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Atlas of imprinted and allele-specific DNA
methylation in the human body

Jonathan Rosenski1, Ayelet Peretz2, Judith Magenheim2, Netanel Loyfer 1,
Ruth Shemer2, Benjamin Glaser 3, Yuval Dor 2,4 & Tommy Kaplan 1,2,4

Allele-specific DNA methylation reflects genetic variation and parentally-
inherited changes, and is involved in gene regulation and pathologies. Yet, our
knowledge of this phenomenon is largely limited to blood. Here we present a
comprehensive atlas of allele-specific DNA methylation using deep whole-
genome sequencing across 39 normal human cell types. We identified 325k
regions, covering 6% of the genome and 11% of CpGs, that show a bimodal
distribution of methylated and unmethylated molecules. In 34k of these
regions, genetic variations at individual alleles segregate with methylation
patterns, validating allele-specific methylation. We also identified 460 regions
showing parental allele-specific methylation, the majority of which are novel,
as well as 78 regions associated with known imprinted genes. Surprisingly,
sequence-dependent and parental allele-dependent methylation is often
restricted to specific cell types, revealing unappreciated variation of allele-
specific methylation across the human body. Finally, we validate tissue-spe-
cific, maternal allele-specific methylation of CHD7, offering a potential
mechanism for the paternal bias in the inheritance mode of CHARGE syn-
drome associated with this gene. The atlas provides a resource for studying
allele-specific methylation and regulatory mechanisms underlying imprinted
expression in specific human cell types.

DNA methylation is a stable epigenetic mark that alters the accessi-
bility and 3D packaging of the genome, allowing differentiated cell
types to selectively utilize transcriptional programs andmaintain their
cellular identity throughout life1. Methylation patterns are generally
identical between the paternal andmaternal alleles2–6, although a small
fraction of the genome, estimated at 5% based on common SNPs, was
reported to show allelic methylation differences4,7–11.

Themolecular basis ofmonoallelicmethylation patterns and their
functional consequences varies. In the case of meQTLs, genetic varia-
tion is associated with varying levels of methylation. One cis-acting
genetic variant is associated with hyper-methylation, whereas another

variant is associated with hypo-methylation, possibly to regulate the
expression of an adjacent gene7. In other cases, for example in mam-
malian female X-chromosome inactivation, at some early embryonic
developmental stage eachcell randomlymethylates one chromosome,
and this selection is then maintained in future cell divisions8,12–14. In
other instances allelic methylation relates to the parent of origin,
wherein either the maternal or paternal allele is methylated15–18. Par-
ental allele-specific methylation at imprinted differentially methylated
regions (iDMRs), that are established early in development and
retained throughout adult life, is the basis for genomic imprinting
whereby genes are expressedonly fromone specific parental allele19–22.
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These epigenetic differences play an important role in placental
function and embryonic development, and dysregulation of imprinted
genes is associated with developmental disorders such as Beckwith-
Wiedemann syndrome, Angelman syndrome, and Prader-Willi
syndrome23–28. In fact, sperm and oocytes show thousands of differ-
ences in methylation, with sperm usually being highly methylated
while oocytes are generally unmethylated29. This suggests that there
might be multiple genomic regions besides imprinted DMRs, which
escape epigenetic reprogramming and are not necessarily associated
with the regulation of gene expression.

Nonetheless, our understanding of allele-specific methylation
remains incomplete. To a large extent, this is due to the fact thatmost
genome-wide methylome datasets are based on DNA methylation
arrays (Illumina BeadChip 450K and EPIC), and are limited to a pre-
defined set of CpGs, capturing only 1.5%-3% of the 28 million methy-
lation sites in the human genome. Additionally, methylation arrays
capture the averagemethylation levels of individual CpGs, and genetic
(SNP) information or epigenetic dependencies between neighboring
sites on the sameDNAmolecule are unobservable. Finally, the study of
imprinting and allele-specific methylation in humans was previously
limited to few cell types, focusing on easily accessible blood
DNA15,28,30–32.

