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Signatures of paracrystallinity in amorphous
silicon from machine-learning-driven
molecular dynamics

Louise A. M. Rosset 1, David A. Drabold 2 & Volker L. Deringer 1

The structure of amorphous silicon has been studied for decades. The two
main theories are based on a continuous random network and on a ‘para-
crystalline’ model, respectively—the latter defined as showing localized
structural order resembling the crystalline state whilst retaining an overall
amorphous network. However, the extent of this local order has been unclear,
and experimental data have led to conflicting interpretations. Here we show
that signatures of paracrystallinity in an otherwise disordered network are
indeed compatible with experimental observations for amorphous silicon. We
use quantum-mechanically accurate, machine-learning-driven simulations to
systematically sample the configurational space of quenched silicon, thereby
allowing us to elucidate the boundary between amorphization and crystal-
lization. We analyze our dataset using structural and local-energy descriptors
to show that paracrystalline models are consistent with experiments in both
regards. Our work provides a unified explanation for seemingly conflicting
theories in one of the most widely studied amorphous networks.

Amorphous silicon (a-Si) is one of the most widely studied disordered
network solids1–4, owing in equal parts to fundamental interest and to
its range of applications. In particular, a-Si has a larger band gap than
its crystalline counterpart, which is useful for solar-cell heterojunc-
tions and thin-film transistors5,6, while its lowmechanical loss makes it
a candidate next-generation interferometer mirror coating material in
the detection of gravitational waves using the LIGO or VIRGO
instruments7,8.

A great challenge to understanding the ‘true’ local structure of a-Si
is that there are various preparation methods, including self-ion
implantation9, laser glazing10, or evaporation11, and that the structure
of the resulting films depends strongly on the way by which they were
made. In particular, the density9,12, coordination environments13,14, and
the presence of voids15,16 vary fromone sample to the next.While some
authors regard self-ion-implanted a-Si as the highest quality a-Si, this
must be understood to be only one example of the material, albeit
superbly characterized.

From foundational work in the 1930s17,18 has emerged the cur-
rently most widely accepted model for the structure of a-Si, known as

the continuous random network (CRN). The CRN model is character-
ized by minimal deviation from 4-fold coordination and complete
absence of long-range structural order. Computations using bond-
switching methods19,20 have helped to popularize the CRN model.
While a-Si cannot be experimentally quenched from the melt in bulk
form21, machine-learning- (ML-) based interatomic potentials22 have
recently enabled molecular dynamics (MD) simulations of quenching
bulk a-Si at rates of 1011 K s−1 (ref. 23) and slower24. Such rates are
comparable to those used in laser quenching experiments25.

Despite the simplicity of theCRNmodel, and the fact that it is now
widely seen as the preferred way to describe a-Si1, this model is not
without challenges. The main argument against the CRNmodel is that
it fails to capture the degreeofmedium-range order seen influctuation
electron microscopy (FEM) experiments on a-Si26. Instead, an alter-
native explanation consistent with FEM data has been proposed26,27,
known as the ‘paracrystalline’model. The latter is defined as a strained
nanocrystal embedded in an amorphous CRN matrix, without sharp
grain boundaries26. Such paracrystalline structures have recently been
synthesized andexperimentally and computationally characterized for
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the lighter homolog, elemental carbon28. However, the paracrystalline
model for a-Si conflicts with other experimental data2,3 and for many
only qualifies as a mixed-phase material1,29. For some authors, the
answer lies in an intermediate network between disordered and
ordered Si29 which would explain findings related to the low-energy
excitations of a-Si30, while others argue from calorimetric data that
there exists a configurational gap between amorphous and crystalline
networks31,32. In short, the long-standing CRN vs paracrystalline debate
has not been fully resolved33–35.

In the present study, we probe the limit between amorphi-
zation and crystallization of simulated melt-quenched Si. We
systematically sample the configurational space of a-Si with an
accurate and efficient teacher–student ML approach36 (Methods),
which allows us to explore the existence of a middle ground
between fully disordered and crystalline structures. Both system
size and simulation time, unlocked by efficient ML methods23,36,
are key to a full exploration of competing phases and micro-
structures. The results lead us to propose a revised paracrystal-
line Si model that is consistent with high-quality structural and
calorimetric experimental data. We characterize these para-
crystalline clusters, and quantify structural and energetic prop-
erties of a-Si models over the range from disorder to order,
thereby allowing us to gain unprecedented insight into the co-
existence of the CRN and paracrystalline phases. In so doing, we
show that realistic and experimentally compatible models of a-Si
are able to accommodate a small but significant degree of local
paracrystalline order, whilst overall remaining a disordered
network.

