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FLT1 and other candidate fetal haemoglobin
modifying loci in sickle cell disease in African
ancestries
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Known fetal haemoglobin (HbF)-modulating loci explain 10–24% variation of
HbF level in Africans with Sickle Cell Disease (SCD), compared to 50% among
Europeans. Here, we report fourteen candidate loci from a genome-wide
association study (GWAS) of HbF level in patients with SCD from Cameroon,
Tanzania, and the United States of America. We present results of cell-based
experiments for FLT1 candidate, demonstrating expression in early haemato-
poiesis and a possible involvement in hypoxia associated HbF induction. Our
study employed genotyping arrays that capture a broad range of African and
non-African genetic variation and replicated known loci (BCL11A and HBS1L-
MYB). We estimated the heritability of HbF level in SCD at 94%, higher than
estimated in unselected Europeans, and suggesting a robust capture of HbF-
associated loci by these arrays. Our approach, which involved genotype
imputation against six reference haplotype panels and association analysis
with each of the panels, proved superior over selecting a best-performing
panel, evidencedby a substantial proportionof panel-specific (up to 18%) and a
low proportion of shared (28%) imputed variants across the panels.

Sickle-cell disease (SCD) is caused by a biallelic single nucleotide
substitution in the beta-globin gene resulting in an amino acid sub-
stitution,HBB (Glu7Val, formerly known as Glu6Val)1. As a result of the
partial protection conferred by the heterozygosity of the sickle variant
against severemalaria, SCDhasbecomeprevalent in areas of theworld
where malaria is endemic2. It is estimated that ~300,000 babies are
born worldwide each year with SCD, with nearly 75% of these births
being in sub-Saharan Africa3. In Africa, at least 30–50% of childrenwith
untreated SCD die before the age of 5 years4,5. Therefore, accelerating

the path for novel therapies for SCD through genomics research on
fetal haemoglobin (HbF; α2γ2) is critical.

During fetal life, HbF is the most predominant haemoglobin
subtype. After birth, the level of HbF decreases progressively to ~1% in
~8–12 weeks, and it is replaced by adult haemoglobin (HbA;α2β2)

6. The
regulation of Hb production is controlled by repressive transcription
factors (TFs) including BCL11A and ZBTB7A that bind to the HBG1 and
HBG2 gene promoters7. Genetic variations in HbF‐modulating genes
allow some individuals the capacity to continue producing HbF in
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adult life. SCD patients that produce higher levels of HbF (>8%) after
birth have longer life expectancy8, because the presence of HbF in
sickle RBCs delays deoxy‐HbS polymerisation and thus reduces clinical
complications. A successful gene‐editing strategy for treating indivi-
duals with the most common and severe subtype of SCD is the
induction of HbF expression through downregulation of the TF
BCL11A9,10.

Variants in the currently known HbF‐modulating genes/loci, i.e.,
BCL11A, HBS1L-MYB, and XmnI-HBG2, explain only 10–20% of the var-
iation of HbF levels in African individuals with SCD11,12, compared with
nearly 50% of the variation in HbF levels among Europeans13. Expand-
ing genomic research in populations of African ancestry coulduncover
the missing heritability of HbF-promoting loci14.

In this study, we used the Human Heredity and Health (H3Africa)
consortium SNP genotyping array developed from whole genome enri-
ched for common variants in sub-Saharan Africans with 3280 individuals
from 17 African countries to identify genomic variations associated with
HbF levels in a discovery cohort of 827 patients living with Sickle Cell
Anaemia from Cameroon. This was followed by a meta-analysis with
previously published data from 884 SCD samples from Tanzania15 and
summary statistics from four African American SCD cohorts
(2040 samples)16, reaching a combined sample size of 3751. We used a
multi-panel approach for genotype imputation and association testing,
employing six reference haplotype panels. Our strategy led to improved
detection of associations, identifying fourteen novel candidate loci for
investigating therapeutic interventions for SCD. We present additional
experiments for the FLT1 locus, one of the 14 significant signals.

Results
The dataset
Our study included 3751 individuals with sickle-cell anaemia (SCA) of
African ancestry from Cameroon, Tanzania, and the United States of
America (USA) (see Methods for a description of the cohorts). The
basic demographic and clinical characteristics of Cameroonian and
Tanzanian participants, as well as haematological features, alpha-
thalassaemia genotypes, and the HBB gene cluster haplotypes of
Cameroonian participants are presented in the Supplementary
Tables 1 & 2 and Supplementary Fig. 1. We restricted our analyses to
participants aged five years and older and we normalised HbF level in
both cohorts by cubic root transformation to match the age distribu-
tions and transformations in the USA-based studies (see Code Avail-
ability section for more information). In-depth quality control for the
Cameroonian and Tanzanian genotype datasets and the results are
provided in Supplementary Figs. 2–4. A total of 827 samples were
analysed from Cameroon after quality control, 50.8% were females,
and median age was 15 years (ranging from 5 to 66 years). From Tan-
zania, 884 sampleswere analysed, 52.8%were females, andmedian age
was 13 (ranging from 5 to 44 years). Only samples for which there was
concordance between reported and genotyped sex were considered.
The USA-based cohorts involved summary statistics from previously
published studies16 (see Methods).

Comparative performance across different imputation panels
We separately imputed genotypes in each cohort using six reference
panels (Supplementary Table 3) and filtered out variants with impu-
tation accuracy (R2) <0.3 before assessing imputation performance.
Genotypes from the TOPMed panel were imputed in GRCh38 coordi-
nates, while the others remained in GRCh37 coordinates to ensure
comparability and prevent loss of variants due to reference build
migration. Apositive correlationbetweenpanel size and thenumberof
imputed variants was observed (Fig. 1a), except when comparing the
H3A panel with the smaller CAAPA and KGP panels, suggesting low
accuracy for many H3A variants (R2 < 0.3). Both SNPs and INDELs were
imputed from the CUSTOM, KGP, and TOPMed panels while only SNPs
were imputed from the H3A, AGR (Sanger), and CAAPA panels. H3A

and CAAPA panels supported only autosomes (Supplementary
Table 3). Panel size correlated positively with imputation accuracy,
with TOPMed performing best (Fig. 1b, c). The CUSTOM and KGP
panels outperformed H3A and AGR, possibly due to the genetic and
phenotypic proximity of CUSTOM to the study population, and trio
information utilisation in KGP17. Exclusion of related individuals likely
impacted the performance of AGR18.

Comparing the mean R2 per chromosome, our custom panel
outperformed H3A, CAAPA, and AGR in the Cameroonian cohort
(Fig. 1b). AGR ranked second in the Tanzanian cohort due to its
enrichment with haplotypes from eastern and southern African
populations similar to those from Tanzania (Supplementary Fig. 5a).
Zooming into each chromosomebyminor allele frequency (MAF) bins,
H3Agenerally performedbetter overall, especially at lowerMAFs (<0.1;
Fig. 1c; Supplementary Fig. 5b). Imputation accuracy was slightly
higher for the Cameroonian cohort, likely due to differences in geno-
typing chips used, with H3A having tags that more accurately match
African haplotypes. Panel-specific variants were observed across
GRCh37 panels, with <30% overlap (Fig. 1d; Supplementary Fig. 5c).
This suggests varied accuracies in imputing the same variant across
panels due to differences in haplotype structures from different tag-
ging schemes17, highlighting the panels’ complementary use. More-
over, it implies different association patterns when utilising different
panels, therefore the absence of a signal in one panel should not dis-
miss its significance if observed in another.

Association testing supports complementary use of multiple
imputation panels
Following the above observations, we utilised datasets from all six
panels for downstreamassociation analyses in three stages (Fig. 2a; see
Methods). The total number of variants analysed per panel for each
dataset is presented in Supplementary Table 4. Genome-wide sig-
nificance was defined by P < 5e-08. Variants for which the Benjamini-
Hochberg false discovery rate (FDR) was less than 0.05 and P > 5e-08
were considered of marginal significance. Suggestive associations
were considered at FDR [0.05–0.10) or P < 5e-06. Evidence of asso-
ciation was also inferred when a locus had marginally significant sig-
nals in association testing andmeta-analysis. Figure 2b shows loci with
significant associations, and varying performance among the various
imputation panels. Different association patterns were observed, with
AGR and CUSTOM panels exhibiting best overall performance. KGP
and CAAPA panels showed suboptimal performance cumulatively,
while H3A showed the least significance without meta-analysis. More
loci were identified in the Tanzanian cohort, indicating improved
capture of genetic variations in African populations by recent impu-
tation panels. The well-characterised BCL11A and HBS1L-MYB loci were
replicated. A third significant locus, FLT1, was identified, along with
thirteen additional marginally significant loci (Table 1). Figure 2c dis-
plays Q-Q plots and genomic control inflation factors indicating no
residual population structure, while Fig. 2d shows Manhattan plots
highlighting significant signals. Supplementary Data 1 and Supple-
mentary Figs. 6 and 7 include the full list of significant and suggestive
signals.

Replication of the major HbF-influencing loci: BCL11A and
HBS1L-MYB
Across all analyses, BCL11A and HBS1L-MYB were the most significant
loci, and they remain the largest contributors to HbF variability in
these cohorts. rs1427407 and rs9399137 are the most widely and fre-
quently reported sentinel variants in BCL11A and HBS1L-MYB respec-
tively. Multi-ancestry fine-mapping has suggested rs1427407 as the
likely functionally relevant variant within the BCL11A locus19. Yet, the
sentinel variants in these loci usually differ amongst cohorts, including
in our study (see Supplementary Data 1): in the Cameroonian cohort,
rs7606173 emerged as the BCL11A sentinel variant (P = 8.25e-20). This
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is likely because it was almost twice as frequent as rs1427407
(MAFrs7606173 = 0.45; MAFrs1427407 = 0.26), since the two variants had
similar effects (βrs7606173 = −0.22; βrs1427407 = −0.23). rs7606173 there-
fore contributed the largest proportion (9.1%) in HbF variability, and
together, the two variants accounted for 8.85% in HbF variance; in the
Tanzanian cohort, rs1896294 and rs1427407 were the BCL11A sentinel
variants with similar significance (P = 4.26e-36). rs1896294 was more
frequent (MAFrs1896294 = 0.28;MAFrs1427407 = 0.22)while rs1427407 had
a larger effect (βrs1896294 = 0.28; βrs1427407 = 0.30). Individually and
together, the variants contributed ~15.2% in HbF variability in the
cohort similar to previous reports13, and substantially higher than the
variance explained by BCL11A sentinel variants in Cameroonians. In a
meta-analysis of the two cohorts, rs1427407 was the sentinel BCL11A
variant with the largest effect on HbF level (P = 2.48e-50, β =0.27), and
it contributed ~11.6% in HbF variability in the joint cohort. In the global
meta-analysis, rs766432 emerged as the BCL11A sentinel variant

(P = 2.42e-100), contributing 10.7% in HbF variability in the combined
cohorts. Yet, rs1427407 still had the largest effect (βrs766432 = −0.24;
βrs1427407 = 0.26), supporting the attribution of functional relevance to
it within the BCL11A locus19, although it was slightly less frequent
(MAFrs766432 = 0.28 versus MAFrs1427407 = 0.24). rs1427407 therefore
contributed a smaller proportion (7.6%) in HbF variability.

