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Forecasting the eddying ocean with a deep
neural network

Yingzhe Cui 1,2,6, Ruohan Wu3,6, Xiang Zhang 1,2, Ziqi Zhu3, Bo Liu3, Jun Shi3,
Junshi Chen2,3,4, Hailong Liu2, Shenghui Zhou2, Liang Su5, Zhao Jing 1,2 ,
Hong An 2,3,4 & Lixin Wu 1,2

Mesoscale eddies with horizontal scales from tens to hundreds of kilometers
are ubiquitous in the upper ocean, dominating the ocean variability from daily
to weekly time scales. Their turbulent nature causes great scientific challenges
and computational burdens in accurately forecasting the short-term evolution
of the ocean states based on conventional physics-driven numerical models.
Recently, artificial intelligence (AI)-based methods have achieved competitive
forecast performance and greatly increased computational efficiency in
weather forecasts, compared to numerical models. Yet, their application to
ocean forecasts remains challenging due to the different dynamic character-
istics of the atmosphere and the ocean. Here, we develop WenHai, a data-
driven eddy-resolving global ocean forecast system (GOFS), by training a deep
neural network (DNN). The bulk formulae onmomentum, heat, and freshwater
fluxes are incorporated into the DNN to improve the representation of air-sea
interactions. Ocean dynamics is exploited in the DNN architecture design to
preserve oceanmesoscale eddy variability.WenHai outperforms a state-of-the-
art eddy-resolving numerical GOFS and AI-based GOFS for the temperature
profile, salinity profile, sea surface temperature, sea level anomaly, and near-
surface current forecasts led by 1 day to at least 10 days. Our results highlight
expertise-guided deep learning as a promising pathway for enhancing the
global ocean forecast capacity.

The ocean is turbulent, containing eddies with a wide range of sizes.
Among them, the mesoscale eddies form the major fraction of the
ocean kinetic energy reservoir1,2. These mesoscale eddies redistribute
heat and materials in the ocean, contributing dominantly to the short-
term (from daily to weekly time scales) variations of ocean thermo-
haline structures3,4, regulating the primary productivity and further
marine ecosystem5,6, and acting as a major driver of extreme events
like marine heatwaves7. They also interact strongly with the overlaying
atmosphere, influencing air temperature, humidity, winds, cloud

fraction, and rainfall within localmarine atmospheric boundary layer8,9

as well as atmospheric synoptic variability10,11 and large-scale
circulations12. Therefore, accurate eddy-resolving ocean forecasts are
not only essential for supporting marine activities and managements
but also necessary to improve weather forecast accuracy.

So far, ocean forecasts rely primarily on ocean general circulation
models (OGCMs) that make forecasts by numerically discretizing and
integrating the governing partial differential equations of the ocean.
However, constructing an accurate eddy-resolving global ocean

Received: 7 September 2024

Accepted: 20 February 2025

Check for updates

1Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Ocean dynamics/Academy of Future Ocean, Ocean
University of China, Qingdao, China. 2Department of Ocean Big Data and Prediction, Laoshan Laboratory, Qingdao, China. 3School of Computer Science and
Technology, University of Science and Technology of China, Hefei, China. 4Joint Laboratory of Advanced Computing for Transparent Oceans between
Laoshan Laboratory and University of Science and Technology of China, Hefei, China. 5Qingdao Guoshi Technology Group Co., Ltd, Qingdao, China. 6These
authors contributed equally: Yingzhe Cui, Ruohan Wu. e-mail: jingzhao@ouc.edu.cn; han@ustc.edu.cn; lxwu@ouc.edu.cn

Nature Communications |         (2025) 16:2268 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-1595-0298
http://orcid.org/0000-0003-1595-0298
http://orcid.org/0000-0003-1595-0298
http://orcid.org/0000-0003-1595-0298
http://orcid.org/0000-0003-1595-0298
http://orcid.org/0009-0007-4541-0475
http://orcid.org/0009-0007-4541-0475
http://orcid.org/0009-0007-4541-0475
http://orcid.org/0009-0007-4541-0475
http://orcid.org/0009-0007-4541-0475
http://orcid.org/0000-0002-8430-9149
http://orcid.org/0000-0002-8430-9149
http://orcid.org/0000-0002-8430-9149
http://orcid.org/0000-0002-8430-9149
http://orcid.org/0000-0002-8430-9149
http://orcid.org/0000-0002-3900-3722
http://orcid.org/0000-0002-3900-3722
http://orcid.org/0000-0002-3900-3722
http://orcid.org/0000-0002-3900-3722
http://orcid.org/0000-0002-3900-3722
http://orcid.org/0000-0002-4694-5531
http://orcid.org/0000-0002-4694-5531
http://orcid.org/0000-0002-4694-5531
http://orcid.org/0000-0002-4694-5531
http://orcid.org/0000-0002-4694-5531
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-57389-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-57389-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-57389-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-57389-2&domain=pdf
mailto:jingzhao@ouc.edu.cn
mailto:han@ustc.edu.cn
mailto:lxwu@ouc.edu.cn
www.nature.com/naturecommunications


forecast system (GOFS) basedon theOGCMs (i.e., the numerical GOFS)
remains a challenging issue both computationally and scientifically. On
the one hand, resolving mesoscale eddies requires a grid size of
O(10 km) or even finer13,14, imposing a massive computational burden
for operating global-scale OGCMs especially for implementing
advanced data assimilation15 and making ensemble forecast16. In fact,
the eddy-resolving numerical GOFSs did not emerge until the recent
decade partially due to the enlarged computational resources. On the
other hand, the chaotic nature of mesoscale eddies makes their fore-
cast very sensitive to errors in initial conditions, boundary forcings,
and OGCMs. In particular, despite development over about a half-
century, there are still many uncertainties in OGCMs, including
numerical errors caused by discretization, uncertainties in para-
meterizations of unresolved processes, and insufficient representation
of interactions of the ocean with other components of the Earth
system17.