Several next-generation sequencing studies recently analyzed
allele-specific methylation (ASM) from blood15,30. Other studies ana-
lyzed uniparental disomy samples31,32 using a combination of iPSC, ESC
and blood cells33, or focused on sequence-dependent allele-specific
changes7. Additionally, allele-specific gene expression was studied
across human tissues16, using RNA-seq data fromGTEx34, and reported
biallelic expression for known imprinted genes in few tissues (e.g. IGF2
in the liver16); similarly tissue-specific allelic expressionwas reported in
mice35. Suchcases of cell-type-specific escape fromparental repression
raisequestions as to themolecularmechanismsunderlying imprinting,
their relation to allele-specificmethylation, and how they aremodified
in specific cell types, thus exemplifying the need for a detailed
genome-wide pan-tissue atlas of allele-specific methylation. Recently,
we characterized the DNAmethylation landscape of over 200 surgical
and blood samples that were obtained from 135 donors, purified to
homogeneity, and deeply sequenced at a whole-genome scale3.

Here, we developed computational algorithms for the identifica-
tion and characterization of allele-specific methylation (ASM),

including sequence-dependent effects (e.g. meQTLs) as well as
parental-ASM regions. Overall, we identified 325k regionswith bimodal
DNA methylation patterns, 34k of which overlap heterozygous SNPs
that segregate with DNA methylation, thus supporting allele-specific
differences. We also identified 460 putative parental-ASM regions
where allele-specific methylation across multiple donors cannot be
explained by heterozygous variations. These cover 45 known imprin-
ted DMRs (out of a total of 55 known), a set of 34 novel regions near
known imprinted genes, and 381 novel tissue-specific parental-ASM
regions, which are enriched for regulatory regions, polycomb
domains, and origins of asynchronous replication. We used parent-
child trios to validate one putative parental-ASM region residing in the
CHD7 gene, providing a potential mechanism for the mode of inheri-
tance of CHARGE syndrome that is associated with heterozygous
mutations in CHD7. The atlas presented here expands our knowledge
of parental imprinting, with implications for understanding the
crosstalk between genetic variation, DNA methylation, allele-specific
expression and tissue-specific gene expression.

Results
To analyze the landscape of allele-specificmethylation and imprinting,
we revisited our human DNA methylation atlas describing the methy-
lomes of 202 healthy samples, representing ~40 primary cell types
collected and purified from 135 donors3. The purity of these samples
and the high sequencing depth facilitate a fragment-level analysis of
DNA methylation, capturing both genetic and epigenetic information
from each sequenced fragment. This dataset offers a unique resource
to uncover cell-type-specificity of allele-specificmethylation (Fig. 1). To
further understand how ASM may impact gene expression, we inte-
grated the methylation atlas with allele-specific expression data from
GTEx36 spanning >50 tissues and cell types.

Identification of regions with bimodal methylation
Our initial analysis focused on identifying regions of bimodal methy-
lation, where half of the sequenced reads are methylated, and the
other half are unmethylated33,37,38. Such bimodality could be attributed
to differential methylation in sub-populations of cells; however in the
caseof primary cell types purified tohomogeneity froma single donor,
the existence of two epialleles suggests allele-specific methylation
(ASM) - either parental-ASM regions, where one parental allele is
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Fig. 1 | Schematicworkflow: a pan-tissue humanatlas of bimodal, allele-specific
and parent-of-origin DNA methylation. Using fragment-level analysis, we iden-
tified 324,759 genomic loci showing a mixture of fully methylated and fully
unmethylated DNA fragments. Genetic variation at neighboring SNPs was used to
split the fragments by genotype, and to identify 34,426 loci that show allele-specific
methylation. These were analyzed across multiple donors and classified as
sequence-dependent allele-specific methylation (SD-ASMs, bottom-left) where
methylation consistently segregates with one allele, or parental allele-specific

methylation (bottom-right) if both methylated and unmethylated epialleles exist,
regardless of the genotype, suggesting thatmethylation is associatedwith parental,
rather than genetic, origin. Overall, we identified 460 parental-ASM loci, including
most known imprintedDMRs, as well as multiple novel regions. 78 of these regions
are associated with imprinted genes. One such novel region within CHD7, a gene
associated with CHARGE syndrome, was validated as maternally methylated.
Remarkably, some of these regions also show cell-type-specific effects, including
escape of allele-specific methylation.
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methylated while the other is not, or at sequence-dependent ASM (SD-
ASM) regions, where a heterozygous genetic variant is associated in cis
with differential methylation7,15. To identify bimodal regions, we clas-
sified each DNA fragment, typically covering multiple neighboring
CpG sites, as “mostly unmethylated” (U), “mostly methylated” (M), or
“mixed” (X)39. We then calculated the percent of U/X/M fragments in
each genomic position, and developed an algorithm to identify
genomic regions consisting of a mixture of methylated and unme-
thylated fragments (Fig. 2A, S1).