In the HBS1L-MYB intergenic region, rs9399137 and rs35786788
were the sentinel variants in the Cameroonian cohort (cm) with iden-
tical significance (P = 1.76e-08, β = 0.38). In the Tanzanian cohort (tz),
as well as in the Cameroon-Tanzania meta-analysis, the rs55634702
INDEL was the sentinel variant (Ptz = 1.13e-09, βtz =0.35;
Pcm_tz_metal = 2.32e-16, βcm_tz_metal = 0.36). Generally, these HBS1L-MYB
sentinel variants explained ~4% of HbF variance, consistent with pre-
vious findings. rs9399137 was the sentinel variant in the global meta-
analysis and contributed 3.2% in HbF variability. The relatively low
proportion of HbF variance explained by the HBS1L-MYB variants

Fig. 1 | Comparative analysisof imputationpanels. aNumber of variants imputed
per panel with imputation accuracy (R2) ≥0.3 for the Cameroonian (blue) and
Tanzanian (green) cohorts. b Dot and line plots of R2 per chromosome for the
Cameroonian cohort. Only autosomes (chromosome 1–22) were used since some
of the panels (H3A and CAAPA) did not support the sex chromosomes. c Dashed-
line plots of R2 within different minor allele frequency (MAF) bins per autosome in

the Cameroonian cohort. A bin size of 0.01 was used to bin the variants into fifty
(50) bins from 0 to 0.5. d Five overlapping Venn diagrams showing proportions of
shared and panel-specific variants in the Cameroonian cohort. Only panels in
GRCh37coordinates are shown.b–d are statistics for theCameroonian cohort only.
Supplementary Fig. 5 presents similar statistics for the Tanzanian cohort.
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notwithstanding their relatively large effects is due to the low fre-
quencies of these sites in African ancestries (MAF ≤0.03) compared
with other ancestries where their MAF is greater than 0.10. Replication
of signals within other genomic regions that have been associatedwith
HbF level, including HBG219–23, is presented in the Supplementary
Information and Supplementary Data 2.

Identification of novel candidate HbF-associated loci
In the Cameroonian cohort, a third signal that reached genome-wide
significance was mapped to a novel locus upstream of the FMS
related receptor tyrosine kinase 1 gene (FLT1, also known as vascular
endothelial growth factor receptor 1–VEGFR1) on chromosome 13
(13q12.3). The sentinel variant rs115695442 (P = 4.18e-08, β = 0.21;
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Supplementary Fig. 8a) was relatively common in the cohort
(MAF = 0.10), and it contributed 3.5% in HbF variance. FLT1 significant
variants occurred at higher frequencies thanHBS1L-MYB associations
(FLT1; MAF = 0.076–0.105 Vs HBS1L-MYB; MAF < 0.04) and had simi-
lar effects as BCL11A associations (β = 0.20–0.23). No significant FLT1
associations were observed in the Tanzanian cohort (Supplementary
Data 2 & 3). However, multiple variants were observed at p value < 5e-
03 and with appreciable effects (β = 0.14–0.16) within 100 kb of the
FLT1 signal (Supplementary Data 2). Similarly, variants within the
genomic region of FLT1 were observed in the Cooperative Study of
Sickle Cell Disease (CSSCD) cohort at P = 6.9e-03 (rs61763174,
intronic variant, β = −0.24, MAF = 0.06)24, and in the Silent Cerebral
Infarct Transfusion Trial (SITT) cohort at P = 2e-04 (rs9578046, 94 kb
upstream, β = 0.14, MAF = 0.12)25 (Supplementary Data 2).

Meta-analysis of the Cameroonian and Tanzanian cohorts
revealed five novel candidate loci that included FLT1 and OPCML, of
which FLT1 had the strongest associations (Table 1). rs74617914
emerged as the FLT1 meta-analysis sentinel variant (P = 4.38e-08,
β = 0.20) although it was not significant in the independent association
tests of the two cohorts. Globalmeta-analysis identified two additional
loci, namely GFRA1 and LINC01898. Seven novel candidate loci were
observed in the Tanzanian re-analysis (see Supplementary Fig. 7), of
which OPCML was previously reported in the cohort albeit it was not
significant15, hence classified here as novel candidate. Each of the loci
contributed ~3% in HbF variance. ZNF804A variants demonstrated the
largest effect across our entire analysis (P = 8.97e-08, β =0.46). The
relatively small proportion inHbF variance (3.1%) that they contributed
could be attributed to their low MAF <0.02. The variants are indeed
rare in Africans generally, whilst absent in other ancestries based on
the dbSNP and EMSEMBL resources. In the Tanzanian cohort, the
derived alleles were only observed in heterozygotes and were asso-
ciated with higher HbF levels (Supplementary Fig. 8).

Of the likely new loci, FLT1 was particularly interesting because it
was identified in a population that has not been previously studied
genome-wide, was replicated in meta-analysis with consistent signals
across all the imputationpanels andwas the third strongest signal after
BCL11A and HBS1L-MYB. We therefore focused on the FLT1 signal for
further functional characterisation.

Functional mapping of the FLT1 signal
Fine mapping of the functionally relevant FLT1 variants in the Camer-
oonian cohort revealed a single 95% credible set that included nine
variants of which rs115695442 had the highest posterior inclusion
(causal) probability (PIP = 0.36) (Fig. 3a). In the meta-analysis, a single
95% credible set that included only rs74617914 with causal probability
of 0.99 was detected. Six of the variants with identical significance and
in perfect linkage disequilibrium (LD= 1) had identical causal prob-
abilities to one another (PIP = 0.089) which summed to >50% (Fig. 3b).
These variants additionally had larger effect sizes (β = 0.23) than the
FLT1 sentinel variants rs115695442 and rs74617914, suggesting that the
most probable causal variant(s) might be among the six. All FLT1 fine-
mapped variants were in a 40kb interval (chr13:29069272– 29110372;

GRCh37) spanning the FLT1promoter and a candidate enhancer region
of ~30 kb upstream of the FLT1 transcription start site (TSS) (Fig. 3c).
Most of the variants occurred within TF binding sites (TFBSs), includ-
ing five of the six aforementioned variants in perfect LD (Fig. 3b, c).
Neither of the variants nor their tags have been reported in Genotype
Tissue Expression (GTEx) as either expression or splicing quantitative
trait loci (eQTL/sQTL), in line with the observation that they are vir-
tually absent in non-African ancestries thatmake up the bulk of data of
theGTExproject (Fig. 3d). Thebindingmotifs of sixTFsweredisrupted
by theminor allele variants. Three of the TFs implicated (STAT5A, GFI1,
and MXI1) play crucial roles in haematopoiesis/erythropoiesis26–29 and
their binding motifs were disrupted by three of the six perfect-LD
variants (rs11840478, rs75294023, and rs11843606 respectively)
(Fig. 3e–g), thus supporting the attribution of functional relevance
to these.

Chromatin accessibility data revealed two DNase I hypersensitive
sites (HS) within the 40 kb region (Fig. 3c; see Methods): HS1 corre-
sponded to the FLT1 promoter which showed strong activity in human
umbilical vein endothelial cells (HUVECs) and weak activity in human
embryonic stem cells (hESCs); HS2 had methylation and acetylation
patternsmarking an active promoter or strong enhancer in the human
erythroleukemic K562 cells, HUVECs, and lymphoid-specific GM12878
cells. Strong TFChIP-seq peaks for GATA2,MYC, IKZF1, andCTCFwere
present at HS2 in K562 cells, suggesting a restricted activity of this
region in the erythro-lymphopoietic system, potentially involving loop
formation30. There were strongHDAC2 peaks at HS1 and HS2 in hESCs,
as well as polycomb-repressive complex (PRC) marks inmost cell lines
including K562, consistent with predicted polycomb repression of the
promoter (HS1) in K562 cells. The HS1 chromatin marks are indicative
of bivalent promoters associated with developmentally regulated
genes31. The general chromatin accessibility pattern in the40 kb region
suggests a tight cell-type and stage-specific regulation of FLT1 along
the developmental axis32. There are not much experimental data on
HS2 as an enhancer evidenced by its absence in the ENCODE project,
theVISTA and FANTOM5enhancer browsers, hence it has nopredicted
interaction by GeneHancer. However, the ENSEMBL resource suggest
some experimental evidence, while ENCODE classifies the region as
“distal enhancer-like”, hence our classification as “candidate enhan-
cer”. These support a hypothesis that HS2 is only transiently active,
leading to a brief upregulation of FLT1. The fine-mapped variants
occurred between HS1 and HS2, flanking the promoter and the can-
didate enhancer (Fig. 3c). ATAC-seq peaks from three datasets of
erythropoietic lineages indicate the variants are enhancer-associated
(Fig. 3h). The variants exhibited additive effects on HbF level with the
genotypes carrying theminor alleles associated with higher HbF levels
(Fig. 3e–g; Supplementary Fig. 9).

Association of FLT1fine-mapped variants with other blood traits
We further tested association of the fine-mapped FLT1 variants with
other blood traits listed in Supplementary Table 1 in the Cameroonian
cohort. We observed significant associations of rs74617914 and the six
perfect-LD variants with mean corpuscular volume (MCV; P < 0.05)

Fig. 2 | Data flow in the major analysis stages and evidence for association.
a Association testing was performed in three stages: in stage 1 (red circle), we
performed single variant association tests for Cameroonian discovery (n = 827) and
Tanzanian re-analysis cohort (n = 884) imputed datasets filtered to include only
biallelic SNVs (SNPs and INDELs) with R2 ≥0.6. A generalised linear mixed model
was run using SAIGE93, withmultiple testing correction by the Benjamini–Hochberg
false discovery rate (FDR)method; stage 2 (green circle) involved ameta-analysis of
two Africa-based cohorts (n = 1711), while in stage 3 (purple circle), we included
summary statistics fromHbF GWAS involving sickle cell anaemia cohorts of African
ancestry based in theUnited States of America (n = 2040) to performanoverall or a
global meta-analysis (n = 3751). Meta-analysis was performed by the inverse

variance method of METAL95. Summary statistics from all three stages were then
used to perform functional GWAS and fine-mapping. bOverview of significant loci
detected per analysis unit. Green circles indicate presence while red diamond
indicates absence of significant signal in the corresponding locus. Blue coloured
loci represent the major known HbF-influencing loci, while the rest in black are
novel loci. c The quantile-quantile (Q-Q) plots of the expected against the observed
p values, as well as the genomic control inflation factors (λ) demonstrate the
robustness of our association results and show that our test statistics were not
inflated. d Manhattan plots showing the significant signals in the Cameroon,
Cameroon-Tanzania meta-analysis, and global meta-analysis.
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(Supplementary Data 4). The derived alleles of the variants were
associated with a slight increase in red blood cell (RBCs) size
(Fig. 3e–g). In addition, rs74617914 alone was significantly associated
with RBC count (P <0.05), although no marked difference was
observed for the distribution of RBC count amongst the different
genotypes.

Haplotype structure provides a reason for absence of FLT1
association in the Tanzanian cohort
The difference in FLT1 sentinel variants observed in the Cameroonian
association and Cameroon-Tanzaniameta-analysis (Fig. 4a), as well as
significant heterogeneity in effect sizes observed at all the fine-
mapped variants (heterogeneity p value < 0.01) with the exception of
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rs74617914 (heterogeneity p value > 0.29) (Fig. 4b), suggest different
haplotype structures within the FLT1 40 kb region between Camer-
oonians and Tanzanians. We thus analysed haplotype blocks (hap-
loblocks) within 25 kb upstream and downstream of the region (see
Methods). At similar SNP densities, we observed higher and longer-
range LD with lower haplotype diversity in Cameroonians than in
Tanzanians. The fine-mapped variants were distributed across three
haploblocks (blocks 5, 6, and 7) in Cameroonians (Fig. 4c);
rs181503970 and rs76296165 flanking the FLT1 promoter occupied
block 5, rs115695442 had no haploblock participation, occurring
between blocks 6 and 7, and the rest (perfect-LD variants) occupied
block 7, flanking the candidate enhancer. Remarkably, all three
haploblocks were in strong LD, evidenced by high D’ values
(D’ > 0.96) indicative of little historical recombination, making
rs115695442 an excellent tag for this locus in Cameroonians.
The haplotype structure was different in Tanzanians: (i) the fine-
mapped variants were distributed within five haploblocks (blocks 8-
12), and (ii) low D’ values were observed among the haploblocks
(D’ < 0.90) indicating high historical recombination, which suggests
the variants are evolving independently in this cohort. Indeed, LD
between rs115695442 and all the haploblocks was less than 0.2 in
Tanzanians, even though the variant occurred between haploblocks
11 and 12 which are in strong LD (D’ = 0.95). There was high intra-
block (short range) LD between rs181503970 and rs76296165 (LD = 1)
and between rs11840478 and rs114243330 (LD = 0.99), all pairs of
variants that are remarkably close to each other. Similar substantial
heterogeneity in effect sizes was observed within the major HbF-
influencing loci, and some of the novel loci (Fig. 4d), thus potentially
explaining the difference in sentinel variants observed in different
populations.

