Ruth
et al. with total testosterone, free testosterone, and SHBG (hypogo-
nadism GWAS was not conducted)26. Of the MVP EUR GWAS variants,
87.2% (89.1% total testosterone, 100% SHBG, 33.3% free testosterone)
were replicated in the UK Biobank. Six MVP EUR variants were not
replicated, but effect sizes andminor allele frequencies were generally
consistent (SupplementaryData 2 and Supplementary Fig. S5).We also
compared MVP AFR GWAS with associations with total testosterone,
free testosterone, and SHBG levels for 1,257 African-American men in
the Multi-Ethnic Study of Atherosclerosis (MESA) cohort. Only two
variants (14%)werenominally significant (p <0.05) in theMESA cohort,
likely due to its smaller sample size. However, effect size estimates of
associations were consistent with MVP associations (Pearson r =0.64,
p <0.005) (Supplementary Fig. S6).

Gene expression in specific cell types and disease risk
To identify candidate genes influencing testosterone levels, we per-
formed colocalization analysis using GTEx cis-eQTL gene expression
summary statistics for androgen-regulated tissues and/or sites and
MVP EUR GWAS. The colocalization analysis estimates the probability
of a shared causal signal between cis-eQTL and GWAS analyses of total
testosterone levels, free testosterone levels, SHBG levels, and
hypogonadism43. In total, we discovered 24geneswith highprobability
(PP.H4 >0.8) of shared causal variants between their expression and
total testosterone levels (15), hypogonadism (17) and SHBG levels (5)
(Fig. 1). Genes such as SHBG, SERPINF2, PRPF8, PRMT6, BRI3, BAIAP2L1,
NF1, BMP8A, PABPC4, TUFM, PPIF, SULT1A1, NYNRIN and RP11-327J17.2
have significant shared colocalization signal with total testosterone
levels, SHBG levels, or hypogonadism (Supplementary Data 3). NYN-
RIN, TUFM, and SH2B1 were uniquely identified by colocalization ana-
lysis of hypogonadism, while NF1, PABPC4, and SHROOM3 were
uniquely identified through colocalization analysis of total testoster-
one. We found that some gene associations (e.g., SULT1A1, PRPF8, and
SERPINF2) were specific to the testes while BRI3 and NYNRIN had liver
cell type-specific effects. Although the testes are the primary source of
testosterone production, these results identify the potential involve-
ment of other tissues and organs for testosterone regulation.

To evaluate the disease relevance of the testosterone and hypo-
gonadism variants, we performed PheWAS analyses with 1875 phe-
codes in theMVP. Testosterone variants were associated with diabetes
(n = 8), hyperlipidemia (n = 8), gout (n = 6), and liver disease (n = 7). To
determine whether PheWAS associations were due to testosterone
changes, we rancolocalization analyses todetermine theprobability of
shared causal variants between testosterone and disease. Approxi-
mately 85.9% (367/427) of the PheWAS associations had a greater than
80% probability of shared causal variants (Supplementary Data 4).

MVP Meta-analysis of laboratory measures and hypogonadism
After the ancestry GWAS was completed, we conducted a meta-
analysis to identify a consensus set of 188 associations affecting total
testosterone, free testosterone, SHBG, and hypogonadism (Fig. 2 and
Supplementary Data 5). Most variants were associated with total tes-
tosterone and hypogonadism, as these analyses had a larger sample
size and thus were more powered to identify significant associations.
Generally, effect sizes were consistent across ancestry groups

(Supplementary Fig. S7). We identified several genes implicated in
previous testosterone GWAS analyses, such as JMJDC1, SERPINF2,
BAIAP2L1, FKBP4, and SHBG (Fig. 3)26–34. Most variants were non-cod-
ing; 14 associations were missense variants, resulting in protein chan-
ges. Several missense variants were in liver function genes, such as
SERPINA1, NR2F6, GCKR, SLCO1B1, PNPLA3, HGFAC and UGT2B15. In
fact, 31% (53/171) of leadvariantswere significantly associatedwith AST
and ALT levels, underscoring the effects of variants on liver function.