Artificial intelligence (AI)-based methods provide a data-driven
approach for making forecasts and have been successfully applied to
the global medium-range weather forecasts18–25. Their success is
achieved primarily from high-quality atmospheric reanalysis training
datasets and customized deep neural network (DNN) designed to
capture the hidden representations of atmospheric dynamics and
alleviate accumulative error when rolling out multistep autoregressive
forecasts18–25. These AI-based forecast systems show competitive
forecast performance yet substantially reduce the computational
burden compared to their numerical counterparts. The successful
application of AI-based methods in medium-range weather forecasts
has been inspiring their ocean-related usage, including the OGCM
emulators, the short-term ocean forecast as well as the interannual-to-
decadal ocean prediction26–29, although it has been well recognized
that ocean reanalysis datasets are less robust compared to their
atmospheric counterparts primarily due to the sparsity of ocean
observations30.

It should be noted that the existing DNN architectures developed
for the medium-range weather forecast may not be suitable for the
eddy-resolving ocean forecast. Air-sea interactions play an important
role in the short-term ocean variability, especially in the surfacemixed
layer31. However, these interactions have not been explicitly incorpo-
rated into the AI-based medium-range weather forecast systems
except for providing the SST as an input. Furthermore, the existing AI-
basedmethods tend to smooth outmesoscale weather phenomena32,33

and are expected to dampen oceanmesoscale eddies in a similar way.
Such a blurring effect is tolerable for the medium-range weather
forecast as its variability is generally dominated by synoptic
processes34, but not so for short-term ocean forecast, at which time
scale mesoscale eddies make a major contribution to the variability35

(Supplementary Fig. S1).
In this study,wepresentWenHai, anAI-basedGOFS for short-term

eddy-resolving forecast across the global upper ocean (0–643m).
WenHai explicitly incorporates atmospheric forcings into the DNN by
exploiting the bulk formulae36 on air-sea fluxes. Furthermore, the
design of WenHai’s architecture is guided by the characteristics of
mesoscale eddies to better preserve their variabilities. As demon-
strated below, these features make WenHai outperform state-of-the-
art numerical and AI-based GOFSs in forecasting the eddying ocean.

Results
An AI-based eddy-resolving GOFS
Trained on a state-of-the-art eddy-resolving (1/12°) global ocean rea-
nalysis dataset37 (See ‘GLORYS reanalysis’ in Methods), WenHai fore-
casts 1/12° daily averaged sea surface height (SSH) and three-
dimensional temperature, salinity, and horizontal current in the
upper 643macross the global ocean in an autoregressive way.WenHai
utilizes the Swin-Transformer38 as its backbone. The training process is
decomposed into two stages. WenHai is first pre-trained to minimize

the loss for the one-day forecast. Thenwe adopt a finetune technique20

to minimize the accumulative loss for a sequence of autoregressive
forecasts over 5 days, which improves WenHai’s performance at long
forecast lead times. The architecture ofWenHai (Fig. 1) and its training
details are elaborated in Methods (See ‘WenHai model’ in Methods).

We exploit domain knowledge in the air-sea interactions and
ocean dynamics to guide WenHai’s architecture design, which enhan-
ces its capacity to forecast the eddying ocean. First, to explicitly
represent the atmospheric forcings, we implement a specialized block
for computing air-seamomentum, heat and freshwater fluxes from the
surface atmosphere variables (e.g., air temperature, winds, etc.) based
on the bulk formulae (Supplementary Note 1 and Supplementary
Fig. S2). Second, the forecast output is chosen as the temporal ten-
dency of an ocean variable between the two consecutive days rather
than the ocean variable on the following day. This is essential to pre-
serve the mesoscale eddy variabilities, as mesoscale eddies dominate
the day-to-day variations not the absolute values of ocean variables
(Supplementary Fig. S3). Similarly, we put more weight on the loss
function in the upper part of the ocean, as mesoscale eddies are gen-
erally near-surface intensified39. Finally, the land region is masked to
make WenHai focus on forecasting the ocean variability.

Supplementary Fig. S4 provides a visualization of sea surface
kinetic energy (KE), sea surface height (SSH), and sea surface tem-
perature (SST) forecast in the Kuroshio Extension region by WenHai.
Here, the GLORYS reanalysis is approximated as the ground truth to
test the capacity ofWenHai to forecast the eddyingocean,with caution
about the fidelity of the GLORYS reanalysis in representing reality.
WenHai does capture the temporal evolution of KE, SSH, and SST
reasonably well, outperforming the persistent forecast that assumes
the future ocean state would be the same as the initial condition. In the
following sections, we will provide more systematic and quantified
assessments of the forecast performance of WenHai and compare it
with a state-of-the-art numerical GOFS and AI-based GOFS.

Outperformance of WenHai against a state-of-the-art
numerical GOFS
To evaluate the forecast performance ofWenHai, we compare it with a
state-of-the-art eddy-resolving numerical GOFS, i.e., the 1/12° opera-
tional ocean analysis and forecasting systems (GLO12v440,41) from the
France Mercator Océan (See ‘GLO12v4’ in Methods). WenHai is initi-
alized from the same initial condition and forced by the same atmo-
spheric forecast product as GLO12v4 during April-November 2024.We
remark that using the same initial condition is essential to make a fair
comparison between different forecast systems, as errors in the initial
condition could have substantial influences on the forecast perfor-
mance (Supplementary Note 2 and Supplementary Fig. S5). The ocean
variables involved in the comparison are selected following theGODAE
Ocean-View Inter-comparison and Validation Task Team (IV-TT) Class
4 framework42, including the SST and 15-m current measured by
drifting buoys, temperature and salinity profiles measured by Argo
profiling floats and level-3 along-track sea level anomaly (SLA) mea-
sured by satellite altimeters (See ‘Observational datasets’ in Methods).