Haploblock analysis for 25 non-SCD Cameroonian individuals
(Supplementary Fig. 10) and HbS-negative genomes from populations
in the 1000 Genomes Project (Supplementary Fig. 11) revealed lower
LD with smaller haploblocks in African populations. Against an MAF of
5%, the fine-mapped variants were present in African ancestries only
and had no consistent pattern in their haploblock participation; many
had no haploblock participation. In addition, there was high historical
recombination among the haploblocks as expected under neutral
evolution. These suggest that an evolutionary force, such as natural
selection, might be preserving haplotypes in the FLT1 40kb region in
Cameroonian SCA populations. Indeed, haplotype association
revealed a strongly suggestive haplotype carrying the derived alleles of
rs7989474-A and rs1967786-T (Padjusted = 0.053) in Cameroonians that
also flank the FLT1 candidate enhancer and occurred within
GATA1 peaks.

Gene-based, gene set, and heritability analyses further support
the association results
Gene-based analysis revealed multiple genomic regions with sig-
nificant (P < 2e-06) or strongly suggestive (P < 2e-04) evidence of
association across all the datasets (p value threshold 2.5e-06; Supple-
mentary Fig. 12). BCL11A andHBS1L-MYBwere themost significant loci.
The HBB gene cluster signal was evident, particularly in the global
meta-analysis. It spanned the HBG1, HBG2, HBE1 genes, and the locus
control region and involved >3000 variants, indicating extensive
evolutionary activity related to the sickle cell allele. An additional sig-
nificant locus, MMP26, that mapped immediately downstream of the
HBB-3’HS1 was observed in Tanzanians (P = 8.32e-07). In Camer-
oonians, FLT1 demonstrated signs of replication (P = 0.005). Below the
suggestive threshold (P < 2e-04), there were few overlaps in the results
of the different association and meta-analysis datasets. At a less
stringent threshold (P <0.002), many common signals were detected
across the datasets, leading to a highly similar pattern of gene set
enrichment. The most enriched pathway, haematopoietic stem cell
differentiation (Supplementary Fig. 13a), overwhelmingly featured
known erythropoietic factors including GATA1, KLF1, cMYB, RUNX1,
STAT5A, HIF1A, and HDAC (Padjusted <0.05). The hypoxia pathway was
also significantly enriched in all the datasets. Myeloid cell differentia-
tion and gas (oxygen) transport were the most significantly enriched
biologically processes (Padjusted < 2e-3), while the haemoglobin com-
plex was the most significantly enriched cellular component
(Padjusted < 9.60e-6; Supplementary Fig. 13b, c). Unsurprisingly, RBC
traits, including MCV and RBC count, were among the most sig-
nificantly enriched phenotypes (Padjusted < 6e-08) (Supplementary
Fig. 13d). Erectile dysfunction (priapism), an important sub-phenotype
of SCD, was the most significantly enriched trait in the Tanzanian
cohort and the CAM-TZN meta-analysis. In line with these observa-
tions, the blood and spleen were the sites with the most significant
differentially upregulated genes, mostly erythropoiesis-related genes
including GATA1, KLF1, and HBG1 (Supplementary Fig. 14).

Our results hint at a robust capture of haematopoietic factors,
potentially involving HbF-modifying loci with many small-effect-size
variants that did not reach genome-wide significance. In line with this
observation, we estimated HbF SNP heritability in a combined cohort of
Cameroonian and Tanzanian SCD populations at 0.94 (SE 0.01; 95%
confidence interval [CI] 0.92–0.96; Fig. 4f), slightly higher than the 0.89
for unselected Europeans33, and substantially higher than 0.30–0.50
previously estimated for SCA populations of African ancestry living in
Europe and North America34. Only a moderate reduction in the estimate
was observed by increasing the number of principal components (PCs)
from 20 to 100, thus capping the estimate at ~96%. Notably, our

Fig. 3 | Functionalmapping of the FLT1 signal. aRegional association plot of FLT1
signal in the Cameroon-Tanzaniameta-analysis. Linkage disequilibrium (LDor r2) of
the lead variant (rs74617914) and the rest of the variants is represented as a
coloured key. Themiddlewindowpresents the relative positionof the fine-mapped
variants; pink represents the meta-analysis fine-mapped variant, blue represents
the fine-mapped variants in the Cameroonian cohort (Supplementary Fig. 8a pre-
sents the regional association for the Cameroonian cohort FLT1 signal). b Statistics
of the fine-mapped variants (BETA, effect size; SE, standard error of effect size
estimate; P, unadjusted p value) from the association test described in Fig. 1 and
Table 1. PIP (posterior inclusion probability) of each fine-mapped variant being
causal. Functional annotations from the ENSEMBL resource and the JASPAR algo-
rithm (TFBS transcription factor binding site) are shown. The distance of each
variant from the FLT1 transcription start site is indicated as dTSS. NA, information
not available. Transcription factors in bold have known roles in erythropoiesis (see
Supplementary Information). c Genomic map of the FLT1 regulatory region show-
ing chromatin state predictions in different cell lines, the promoter (HS1) and
candidate enhancer (HS2), the relative position of the fine-mapped variants (light
blue vertical lines), and relevant TFBSs (visualised in the UCSC Genome Browser
using the hg19 reference sequence). Hypoxia response elements (HREs) bound by

the hypoxia-inducible factors (HIFs; HIF1A/2 A), are highlighted in yellow. d Minor
allele frequency (MAF) distribution of the fine-mapped variants and other variants
looked up in the Tanzanian, CSSCD, and SITT cohorts. The MAFs are displayed for
Cameroonian and Tanzanian sickle cell anaemia populations, as well as unascer-
tained global ancestries from the 1000 Genomes dataset. One of the six variants in
perfect LD is used to represent the rest. e–g Sequence logo of the TFB motifs
disrupted (retrieved from https://jaspar.genereg.net/ and reverse complemented
to the forward strand to reflect the base change presented throughout our text).
rs75294023 disrupts the absolutely required GFI1 binding core AATC (reverse
complement: GATT)115. The box plots show additive effects of rs11840478,
rs75294023, and rs11843606 on fetal haemoglobin (HbF) level and mean corpus-
cular volume (MCV). Centre line in box plots denotes the median, the lower and
upper ends of the boxes denote the lower and upper quartile. Whiskers extend
from the ends of the boxes to the minimum (lower whisker) and maximum (upper
whisker) values. Violin plots describe the density of the distribution. h ATAC-seq
data from 3 datasets of erythropoietic cell lines provided visual overlap, showing
the FLT1 signal to be enhancer-associated. BCL11A signal is used here as control for
both Cameroon and Tanzania GWAS. Source data are provided as Source
Data Fig. 3.
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approach jointly estimated the additive and dominance genetic variance
components, as opposed to only the additive component (narrow-sense
heritability) estimated in previous studies. Attempts at estimating
narrow-sense heritability produced highly variable outcomes (mean=
0.70; 95% CI =0.37–1.04; SE =0.24) (Supplementary Fig. 15), reflecting
the low power associated with our small sample dataset. Besides, asso-
ciation analysis of the merged genotype data used to estimate herit-
ability mirrored the results of the meta-analysis of the two populations,
indicating that our heritability estimates were unlikely to be due to
spurious associations (Supplementary Fig. 16).

Assessment of editing and gene expression in erythroid and
erythroleukemia cells
To assess the impact of genomic FLT1 variation on HbF expression
under hypoxia and normoxia, we edited the genome of the immorta-
lised human erythroid progenitor cell line HUDEP-2 that, in the default

state, expresses primarily the adult haemoglobin35. We used Cas9
nuclease to disrupt FLT1 and, as a positive control for HbF induction,
the +58 kb erythroid BCL11A enhancer36. We used base editors to
introduce rs76296165 and rs74993145 which we identified as FLT1-
proximal SNPs associated with increased HbF and isolated clonal cul-
tures with homozygous edits (Supplementary Fig. 17a). BCL11A dis-
ruption, but not FLT1 disruption, led to an increase in F-cells
(Supplementary Fig. 17b). While BCL11A disruption led to the expected
increase in HbF transcripts, neither FLT1 disruption nor the installed
SNPs impacted HbF transcript levels in normoxia or hypoxia (Supple-
mentary Fig. 17c–f). Digital polymerase chain reaction (PCR) did not
detect a change in HbF induction following FLT1 knockout (Supple-
mentary Fig. 17g). Notably, the three SNPs predicted to be functionally
relevant could not be efficiently base edited, and although rs74993145
is in perfect LD with the three functionally relevant SNPs, it does not
appear to have any functional consequence.

Fig. 4 | Genetic heterogeneity and haplotype substructure within the FLT1
–40kb regulatory region. a Forest plot of FLT1 lead associations in the Camer-
oonian cohort (rs115695442; N = 827) and Cameroon-Tanzania meta-analysis
(rs74617914; N = 1711). Black points represent effect size estimates. Error bars
represent confidence intervals of effect size estimates. The values are shown in red
below each point. The unadjusted p value of each estimate is shown in blue.
Rs115695442 was only significant in Cameroonians and suggestive in the meta-
analysis. rs74617914wasonly significant in themeta-analysis and insignificant in the
respective cohorts. b Heterogeneity plot of FLT1 fine-mapped variants shows sig-
nificant heterogeneity (greater than 80%) at all the variants except rs74617914,
indicating complex haplotype structure within the region, that was confirmed by
haplotype analysis: three haploblocks (black triangles) in Cameroonians (c) har-
bouring the fine-mapped variants were in strong linkage disequilibrium (LD) evi-
denced by high D’ values (>0.6) between rs115695442 and the blocks 5 and 7
variants (red and orange bars); Low LD among haploblocks harbouring the fine-
mapped variants in Tanzanians (d) explained low LD (<0.2) between rs115695442
and all other fine-mapped variants. The probability of historical recombination

between blocks is shown as D’ (the higher the value, the lower the probability). A
recombination map of the region, generated using the hapmap recombination
map116 in GRCh37 coordinate, is shown as red line-plot above the haplotype map. A
recombination hotspot is evidenced by the tallest peak. e Heterogeneity plot of
sentinel variants of all the significant loci. Variants are coloured by locus. f Estimate
of heritability of fetal haemoglobin level in a merged Cameroon and Tanzania
genotype dataset (n = 1682) after additional quality control as described in the
Supplementary Information. Additive and dominance genetic variance compo-
nents were jointly estimated with eight categories of covariates. For each category,
heritability was estimated thirty times to demonstrate non-randomness in the
estimation given themodest sample size. The insert boxplots show the distribution
of the estimates. The centre line denotes the median, the lower and upper ends of
the boxes denote the lower and upper quartiles. Thewhiskers are shown extending
from the ends of the boxes to the minimum (lower whisker) and maximum (upper
whisker) values. Violin plots describe the density of the distribution. Source data is
provided as Source Data Fig. 4.
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We then assessed the pattern of FLT1 expression, as well as other
hypoxia- and erythropoiesis-related genes (Supplementary Fig. 18) in
HUDEP-2 and the human erythroleukemia cell line, K562, which dis-
plays embryonic erythropoiesis following erythroid differentiation37,
primarily expressing embryonic haemoglobin (HBE1) by default, and
fetal γ-globin (HBG1/2) upon induction, but not adult β-globin
(HBB)38,39, and has previously been reported to express FLT140. FLT1
transcript levels in HUDEP-2 cells were not detected under hypoxia or
normoxia using qPCR and digital PCR35 (Supplementary Fig. 17c–f),
thus preventing any robust quantitative comparisons with K562 cells,
and possibly explaining the reason for the lack of impact of FLT1 dis-
ruption in HUDEP-2 cells. However, we estimated at least 30-fold
greater FLT1 expression in K562 cells relative to HUDEP-2 cells. FLT1
and KDR transcript levels in K562 cells were >8-fold induced under
hypoxic conditions (Fig. 5a). Expression of FLT1 reached a maximum
between 6 and 24 hours under hypoxia and remained stable over
10 days. Known HIF1A target genes ALAS2 and CA9 were also induced
under hypoxic conditions as expected (Fig. 5b). HBG1/2 were induced
under long-term hypoxic conditions as previously reported41, as was
the TF KLF1 that is involved in HbF regulation42 (Fig. 5c).