We compared our variants to previous analyses of total testos-
terone, free testosterone, and SHBG levels conducted in the UK
Biobank44. Notably, all participants in the UK Biobank have total tes-
tosterone, SHBG, and bioavailable testosterone measured upon
enrollment, whereas phenotype measurements were only available in
MVP if ordered by a physician. The MVP cohort has a higher disease
prevalence of testicular dysfunction/hypofunction, type 2 diabetes,
obesity, hyperlipidemia, prostate cancer, gout, and sleep apnea com-
pared to the UK Biobank (Table 2). 64.1% (75/117) of variants were
significant in UK Biobank analyses. Since a majority of variants were
found on chromosome X, we removed X chromosome variants in LD
(R2 > 0.2) with other X chromosome novel variants, leaving 22 novel
MVP variants/loci (Supplementary Data 6).

Hypogonadism summary statistics for the UK Biobank were not
available. However, only 416 men had a diagnosis code of testicular
hypofunction (International Classification of Disease [ICD-10] E29.1,
0.09%) in the UK Biobank in contrast to the 25% ofmenwithin theMVP
cohortwhomeet this study’s definition of hypogonadism; thus, a case-
control GWAS in UK Biobank would be severely underpowered.

GS and GRS Construction and validation
Given the number of disease associations with identified testosterone
variants, we constructed GS/GRS including significant meta-analysis
associations for each phenotype. The GRS was used to evaluate
hypogonadism risk, while the GS evaluated lab values rather than risk.
The GS effectively stratified MVP men by levels of total testosterone
and SHBG levels (Fig. 4A, B). Free testosterone GS was not evaluated
because < 5 significant variants were identified. The odds of hypogo-
nadismwere evaluated for each decile of hypogonadismGRS (Fig. 4C).
The odds of hypogonadism in top deciles for European (EUR) (1.10
[1.10–1.11]), African (AFR) (1.06 [1.05– 1.08]) and American (AMR) (1.09
[1.07–1.11]) ancestry groups were significantly greater than those in
bottom deciles for each ancestry group. We validated our total tes-
tosterone and SHBG GRS in the UK Biobank (Supplementary Fig. S8A,
S8B). The hypogonadismGRS did not appear to stratify odds in the UK
Biobank (Supplementary Fig. S8C).

Top significant associations from PheWAS analyses included
metabolic (Phecode 250-Type 2 Diabetes, Phecode 272-Hyperlipide-
mia, Phecode 274-Gout, Phecode 278-Obesity), liver (Phecode 571, 572,
573) and cardiac disorders (Phecode 401, 411, 427). To determine if
total testosterone and SHBG levels were associated with disease risk,
wefirst conductedMendelian randomization45,46 studieswithMVPEUR
results and published GWAS studies of gout, type 2 diabetes, obesity,
metabolic dysfunction-associated steatotic liver disease (MASLD),
hyperlipidemia, and chronic heart failure (Supplementary Data 7).
Lower levels of total testosterone and SHBG were associated with a
higher risk of hyperlipidemia, while hypogonadism was associated
with a higher risk of hyperlipidemia. Hypogonadism was causally
associatedwith a higher risk of gout (effect size = 0.40, p < 0.03), while
higher levels of SHBGwas associated with a lower risk of chronic heart
failure (effect size = −0.09, p < .04) (Supplementary Fig. S9).

To determine whether our constructed and validated GS could
reveal disease associations inMVP ancestry groups, we conducted Cox
proportional hazards analyses with the total testosterone GS, the
SHBG GS, and the hypogonadism GRS (Fig. 5 and Supplementary
Data 8). Higher total testosterone levels were associated with lower
risk of type 2 diabetes (0.97 [0.96-0.98], p < 10-4) and cardiac disorders
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(0.97 [0.96-0.97], p < 10−9) in the EUR ancestry group (Fig. 5A, F).
Higher SHBG levels were associated with a lower risk of gout (0.92
[0.90–0.93], p < 10-6) in the EUR ancestry group (Fig. 5D). Risk of
hyperlipidemia was lower in the EAS ancestry group with a higher risk
of hypogonadism (0.98 [0.97-0.98], p < 10-4) while risk of hyperlipi-
demia was higher in the EUR ancestry group with higher risk of
hypogonadism (1.01 [1.01-1.02], p < 10-10) (Fig. 5B). This differential risk
may reflect baseline ancestry-specific difference in metabolic