Importantly, our algorithm is based on fragment-level analysis
and does not rely on fixed-sized windows, allowing for flexible and
accurate determination of start and end positions, at a single base-pair
resolution. Overall, we identified 324,759 regions showing a significant
bimodal pattern in at least one sample (Data S1). These bimodal
regions cover all (100%) known imprinted differentially methylated
regions (iDMRs), spanning a total of 172Mb (5.7%of the genome, 11%of
all CpG sites). On average, each individual sample shows bimodal
patterns across 2.45% of CpG sites (std = 1.6) or 1.15% of the genome
(34.76Mb, std = 0.94), with most bimodal regions (65%) showing
bimodal patterns in at least 10 samples.

Ubiquitous and cell-type-specificmethylationpatterns at known
imprinted differentially methylated regions
Most notable of these regions is the imprinted DMR associated with
IGF228 (chr11:2018812-2024740, hg19), which shows bimodal methyla-
tion patterns in all 202 samples. As Fig. 3A, B demonstrate, half of the
sequenced reads at this region are methylated across multiple CpGs,
whereas the other half are unmethylated, consistent with bimodal
allele-specific patterns originating from differential parental allele-
specific methylation. Similarly, the known iDMRs28 associated with

DIRAS3, ZDBF2/GPR1-AS, PLAGL1, PEG10, and others are ubiquitously
bimodally methylated (Fig. S2).

Remarkably, not all iDMRs are bimodally methylated across all
adult tissues. For example, IGF2R is maternally expressed in mice, but
not in humans40 where both alleles are expressed, purportedly due to
the loss of the ncRNA Air41,42. Nonetheless the known iDMR for IGF2R
(chr6:160426558-160427561, hg19) was thought to show allele-specific
methylation in all human adult tissues41,43,44. Using our data, we show
that while this iDMR is generally bimodal, it is fully methylated, across
both alleles, in all 13 colon and small intestine epithelium samples
(Fig. 3C). Besides IGF2R, we found 13 known iDMRs that show cell-type-
specific alterations of the bimodal (imprinted) pattern. Intriguingly, we
observed regions that became biallelically hypomethylated as well as
regions that became fully methylated, suggesting high cell-type-
specific plasticity at parental-ASM regions (Figs. S2, S3).

Additionally, a detailed examination of known iDMRs across dif-
ferent cell types identified fluctuations in their exact boundaries, as
well as internal patches that are fullymethylated in somecell types. For
example, the imprinted DMR of H19/IGF228 is bimodal in all blood
samples but contains a small 700bp-long region of biallelic methyla-
tion in hepatocytes and pancreatic samples (Fig. 4A, B).

We thereforeused the genome-wide catalogof bimodal regions to
automatically highlight and mask out within-iDMR sub-domains that
show a biallelic methylation pattern (hyper- or hypo-methylated), thus
improving the positional definitions of known imprinted DMRs near
imprinted genes (Data S2).

Allele-specific methylation patterns segregated by SNPs
Bimodal methylation patterns within a pure cell population can origi-
nate from random patterning (metastable epialleles)45, from genetic
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Fig. 2 | Joint genetic/epigenetic analysis across 202 samples from 135 donors
identifies parental allele-specific methylation. A A computational algorithm
identifies bimodal regions (n = 324,759), by analyzing deeply sequenced methy-
lomes from 39 cell types. Shown is a bimodal region (chr19:54039871-54043130,
hg19, highlighted)where 51%ofDNA fragments aremethylated (black), and 46% are
unmethylated, in a colon macrophage sample purified from a single donor.
B Similarly, DNA fragments from Adipocytes were split by a common T/G SNP
(rs2071094, chr11:2021164) to show allele-specificmethylation. Fragments carrying
the T allele are unmethylated (white), whereas G allele fragments are methylated.
(C) Contingency table of alleles by methylation, as shown in (B). All 29