Assessment of editing and gene expression in human
CD34+HSPCs
To further assess the involvement of FLT1 in HbF expression, we used
G-CSF mobilised peripheral blood purified human CD34+ HSPCs

obtained from four healthy donors (see Methods). We used Cas9
nuclease to disrupt FLT1 and the +58 BCL11A enhancer as a positive
control and induced in vitro erythroid differentiation under normoxic
andhypoxic (2%O2) conditions in thepresenceor absenceof 50ng/mL
VEGF or 100 nM SU5416 VEGF inhibitor (Supplementary Fig. 19a).
Erythroid maturation progression was measured at days 8, 13, and 18
(D8, D13, and D18), withmarked differences between D13 and D18, and
between normoxic and hypoxic conditions, as well a high inter-
individual variability (the donors notably spanned three ancestral
backgrounds: European, American, and African) (Supplementary
Fig. 19b–d). Hypoxia delayed maturation which is consistent with the
role of HIFs in HSPCs proliferation43,44. Editing efficiency throughout
differentiation, as well as cell viability and recovery, are presented in
Supplementary Fig. 20a–d. There was no significant difference in the
frequency of cells expressing HbF (F-cells) and bulk HbF between D13
and D18 (Supplementary Fig. 21a, b). Additionally, we observed that
one of the donors, an African American male, was heterozygous for
twoof the FLT1proximal SNPs (rs115695442 and rs76296165) albeit not
functionally relevant (Supplementary Fig. 21c). Stranded mRNA
sequencing revealed expression of FLT1 at D0 and the expected
downregulation at D13, with a modest restoration under hypoxia in
untreated cells (Supplementary Fig. 22a). Hypoxia was confirmed by
upregulation ofALAS1 (Supplementary Fig. 22b).Hypoxic regulation of
erythroid-specific ALAS2 was inconsistent among the donors; upre-
gulation occurred in only one donor, with the average mRNA level

Fig. 5 | Gene expression inerythroleukemicK562cells. aK562 cellswereexposed
to 1%oxygenover 10days in culture. RT-qPCRwas used to evaluate gene expression
at predetermined time points. FLT1 (VEGFR1) and KDR (VEGFR2) gene expression
are depicted, normalized to expression during culture in normoxic conditions.
b RT-qPCR measurements of ALAS2 and CA9 expression, known markers induced

by hypoxia. c RT-qPCRmeasurements of adult beta globinHBB, fetal haemoglobin
genes HBG1/2, and a transcription factor involved in fetal haemoglobin regulation,
KLF. RT-qPCR samples n = 3. Mean values of technical triplicates are presented.
Error bars denote the standard error as calculated by Applied Biosystems qPCR
software RQmax and RQmin. RQ relative quantitation of transcript levels.
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across the donors showing an insignificant difference between nor-
moxic and hypoxic conditions (Supplementary Fig. 23). Notably, FLT1
knockout (FLT1-KO) resulted in only about 30% reduction of FLT1
mRNA levels measured at D0, which was two days after electropora-
tion. There was significant downregulation of FLT1 mRNA at D13 (day
15 after electroporation), and no significant expression of KDR
throughout differentiation. Fetal-type γ-globin (HBG1 and HBG2) and
adult-type β-globin (HBB) mRNAs were observed at D13 in all media
conditions (Supplementary Fig. 22c, d), as well as the α-globin genes,
HBA1 andHBA2. BCL11A enhancer disruption had the strongest impact
on HBG1/2 and HBB mRNA levels as expected. (Supplementary
Fig. 22c, d).HBG1wasmore strongly induced, and itsmRNA levelswere
highly variable within and between groups in contrast to HBG2. This
suggests the differentiation conditions favoured HBG1 promoter
accessibility. There was no significant difference in F cell and HbF
levels between the untreated and FLT1-KO groups which could be
explained by the small reduction of FLT1 mRNA levels after Cas9 tar-
geting. VEGF inhibition markedly reduced HBG1 mRNA levels and F
cells, aswell asHbF to a lesser extent. This impactof VEGF signalling on
γ-globin was consistent across hypoxia and normoxia, with and with-
out BCL11A knockout. Thus, our results indicate that basal VEGF sig-
nalling plays a role in γ-globin regulation even in cultured
hematopoietic cells, which could serve as a model system to further
probe the mechanism of this interaction.

Discussion
Summary of key points
Our study investigated genetic variations influencing HbF level in an
African sickle cell disease cohort using a multi-panel imputation and
association strategy against two distinct genotyping arrays tailored to
capture a broad spectrum of Africa-specific and non-African genetic
variations. This is expected to contribute to the much-needed new
data from populations with African ancestry45–47. Specific advantages
of our study include: (a) a discovery cohortmadeof hydroxyurea-naive
patients living with SCD from Cameroon which provides a proxy for
the natural disease history; (b) the identification of fourteen novel
candidate loci enhanced by the reanalysis of previously reported data
from Tanzania, and global meta-analysis including data from indivi-
duals of African ancestry living with SCD in the United States of
America; (c) in particular, the description of variants in FLT1which are
largely specific to African populations with apparent functional
impact, as well as our elucidation of the complex haplotype archi-
tecture of FLT1 which provides support for substantial genomic
variability that can be extended to other loci to explain the difference
in sentinel variants observed in different populations; and (d) a
detailed in silico and in vitro cell-based functional exploration of the
potential mechanism for FLT1 involvement in erythropoiesis and HbF
induction.

Heterogeneity in imputation panels
To the best of our knowledge, only one study has attempted the use of
multiple imputation panels for association analysis48. Researchers
typically select a best-performing panel for association testing.
Although the dissection of the comparative performance of imputa-
tion panels for sub-SaharanAfrican populations hasbeen performed in
previous studies48,49, our study presents comparisons for a larger
variety of panels with variants that are relevant to populations of
African ancestry. Our observations were largely similar to previous
reports; differential imputation performance, substantial panel-
specific variants, and relatively low proportion of shared variants
(less than 30%). The TOPMed panel showed the best performance as
expected. However, the freeze 8 release used here has a known lim-
itation for African ancestry populations as revealed in our malaria
GWAS study48; it fails to impute critical Africa-specific functional var-
iants (including the sickle cell mutation, rs334) that are imputed with

high accuracies (>90%) using other panels. Importantly, our findings
underscore the complementarity of the panels, particular in highly
diverse populations (reflected in panel-specific signals), and support
the utilisation of all the panels for association analysis as an optimal
approach. The recently developed meta-imputation procedure for
combining multi-panel imputed datasets50 (which was unavailable at
the time of our analyses) would be a more computationally tractable
way of handling such datasets given the enormous challenges
accompanying separate analyses. Alternatively, future association
studies involving highly diverse populations should consider whole-
genome sequencing (WGS), as much as possible, to alleviate the large
inconsistencies and complexities that come with utilising multiple
imputation panels.

Heterogeneity in association signals
Disparities in haplotype structure were the major reason for differ-
ences in imputation performance and association signals, but also
differences in sentinel variants of significant loci amongst the cohorts
in our study, as demonstrated in the FLT1 −40 kb region. While genetic
admixture can account for haplotype differences, it could also mean
that genetic loci influencing HbF level, and other modifiers of sickle
cell disease, have been through different evolutionary trajectories,
especially in sub-Saharan African populations. These populations have
been exposed to vastly different ecologies which have shaped their
geneticmaterial differently over the roughly 300,000 years ofmodern
human existence on the continent45. The continued revelation of
extensive uncaptured genomic variations within African
populations51,52, some of which are population-specific, such as the
FLT1 variants reported here, reflect the enormous selective pressures
that the populations have had to contend. The lack of these, some-
times functionally relevant, genetic variants in notable and European-
ancestry-enriched databases such as the GTEx study reflects a current
limitation for global genetic medicine. For instance, we recently
reported malaria protective associations in the enhancer region of
CHST15 which tag strong eQTLs in tissues relevant to the disease
biology but are absent in the GTEx portal48. In cases where none of the
tag variants is present in such databases, such as in the current study, a
critical piece of functional information would be lost. The importance
of increasing the representation of understudied populations in global
omics databases could, therefore, not be overstated.

Heritability supported by association results, pathway enrich-
ment, and potentially, selection pressure (at least in Camer-
oonians) evidenced by high LD and haplotype conservation in
the FLT1 40 kb regulatory region
HbF heritability has previously been estimated in a twin population
unselected for any disease or trait in the United Kingdom at 89%33, in
sickle cell anaemia patients of African ancestry based in the USA at
~50%34, and ~32% in SCDpatients of African ancestry older than 15 years
of age and living in France53. Even lower estimates have recently been
suggested for SCD patients of African ancestry19. In the European
unselected population, half of the total HbF heritability is explained by
just the three major loci i.e., BCL11A, HBS1L-MYB, and HBG213. Our
estimate of 94%HbF heritability is unsurprisingly higher than previous
estimates for several reasons: (i) our approach jointly estimated
additive and dominance genetic variance components, whereas pre-
vious approaches estimated only the additive variance component
(narrow-sense heritability), suggesting that a substantial portion of
HbF heritability in selected patients from Africa could be explained by
a dominance genetic variance component54, (ii) our cohorts are fun-
damentally different from the other cohorts in that our samples
represent individuals with the most severe form of sickle cell disease
who have escaped childhood mortality largely without healthcare
strategies such as newborn screening and comprehensive care with
penicillin prophylaxis and hydroxyurea treatment. Considering the

Article https://doi.org/10.1038/s41467-025-57413-5

Nature Communications |         (2025) 16:2092 11

www.nature.com/naturecommunications


historically high excess of under-five mortality (50–90%) of sickle cell
anaemia in Africa5, therefore this group of patients likely represent a
naturally selected population enriched with genetic variants that
favour “long survival” such as has been previously shown in patients
from Cameroon55. It is therefore reasonable to imagine that HbF-
induction is among the most enriched pathways given that it is the
most potent modifier of SCD severity known to date. However, larger
sample sizes of patients living in Africa with SCD, and standardised
measurements of HbF, would be needed to confirm the true herit-
ability of HbF in SCD in Africa.