conditions; previous studies have noted differences in lipid levels in
Asian individuals47–50 Given the number of liver genes linked with var-
iants, we analyzed associations between GS/GRS and different liver
disease categories (chronic liver disease, ascites, necrosis). No sig-
nificant associations were found after multiple test corrections (Sup-
plementary Fig. S10). As expected, higher total testosterone GS were
associated with a significantly lower risk of testicular dysfunction,
while higher hypogonadism GRS were associated with a higher risk of
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testicular dysfunction in all ancestry groups except the EAS ancestry
group (Supplementary Fig. S11A). No significant associations were
found between testosterone GS and prostate cancer or dementia
(Supplementary Fig. S11B, 11C). These results highlight the role of
testosterone and hypogonadism in many diseases.

Discussion
Utilizing data from the MVP male cohort, we completed a large,
multi-ancestral GWAS of total testosterone, free testosterone,
SHBG levels, and hypogonadism. We had data for over 10,000
men for each phenotype and identified 157 associations from
ancestry-specific GWAS and 188 from MVP meta-analysis. Com-
paring our findings with the large-scale UK Biobank study by Ruth
et al., we found a 64.1% overlap amongst MVP variants associated

with total testosterone, free testosterone, and SHBG
(p < 4.3 × 10−4)26. After clumping X chromosome variants, the 22
novel variant regions we identified were mostly located on the X
chromosome, an important chromosome for androgen receptor
regulation. We also identified 9 ancestry-specific signals in men of
EUR, AFR, AMR, and EAS ancestry located across many chromo-
somes (1, 2, 3, 4, 7, 10, 19, X). These results underscore the shared
genetic regulation of testosterone and hypogonadism in men, but
also unique ancestry-specific associations that may inform future
health management and clinical treatment.

Protein-coding variants in several liver genes, such as PNPLA3,
GCKR, SLCO1B1, SERPINA1, HGFAC, and UGT2B15, were significantly
associated with total testosterone levels and hypogonadism risk. The
SERPINA1 gene encodes alpha-1 antitrypsin (ATA1), which is a serine
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protease inhibitor highly expressed in the liver;NR2F6 encodes a DNA-
binding transcription factor that upregulates fatty acid transport and
uptake into hepatocytes. SERPINA1 and NR2F6 variants have been
linkedwith ALT/AST elevation andMASLD susceptibility51–55.GCKR and
HGFAC are also critical for liver glucose utilization and metabolism in
the liver56–58.

Our colocalization analysis further supported a link between liver
gene expression and testosterone. NYNRIN, a liver enzyme gene, was
uniquely identified in colocalization analysis of hypogonadism and
gene expression59. UGT2B17, another hepatic gene, was also identified
in the colocalization of SHBG. UGT2B17 encodes a uridine glucur-
onosyltransferase, which is involved in testosterone metabolism. In
addition, we detected strong colocalization signals for PRMT6 and
SHBG in the liver and adrenal gland that were linked to total testos-
terone and hypogonadism. SHBG is the principal glycoprotein trans-
porting testosterone and synthesized in the liver10. SHBG levels have
been found to have an inverse relationship with MASLD58. PRMT pro-
teins, including PRMT6, have a clinically significant role in hepatic
fibrosis and cancer60. PRMT6 encodes arginine methyltransferase that

regulates androgen receptor translocation61. Androgen receptors are
expressed in both hepatocytes and adrenocortical cells9. Our GWAS
findings, which demonstrate the overlap between genes linked to
testosterone levels and their expression in the liver and adrenal gland,
suggest that genetically regulated testosteronemay have an important
role in normal liver and adrenal function, as well as in hepatic diseases,
or that variation in liver and adrenal function canmodify testosterone
levels and hypogonadism risk.