unmethylated fragments are from the G genotype, whereas all 22 methylated ones
carry the T genotype (adj. p 7.1E-19 ≤ 7.1E-19, Fisher’s exact). D Genetic/Epigenetic
table across multiple samples/cell types (rs9330298, chr1:153590254, hg19). Here,
for all samples (homozygous or heterozygous), unmethylated fragments (U) have
the G genotype, whereas the methylated fragments (M) are associated with the
alternative T genotype, consistent with sequence-dependent allele-specific
methylation (SD-ASM). E A similar table for rs80269905 (chr11:2720873), is con-
sistent with parental allele-specific methylation. All samples are bimodal (showing
both U and M fragments), and heterozygous samples are associated with allele-
specific bimodal patterns but switch across different donors.
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polymorphisms (meQTLs), or from parent-specific mechanisms. To
distinguish between these possibilities, we developed a statistical pro-
cedure to test whether epialleles are associated with specific SNPs. We
examined gnomAD46 and identified common SNPs (minor allele fre-
quency,MAF> 1%) that intersectwithour setof 325kbimodal regions. In
152k regions, at least one sample exhibited both bimodal methylation
and heterozygous SNP (Fig. 2B, C). Overall, we identified 55,271 SNPs
that segregate within 34,426 unique allele-specific methylation regions
(Data S3). These regions show a bimodal methylation pattern across
DNA fragments that cover ≥3 CpG sites, which is segregated in at least
one sample. Thus, 4% of SNPs tested were found to associate with ASM,
which is more conservative than previous estimates4,7,9. Note that for
themajority of bimodal regions, where no informative SNPwere found,
we are unable to assess if their methylation is sequence-dependent or
not. Since sequence reads are typically ~200bp long, it is impossible to
assess the presence of distant genetic variants controlling methylation.
Thus, the 34k regions that show bimodal methylation associated with
SNPs is a lower bound, and the actualmagnitude of sequence- or parent
of origin-controlled methylation is likely much larger.

Parental or sequence-dependent allele-specific methylation?
Once regions showing allele-specific methylation were identified, we
examined their genetic and epigenetic patterns across multiple

samples. As Fig. 2D demonstrates, regions of sequence-dependent
allele-specific methylation (SD-ASM)7,15,16 show similar associations
between allele and epiallele across donors, including biallelic methy-
lation patterns for homozygous donors. Conversely, iDMRs show
bimodal patterns across multiple donors, regardless of genotyping
(Fig. 2E). Using stringent statistical thresholds, we identified 460
putative parentally methylated DMRs, covering most known iDMRs
(45/55, 82%)27,28. The remaining regions we identified include 78 that
are adjacent to known imprinted genes (≤100Kb), 14 that reside near
known iDMRs (≤100Kb), and 373parental-ASMregionswhose function
is yet to be determined, of which 347 are novel (Data S4). Fig. S4 shows
the distribution of bimodality, allele-specific methylation, and known
iDMRs across the human genome (hg19), and Fig. S5 shows the dis-
tribution of the number of samples exhibiting bimodality, per
parental-ASM region.

Validation of parent-of-origin methylation at a novel tissue-
specific locus
To validate tissue-specific parent-of-origin methylation patterns, we
selected one novel parental-ASM region and studied its methylation
patterns across different tissues and cell types. We focused on a
genomic region that is fully methylated in blood but bimodal in epi-
thelial cells (Fig. 5A), and performed targeted-PCR methylation

Primary imprinted DMR for IGF2

Cell-type-specific biallelic methylation at the known imprinted DMR of IGF2R

Colon, SI 
(n=13)

Oral epi.BreastLiverStomachPancreasLungKidneyT cellsMonocytesNeuronsFibro.Cardio.Endoth.

A

B
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% methylated fragments
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Colon. SIOral epi.BreastLiverStomachPancreasLungKidneyT cellsMonocytesNeuronsFibro.Cardio.Endoth.

Fig. 3 | Pan-tissue analysis of bimodal methylation in known imprinted differ-
entially methylated regions (iDMRs). A DNA fragments from adipocytes purified
from a single donor, at the known imprinted differentially methylated region
(iDMR) of the IGF2 gene (chr11:2018812-2024740, hg19). 52% of fragments are fully
methylated (black circles) whereas 45% are fully unmethylated (white circles).
B Stacked bars showing the percent of methylated (red), unmethylated (green) or
mixed (yellow) DNA fragments, across 202 purified samples, spanning from 39 cell

types, where a nearly balanced pattern of 1:1 ratio between unmethylated and
methylated fragments is shown for this known imprinted region. C Same for the
known iDMR of IGF2R (chr6:160426558-160427561, hg19), showing a bimodal
(imprinted) pattern across all samples, except for small intestine and colon epi-
thelial cells (n = 13 samples),where both alleles are fullymethylated (right, bottom).
Grey asterisks mark samples from a single donor who exhibits bi-allelic
methylation.
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sequencing across 33 mother-father-child trios (Data S5–7). This
allowed us to capture the epigenetic landscape across multiple CpGs
while genotyping the target SNP at each sequenced molecule.