Functional relevance of FLT1 associations
FLT1 (VEGFR1) and the kinase insert domain receptor (KDR or VEGFR2)
transduce mitogenic signals from VEGF necessary for regulating
angiogenesis and vascular permeability43. There is growing evidence
for the involvement of FLT1 in haematopoiesis such as in the pro-
liferation of HSPCs43,44 and the differentiation of megakaryocytes (Mk;
which share a common progenitor with erythroid cells)56 in a hypoxia-
induced manner. A study that investigated the mechanism of HbF
induction under hypoxia-induced stress erythropoiesis implicated
HIF1A as a direct mediator that targets chromatin accessibility to
favour transcription of the γ-globin genes41. FLT1 is a known target of
hypoxia inducible factors (HIFs: HIF1A/2 A), demonstrated by hypoxia
response elements (HREs) in the FLT1 regulatory region57 (Fig. 3c).
Interestingly, a hypoxia-driven autocrine loop between VEGF, FLT1,
and phosphorylated extracellular-signal regulated kinase 1/2 (ERK1/2;
two mitogen-activated protein kinases–MAPKs) in a neuroblastoma
model has been shown to activate HIF1A, favouring its nuclear locali-
sation, accumulation, and transcriptional activity58. This suggests FLT1
might be implicated in the HIF1A-HbF induction nexus in erythroid
cells (see Supplementary Fig. 18b). Our results indicate that the asso-
ciation of FLT1 with HbF level in the Cameroonian cohort might be
driven by at least one of three variants that interfere with the binding
motifs of three TFs active in the haematopoietic system (see Supple-
mentary Information). GFI1 in particularly is a major repressor that
regulates chromatin state and is necessary for human endothelial-to-
haematopoietic transition (EHT)59.

Although HUDEP-2 cells are a common model for adult hae-
moglobin regulation and its perturbation, we were unable to detect
substantial FLT1 expression in these cells in normoxia or hypoxia, as
opposed to readily detected expression in K562 cells in which it is
strongly induced by hypoxia. This supports our hypothesis of a tightly
controlled cell-type and stage-specific expression of FLT1 and suggests
that it might play a role during primitive erythropoiesis. Notably, GFI1
represses gene transcription in myeloid progenitors through recruit-
ment of other major co-repressors including the Corepressor of
RE1 silencing transcription factor (CoREST) and the nucleosome
remodelling and deacetylating (NuRD: a key repressor of the γ-globin
gene) complex60. Our experiments in CD34+ cells did not generate
definitive proof of FLT1 involvement in HbF production. However, they
confirmed the expression of FLT1 in primary human hematopoietic
stem cells consistent with our model of an involvement in early ery-
thropoiesis, and an induction under hypoxia during erythroid matura-
tion, while another VEGFR gene KDR was not induced by hypoxia. FLT1
expression in bone marrow-derived mesenchymal cells dependent on
HIF1A has been previously demonstrated61. Failure to detect significant
FLT1 mRNA levels during erythroid maturation might thus be asso-
ciated to its predicted tight regulation and transient expression similar
to the HIFs. However, the apparent negative regulation of HbF and F
cells by VEGF inhibition implicates FLT1 in the haemoglobin synthesis
pathway through a VEGF-FLT1-HIF1A axis (Supplementary Information
Fig. 18). The basal HbF levels observed across our differentiation con-
ditions and in the general human population could therefore be asso-
ciated to this axis, which seems plausible considering that the bone
marrow microenvironment is relative hypoxic62.

Given the data presented, we propose a model for the regulation
of FLT1 in erythroid cells in Supplementary Fig. 18. The combination of
hypoxia and the disruption of the GFI1 binding motif therefore pro-
vides a reasonable model for FLT1 reactivation, and possible recapi-
tulation of embryonic/fetal erythropoiesis, which is further supported
by the association of FLT1 variants with slightly larger erythrocytes.
Previous studies involving SCD patients in the USA63 and beta-
thalassaemia patients from Greece64 showed FLT1 to be associated
with improved hydroxyurea-induced HbF level65. Also, data from Flt1
and Flk1 (Kdr) knock-out mice show disruption of erythropoiesis66,67.
Therefore, additional experiments involving primary haematopoietic
progenitors from the bone marrow of SCD patients and/or healthy
donors, as well as detailed phenotyping of surviving Flt1−/−, Flt1 +/−,
Flk1 +/− and other knock-in mice model, will be needed to fully char-
acterise the impact of FLT1 and the functionally relevant variants
described herein in erythropoiesis, F-cells, and HbF production.

Methodological considerations
Several points lend support to the robustness of our strategy: (i) the
enrichment of variants in our study in the haematopoietic pathway,
particular in genes involved in haemoglobin synthesis; (ii) the sug-
gestive variants observed in loci that were recently detected through
specialised techniques, e.g., in ZNF410 and JAZF1 through CRISPR
screening and RNA interference respectively21,22; (iii) the recent
detection of a putative novel erythropoietin QTL on chromosome 15
with evidence of association at P = 1.05e-0768; (iv) the OPCML gene
which was detected in the Tanzanian cohort in 2014 at P < 1e-0615 was
replicated in this reanalysis atP < 3e-07 in bothTanzania andCAM-TZN
meta-analysis, suggesting some functional relevance in HbF produc-
tion although the evidence of association falls short of the conven-
tional significance threshold; (v) the SLC4A4 gene observed in the
Tanzanian cohort at P = 5.75e-07 is a bicarbonate cotransporter that is
involved in regulating intracellular pH, a major factor that determines
HbS polymerisation and red blood cell sickling and may therefore be
involved in HbF regulation. The absence of large-effect novel asso-
ciations in the meta-analysis suggests that we are approaching
saturation in the discovery of major HbF level-associated loci with
variants of MAF > 1%. It could also mean the saturation of loci that
contribute to HbF variability additively in these cohorts.

There are limitations to our study potentially impacting the
strength of evidence of the putative associations, e.g., small sample
size of the study cohorts. Replication is further restricted by high
genetic diversity in populations of African descent, and this was
demonstrated with lipid traits in African cohorts69. Hence, additional
functional characterisation is needed to support our findings. SNP
ascertainment bias imposed by the availability of only about 1.1 million
variants in the USA-based cohorts (see Methods and Supplementary
Table 4) likely restricted the observation of additional associations.
Increasing sample size and population coverage could enhance the
signals and uncover additional loci as supported by the recent report
of the novel BACH2 locus19 for which we observed suggestive variants.
Nevertheless, the high genetic heterogeneity observed with cohort-
specific sentinel variants highlights the importance of investigating
larger African populations from multiple countries.

Methods
Ethical approvals
The research was performed in accordance with the Declaration of
Helsinki. Approval was obtained from the University of Cape Town,
Faculty of Health Sciences Human Research Ethics Committee, Cape
Town, South Africa (HREC/REF: R015/2018), and National Ethical
Committee of theMinistry of Public Health of Cameroon (No 193/CNE/
SE/15). All patients older than 18 years signed consent forms, while
informed consent was given by the parents or guardians of partici-
pants younger than 18 years old. Written and signed informed consent
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forms were obtained from adult participants and parents/guardians of
minor patients. An assent was also obtained from the participants of
more than 7 years old. The present study involved a secondary analysis
of existing data and was reviewed and approved by the University of
Cape Town, Faculty of Health Sciences Human Research Ethics Com-
mittee, Cape Town, South Africa (HREC REF: 606/2021).

Patient participants
The data were collected from nine hospitals in five cities in Cameroon,
including Yaoundé, Douala, Bafoussam, Bertoua, and Maroua, from
May 2016 to July 2018. Socio-demographic and clinical events were
collected by means of a structured questionnaire administered to
parents/guardians and adult SCD patients. Patients’ medical records
were reviewed, to delineate their clinical features over the past 3 years.
Only patients older than 5 years of age (to avoid age-related changes in
the complete blood count and HbF level), who had not received a
blood transfusion or hospitalisation in the past 6 weeks were included.
None was currently treated with hydroxycarbamide or opioids. The
sampling strategy was not restricted to hospital-based patients to
avoid the bias that might result from including only the sickest
patients. To accomplish this goal, two SCA patients’ associations in
Cameroon were engaged in collaboration, and additional patients
were recruited during their monthly meetings. No incentive was pro-
vided for participation in the study.

Measurements of haematological indices
Haemoglobin electrophoresis and complete routine blood count of
the SCA patients were conducted upon arrival at the hospital. High
performance liquid chromatography (HPLC) was used for the mea-
surement of HbF levels at the haematological laboratory of the Centre
Pasteur in Yaoundé, as previously described70,71. No patients had HbA
measurements with HPLC.

Molecular methods
Genotyping of the sickle cell anaemia mutation, HBB cluster hap-
lotypes, and 3.7 kb HBA1/HBA2 deletion. DNA was extracted from
peripheral blood following the manufacturer’s instructions (Puregene
Blood Kit; Qiagen, Hilden, Germany). Molecular analysis to determine
the presence of the sickle mutation was carried out on 200 ng DNA by
PCR to amplify a 770 bp segment of the HBB, followed by DdeI
restriction analysis of the PCR product72. The present analysis was
restricted to sickle cell anaemia (homozygous HbS) due to the well-
known differences in laboratory parameters73,74, and to allow single
sickle genotype (HbSS) for genetic associations. Using published pri-
mers and methods, five restriction fragment length polymorphism
sites in the HBB cluster were amplified to analyse the XmnI (5’Gγ),
HindIII (Gγ), HindIII (Aγ), HincII (3ψβ’) and HinfI (5’β) for the HBB hap-
lotype background75. The 3.7 kb HBA1/HBA2 deletion was successfully
screened, using the expand-long template PCR (Roche Diagnostics,
Basel, Switzerland), as previously published76.

Cameroonian cohort. Two batches of samples of sickle cell anaemia
patients from Cameroon (batch 1: n = 1199, batch 2: n = 403) were
genotyped on the 2.3M H3Africa SNP array at Illumina® FastTrackTM
Microarray services (Illumina, San Diego, USA) between 2018 and
2019. Genotype calling was performed for each batch using the
Illumina gencall algorithm from the Illumina Array Analysis Platform
Genotyping Command Line Interface (IAAP-CLI) version 1.1 (IAAP
Genotyping command line interface: https://emea.support.illumina.
com/downloads/iaap-genotyping-cli.html). Briefly, gencall was used
to process intensity data in IDAT format to GTC formats, utilising
manifest and cluster files specific to the H3Africa chip retrieved from
https://chipinfo.h3abionet.org/downloads (Accessed: December 5,
2021). Thereafter, the per-sample GTC files were converted to a sin-
gle VCF file for the separate batches of samples using the gtc2vcf

plugin of bcftools version 1.15.1, while aligning to the human refer-
ence sequence in build 37 (hg19) coordinates.

Tanzanian cohort. The dataset consisted of genotypes for 1213 Tan-
zanian SCApatients generated using the IlluminaHumanOmnichip 2.3
platform (Illumina Inc., San Diego, CA, USA), and available at the Eur-
opean Genome Phenome Archive (EGA) under the accession number
EGAD0001000065015. The genotype data mapped to the human
reference in build 37 coordinates, and in PLINK binary format, as well
as clinical data were obtained from the Tanzanian investigators. The
data contributed to the first GWAS of HbF in Africa published in 201415.

USA-based cohorts. We obtained meta-analysed summary statistics
of HbF GWAS involving seven cohorts of sickle cell anaemia (HbSS)
patients based in the United States of America (USA) from the study by
Harold T. Bae et al., totalling 2040 samples16. The cohorts included:
Cooperative Study of Sickle Cell Disease (CSSCD: n = 841), Multicenter
Study of Hydroxyurea (MSH: n = 178), Pulmonary Hypertension and
the Hypoxic Response in Sickle Cell Disease (PUSH) study (n = 73),
Comprehensive Sickle Cell Centers Collaborative Data (C-data) project
(n = 127), Treatment of Pulmonary Hypertension and Sickle Cell Dis-
ease with Sildenafil Treatment (Walk-PHaSST) trial (n = 181), Duke
UniversityOutcomeModifyingGenes study (n = 152), and Silent Infarct
Transfusion (SIT) trial (SITT: n = 488). The meta-analysis was per-
formed using the inverse variance method of the METAL software.
Apart fromSNPcoordinates (chromosomeandposition), the summary
statistics included all information necessary to performmeta-analysis,
including dbSNP and Illumina SNP identifiers (1,198,700 SNPs in total).
We also obtained complete GWAS summary statistics from the SITT
cohort in which HbF was cubic root normalised. The summary statis-
tics included SNP coordinates in the human reference build 36 (hg18),
as well as dbSNP and Illumina SNP identifiers (1,138,137 SNPs in total).