Two metrics are used to quantify the forecast performance of
WenHai and GLO12v4 (See ‘Verification metrics’ in Methods). The first
is the root mean square error (RMSE), a conventional point-to-point
verification metric adopted by the GODAE Ocean-View IV-TT Class 4
framework. However, it has been recognized that verification on a
point-to-point basis is less appropriate for assessing the performance
of high-resolution (eddy-resolving) forecast systems because of the
double-penalty issue43, i.e., features correctly forecast butmisplaced in
space are penalized twice: once for not occurring at the observational
site, and secondly for occurring at the forecast site, where they are not
observed. Toovercome this problem,we adopt a neighborhood-based
verification metric that has been routinely applied to evaluating high-
resolution oceanic and atmospheric forecast systems44,45. Specifically,
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forecasts within the neighborhood centered on an observational
location are collected to generate a pseudo ensemble which can then
be compared to the observed value using typical ensemble and
probabilistic forecast verification metrics such as the continuous
ranked probability score (CRPS)46. Here the neighborhood is chosen as
1° × 1°. On the one hand, this neighborhood is large enough to contain
many ensemble members for robust estimates of the probability. On
theother hand, it is sufficiently small so that the observation is notonly

representative of its precise location but also has characteristics of the
entire neighborhood.

Comparison based on RMSE. WenHai achieves lower RMSE for all
the ocean variables compared to GLO12v4 (Fig. 2; Supplementary
Fig. S6a, b). The superiority of WenHai over GLO12v4 becomes more
evident as the forecast lead time increases. When forecasting 10 days
in advance, WenHai has an RMSE for SST, SLA, 15-m zonal current,

Swin-Transformer

Day t + l
Air-sea fluxes

Bulk Formulae

Day t + l
Ocean conditions

Day t + l
Atmospheric fields

Day t + l + 1
Tendency fields

Day t + l + 1
Ocean forecasts

Fig. 1 | A schematic ofWenHai’s architecture. The surface atmosphere and ocean
variables on the day t + l are first combined to compute the air-sea momentum,
heat, and freshwater fluxes based on the bulk formulae (green block), where t is an
arbitrary date index and l is the forecast lead time (indexing in 1-day intervals).
Then, the ocean variables and air-sea fluxes are sent to a deep neural network (red

block) that forecasts temporal tendency between ocean variables on the days t + l
and t + l + 1. The tendency field is added to the ocean variables on the day t + l to
yield the ocean variable forecast on the day t + l + 1 (blue block). Finally, the above
processes are iterated to generate a sequence of forecasts. Maps created with
Cartopy65. Background land image provided by NASA Earth Observatory.

Fig. 2 | Comparison of root mean square error (RMSE) between WenHai and a
state-of-the-art numerical global ocean forecast system (GOFS) as a functionof
forecast lead time. Globally averaged RMSE (the lower, the better) of the forecast
temperature profile (a), salinity profile (b), sea surface temperature (SST) (c), sea
level anomaly (SLA) (d), 15-m zonal current (e) and 15-mmeridional current (f) as a

function of forecast lead time. The zero-lead time represents the initial conditions.
The blue, red, and grey lines correspond to WenHai, GLO12v4 and persistent
forecast, respectively. For the temperature and salinity profile forecast, the RMSE is
vertically averaged over the upper 643m. The shading corresponds to the 50%
confidence interval computed from a bootstrap method.
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and 15-m meridional current 8.94%, 10.67%, 6.95% and 10.33% lower
than GLO12v4. As to the 10-day-led temperature profile forecast, the
RMSE ofWenHai is lower than that of GLO12v4 throughout the upper
643m (Supplementary Fig. S6a). So is the case for the salinity profile
forecast (Supplementary Fig. S6b). The vertical mean RMSE for the
temperature (salinity) profile forecast by WenHai is 6.02% (5.64%)
lower than that by GLO12v4. We further assess the RMSE in different
regions (Supplementary Fig. S7). The forecast performances of
WenHai and GLO12v4 are region-dependent, with their RMSE varying
from place to another. Nevertheless, the RMSE of WenHai is lower
than that of GLO12v4 for most of the regions. Finally, the RMSE of
WenHai is universally lower than that of GLO12v4 regardless of the
time periods (Supplementary Fig. S8). This provides some support
that WenHai should likely outperform GLO12v4 in boreal winter
during which period their comparison is not conducted in this study
due to the data limitation.

The RMSE quantifies the closeness of the forecast to the obser-
vation but doesn’t by itself indicate the skill in the forecast. The use-
fulness of a forecast is usuallymeasured by comparing its RMSE to that
of some readily available reference forecasts. Here we chose the
reference forecast as the persistent forecast. Accordingly, the persis-
tence skill score (PSS) (See ‘Verificationmetrics’ inMethods) is used to
measure the forecast skills of WenHai and GLO12v4 relative to the
persistent forecast. A positive PSS indicates superiority over the per-
sistent forecast, while a negative PSS indicates the opposite. GLO12v4
does not beat the persistent forecast except for the SST, whereas
WenHai is superior to the persistent forecast for all the ocean variables
at most of the forecast lead times (Figs. 2 and 3). In particular, the PSS
of WenHai shows a positive trend for all the ocean variables as the
forecast lead time increases, suggesting that WenHai can capture the
temporal variations of the eddying ocean reasonably well. In contrast,
the PSS of GLO12v4 shows a positive trend only for the SST, yet its
slope is smaller than that of WenHai.