Using the GS for total testosterone and SHBG and the hypogo-
nadism genetic risk score (GRS) that we developed from our GWAS
analyses, we identified associations between testosterone gene var-
iants and the risk of certain diseases, especially metabolic diseases
suchasdiabetes, gout, andhyperlipidemia. Low testosterone levels are
associated with increased insulin resistance in men with both type 1
and type 2 diabetes, and insulin sensitivity and testosterone levels are
hypothesized to influence one another62. The association between
testosterone GS and diabetes risk identified in this study is consistent
with the findings of Ruth et al., in which a Mendelian randomization
analysis suggested that higher testosterone reduced the risk of type 2
diabetes in men26.

Our study did not find a significant link between higher total
testosterone GS and dementia which was unexpected in light of
research on the relationship of testosterone and cognitive decline
during aging and previous findings that testosterone deficiency may
be a risk factor for Alzheimer’s disease21,63–66. Underlying the memory-
enhancing action of testosterone, preclinical research has found that
testosterone-activated androgen receptor signaling in the hippo-
campus can induce synaptic plasticity, promote neuroprotection, and
stimulate neurogenesis67,68. We also did not find a significant associa-
tion between prostate cancer and testosterone. Androgen deprivation
therapy (ADT) is the mainstay of prostate cancer treatment; however,
recent research suggests that there are limits to androgen-related
growth69,70. Future testosterone GWAS should continue to explore the
potential link between testosterone anddementia andprostate cancer,
whichmay involve changes in androgen receptor signaling rather than
androgen levels.

A much higher proportion of men with hypogonadism were
identified in the MVP (25%) compared to the UK Biobank (0.09%). As a
result, we were well-powered to identify significant associations. The
high incidenceof hypogonadism inMVPmay be partially related to the
older age of the cohort (64 [18–110] years) compared to the UK Bio-
bank (58 [37–73] years). We found that total testosterone levels
decreasewith age, withmen older than 90 years of age having average
total testosterone levels < 300 ng/dl (the threshold for hypogonadism
diagnosis). Additionally, it may be related to the higher proportion of
chronic disorders that can impact testosterone levels among Veterans,
such as diabetes, lipid disorders, and liver disease. Selection bias could
also contribute as all participants within the UK Biobank received
testosterone testing upon enrollment, while MVP participants only
received endocrine testing when ordered within a clinical setting.

TheMVP provides a breadth of clinical and genomic data that has
allowed us to conduct the most ancestrally diverse genetic analysis of
testosterone, SHBG, and hypogonadism to date. However, our study
has several limitations. First, as noted above, men participating in the
MVP only had testosterone and/or SHBG levels measured when
ordered by a physician, likely resulting in a selection bias for indivi-
duals already experiencing androgen-related symptoms. We also note
limitations with exploring ancestry-specific mechanisms because the
available tissue-specific gene expressiondata is predominantly derived
from individuals with EUR ancestry. Thus, our colocalization analyses
rely on EUR gene expression data even though gene expression pat-
terns may be influenced by ancestry-specific effects. Furthermore, our
GS analysis focuses on phecodes. These clinical outcomes are impor-
tant for assessing disease risk; however, testosterone can also impact
disease severity, treatment response, and disease progression.

Table 2 | Differences in MVP and UK Biobank populations

UK Biobank MVP

age at enrollment (median [min-max]) 58 [37–73] 64 [18–110]