Results
A continuous range from disorder to order
We created a library of a-Si structural models in MD simulations with a
systematically varied range of parameters. Specifically, we performed
melt-quench simulations for four system sizes (64, 216, 512, and 1,000
atoms) with a uniform range of densities between 2.1 and 2.5 g cm−3,
over four quench rates of 1013, 1012, 1011, and 1010 K s−1. To obtain a set of
uncorrelated structures, we only take the final frame from each melt-
quench simulation. This results in a dataset of 3069 unique structures
(≈ 1.3million atoms).We note that in this part of the study, we focus on
relatively small simulation cells on purpose; we will subsequently
describe larger (100,000 atoms per cell) structural models.

Our dataset (Fig. 1) contains structures ranging from highly dis-
ordered to very close to the crystalline form (c-Si).We characterize the
dataset by plotting the computed excess energy, ΔE (relative to c-Si),
against ameasure for the similarity to the crystalline reference,where 1
is identical (see Section “Methods”). We define structures as being
either fully CRN-like, or paracrystalline, or polycrystalline using poly-
hedral template matching (PTM)37. Some 64-atom structures fully
crystallized and formed strained diamond, shown in gray in Fig. 1b.

The fact that our dataset ranges almost smoothly fromdisorder to
order (left → right), both energetically and topologically, challenges
the hypothesis of a configurational energy gap between c-Si and a-Si32.
The paracrystalline structures populate the energetic middle ground
between the CRN-like and polycrystalline configurations—which also
challenges the initial theory of a higher-energy paracrystalline phase
that could be annealed to yield a CRN26. While our dataset is relatively
uniformly distributed, we observe a lower density of structures at the
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Fig. 1 | A comprehensive dataset of disordered Si structures. a Ball-and-stick
rendering of representative structures from three categories, viz. continuous ran-
dom network (CRN, left), paracrystalline (center), and polycrystalline (right).
Polyhedral templatematching was used to characterize atomic environments: blue
indicates cubic-diamond-like environments (dia), orange indicates hexagonal-
diamond-like (lon) ones, andwhite indicates atoms thatdonot fall withinoneof the
defined categories (seeMethods for details).bAmapof similarity to diamond-type

Si against the predicted excess free energy (see Section “Methods”). The marker
sizes are proportional to the number of atoms in the respective structure. Stars
indicate a selection of four structures of increasing paracrystallinity, labeled I to IV,
further discussed in Fig. 2. A stacked histogram of the energies is shown on the
right, using the same vertical axis. The distributions in (b) indicate that the dataset
spans structures from CRN- to diamond-like, encompassing a smooth range from
disorder to gradual order. Source data are provided in the Source Data file.
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paracrystalline–polycrystalline transition, around 0.14 eV on the
energy histogram in Fig. 1. This corresponds to a deficit of structures
with locally ‘crystal-like’ environments between 15 and 40%. These
structures are likely absent from our dataset due to fast crystal-growth
kinetics post nucleation, resulting in fewer structures with small crys-
talline grains.We note that the 64-atom a-Si structures (smallmarkers)
scatter widely in the plot of Fig. 1, but sample a rather similar config-
urational space to the other system sizes (Supplementary Fig. 10).

Defining and characterizing paracrystalline structures
While the paracrystalline category is intermediate between the CRN
andpolycrystalline ones, it shares significant topological and energetic
overlap with the former. We select four paracrystalline structures of
1000 atoms in the overlapping range, denoted I to IV, for more
detailed analysis. These structures are increasingly paracrystalline, as
reflectedby theirpercentageof diamond-like environments of0.2% (I),
0.8% (II), 2.4% (III) and 4.5% (IV); they are visualized in Supplementary
Fig. 13. In Fig. 2, we use established indicators of short- and medium-
range order to study these four structures. The radial distribution
functions (RDFs) (Fig. 2a) are overall similar, with a well-defined valley
between the first and second peak, indicating well-relaxed structures.
The most relevant aspect in the context of paracrystallinity is the
region between the second and third peaks, where experiments14,38–40