ComparisonbasedonCRPS. Verification based on theCRPS yields the
same conclusion as verification based on the RMSE, further suggesting
the outperformance of WenHai against GLO12v4 (Fig. 4; Supplemen-
tary Fig. S6c, d). The CRPS of WenHai is lower than that of GLO12v4 for
all the ocean variables and their difference is generally enlarged with
the increasing forecast lead time. For the forecasts led by 10 days, the
CRPS ofWenHai is 3.5% lower than that of GLO12v4 for the temperature
profile, 5.5% lower for the salinity profile, 10.0% lower for the SST, 7.0%
lower for the SLA, and 2.7% (4.5%) lower for the 15-m zonal (meridional)
current, respectively. We remark that the lower CRPS of WenHai than
GLO12v4 is not sensitive to the choice of neighborhood. Varying the
area of the neighborhood from 0.3° ×0.3° to 2° × 2° leads to qualita-
tively the same conclusions (Supplementary Fig. S9).

Outperformance of WenHai against the latest AI-based GOFS
In this subsection, we compare WenHai with the latest AI-based GOFS,
i.e., XiHe28. Both WenHai and XiHe are trained in the GLORYS and ERA
reanalysis and aimed to provide a global 1/12° ocean forecast in the
upper 643m, so that a fair comparison between their forecast per-
formance can be made. We note that although WenHai preserves the
ocean mesoscale eddy variabilities reasonably well, XiHe leads to
severe underestimation (See ‘Computation of mesoscale eddy vari-
abilities’ in Methods; Table 1; Supplementary Fig. S10). For instance,
the variance of mesoscale temperature anomalies forecast by WenHai
differs from that in theGLORYS reanalysis by 6.1% (Table 1). In contrast,
the variance of mesoscale temperature anomalies forecast by XiHe is
30.0% lower than that in the GLORYS reanalysis (Table 1). Similar
conclusions also hold for the variance of mesoscale salinity anomalies
and eddy kinetic energy. The strong damping of mesoscale eddy
variabilities in XiHe is likely to result from the blurring effect intrinsic
to the AI-based forecast20,25,32,33. Such a blurring effect is largely alle-
viated in WenHai due to its customized design to preserve mesoscale
eddy variabilities.

Fig. 3 | Comparison of persistence forecast skill (PSS) between WenHai and a
state-of-the-art numerical global ocean forecast system (GOFS) as a functionof
forecast lead time. Globally averaged PSS (the higher, the better) for the forecast
temperature profile (a), salinity profile (b), sea surface temperature (SST) (c), sea
level anomaly (SLA) (d), 15-m zonal current (e) and 15-mmeridional current (f) as a

function of forecast lead time. The zero-lead time represents the initial conditions.
The blue and red lines correspond to WenHai and GLO12v4, respectively. For the
temperature and salinity profile forecast, the PSS is vertically averaged over the
upper 643m. The shading corresponds to the 50% confidence interval computed
from a bootstrap method.
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The above analysis suggests that WenHai has a higher effective
resolution than XiHe. Accordingly, point-to-point verificationmetrics
such as the RMSE are not suitable for comparing their forecast per-
formance as these metrics tend to make higher-resolution forecast
systems verify worse superficially, although they may provide
more realistic forecasts44,47 (Supplementary Note 3 and Supplemen-
tary Fig. S11, 12). This issue is confirmed by the systematically
reduced RMSE of WenHai by using the spatially smoothed initial
condition to make forecast (Supplementary Fig. S11). For this reason,
we only use the CRPS to quantify the forecast performance of
WenHai and XiHe.

WenHaihasmuch lowerCRPS thanXiHe for all theoceanvariables
at all the forecast lead times (Fig. 5). In terms of the temperature
profile, salinity profile, SST, SLA, 15-m zonal current and 15-m mer-
idional current forecast, theCRPS inWenHai is 6.8%-10.8%, 4.3%-10.0%,
24.5%-31.4%, 1.8%-21.0%, 1.4%-3.8%, and 0.02%-2.4% lower than that in
XiHe, respectively, depending on the forecast lead times. In addition,

the superiority of WenHai over XiHe is more evident in the upper
100m, suggesting the advantage of explicit incorporation of air-sea
fluxes into the DNN (Supplementary Fig. S13). Again, the lower CRPS in
WenHai than XiHe holds for various choices of the area of neighbor-
hood (Supplementary Fig. S9). In summary,WenHai has better skills in
forecasting the eddying ocean than XiHe.

Discussion
In this study, we present WenHai, an AI-based eddy-resolving GOFS
whose design is guided by the domain knowledge in the air-sea inter-
actions and ocean dynamics. It has a better representation of atmo-
spheric forcing effects on the ocean by incorporating the bulk
formulae of the air-sea fluxes into the DNN and shows a much-
improved capacity to preserve ocean mesoscale variability compared
to the latest AI-based GOFS through customized model architecture
design guided by characteristics of mesoscale eddies. When initialized
from the same initial condition and forced by the same atmospheric
forecast product,WenHai surpasses the state-of-the-art eddy-resolving
numerical GOFS for forecasting all the ocean variables led by one day
to at least tendays. Nevertheless, it does notmean thatAI-basedGOFSs
can substitute numerical GOFSs. In fact, the AI-based GOFSs, including
WenHai, are trained based on high-quality ocean reanalysis datasets
produced via numerical GOFSs in combination with data
assimilation37,48. It is more appropriate to think that AI-based GOFSs
stand on the shoulders of numerical GOFSs.