% female/male 54.4/45.6 9.2/90.8

% diabetes 15.1% 46.6%

% hypertensive diseases 37.0% 69.5%

% lipid disorders 21.1% 71.3%

% testicular dysfunction 0.1% 2.9%

% renal failure 14.1% 24.5%

% liver disease 5.1% 19.7%
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Given that over 20% of men over 60 years of age have low testos-
terone levels10, this study may help improve clinical care by elucidating
the genetic regulation of testosterone and its implication in disease. The
Testosterone Trials previously examined the effects of testosterone
treatment in older men71 but were not informed by androgen genetics.
Genetic determinants of testosterone levels and cellular actions may
provide important insight into testosterone replacement therapy (TRT)
action and therapeutic benefit, as well as a greater understanding of
androgen effects of testosterone on metabolic, cardiovascular, hepatic,
and cognitive function. Moreover, this study deepens our understanding
of testosterone genetic regulation and the role of genetically determined
testosterone in hypogonadism, diabetes, liver disease, and dementia.
Future directions should include the development of improved
testosterone-relevant clinical phenotyping from electronic medical
records, assessment of interactions between genomic determinants of
testosterone and their impact on health and disease, and exploration of
the links between testosterone genes and the functions of the liver,
cardiovascular and metabolic systems, adrenal cortex, and brain.

Methods
Ethical approvals
All MVP participants provided informed consent upon enrollment.
This study was approved by the VA Central Institutional Review Board
and the Research & Development committees at the Salt Lake City VA
and the San Diego VA.

MVP Genotype quality
All study participants provided blood samples for DNA extraction and
genotyping. Blood samples were collected by phlebotomists and

banked at the VA Central Biorepository in Boston, MA, where DNAwas
extracted and shipped to 2 external centers for genotyping. DNA
extracted from the buffy coat was genotyped using a custom Affy-
metrix Axiom Biobank array. The MVP 1.0 genotyping array contains a
total of 723,305 variants, enriched for low-frequency variants in Afri-
can and Hispanic populations and variants associated with diseases
common to the VA population72,73.

Testosterone and hypogonadism phenotyping
We used the VA Corporate Data Warehouse (CDW) laboratory data to
identify Veterans (N = 702,740) enrolled in the MVP from fiscal year
2011 to 2018. From the 702,740 Veterans, we selected Veterans who
had documentation of at least one hormone laboratory test for tes-
tosterone (total testosterone, free testosterone, percent free testos-
terone, bioavailable testosterone, SHBG, and dihydrotestosterone)
(N = 229,725). Among these 229,725, only 215,773 were male Veterans
with documentation of at least one total testosterone laboratory value.
From these 215,773, we excluded those with missing laboratory values
(N = 886), incorrect units (e.g., mg/dL, ug/dL, %) (N = 7), inaccurate
logical observation identifiers names and codes (LOINC) (N = 42), and a
prescription for ADT before the total testosterone laboratory
(N = 4769) or TRT (N = 6032), or had a diagnosis code for testicular
cancer (N = 696) or orchiectomy (N = 168), resulting in a final analytical
sample of 203,173 male Veterans (Fig. 1).

We excluded individuals on TRT and ADT to ensure we were
assessing endogenous male sex hormone variation. Only morning
levels from 7 AM to 12 PM were used. In individuals with multiple
readings, the first measurement was used. Abnormally high levels
(> 10,000ng/dL) were removed. We only evaluated men, and patients
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with sex chromosome aneuploidy (XXY, XYY) were excluded from the
analysis.

Individuals with either (1) a documented ICD hypogonadism code
or (2) at least 2 low total testosterone values (< 300ng/dL) were
identified as hypogonadal. We selected individuals with no low tes-
tosterone readings, TRT, or ADT as matched controls. More detailed
information on cohort selection is depicted in Supplementary Fig. S1.

LDSC
Population-specific LD scores in EUR, AFR, AMR, and EAS ancestry
groups were calculated for HapMap74 populations using intersecting
variants fromGWAS summary statistics and variant list (w_hm3.snplist,
1,217,312 variants). These scores were then used to calculate herit-
ability estimates for total testosterone, free testosterone, SHBG, and
hypogonadism for each ancestry group using LDSC v1.0.1 and default
parameters.