Quality control (QC). Genotype quality control was performed for
batch 1 and 2 of our stage 1 GWAS data set separately. First, each batch
of samples with gencall call rate ≥90% (batch1 n = 1137, batch2 n = 367)
was converted to plink binary file sets using PLINK277 while excluding
duplicate SNPs. Samples that failed missingness criteria (outlying
heterozygosity and missing genotype rate >10%; see Supplementary
Fig. 2) were excluded. Duplicate and related individuals (up to 2nd
degree relationships) were identified using the Kinship-based INfer-
ence for Genome-wide association studies (KING v2.2.4) software78,
and one individual from each pair of duplicate or related individuals
was excluded. Apparently mislabeled samples were also identified
using the KING software, and all samples that failed QCwere excluded.
SNP QC was performed by excluding SNPs with missing genotype rate
>5%, MAF < 1%, and SNPs that failed the Hardy-Weinger equilibrium
(HWE) test at a p value threshold of 1e-6, as well as palindromic [A/T]
and [C/G] SNPs were also excluded. The two batches of genotype data
were then merged using PLINK v1.9 –bmerge77. Additional quality
control on themerged data set was performed to exclude samples that
failedmissingness criteria, duplicate and/or related samples, SNPswith
MAF < 1%, SNPs with missing genotype rate >5%, and SNPs that failed
the HWE test at P = 1e-6. To control for potential batch effects, SNPs
with significant (p value < 0.001) allele frequency difference (differ-
ential missingness) between the batch 1 and batch 2 data sets were
excluded. In addition, PC analysis (PCA) was performed on a set of
high-quality independent SNPs using smartpca of the EIGENSOFT
package (version 7.2.1)79 to investigate batch effects and to remove
population and ancestry outliers. The independent set of SNPs was
obtained by linkage disequilibrium (LD) pruning using the following
parameters: linkage disequilibrium <0.2, window size of 50bp, and
step size of 10 bp. Population outliers were pruned with smartpca
using the following pruning parameters: 10 PCs alongwhich to remove
outliers with 5 outlier removal iterations and specifying 6.0 standard
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deviations which an individual must exceed along one of the top 10
PCs to be excluded as an outlier. Only the merged genotype data was
considered for subsequent analyses. We applied the same quality
control procedure to the Tanzanian cohort genotype data.

Haplotype estimation (phasing) and genotype imputation. Haplo-
types were estimated for the stage 1 and 2 genotype data sets sepa-
rately using the 1000 Genomes reference panel80,81 for all autosomes
and the X chromosome. First, the genotype data were aligned to the
1000 Genomes haplotype reference panel (phase 3, version 5) to
ensure allele overlap with the reference panel using the conform-gt
programme from the BEAGLE utils (https://faculty.washington.edu/
browning/conform-gt.html). SNPs that were absent in African popu-
lations in the reference panel, as well as SNPs with inconsistent strand
and allele mismatch as compared to the reference panel were exclu-
ded. We then used the EAGLE v2.4.2 software82 to phase the data sets
with the combined hapmap recombination map used to provide
genetic distance, and set 20,000 conditioning haplotypes (-Kpbwt,
default 10,000) to improve phasing accuracy. Genotypes were impu-
ted from six different panels: a custom panel created from whole
genome sequence data of 50 individuals of Cameroonian origin (see
Creation of custom imputationpanel), theH3Africapanel consistingof
~3280 individuals from 17 African countries, the TOPMed panel con-
sisting of ~180,000 individuals pooled from the NHLBI’s studies of
which 29% are of African ancestry74, the 1000 Genomes reference
panel (KGP, phase 3 version 5) consisting of 661 individuals fromWest
and East Africa81, the Consortium on Asthma among African-ancestry
populations in America (CAAPA) panel consisting of 883 individuals of
African ancestry75, and the African Genome Resource (AGR) consisting
of 4,956 individuals, 62% (~3061) of whom are of African ancestry
mostly from eastern and southern Africa (~2501, 82% of all the African
samples)18 (Supplementary Table 3). The TOPMed panel was accessed
via the TOPMed imputation web service, the KGP and CAAPA panels
were accessed via theMichigan imputation web service83, the AGRwas
accessed via the Sanger imputation web service84, while access to the
H3Africa panel via the H3Africa imputation web service was granted
upon request. In our in-house procedure, we used BEAGLE v585 for the
imputation of each chromosome separately, leaving all default para-
meters andusing the single chromosomehapmap recombinationmap.
For the TOPMed and Michigan imputation web services86, we selected
the MINIMAC4 software87 for imputation and retrieved only variants
with imputation accuracy, R2 ≥0.3. For the Sanger imputation web
service, we selected the Positional Burrows-Wheeler Transform
(PBWT) package for imputation88. Imputed data from each panel and
for each analysis stage were processed separately. Quality control of
the imputed data included the removal of variants with imputation
accuracy (R2) < 0.60 and genotype call rate <95%. Only biallelic SNPs
and INDELs were retained for subsequent analysis.

Creation of custom imputation panel. We used whole-genome
sequencing (WGS) data from 24 Cameroonian SCD patients, as well
as WGS data of 26 individuals of Cameroonian origin who contributed
to the H3Africa Trypanogen project for the custom panel creation.
First, the quality of the FASTQ reads were checked using FastQC, and
then mapped to the human reference genome in build 37 coordinate
(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/latest/
hg19.fa.gz) using BWA-MEM89. The resulting SAM files were converted
to BAM and sorted by coordinate (chromosome and base pair posi-
tion) using samtools90. Duplicate reads were marked, and base quality
scores recalibrated using GATK version 4.2.5.091. For variant calling, we
used a recently optimised pipeline involving DeepVariant version 1.3.0
for single-sample variant calling and GLNexus version 1.4.3 for joint
variant calling (DV-GLN-OPT)92. In their optimisation and benchmark-
ing study, Yun et al. developed a variant filtration scheme based on
four tunableparameters, whichgave theDV-GLN-OPT an edgeover the

popular GATK-VQSR Best Practices pipeline for all data types analysed
(includingwhole-exome). Theseparametershavenowbeen coded into
the GLNexus package as the default settings, and they were therefore
utilised in our study. In addition, Yun et al. showed that the reference
imputation panel created using variant calls from the optimized
pipeline outperformed that created using call sets from GATK best
practices pipeline. To create our custom panel, we applied additional
filters on ourDV-GLN-OPT joint call set: we excluded variants with read
depth (DP) < 10, genotype quality (GQ) < 20, as well as monoallelic and
singleton sites. We then phased each chromosome separately without
reference using EAGLE v2.4.2 as previously described.

Association analysis. Association testing was performed using the
Scalable and Accurate Implementation of generalised mixed model
(SAIGE) software, version 0.3893. First, we extracted independent SNPs
for each non-imputed dataset of the Cameroonian and Tanzanian
cohort through linkage disequilibrium pruning in PLINK2 according to
the following parameters: window size of 500,000 base pairs (bp),
step-size of 50 markers, and pairwise LD (r2) < 0.2. Next, 20 PCs were
computed for each of the datasets using the high-quality independent
SNPs. Thereafter, a null generalised linear mixed model (GLMM) was
fitted for each of the full non-imputed datasets including only SNPs
with minor allele count (MAC) ≥ 20 as recommended93. A full genetic
relationship matrix (GRM) calculated on the fly from the plink binary
file sets was used to fit the null GLMM on the cubic root transformed
HbF quantitative trait while including the top 10 PCs, as well as age and
sex as covariates. Using the fitted null GLMMs for each cohort, single
variant association tests were next performed for each imputed data-
set filtered to include only biallelic SNPs and INDELs with MAF ≥0.01,
imputation accuracy ≥0.6, genotype call rate ≥95%, aswell as SNPs that
passed the HWE test at P = 1e-06. Association analysis in the Camer-
oonian cohort involved 827 samples, 52% of whom were females, and
the average age of the participants was 17.61. In the Tanzanian cohort,
884 samples were analysed, 53% of whom were females, and the
average age of the participants was 13.19. The Benjamin-Hockberg FDR
method implemented in the p.adjust function of the R statistical
package94 was then used to correct for multiple testing.

Meta-analysis. We performed fixed effects meta-analysis using the
METAL software95 on the basis that all the populations were of the
same ethnic background. We used a two-step approach which con-
stituted Stage two and Stage three of our GWAS analysis; (i) GWAS
Stage two: involved a meta-analysis of Cameroonian and Tanzanian
cohorts using summary statistics from the Stage one GWAS, (ii) GWAS
Stage three: involved meta-analysis of Cameroonian, Tanzanian, and
the USA-based cohorts. For accurately matching of markers across the
studies, we standardised the variant IDs (“MarkerName”) using “chro-
mosome:position:SNV” (e.g., 2:60718043:SNV). Considering that
summary statistics for the USA-based cohorts lacked coordinates (that
is chromosome and position), and that the SITT cohort with coordi-
nate information was mapped to build 36, we first updated the coor-
dinates in the SITT cohort to build 37 (as well as to build 38 for meta-
analysis with the TOPMed panel) using the UCSC liftOver tool (https://
genome.ucsc.edu/cgi-bin/hgLiftOver). Briefly, we created a bed file
from the build 36 coordinates and used it as input for liftOver. A total
of 1,137,886 and 1,137,522 SNPs were successfully updated to build 37
and build 38, respectively. We then used the updated SITT cohort
coordinates to update theUSA-based cohorts summary statistics using
the variant ID column as the primary key. Therefore, only the 1,137,886
and 1,137,522 SNPs that were successfully updated in the SITT cohort
were retained in the updated USA-based cohorts formeta-analysis. We
noted similar effect size estimates and standard errors across the
studies indicating similar phenotyping and normalisation, and we
therefore used the inverse variance method of METAL for meta-
analysis. We used genomic control to account for population
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stratification, as well as allele frequency tracking to help identify allele
flips. We also enabled heterogeneity analysis in which METAL com-
putes the I2 statistic (and corresponding p values) which measures the
amount of effect size variation across the studies that is due to het-
erogeneity rather than chance.

Statistical and functional fine mapping. We used the ‘sum of single
effects’ (SuSiE) model implemented in the SusieR package96 to fine-
map functionally relevant variants in each region that showed sig-
nificant association(s) in our analyses. SusieR employs an iterative
Bayesian stepwise selection (IBSS) procedure that affords it the
advantage of capturing uncertainty in which variable to select in its
variable selection scheme and is thus well suited for highly correlated
data. That is, the estimate of uncertainty provides a framework for
determining which variant is most probably ‘causal’ in a scenario of
completely (highly) correlated variants. For significant associations in
the stage 1 GWAS results, we computed 95% credible sets using in-
sample correlation (LD) matrices for Cameroon (discovery) and Tan-
zania (replication) respectively. We used out-sample correlation
matrices—computed from African samples in the 1000 Genomes
reference panel—to compute 95% credible sets for significant asso-
ciations from the meta-analysis results. All correlation matrices (spe-
cifically r as recommended) were calculated using Plink1.9. Regional
association plots were then generated for each signal, highlighting the
fine-mapped variants using LocusZoom97. For loci that were significant
in the independent cohort association tests and meta-analysis, fine
mapping was performed for both results, and the credible sets were
merged for functional mapping. Functional fine-mapping involved: (i)
searching in the GTEx (https://www.gtexportal.org/home/) portal
whether the fine-mapped variants were expression quantitative or
splicing quantitative trait loci (eQTLs and sQTLs respectively), (ii)
searching in the ENSEMBL database for functional classifications, (iii)
mapping their locations relative to the nearest gene, taking into
account any evidence of recombination hotspots within the genomic
area as represented in the regional association plots, (iv) investigating
their occurrence in functionally relevant regions using the University
of California Santa Cruz (UCSC) genome browser tracts (https://
genome.ucsc.edu/index.html), including chromatin state segmenta-
tion by the ChromHMM algorithm, TFBS by the JASPAR algorithm,
gene-enhancer interaction by the GeneHancer algorithm, TF chroma-
tin immunoprecipitation sequencing (ChIP-seq) peaks from the
ENCODE project, etc, and (v) investigation of enhancer classifications
in the ENCODE and VISTA Enhancer (https://enhancer.lbl.gov/) data-
bases. Sequence logos of binding motifs for TFs whose motifs were
affected by the fine-mapped variants were obtained from the JASPAR
website (https://jaspar.genereg.net/).