Despite the good forecast performance of WenHai, it has some
limitations. First, WenHai provides daily average forecast that filters
out the diurnal cycle and cannot resolve inertial oscillations or internal
waves49 overmost parts of the global ocean. The daily average forecast
may also be deficient in representing upwelling/downwelling on the
continental shelf and coastal trapped waves. Second, the maximum
depth of WenHai is chosen as 643m that is not a genuine lower
boundary of the ocean. This may degrade the forecast performance

Fig. 4 | Comparisonof the continuous rankedprobability score (CRPS)between
WenHai and a state-of-the-art numerical global ocean forecast system (GOFS)
as a functionof forecast lead time.Globally averagedCRPS (the lower, the better)
of the forecast temperature profile (a), salinity profile (b), sea surface temperature
(SST) (c), sea level anomaly (SLA) (d), 15-m zonal current (e) and 15-m meridional

current (f) as a function of forecast lead time. The zero-lead time represents the
initial conditions. The blue and red lines correspond to WenHai and GLO12v4,
respectively. For the temperature and salinity profile forecast, the CRPS is vertically
averaged over the upper 643m. The shading corresponds to the 50% confidence
interval computed from a bootstrap method.

Table 1 | Preservation of ocean mesoscale variabilities by
artificial intelligence (AI)-based global ocean forecast sys-
tems (GOFSs)

WenHai XiHe GLORYS

eddy kinetic energy
1015 m5 s-2

2.21 1.96 2.39

temperature variance
1016 °C2 m3

8.43 6.29 8.98

salinity variance
1015 PSU2 m3

3.38 2.35 3.54

Globally integrated eddy kinetic energy, variance of mesoscale temperature anomaly, and
varianceofmesoscale salinity anomaly in theupper643maveragedover the forecast lead times
from 1day to 10days.Here the forecasts are initialized from theGLORYS reanalysis and forcedby
the ERA5 reanalysis during 2020. The ocean mesoscale eddy variabilities in the GLORYS rea-
nalysis are treated as the ground truth.
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near 643m. Third,WenHai does not take into consideration the effects
of river runoff and sea ice on the ocean and may have some defi-
ciencies in coastal and polar regions. Finally, there is still a slight yet
noticeable dampingofmesoscale eddy variabilities inWenHai (Table 1)
despite its customized design to alleviate this problem. This is partially
because WenHai adopts a deterministic pointwise loss function that
nudges WenHai to provide smoother forecasts at longer forecast lead
times due to the double penalty issue.We envision thatWenHai can be
further improvedby training a hierarchy ofDNNs representing oceanic
processes of different spatio-temporal scales, adopting probabilistic
loss function or adding physical conservation constraints to the loss
function, using hybrid model architectures combining deep learning
and numerical solver, and utilizing higher-quality ocean reanalysis
datasets for training. Achieving these improvements requires the
expertise in the marine science and more oceanographers to get
involved in the development of AI-based GOFSs.

Methods
GLORYS reanalysis
The Copernicus Global 1/12° Oceanic and Sea IceGLORYS12 Reanalysis
(GLORYS reanalysis for short), developedbyMercatorOcéan, provides
a realistic representation of key oceanic quantities such as sea level,
water mass properties, mesoscale activity or sea ice extent. The ocean
and sea ice components are based on the NEMO platform50. It has a
quasi-isotropic horizontal grid with a 1/12° resolution and 50 vertical
levels with vertical spacing increasing progressively with depth. The
ocean model is driven by the ERA-Interim atmospheric reanalysis51

provided by the European Centre for Medium-Range Weather Fore-
casts (ECMWF). Observations are assimilated using a reduced-order
Kalman filter derived from a singular evolutive extended Kalman
(SEEK) filter52 with a three-dimensional multivariate background error
covariance matrix and a 7-day assimilation cycle53. Assimilated obser-
vations include the satellite-based SLA, SST, and sea ice concentration

and in situ temperature and salinity profiles. The reanalysis dataset
covers 1993-2020 with daily resolution.

It should be noted that ocean reanalysis datasets including the
GLORYS reanalysis are less robust compared to their atmospheric
counterparts primarily due to the sparsity of ocean observations30.
In fact, some deficiencies of the GLORYS reanalysis have been
reported37. First, a few zonal currents such as the Antarctic cir-
cumpolar current and Western Pacific south equatorial current are
overly strong. In addition, inter-basins volume exchanges are lar-
ger compared to observations and other reanalyses. Finally, there
is also unexpected behavior in the Tropical Indian and North East
Atlantic basins.

WenHai model
Training and validation datasets. WenHai is trained on the GLORYS
reanalysis and ERA5 reanalysis54 during 1993-2018 and validated based
on the datasets during 2019.

Input and output details. WenHai is aimed to forecast a sequence of
tendency of daily mean ocean variables in the upper ocean
fΔOl

t =O
l
t�Ol�1

t , l 2 1,N½ �g in an autoregressive way, given the initial
conditionO0

t and the surface atmospheric variables fAl
t , l 2 0,N � 1½ �g,

where t is an arbitrary date index and l is the forecast lead time
(indexing in 1-day intervals).We usebold characters here to emphasize
that Ol

t and Al
t are tensors consisting of multiple variables at multiple

grid points. The ocean variables forecast by WenHai are the same as
the numerical GOFSs, including zonal velocity, meridional velocity,
temperature, salinity, and SSH. WenHai shares the same horizontal
grid points as the GLORYS reanalysis and has 23 depth levels selected
from those of the GLORYS reanalysis in the upper 643m (Supple-
mentary Fig. 14). The different ocean variables are stacked along the
vertical direction. Accordingly, Ol

t has a dimension size of
NO ×Nlat ×Nlon with NO =4× 23+ 1 = 93, Nlat =2041 and Nlon =4320.