GWAS
Total testosterone, free testosterone, and SHBG levels (ng/dL) were
inverse rank normalized. PLINK75 glm method was applied to conduct
association analyses with testosterone levels by each ancestry group
(EUR, AFR, AMR, EAS). Ancestry groups were determined by Wendt
et al., which combined both a harmonized ancestry and race/ethnicity
approach along with random-forest clustering using the 1000 Gen-
omes Project and Human Genome Diversity Project40. Variants of
minor allele frequency (MAF) less than 0.1% were excluded, and the
first ten principal components of ancestry and age were used as

covariates in the analysis. For hypogonadism analysis, the age of
recorded hypogonadism diagnosis code or first age of low total tes-
tosterone levels (< 300 ng/dL) was used rather than the age of lab
test76. In individuals with an ICD diagnosis code for hypogonadism and
multiple low testosterone readings, the earliest age of hypogonadism
identification was used. Significant and independent associations were
identified with the linkage- and distance-based clumping method in
PLINK using the GWAS significance threshold (p < 5 × 10-8). Variants
within 500 kb and with R2 > 0.00001 were pruned away. A strict R2

threshold was used to prepare data for downstream Mendelian ran-
domization results and to ensure independent loci. Alleles with sig-
nificantly different (population-specific) effect sizes were identified via
non-overlapping 90% confidence intervals between the sentinel
ancestry and all other ancestries.

For EUR GWAS validation, we used UK Biobank summary sta-
tistics for European men (GCST90012103, GCST90012109, and
GCST90012113) that were retrieved from Ruth et al.26 (https://www.
ebi.ac.uk/gwas/publications/32042192#study_panel). For significant
MVP variants not found in summary statistics, the closest variant (in
base pairs) was used as a proxy. Proxy variants used for UK Biobank
validation are provided in Supplementary Data 1 and 4. Novel var-
iants were identified as those that met the GWAS significance
threshold (p < 5 × 0−8) in MVP but not in the UK Biobank.

For AFR GWAS validation, total testosterone, free testosterone,
and SHBG values were extracted and inverse-rank normalized for self-
identifying African individuals from the Multi-Ethnic Study of Athero-
sclerosis (MESA). Individuals with KING relatedness > 0.177 were
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removed. Also, in cases of family genotypes, parents were excluded
from analyses. The PLINK glmmethod was used to conduct validation
analysis of testosterone loci in 1257men. Age and the first ten principal
components of ancestry were used as covariates. We excluded sig-
nificant MVP total testosterone (1), free testosterone (1), SHBG (1), and
hypogonadism (2) variants for the AFR ancestry group, whichwere not
found in summary statistics were excluded from validation analysis.

METAL
Meta-analysis of MVP EUR, AFR, AMR, and EAS GWAS with total tes-
tosterone levels, free testosterone levels, SHBG levels, and hypogonad-
ism riskwas conductedwithMETAL using standard error-basedweights.
Significant independent loci were identified through the linkage- and
distance-based clumpingmethod in PLINK and using GWAS significance
threshold (p< 5× 10−8). Variants within 500kb and with R2 > 0.00001
were pruned away. Cochran’s heterogeneity analysis was conducted to
identify variants with high variability between ancestry groups. Values
are given in Supplementary Data 4 and plotted in Fig. 2.

SuSiE Fine-mapping analysis
SuSiE requires a reference LD matrix and GWAS summary statistics. For
each significant association, genotypes of all variants within 1Mb were
extracted from eachMVPpopulation, thinning individual count to 1000.
Individual count had to be thinned to accommodate memory and
computing parameters; moreover, LD may be accurately approximated
using a subset of individuals from the GWAS cohort. Pairwise linkage
disequilibrium was calculated for all variants within loci. For each phe-
notype (total testosterone, free testosterone, SHBG, hypogonadism), we
calculated z-scores by dividing each effect size (beta) value by its stan-
dard error. Fine-mapping was run with SuSiE (susie.abf) using L= 10,
which assumes a maximum of 10 causal variants. Matched reference
populations were used for each analysis (e.g., EUR reference population
was used for EUR ancestry associations). We focused on variants with a
posterior inclusion probability of at least 10%.

Gene mapping/colocalization analysis
To map variants to genes we used two approaches.
1. Variant effect predictor (VEP)was run on all variants. Gene symbol

output based on variant location is included in Supplementary
Information. The majority of variants without annotation were
intergenic or within regulatory regions.