Association of FLT1 fine-mapped variants with other blood traits in
Cameroonians. Association test of the FLT1 fine-mapped variants was
performed for each of the imputed datasets separately using PLINK
v1.90b6.26 64-bit. We specified 1,000,000maximum permutations to
account for population structure and adjust for multiple testing.

Gene set analysis and functionalmapping. The FUMA v1.5.498 online
platform available at https://fuma.ctglab.nl/ was used for functional
annotation of the GWAS results in a two-step approach: (i) all sum-
mary statistics in GRCh37 coordinate were uploaded to the
SNP2GENE algorithm using the following parameters: p value
threshold for lead SNP = 5e-7 and minimum LD for defining lea
SNP = 0.4. We selected the African populations (AFR) of the 100
Genomes projects (KGP) as reference, while all other default para-
meters were used (see Web resources). SNP2GENE uses the ANNO-
VAR tool to functionally annotate independent lead SNPs and their
LD tags and map them to their corresponding genes. Prioritised
genes based on positional, eQTL, and chromatin interaction

mapping, are then processed with the GENE2FUNCTION algorithm to
obtain insight into putative biological mechanisms and pathways. In
addition to functional mappings, FUMA also performs gene-based
tests and gene set analysis as implemented in the MAGMA v1.08
tool99. Specifically, for gene-based tests, MAGA uses the SNP p values
from the summary statistics to compute Chi-Square statistics for a
gene with LD generated from a reference panel, and the mean or the
top Chi-Square statistic is taken as the gene test statistic. FUMA
implements the mean model in which a gene p value is obtained by
using a known approximation of the sampling distribution, and the
significance threshold is calculated by 0.05/number of mapped
genes (Bonferroni correction). In our study, the threshold was 2.517e-
6 (P = 0.05/19867). For gene-set analysis, the gene p value for each
gene from the gene-based analysis is converted to a Z value that
reflects the strength of the association of each gene with the
phenotype.

FLT1 haplotype structure and association analysis. Haplotype ana-
lysis was performed for theCameroonian and Tanzanian cohorts using
haploview v4.2100. First, the FLT1 40 kb region and 25 kb upstream and
downstream were extracted for each of the imputed datasets using
PLINK1.9 according to the following coordinates: GRCh38
28476218–28549906, GRCh37 29050355–29124043. At the same time,
the HbF phenotype was transformed into case-control whereby cases
were defined as HbF level ≥8.6% and controls as HbF level ≤3.1% as
previously described101. A total of 408 variants and 520 samples were
retained in the Cameroonian cohort, of which 413 were cases, and 107
were controls (240males and 280 females). A total of 464 variants and
448 samples were retained in the Tanzanian cohort, of which 152 were
cases, and 296 were controls (228 males and 220 females). PLINK1.9
was used to recode the data into haploview format. The default quality
filters of haploview we used; no sample or SNP failed any of the filters.
Haplotype blocks were computed using the Gabriel block definition102,
i.e., 95% confidence bounds on D prime (D’) are generated and each
comparison is called “strong LD”, “inconclusive” or “strong recombi-
nation”. A block is created if 95% of informative (i.e. non-inconclusive)
comparisons are “strong LD”. Variants with MAF<0.05 were not
included in block calculations, and blocks were non-overlapping. LD
plots showing haplotype blocks and the FLT1 fine-mapped variants
were generated by haploview. The chromosome 13 hapmap recombi-
nation map was used as a track file to generate a recombination plot
alongside the LD plot, as well as to highlight the FLT1 fine-mapped
variants. Finally, single variant and haplotype association tests were
performed using 100,000 permutations. Haplotype structure analysis
was also performed for the non-SCD Cameroonians (n = 25) that con-
tributed to the custom panel creation, as well as for genomes of indi-
viduals that were negative for the sickle mutation from the 1000
Genomes Project.

Assessment of transferability/replication of signals. Genomic
regions associated with HbF level were identified from the respective
summary statistics. Recent genetically nominated HbF-influencing loci
were also identified through a literature search. From each cohort in
which the significant signal was absent, we extracted the loci (genes),
including 100 kb downstream and 100 kb upstream, given that some
cis-regulatory elements could be tens of thousands of bases away. We
next looked up variants within the extracted region, and replication or
transferability of the signal was defined as the occurrence of variants
at P <0.05.

Estimation of HbF heritability. We first combined the VCF files from
both cohorts that were aligned to the 1000 Genomes panel during
preparation for imputation. Therewere 1711 samples all together.Next,
we extracted only biallelic SNPs across autosomes that passed the
following filtering criteria: MAF > 1%, missing genotype rate <5%,
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individual missingness <10%, HWE p value of 1e-06, and individuals
with average heterozygosity within three standard deviations of the
mean heterozygosity. Twenty-nine individuals with outlying hetero-
zygosity were excluded, while no SNPs were excluded based on miss-
ingness criteria. To assess potential batch effects, we calculated
differential missingness among the two cohorts. No SNPs were exclu-
ded due to differential missingness test at p value < 0.01. We then
estimated HbF heritability in the resulting cohort of 1682 high-quality
samples of Cameroonian and Tanzanian SCA patients using the Ran-
domised Haseman–Elston regression for Multi-variance Components
(RHe-mc) software103, which jointly estimates additive and dominant
genetic variance components. We set the number of random vectors
(K) to 10, and the number of block Jackknifes (B) for standard error
estimation to 1000 as recommended. In addition, we included four
sets of PCs (20PCs, 30PCs, 50PCs, and 100PCs), as well as age, sex, and
country as covariates. To accurately capture the effect of age, we
performed another set of analyses in which we used the square of age
as an additional covariate. Box plots were generated using ggplot2
in R104.

HUDEP-2 cell culture, differentiation, and hypoxia treatment.
HUDEP-2 cells were expanded in SFEMmedia (StemCell Technologies,
09650) supplemented with 50 ng/mL recombinant human SCF
(Peprotech, 300-07) 3 units/mL EPO, 1μg/mL doxycycline (Sigma
Aldrich, D9891), 0.4μg/mL dexamethasone (Sigma Aldrich, D4902),
and 1% Penicillin-Streptomycin solution. HUDEP2 cells were differ-
entiated using a 2-phase protocol. During phase 1 (days 0-3), cells were
cultured at 0.5E6 cells/mL-1.5E6 cells/mL in IMDMwith 2% fetal bovine
serum, 2% human blood type AB plasma (Seracare, 1810-0001), 1%
penicillin/streptomycin, 3 units/mL heparin, 10μg/mL insulin (Sigma,
I9278), 3 units/mL EPO, 1mg/mL holo-transferrin (Millipore Sigma,
T0665), 50ng/mL SCF and 1 µg/mLdoxycycline. After 3 days of culture
in phase 1, the media was replaced with fresh media containing the
same ingredients but without SCF, and cultured at 1E6 cells/mL-2E6
cells/mL for 7 additional days (10 days total). For hypoxic treatment,
cells were differentiated, and sample collections and media changes
were performed within a Whitley H35 HEPA Hypoxystation incubator
at 2% O2. RNA was extracted using the RNeasy Plus Mini Kit (Qiagen)
following the manufacturer’s protocol and eluted into 50 µL 10mM
Tris-HCl.

Isolation and culture of CD34+ human HSPCs. Circulating G-CSF-
mobilised humanmononuclear cells were obtained from de-identified
healthy adult donors (Charles River, StemExpress). We complied with
all relevant ethical regulations and all participants provided informed
consent. CD34+ cells were enriched by immunomagnetic bead selec-
tion using a CliniMACS Plus or AutoMACS instrument (Miltenyi Bio-
tec). CD34+ cells were maintained in stem cell culture medium: X-
VIVO-10 (Lonza, BEBP02-055Q) medium supplemented with 100ng/μl
human SCF (Peprotech, 300-07), 100 ng/μl human TPO (Peprotech,
300-18) and 100 ng/μl human FLT-3 ligand (Peprotech, 300-19). Cells
were seeded and maintained at a density of 1–2 × 106 cells per ml.

Erythroid differentiation of CD34+ cells was performed using a
three-phase protocol105,106. Phase 1 (days 1–8): Iscove’s modified Dul-
becco’s medium (IMDM; Thermo Fisher Scientific, 12440061) with 2%
human blood type AB plasma (SeraCare, 1810-0001), 3% human AB
serum (Atlanta Biologicals, S40110) 1% penicillin/streptomycin
(Thermo Fisher Scientific, 15070063), 3 units/ml heparin (Sagent
Pharmaceuticals, NDC25021-401-02), 3 units/ml EPO (Amgen, EPOGEN
NDC 55513-144-01), 200μg/ml holo-transferrin (Millipore Sigma,
T0665, 10 ng/ml human SCF (R&D systems, 255-SC/CF), and 1 ng/ml
human interleukin IL-3 (R&D systems, 203-IL/CF). Phase 2 (days 8–13):
phase 1 medium without IL-3. Phase 3 (days 13–18): phase 2 medium
without SCF and with holo-transferrin concentration increased to

1mg/ml. Cells were maintained daily at a density of 0.1 × 106 per ml
(phase 1), 0.2 × 106 per ml (phase 2), and 1.0 × 106 per ml (phase 3).

Erythroblast maturation was monitored by immuno-flow cyto-
metry for the cell surface markers CD235a (BD Pharmingen Cat. No.
559943, 1:100 dilution), CD49d (BioLegend Cat. No. 304304, 1:20
dilution), and BAND3 (gift from X. An, 1:100 dilution). For hypoxic
treatment, cells were differentiated, and sample collections andmedia
changes were performed within a Whitley H35 HEPA Hypoxystation
incubator at 2% O2.

Cas9 nuclease purification. We transformed 3xNLS-SpCas9 plasmid36

plasmid28 into BL21 (DE3) competent cells (MilliporeSigma, 702353)
and grew the cells in TB medium at 37 °C until the density reached
OD600= 2.4–2.8. Cells were induced with 0.5mM isopropyl β-d-1-
thiogalactopyranosideper litre for 20 h at20 °C. Cell pelletswere lysed
in 25mM Tris, pH 7.6, 500mM NaCl, 5% glycerol by homogenisation
and centrifuged at 45,000× g for 1 h at 4 °C. Cas9 was purified with
Nickel-NTA resin and treatedwithTEVprotease (1mgTEVper 40mgof
protein) and benzonase (100 units/ml, Novagen 70664-3) overnight at
4 °C. Subsequently, Cas9 was purified using a size-exclusion column
(Amersham Bio-sciences HiLoad 26/60 Superdex 200 17-1071-01) fol-
lowed by a 5-mlSP–HP ion exchange column (GE 17-1151-01) according
to the manufacturer’s instructions. Proteins were dialysed in 20mM
Hepes buffer pH 7.5 containing 400mM KCl, 10% glycerol, and 1mM
TCEP buffer. Contaminants were removed using a Toxin Sensor
Chromogenic LAL Endotoxin Assay Kit (GenScript, L00350). Purified
proteins were concentrated and filtered using Amicon ultrafiltration
units with a 30-kDa MWCO (MilliporeSigma, UFC903008) and an
Ultrafree-MC centrifugal filter (MilliporeSigma, UFC30GV0S). Protein
fractions were further assessed using TGX stain-free 4–20% SDS–PAGE
(Biorad, 5678093) and quantified by BCA assay.