Fig. 5 | Comparisonof the continuous rankedprobability score (CRPS) between
WenHai and the latest AI-based global ocean forecast system (GOFS) as a
function of forecast lead time. Globally averaged CRPS (the lower, the better) of
the forecast temperature profile (a), salinity profile (b), sea surface temperature
(SST) (c), sea level anomaly (SLA) (d), 15-m zonal current (e) and 15-m meridional

current (f) as a function of forecast lead time. The zero-lead time represents the
initial conditions. The blue and red lines correspond to WenHai and XiHe,
respectively. For the temperature and salinity profile forecast, the CRPS is vertically
averaged over the upper 643m. The shading corresponds to the 50% confidence
interval computed from a bootstrap method.
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Here NO, Nlat and Nlon are analogous to the channel number, height
and width of an image in the field of computer vision.

The surface atmosphere variables are 10-m zonal wind, 10-m
meridional wind, mean sea level pressure, 2-m temperature, and 2-m
dewpoint temperature, which are routinely forecast by numerical
weather forecast systems55. It should be noted that the ocean is not
directly forced by these surface atmosphere variables. Instead, it is
directly forced by the net momentum, heat, and freshwater fluxes at
the air-sea interface. For this reason, we implement a block to compute
the fluxes based on the surface values of Ol

t and Al
t using bulk for-

mulae. Specifically, the surface atmosphere variables are first hor-
izontally interpolated to the oceanic grids, and then the bulk formulae
are used to transfer the surface atmosphere and ocean variables into
the air-sea fluxes, including the surface latent heat flux, surface sen-
sible heat flux, surface upward long-wave radiation flux, zonal wind
stress, meridional wind stress, and evaporation rate. Finally, the sur-
face net short-wave radiation flux, surface downward long-wave
radiation flux, and precipitation rate from the numerical weather
forecasts are included, and the surface downward and upward long-
wave radiation fluxes are combined to yield the surface net long-wave
radiation flux. This results in a total of eight air-sea flux variables
denoted as Fl

t whose dimension size is NF ×Nlat ×Nlon with NF =8. The
Fl
t andOl

t are fed into theDNN to forecastΔOl
t . OnceΔO

l
t is obtained, it

is added on Ol
t to obtain Ol + 1

t . Then Fl + 1
t is computed based on the

surface values of Ol + 1
t and Al + 1

t . The above processes are repeated to
make a sequence of forecasts.

Architecture overview. For each channel, the values of Ol
t and Fl

t are
normalized to range from 0 to 1. The normalized variables first go
through two independent pre-processingmodules designed to reduce
dimensionality. The ocean and atmosphere outputs of pre-processing
modules with a dimension of 259× 546 ×H are then reshaped to
141414 ×H and added together before being fed into 10 homogeneous
Swin-Transformer layers whose hidden dimension size H is 768 and
window size is 7. Following this, a post-processingmodule is employed
to restore the outputs of Swin-Transformer layers to the original
dimension of ocean variables.

Pre- and post-processing. The pre-processing module consists of a
patch embedding block and a down-sampling block. The patch
embedding block is a convolution layer whose kernel size and stride
(also known as the patch size) is chosen as 4 in this study. As Nlat and
Nlon need to be divisible by both the window size 7 and patch size 4
to feed Ol

t and Fl
t into the patch embedding block, a zero-value

padding is applied to change Nlat ×Nlon of Ol
t and Fl

t to 2072× 4368.
The output of the patch embedding block is the embeddedOl

t and Fl
t

with the same dimension ofH × 518× 1092 (i.e.,H ×2072=4×4368=4).
It should be noted that using a larger patch size leads to more
reduction of the dimensionality of Ol

t and potentially makes WenHai
more difficult to preserve the mesoscale variabilities, which is con-
firmed by the stronger damping of EKE with the increasing patch size
(Supplementary Fig. S15). The down-block uses a convolution layer
with kernel size 3 and stride 2 to further reduce the data dimension
to H ×259× 546, followed by permuting the dimension to
259 × 546 ×H. The post-processing module consists of an up-
sampling block and a linear layer. The up-sampling block is a 2-D
transposed convolution layer with kernel size 2 and stride 2, chan-
ging the dimension of reshaped output from the Swin-Transformer
layers from H × 259× 546 toH × 518 × 1092, followed by permuting
the dimension to 518 × 1092×H. The linear layer changes the data
dimension from 518 × 1092×H to 518 × 1092× 1488. Then the data are
rearranged to have a dimension of 93× 2072 ×4368. Finally, the
outputs are restored to the original dimension of Ol

t (i.e.,
93 × 2041 ×4320) by the pad-back module to remove redundant
marginal zero values.

Window-based Transformer. After being processed by the pre-
processing module, inputs are transformed into numerous patch
tokens with a sequence length of 141414. As the memory consumption
of the self-attention layer in the Vision Transformer (ViT) increases
quadratically with the sequence length, we turn to using Swin-
Transformer V2 with the window-attention mechanism. The long
token sequences are divided into 2886 windows, and each window
calculates self-attentionwith only 49 tokens, which greatly reduces the
amount of computation andmemory consumption. It should be noted
that the down-sampling operations in Swin-Transformer V2 are not
used in our model to ensure that the shapes of inputs and outputs are
unchanged, making it convenient to increase the number of transfor-
mer layers.

Land-sea mask. A land-sea mask is adopted to handle the missing
values of ocean variables on the land points. Specifically, the values on
the land points are always replaced with 0 at any step of the proces-
sing. Accordingly, WenHai puts no attention on the land points, mak-
ing it focus on the ocean forecast.