showed a small but notable enhancement at about 4.5 Å. Our series of
models shows the gradual emergence of such a feature; the ratio
between local maximum (at ≈ 4.5 Å) and local minimum (at ≈ 5.0 Å) is
1.08 for Ibut 1.47 for IV. Hence it is absent from the structure closest to
CRN but replicated in themore paracrystalline structures. This feature
has been attributed to a preferential orientation in the dihedral bond-
angle distribution14,39, for which we show computed results in Fig. 2b.
As paracrystallinity increases, the distribution sharpens while staying
smooth—disagreeing with the claim that the RDF feature is only
affected by the smoothness of the dihedral-angle distribution and not
by its sharpness41. Our results are qualitatively consistentwith previous
reports of paracrystalline signatures in the dihedral-angle
distribution42,43. The shortest-path ring distribution (Fig. 2c) also

mirrors the increasing degree of ordering from I to IV: 6-membered
rings, characteristic of c-Si, become more abundant with
paracrystallinity.

To further understand the diamond-like environments and their
characteristics, we analyze clustering trends in our dataset. We sort all
structures of 1000 atoms with diamond-like environments, that is, all
structures but the CRN category, into bins according to their SOAP
similarity to c-Si, rounded to the second decimal place. We present
statistics of the average number of clusters and the average cluster
size, as a function of the SOAP similarity to c-Si, in Fig. 3.

Figure 3a shows that increasing SOAP similarity to c-Si between
0.89 and 0.92 does not lead to a sharp spike in the cluster size, but
rather a very slow increase fromanaverage size of 1.0 to 3.73 atomsper
cluster. At higher SOAP similarity values (higher crystallinity), the
count of atoms per cluster rapidly increases and exceeds the experi-
mental estimate of the critical nucleus size of 40–60 atoms44.
Increasing the SOAP similarity to c-Si rapidly increases the number of
clusters per structure, which reaches a maximum at a SOAP similarity
of 0.95, as shown in Fig. 3b. Beyond this, clusters interconnect and the
number of clusters per structure drops. At a SOAP similarity of 0.99,
one cluster spans almost the entirety of the structure.

At low SOAP similarities, clusters exist at small distances fromone
another (Fig. 3c). As more clusters appears and grow, neighboring
diamond-like environments join. There are fewer diamond-like atoms
within a short neighborhood as neighbors have already joined the
cluster—the distance between clusters increases. We further hypo-
thesize that as clusters grow larger, the surrounding CRN matrix
becomes increasingly strained, and clusters effectively repel each
other to larger inter-cluster distances. At very high SOAP similarities,
single clusters have almost grown to the entire structure, and we
observe a return of very short inter-cluster distances.

Energetic fingerprints
Our analysis so far has established that the paracrystalline structures
are structurally reasonable. The next step is to compare them directly
with existing CRN models and to differentiate them from poly-
crystalline Si. In addition to structural information, it is important to
consider energetic arguments. In Fig. 4, we therefore focus on the
local-energy fingerprints which can be derived from machine-learned
atomic energies (see Section “Methods”). It was shown previously that
such an approach can help to map out the space of disorder and local
order in monolayer amorphous carbon45, for which the distinction
between CRN and (para-) crystallite descriptions has also been
explored45,46. The present analysis in Fig. 4 hence takes us conceptually
from a canonical disordered 2D system, amorphous graphene, to the
canonical 3D case, which is a-Si.

For each of the three representative structures shown in Fig. 1a,
we represent the individual atomic environments therein as circles in
Fig. 4. We plot their computed excess energy, ΔE (relative to c-Si),
averaged over their nearest neighbors, against a structural metric that
quantifies how similar a given atom is to cubic-diamond-like Si (SOAP;
Methods). We color-code the points based on Common Neighbor
Analysis (CNA; Methods).