Base editor mRNA transcription. Base editor plasmids were PCR-
amplified with NEB Next polymerase (NEB) using primers that add an
active T7 promoter upstream of the editor gene and a 120nt poly(A)
tail to the 3’ end. PCR products were purified with the QIAquick PCR
Purification Kit (QIAgen) and were used as a template for in vitro
transcription. The HiScribe T7 High-Yield RNA Synthesis Kit (NEB) was
used with co-transcriptional capping by CleanCap AG (Trilink Bio-
technologies) and full substitution of uracil for N1-methylpseudour-
idine-5’-triphosphate (Trilink Biotechnologies). mRNA was purified by
precipitation in 2.5M LiCl and incubation at −20 °C for 30minutes.
PrecipitatedmRNAwaswashed twice in 70%ethanol and reconstituted
in nuclease-free water. mRNA concentration was quantified using a
NanoDrop One UV-Vis spectrophotometer, normalised to a con-
centration of 2 micrograms per microlitre, and stored at −80 °C.

Cas9 nuclease and base editor electroporation in HUDEP-2 and
CD34+ cells. Electroporation was performed using the Lonza 4D
Nucleofector and P3 Primary Cell 4D-Nucleofector Kit (Lonza, V4SP-
3096) according to the manufacturer’s instructions. Ribonucleopro-
tein (RNP) complexes were prepared by mixing Cas9-3xNLS protein
and gRNA at a final reaction concentration of 2.5 µM and 7.5 µM,
respectively, and incubating at room temperature for 20min. For base
editor electroporation, evoAPOBEC or evoCDA mRNA and gRNA were
combined at 4 µg and 2.5 µg, respectively. gRNA sequences are listed in
Supplementary Data 5. 5 million HUDEP2 cells per reaction were
washed with Phosphate Buffered Saline (PBS) (Corning, 21-031-CV),
resuspended in Lonza P3 solution, mixed with the RNPs or the mRNA/
gRNA mixture, transferred to a 20-μl Nucleocuvette Strip, and elec-
troporated in the Lonza 4D Nucleofector using programme DS-130.
Electroporated cells were recovered in supplemented SFEM media as
described in HUDEP2 cell culture, differentiation, and hypoxia treat-
ment). Genomic DNA was extracted on culture days 3 and 5 using
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QIAquick Gel extraction Solution (Qiagen, 28704) and then analyzed
by next-generation sequencing for editing efficiency.

High-throughput sequencing and analysis of edited HUDEP-2 and
CD34+ cells. Targeted amplicons were generated using gene-specific
primers with partial Illumina adaptor overhangs (overhangs not
shown) and sequenced as previously described107. Specific primer
sequences are listed in Supplementary Data 5. Cell pellets were lysed,
and the extracted genomic DNA was used as a template to amplify the
target site and add Illumina adaptors. Amplicons were indexed in a
second PCR reaction and pooled for sequencing. 10% PhiX Sequencing
Control V3 (Illumina) was added to the pooled amplicon library prior
to running the sample on an Miseq Sequencer System (Illumina) to
generate paired 2 × 250bp reads. Samples were demultiplexed using
the index sequences, fastq files were generated, and NGS analysis was
performed using CRIS.py108.

Illumina Stranded mRNA-seq. RNA was harvested from CD34+ cell-
derived erythroid cells using an RNEasy RNA Isolation Kit (Qiagen,
74134) at Day 0 andDay 13 of differentiation. RNAwas quantified using
the Quant-iT RiboGreen RNA assay (ThermoFisher) and quality
checked by the 2100 Bioanalyzer RNA 6000 Nano assay (Agilent) or
4200 TapeStation High Sensitivity RNA ScreenTape assay (Agilent)
prior to library generation. Libraries were prepared from total RNA
with the Illumina Stranded mRNA Library Prep Kit according to the
manufacturer’s instructions (Illumina PN20040534). Libraries were
analysed for insert size distribution using the 2100 BioAnalyzer High
Sensitivity kit (Agilent), 4200 TapeStation D1000 ScreenTape assay
(Agilent), or 5300 Fragment Analyzer NGS fragment kit (Agilent).
Libraries were quantified using the Quant-iT PicoGreen ds DNA assay
(ThermoFisher) or by low-pass sequencing with a MiSeq nano kit
(Illumina). Paired-end 100 cycle sequencing was performed on a
NovaSeq X+ (Illumina).

Total stranded RNA sequencing data were processed by the
internal AutoMapper pipeline. Briefly the raw reads were first trimmed
(Trim-Galore version 0.60), mapped to human (GRCh38) (STAR
v2.7)109 and then the gene level values were quantified (RSEM v1.31)110

based on GENCODE annotation (v31). Genes with low counts (CPM<
0.1) were removed from the analysis, and only protein-coding genes
were used for differential expression analysis. Normalisation factors
were generated using the TMM method111, counts were then trans-
formed using voom112 and then analysed using the lmFit and eBayes
functions (R limma package version 3.42.2)113. The FDR was estimated
using the Benjamini–Hochberg method.

Fraction of CD235a +HUDEP2-derived erythroid cells expressing
fetal haemoglobin (F-cell) measurement by flow cytometry.
1.0−3.0E5 CD34+ cell-derived erythroid cells were incubated with
Hoechst 33342 for 20min at 37 °C, fixed with 0.05% glutaraldehyde
(Millipore Sigma, G5882), and permeabilized with 0.1% Triton X-100
(Millipore Sigma, 93443). Subsequently, cells were stained with
CD235a and anti-human HbF, then analysed by flow cytometry.
1.0−3.0E5 HUDEP2-derived erythroid cells were incubated with
Hoechst 33342 for 20min at 37 °C, fixed with 0.05% glutaraldehyde
(Millipore Sigma, G5882), and permeabilized with 0.1% Triton X-100
(Millipore Sigma, 93443). Subsequently, cells were stained with
CD235a and anti-human HbF, then analysed by flow cytometry. Flow
cytometry gating strategy is presented in Supplementary Informa-
tion Fig. 23.

Globin HPLC measurements in edited HUDEP-2 cells. Analytical
high-performance liquid chromatography (HPLC) quantification of
haemoglobin tetramers and individual globin chains was performed
using ion-exchange and reverse-phase columns on a ProminenceHPLC
System (Shimadzu Corporation). Proteins eluted from the column

were identified at 220 and 415 nm with a diode array detector. The
relative amounts of haemoglobins or individual globin chains were
calculated from the area under the 415-nm peak and normalised based
on the dimethyl sulfoxide control. The percentage of HbF was calcu-
lated as follows from ion-exchange HPLC: %HbF= [HbF/(HbA +
HbF)] × 100. The percentage of g-globin haemoglobin subunits was
calculated as follows from reverse-phaseHPLC: % g-globin = [(Gg-chain
+ Ag-chain)/b -like chains (b + Gg + Ag)] × 100.

K-562 cell culture andhypoxia treatment. K-562 cells were expanded
in IMDMmedia (Gibco, 12440061) supplementedwith 10% fetal bovine
serum. For hypoxic treatment cells weremaintained within a Plas-Labs
hypoxia chamber at 1% O2.

Edited HUDEP-2 cell culture, differentiation, and hypoxia treat-
ment. EditedHUDEP-2 cells were expanded in SFEMmedia (StemCell
Technologies, 09650) supplemented with 50 ng/mL recombinant
human SCF (Peprotech, 300-07), 3 units/mL recombinant EPO
(Peprotech, 100-64), 1 μg/mL doxycycline (R&D Systems, 4090-50),
0.4μg/mL dexamethasone (R&D Systems, 1126/100). HUDEP-2 cells
were differentiated for ten days using a 2-phase protocol. During
phase 1 (days 0-3), cells were cultured at 1.0e6 cells/mL in IMDM with
5% human blood type AB plasma (GemCell, 100-512-100), 1% peni-
cillin/streptomycin, 3 units/mL heparin (Sigma-Aldrich, H3393-
10KU), 10μg/mL insulin (Sigma, I9278), 3 units/mL recombinant EPO
(Peprotech, 100-64), 100μg/mL holo-transferrin (Bio-Techne, 2914-
HT-001G), 50 ng/mL recombinant human SCF (Peprotech, 300-07)
and 1 µg/mL doxycycline (R&D Systems, 4090-50). At the onset of
phase 2 (days 4-10), cells were counted and adjusted to 1.5e6 cells/mL.
The media was replaced with fresh media containing the same sup-
plements minus the recombinant SCF. For hypoxic treatment, cells
were differentiated within a Plas-Labs hypoxia chamber at 1% O2.

Real-Time qPCR analysis. RNA was extracted using the RNeasy Plus
Mini Kit (Qiagen) following the manufacturer’s protocol and eluted
into 50 µL 10mMTris-HCl. RNAwas quantifiedwith theQubit® RNABR
Assay (Life Technologies). 25.0 ng of total RNA was used for reverse
transcription followed by quantitative real-time PCR using IDT’s Pri-
meTime One-Step RT-qPCR master mix (Coralville, IA) following the
manufacturer’s recommended protocol. Gene expression was eval-
uated using IDT PrimeTime qPCR Assays following both the protocol
and suggested cycling conditions for 10 µL reactions. qPCR was per-
formed on the QuantStudio 12 K Flex Real-Time PCR System (Applied
Biosystems) and analysedwith theQuantStudio 12 K Flex Software V1.5
(Applied Biosystems). RT-qPCR Ct values for graphed transcripts were
all below 36; Ct values above the cutoff of 36 (such as when amplifying
FLT1 transcripts in HUDEP-2 cells and BCL11A transcripts in K562 cells)
were considered background variation with unreliable sensitivity.

Digital PCR analysis
RNA extracted from HUDEP-2 cells using the RNeasy Plus Mini Kit
(Qiagen) was reverse transcribed using the QuantiTect Reverse Tran-
scription kit (Qiagen) according to manufacturer’s instructions. 10
microliters of extracted RNA per sample, less than 1 microgram per
sample, was used as the reverse transcription template. Onemicroliter
of cDNAwasused as a template per digital PCR reaction to detect FLT1,
andonemicroliter of 10xdiluted cDNA innuclease-freewaterwasused
as a template per digital PCR reaction to detect ACTB and HBG2.
Digital PCR mixes were assembled in a 15-microliter volume using the
QIAcuity EvaGreen PCR Kit (QIAgen) according to manufacturer’s
instructions. Twelve microliters of each PCR reaction were added to
one well of a 96-well QIAcuity digital PCR plate, 8500 partitions per
sample (Qiagen). Cycling conditions were 95 degrees for 2 minutes,
followed by 40 cycles of [30 seconds at 95 degrees followed by one
minute at 60 degrees] before imaging. QIAcuity software was used to
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analyse each outcome and calculate the concentration of transcripts
per microliter of PCR mix. FLT1 and HBG2 transcripts were each nor-
malised to the concentration of ACTB transcripts for the same sample.
LNA primers to detect each of the three transcripts were ordered from
the Qiagen GeneGlobe catalogue. ACTB GeneGlobe ID: SBH1220543.
FLT1 GeneGlobe ID: SBH0131380. HBG2 GeneGlobe ID: SBH0481164.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Rawdata fromCameroonused in this study have beendeposited in the
dbGaP database under the accession code phs003748.v1.p1. The data
is available under Controlled Access through the National Heart, Lung,
and Blood Institute (NHLBI) Data Access Committee (DAC), and lim-
ited to not-for-profit organisations through the General Research Use
consent group. The timeframe for response will be determined by the
NHLBI DAC. Raw data from Tanzania are available from the EGA
database under the accession code EGAD00010000650. Source data
are provided with this paper.

Code availability
All codes used in this study have been deposited in Zenodo and can be
accessed via114. A detailed description of the HbF transformation pro-
cedure can be found at https://genemap-research.github.io/docs/
projects/hbfgwas/. Our FUMA Job parameters are available at https://
github.com/GeneMAP-Research/hbf-gwas-scripts/blob/main/
functionalmapping/params.config.
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