Two-stage training strategy. The training process is divided into two
stages. The first stage is to pretrain a base model by optimizing a
weighted mean absolute error (MAE) for ΔO1

t integrated over the
global ocean, i.e.,

min
ZZZ

w � ΔÔ
1
t � ΔO1

t

� ����
���

���
���
1
dV � min

X
i

wðiÞ � ΔÔ1
t, i � ΔO1

t, i

� ����
���

���
���
1
δV ið Þ ð1Þ

where ΔÔ
1
t, i represents the forecast tendency by WenHai at the i-th

grid cell, ΔO1
t, i is the ground truth obtained from the GLORYS reana-

lysis, δV ðiÞ is the volume of the i-th ocean grid cell, wðiÞ is a weight
vector for different oceanvariables, and jj � jj1 is the L1 norm.ThewðiÞ is
chosen as:

w ið Þ= s
δh ið Þ ð2Þ

where δhðiÞ is the layer thickness of the i-th ocean grid cell. As δhðiÞ
becomes larger as the depth increases, the presence of δhðiÞ in the
denominator makes WenHai put more attention on the shallower
regions where mesoscale eddies are stronger56, enhancing its capacity
to forecast mesoscale eddy variabilities. The value of s is chosen in a
way so that the tendencies of different normalized ocean variables
have similar variances. We find that the variances of tendency of the
normalized variables have comparable magnitudes except the ten-
dency of normalized salinity which is much smaller than the others.
Accordingly, the component of s associated with salinity is set as 4.5
and components associated with the other variables as 1 to reduce the
differenceof variances amongdifferent normalized variables. It should
be noted that the abovechoiceofw is unlikelyoptimal. Nevertheless, it
leads to better performance on the validation dataset than choosing
w ið Þ= 1=δh ið Þ or w ið Þ= s.

During the second training stage, the pretrained-based model is
finetuned to improve its performance at longer forecast lead times.
This is done by optimizing the accumulated MAE over a sequence of
autoregressive forecasts, i.e.,

min
XM
l = 1

X
i

wðiÞ � �ΔÔl
t, i � ΔOl

t, i

����
���

���
���
1
δV ðiÞ ð3Þ

We try different values ofM and findM = 5 gives rise to the overall
best forecast performance on the validation dataset. Applying the
finetune technique reduces the forecast RMSE for all the ocean vari-
ables (Supplementary Fig. S16).
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Distributed training. During the second training stage, iterations on
high-resolution inputs with patch size 4 consume considerable GPU
memory beyond 80 GB. To address this issue, the model is strategically
divided into several parts to share the overhead on different devices.
Specifically, the 10 Transformer layers are segmented into five stages: 1,
3, 3, 3, and 0 Transformer layers, respectively, for optimal memory load
balancing. The initial stage incorporates the model’s patch embedding
and down-sampling block, while the final stage encompasses the up-
sampling block and patch recovery module. Iterative finetune deviates
from conventional pipeline model parallelism by creating a feedback
loop, where the output of one iteration becomes the input for the next.
The process begins by loading initial data into the first stage for forward
computation. Results are then sequentially passed through subsequent
stages. Upon reaching the final stage, the loss for the current iteration is
calculated, and these results are transmitted back to the first device.
Each iteration’s output serves as the input for the following iteration.
This cycle continues until the 5-day computation is complete. The final
stage aggregates losses from all iterations. By employing this pipeline
model parallelism, the finetuning capacity has been significantly
expanded from a single day to five days.

GLO12v4
GLO12v4 is the latest version of theOperationalMercator global ocean
analysis and forecast system, providing global ocean forecasts in the
next 10 days, updated daily. It includes an ocean component
(NEMO3.6) with a horizontal resolution of 1/12° and 50 vertical levels
and a sea ice component (LIM3 Multi-categories sea ice model)57. A
reduced-order Kalman filter derived from a SEEK filter with a 3-D
multivariate modal decomposition of the forecast error and a 7-day
assimilation cycle is applied for assimilating observations including
satellite-based SLA, SST and sea ice concentration and in situ tem-
perature and salinity profiles.

The forecast is initialized from the hindcast simulation of
GLO12v4 spanning the last 24h leading to real-time (i.e., -24 to 0 h)
without data assimilation. The atmosphere variables during the fore-
cast period are obtained from the ECMWF IFSHRES forecast product58.
We collect GLO12v4 forecasts along with the initial conditions and
atmospheric forecast product during April, 2024-November, 2024 and
use these data to assess the forecast performance.

Observational datasets
For temperature and salinity profiles, we use quality controlled (QC)
near-real-time Argo59 profiles from E.U. Copernicus Marine Service
Information60. For SLA, we use an along-track Level-3 near-real-time
product from AVISO. The Ssalto/Duacs altimeter products were pro-
duced and distributed by the Copernicus Marine and Environment
Monitoring Service (CMEMS) (http://www.marine.copernicus.eu). The
product contains measurements of satellite altimeters including Sen-
tinel-6A-HR, Jason-3 interleaved, Sentinel-3A, Sentinel-3B, SARAL-DP/
AltiKa, Cryosat-2, HaiYang-2B, and SWOT-nadir. The filtered version of
the product is chosen to suppress the effect of measurement noises.
The SST and 15-m current are obtained from the near-real-time drifter
observations provided by the Global Drifter Program61. The hourly
drifter records are bin-averaged to produce the daily mean values. For
the observations of all the ocean variables, only records passing all the
real-time QC tests are retained.

It should be noted that GOFSs forecast SSH that differs from SLA
by a reference sea level62. In the observation, the reference sea level is
computed as the timemean SSH during 1993-2012. For the GOFSs, the
reference sea level is computed as the time-mean SSH of the GLORYS
reanalysis during the sameperiod. There is likely a biasof SLA inGOFSs
due to the difference between the observation andGLORYS reanalysis.
To alleviate this bias, SLA in GOFSs is subtracted by the difference of
SLA between the GLORYS reanalysis and observation averaged over
the global ocean during 1993–2020.