Figure 4 allows us to characterize the three fundamental forms
that disordered silicon can take. The CRN structure shows only
amorphous-like atomic environments, as expected. The energy histo-
gram (horizontal axis) and SOAP similarity histogram (vertical axis)
both show a single peak with a long tail. For the paracrystalline
structure, some dia and lon environments are identified by CNA, but
the majority of atomic environments are still amorphous-like. These
diamond-like environments are far from the ideal diamond environ-
ment (star); they are not clustered together but distributed among the
amorphous environments. The tails in both histograms are shorter,
indicating that the amorphous environments in the paracrystalline
structure do not suffer from additional strain from the presence of the
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Fig. 2 | Characteristics of medium-range order.We study four structural models
of increasing paracrystallinity (I–IV) as well as the CRN structure shown in Fig. 1a.
a Radial distribution function, and corresponding inset with experimental RDF
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in the Source Data file.
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localized diamond-like environments. Finally, for the polycrystalline
structure, diamond-like environments are distinct from amorphous
ones in both energy and structure.dia and lon environments aremuch
closer to the ideal diamond environment than those in the para-
crystalline structure are. The energy and SOAP histograms are char-
acterized by two contributions, one from diamond-like and one from
amorphous-like environments. Thus, the paracrystalline Si structures
are comparable to the CRN ones, and can be delineated from the
polycrystalline structures. We can ascertain that they are disordered,
with localized crystal-like signatures.

The experimentally measured heat of crystallization, ΔH = 0.142
eV/atom11, is plotted alongside our ML local atomic energies in Fig. 4.
The paracrystalline structure agrees very well with these calorimetric
data, where the CRN model is more energetic and the polycrystalline
model is too stable compared toΔH. The paracrystalline structure also
provides better agreement to ΔH than previous CRN models in the
literature24.

Device-scale models
While our dataset provides valuable insight into the middle ground
between fully disordered and crystalline silicon, the fact that we have
used relatively small system sizes limits the comparability to experi-
mental data. We therefore turn to a study on a larger length scale, viz.
> 10 nm,which is relevant to a-Si-based devices such asphotodiodes or
light sensors47–49, as well as chalcogenide-basedmemory devices50. We
prepare para- and polycrystalline models with cell lengths of about 12
nm using the same protocol as for the dataset, yielding models with
0.8% and 62.3% of diamond-like environments, respectively. We com-
pare against the structural model of ref. 4 which had been created in
simulations of the same type but driven by the teacher model, Si-GAP-
18, and has 0.3% of diamond-like environments. These structures are
shown side-by-side in Fig. 5. The structure factor, S(q), for each model
is plotted together with high-quality experimental data from ref. 38.
The latter are well reproduced by the model with the lowest
paracrystallinity4—but also by a more paracrystalline model, which is
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just as compatible with the experimental data. This implies that loca-
lized order can retain model agreement with experimental data, but
only a small degree of crystallinity is beneficial as the polycrystalline
model shows large crystalline regions leading tounwantedpeaks in the
structure factor.

Discussion
We have systematically sampled the configurational space of Si, from
fully disordered CRN-like networks to the diamond-type crystal, with
extensive ML-driven atomistic simulations. Our results point toward a
revised model for paracrystalline Si, at the limit between amorphiza-
tion and crystallization, characterized by localized diamond-like
neighborhoods that affect medium-range order. Paracrystalline
structures show better agreement with high-quality experimental data
for medium-range structural order and energetics than do previously
proposed models. We note that while high-quality experiments are
typically carried out on ion-implanted a-Si samples, laser-glazed a-Si is
much closer to the melt-quenched samples generated by MD simula-
tions. Further experimental work on laser-glazed a-Si could provide a
closer basis for comparison, informing future theoretical and com-
putational studies.

Our work opens important new avenues of exploration. As our
dataset spans an essentially complete range of disorder, it is of interest
to explore emergent phenomena unique to disordered matter such as
the process of photodegredation known as the Staebler–Wronski
effect51,52. Much research has been conducted on a-Si and a-Si:H, driven
partly by photovoltaic applications47. Following much interest in
hydrogenated a-Si cells around 2000, there is now renewed focus on
inexpensive a-Si:H cells for low-power applications, and as a compo-
nent of tandem solar cells53. So-called ‘protocrystalline’ photovoltaics54

are presumably hydrogenated variants of the paracrystalline phases
that we study in the present paper, and they exhibit improved photo-

stability relative to amorphous materials. Evidently, progress on the
atomistic origins55 of the Staebler–Wronski effect requires large and
realistic structural models. Indeed, a natural starting point could be to
hydrogenate suitablemodels reported in the present paper, e.g., using
a recently developed GAP ML potential for a-Si:H56.