2. Colocalization analysis using coloc R package43 (version v5.1.0)
was used to determine the probability of shared causal variants
between testosterone phenotypes and gene expression. We
identified variants which were GTEx eQTLs in the European
ancestry group (accession date: 10/02/2019) to assemble a gene
set of interest. We then obtained full GTEx cis-eQTL association
results for androgen-regulated tissues and/or sites (liver, testes,
adrenal gland). The coloc.abf function was used to conduct
analysis between GTEx cis-eQTL results and testosterone pheno-
type association analyses from the MVP EUR ancestry group.
Genes with PP.H4 (posterior probability of one common causal
variant between studies) of 0.8 between cis-eQTL and testoster-
one phenotype results were reported.

Disease association analysis
We evaluated independent lead SNPs identified in the GWAS of free
testosterone, hypogonadism, SHBG, and total testosterone for asso-
ciation to other diseases (i.e., PheWAS) in the un-analyzed portion of
male MVP subjects (n = 545,764 for free testosterone, n = 448,328 for
hypogonadism, n = 575,922 for SHBG, and n = 456,066 for total tes-
tosterone). PheWASwas conducted on 1875 phecode categories77 with
the PheWAS R package78 (R version 4.0.3) by ancestry group using
logistic regression. We restricted the analysis to themale sex and used
age and the first ten genotyping principal components as covariates.

To confirm if variants from testosterone analyses shared causal
variants with the disease, we extracted variants within a 100Kb range
and MAF of at least 0.1% for the variant of interest. We ran coloc43 R
package (version v3.2.1) on variant p-values from total testosterone
levels, free testosterone levels, SHBG levels, or hypogonadism GWAS
analyses and disease PheWAS. Variant MAF from PheWAS analysis was
used in coloc analysis.

Mendelian randomization
TwoSampleMR (version 0.6.6)45,46 was run on significant associa-
tions for total testosterone, SHBG, and hypogonadism variants
from testosterone meta-analysis and published GWAS studies for
obesity, hyperlipidemia, gout, type 2 diabetes, and MASLD. Pub-
lished GWAS details are given in Supplementary Data 7. Variants
from MVP meta-analyses were harmonized with published GWAS
information. No further clumping was performed as we used strict
linkage disequilibrium thresholds to identify significant GWAS
variants.

GS and GRS Construction and disease association
We constructed GS/GRSs using only genome-wide significant meta-
analysis variants (p < 5 × 10−8) for total testosterone, SHBG, and hypo-
gonadism. Variants were extracted from imputed genotype BGEN files.
Alleles were oriented to increasing testosterone or SHBG levels or
increasing the risk of hypogonadism. Genotype dosages were weigh-
ted by effect size estimates for each respective ancestry group and
summed. Validation of GS/GRS was conducted within discovery
groups for each analysis.

Cox proportional hazards analyses were conducted using R sur-
vival package (***) in EUR, AFR, AMR, and EAS MVP groups with phe-
codes used in PheWAS analyses (see Disease Association Analysis) for
event and age of diagnosis for time to event. Individuals included in
discovery analyses, thosewith chromosomal abnormalities (XXY, XXX,
XYY), and those on ADT or TRTwere removed from analyses. Analyses
were controlled for age of enrollment and the top 3 genotyping prin-
cipal components as covariates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The full summary-level association data generated in this study are
deposited in the GWAS Catalog database https://www.ebi.ac.uk/
gwas/ under accession numbers GCST90503313, GCST90503314,
GCST90503315, GCST90503316, GCST90503317, GCST90503318,
GCST90503319, GCST90503320, GCST90503321, GCST90503322,
GCST90503323, GCST90503324, GCST90503325, GCST90503326,
GCST90503327, GCST90503328. The source data generated in this
study are provided in the Supplementary Datasets provided in
this paper.

Code availability
Code to reproduce manuscript figures is available at: https://github.
com/meghatron21/mvp-testosterone-gwas.
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