Verification metrics
Point-to-point verification metrics. The forecasts of GOFSs are par-
titioned according to their initial time t and forecast lead time l, and
compared to observations at time t + l. As the observations are dis-
tributed irregularly in space and not located on the grid points of
GOFSs, forecasts are interpolated to individual sites of observations to
form point-to-point match-ups between the forecasts and observa-
tions, so that the forecast errors can be computed, i.e.,

εit, l = V̂
i
t, l � Vi

t + l
ð4Þ

where Vi
t + l is the observation and V̂

i
t, l is the interpolated forecast for the

i-th match-up. To make a fair comparison among GOFSs, we only retain
the match-ups for those having a forecast counterpart from every GOFS
(Note that different GOFSs differ in their grids and land-sea masks).

Specifically, the match-ups of SST and SLA are obtained by hor-
izontally interpolating the forecast values to the observational sites
using the bilinear interpolation. The match-ups of 15-m zonal and
meridional currents are obtained by horizontally interpolating the
forecast values to the observational sites using the bilinear interpola-
tion and vertically to 15m using the linear interpolation. As to the
match-ups of vertical profiles of temperature and salinity, the forecast
values are horizontally interpolated to the sites of Argo profiles using
the bilinear interpolation and vertically to the depths of Argo profiles
using the linear interpolation. For each match-up of the observational
and forecast profiles, we vertically bin-average the squared forecast
errors in the prescribed 42 vertical bins containing approximately
equal numbers of Argo measurements (Supplementary Fig. S17).

Two point-to-point verification metrics are used to measure the
forecast performance of GOFSs, including the root mean square error
(RMSE) and persistence skill scores (PSS). The RMSE is defined as42:

RMSEt, l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1 εit, l

� �2

N

vuut ð5Þ

where N is the number of total match-ups at the initial time t and
forecast lead time l. For the temperature and salinity profiles, ðεit, lÞ

2

corresponds to the vertically bin-averaged squared forecast errors in
the prescribed 42 vertical bins. In this case, the value of N differs
among different vertical bins and RMSEt, l is expressed as a function of
center depth of these vertical bins.

The PSS is defined as42:

PSSt, l = 1�
RMSEt, l
RMSEpt, l

ð6Þ

where RMSEpt, l is the RMSE of a persistent forecast.
Once RMSEt, l and PSSt, l are obtained, their median values among

different initial time t are computed and expressed as a function of
forecast lead time l (Figs. 2 and 3).

Neighborhood-based verification metrics. The continuous ranked
probability core (CRPS) of GOFSs evaluated based on some observa-
tion Vi

t + l is defined as46:

CRPSit, l =
Z +1

�1
F xð Þ � H x ≥Vi

t + l

� �h i2
dx ð7Þ

where H represents the Heaviside function and FðxÞ denotes the
cumulative distribution function of the pseudo ensemble forecast for
Vi

t + l . The individual members of pseudo ensemble forecast of GOFSs
are collected over the 1° × 1° box centered on the grid point closest to
the site of Vi

t + l . For the temperature and salinity profiles, the collected
forecast values are first interpolated to the depths of Argo profiles to
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compute the CRPS at each depth, and these CRPS values are then
vertically bin-averaged in the prescribed 42 vertical bins.

The globally averaged CRPS at some initial time t and forecast
lead time l (denoted as CRPSt, l) is obtained by averaging CRPSit, l over
all the observational sites at the time t + l. Once CRPSt, l is obtained, its
median values among different initial time t are computed and
expressed as a function of forecast lead time l (Figs. 4 and 5).

Computation of mesoscale eddy variabilities
In this study, themesoscale eddies are loosely defined as the processes
with a horizontal scale ranging from tens to hundreds of kilometers,
including fronts,filaments and coherent vortices1. To isolate anomalies
induced by mesoscale eddies, we subtract a 4° × 4° spatially running
mean from the original variables63. The eddy kinetic energy is com-
puted as

�
1
2

�
u02 + v02

�	
where u and v are zonal and meridional velo-

city, respectively, the primes denote the mesoscale anomalies and the
brackets denote the spatio-temporal average. The variance of mesos-
cale temperature and salinity anomalies are computed as hT 02i and
hS02i where T and S denote the temperature and salinity, respectively.
To evaluate the preservation of ocean mesoscale variabilities, eddy
kinetic energy and variances of mesoscale temperature and salinity
anomalies are integrated in the upper 643m.

Data availability
The GLORYS reanalysis datasets are obtained from https://data.
marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_030/
description. The ERA5 reanalysis datasets are obtained from https://
doi.org/10.24381/cds.adbb2d47. The GLO12v4 datasets are obtained
from https://data.marine.copernicus.eu/product/GLOBAL_ANALYSIS
FORECAST_PHY_001_024/description. The ECMWF HRES forecasts
are obtained from https://doi.org/10.21957/open-data. The Argo
observations are obtained from https://data.marine.copernicus.eu/
product/INSITU_GLO_PHYBGCWAV_DISCRETE_MYNRT_013_030/des
cription. The drifter observations are obtained from https://data.
marine.copernicus.eu/product/INSITU_GLO_PHY_UV_DISCRETE_NRT_
013_048/description. The SLA observations are obtained from https://
data.marine.copernicus.eu/product/SEALEVEL_GLO_PHY_L3_NRT_008
_044/description. Data used to produce the figures in the main text
and the supplementary information can be found at https://github.
com/Cuiyingzhe/WenHai.

Code availability
The inference code and model weights of WenHai can be found at
https://github.com/Cuiyingzhe/WenHai64. The inference codes and
model weights of XiHe can be found at https://github.com/Ocean-
Intelligent-Forecasting/XiHe-GlobalOceanForecasting. The bulk for-
mulae code can be found at https://github.com/xgcm/aerobulk-
python. The code for CRPS calculation can be found at https://
github.com/properscoring/properscoring.
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