Two-level tunneling systems (TLSs), described as the tunneling
between neighboring minima in the potential-energy landscape of
amorphousmaterials, are also of fundamental interest for a-Si because
they offer an explanation for low-energy excitations found at low
temperatures34,57. A proposed origin for TLSs is nanoscale hetero-
geneity in the microstructure, taking the form of local order30—such
heterogeneity has been out of range for direct quantum-mechanical
simulations, but is accessible using ML58. Systematically searching for
perturbations that result in pairs of nearly identical amorphous con-
figurations along the dataset’s range fromdisorder to order could help
to determine what extent of structural disorder in the network is
required to observe tunneling59. Hence, our work provides a high-
quality dataset for further exploration of outstanding research ques-
tions related to a-Si, and more widely it exemplifies the role of ML in
understanding fundamental phenomena in disordered materials.

Methods
Teacher–student potentials
The simulations in this work are based on a teacher–student machine-
learning approach36: distilling an accurate, but comparably slow ‘tea-
cher’ ML potential (Si-GAP-18; ref. 22) into a faster ‘student’ model,
here using theMoment Tensor Potential (MTP) approach60.We use the
M00

16 model of ref. 36, which provides accuracy approaching that of Si-
GAP-18 within the target domain (a-Si), whilst being > 100 times faster.
The teacher model has been extensively validated against experi-
mental data for ambient and high-pressure a-Si4,23, and the student
model has enabled recent studies of coordination defects61. We
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provide further comparison with the Si-GAP-1822 and Si-ACE-2162 ML
potentials in Supplementary Information, Supplementary Figs. 4–6.

Structural analysis
We classify structures as being either fully CRN-like, or paracrystalline,
or polycrystalline using polyhedral template matching of atomic
environments (PTM; RMSD cutoff of 0.1; ref. 37) as implemented in
OVITO63, with the following criteria: (i) if a structure contains no locally
‘crystal-like’ atom, it is classified as fully CRN-like (blue in Fig. 1); if it
contains (ii) fewer or (iii)more than 15% of locally ‘crystal-like’ atoms, it
is classified conversely as paracrystalline (purple) or polycrystalline
(magenta). The ‘polycrystalline’ category is diverse, from large crys-
talline grains in an amorphous matrix to diamond structures with
stacking faults. We justify our choice of threshold as part of Supple-
mentary Note 1.

For the analysis of local atomic environments, we employ two
complementary techniques. First, we use the Smooth Overlap of
Atomic Positions (SOAP) kernel64 to quantify the similarity to the ideal
diamond-type structure on a scale from 0 (dissimilar) to 1 (identical to
within the cutoff radius), as done in previous work on a-Si, setting
ζ = 424,36. Second, we use Common Neighbor Analysis (CNA)65 to
identify the similarity to prototype structure types (specifically, dia
and lon), as detailed in ref. 66, and used in ref. 28. It is implemented in
OVITO,63. We report a comparison between descriptors as part of
Supplementary Note 1.

Energetic analysis
In many ML-based interatomic potentials, including the MTP frame-
work, the total energy of a cell is constructed as the sum of the ML-
learned individual atomic energies67,68, viz. E = ∑iEi. The distribution of
such atomic energies has been shown to reveal the local stability of
atoms in systems ranging from a-Si24 to superionic conductors69. We
further take the local atomic energies averaged over nearest neigh-
bors, similar to a study of amorphous graphene45, here within a cutoff
of 2.85 Å24.

Data availability
Data supporting this study are openly available at https://github.com/
lamr18/aSi-data and at https://doi.org/10.5281/zenodo.
14203730. Source data are provided with this paper.

Code availability
Software for ML-driven MD simulations was used as provided by the
authors and described in the Methods section. The M00

16 potential is
openly available at https://zenodo.org/records/7003068, and was
used alongside the MLIP package (https://mlip.skoltech.ru/download)
to run Molecular Dynamics simulations in LAMMPS. Custom-written
code to carry out analyses is available at https://github.com/lamr18/
aSi-data; a version has also been deposited together with the research
data at https://doi.org/10.5281/zenodo.14203730.
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