As predicted by the WGBS atlas data, unmethylated fragments in
this locus were associated with the paternal allele in all discernible
cases (Fig. 5B–F). The region identified (chr8:61627190-61627349,
hg19) is within an intron of the CHD7 gene (Fig. 5G), bordering a CTCF
binding site and CpG island. Importantly, heterozygous mutations in
CHD7 causeCHARGE syndrome (see Discussion), and there is evidence
that the mutant allele tends to be inherited from the father47. We
investigated the common SNP rs4237040 in the data of Hofmeister
et al.48 showing strong paternal associations in the Apolipoprotein A,
and HDL cholesterol UK Biobank49 phenotypes, further corroborating
the existence of parentally associated effects. These results, alongwith
the findings presented here, make this gene a candidate for a novel
tissue-specific imprinted genewith clinical significance, and this region
putatively involved in its regulation.

Parental allele-specific methylation at regulatory regions
Parent-of-origin differential methylation is key to regulating allele-
specific expression of imprinted genes. We therefore used functional
annotations to test whether our catalog of parental-ASM regions is
enriched for various genomic features. Indeed, we have observed
significant local enrichment for promoters (68% of regions,
chromHMM annotations), enhancers (8%)50, transcription factor
binding sites51 (Data S8, 9, Fig. 6, S6), histone marks of active gene
regulation (H3K27ac, 56%)52, and origins of replication (46% of
parental-ASM regions)53.

These observations highlight the regulatory role of the putative
parental-ASM regions we identified through various molecular
mechanisms. Furthermore, gene-set enrichment analysis for the

putative parental-ASM regions we identified showed a 47-fold enrich-
ment for “maternal imprinting” (FDR ≤ 2.6E-42)54. Intriguingly, over
46% of parental-ASM regions (213/460) overlap with origins of
replication53, compared to 17% expected by random (FDR ≤ 9E-58),
with an average S/G1 ratio of 1.46 at parental-ASM regions (Fig. 6D).

Parental allele-specific methylation near imprinted and allele-
biased genes
Having identified regions exhibiting putative parent-of-origin allele-
specific methylation, we sought to associate them with imprinted
genes and their iDMRs (Data S10). Combined with Data S1, this map
represents a comprehensive catalog of imprinted DMRs in humans.
Remarkably, we identified novel parental-ASM regions near seven
imprinted genes for which no imprinted DMR was previously found,
including PAX8/PAX8-AS1, GNG7, ZNF215, UTS2, AXL, and KIF25
(Data S10). While the imprinted DMRs near UTS2 and ZNF215 were
reported in15 the others are novel. As Fig. S7 shows, the novel regionwe
identified 18Kb upstream of PAX8 (chr2:113953706-113955952) shows
bimodal methylation in neuronal cells, on par with allele-biased gene
expression in the brain16.

We used expression data from GTEx to examine allele-specific
expression across the human genome, using 15,253 samples collected
from838donors55,56, and identified 2,246 genes exhibiting a significant
bias in at least one tissue type. Of these, 216 genes are located near
regions that we identified as parental-ASM or bimodal in matched cell
types (≤250Kb, Fig. 7, S8), compared to 111 genes expected at random
(std = 10; permutation test p ≤ 4E-34, Data S11). We then conducted
tissue-specific analyseswherewe asked if geneswith biased expression
in a specific tissue tend to reside near bimodal regions, compared to
randomly selected genes (expressed in the same tissue). Indeed, such
an enrichment is observed and is often greater than 4-fold, e.g. for
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Fig. 4 | Tissue-specific loss of imprinting in intra-iDMR patches. A Average CpG
methylation plot (chr11:2018807-2021899) within the known iDMR for
H19/IGF2. The highlighted 692 bp patch (chr11:2020097-2020789) shows
monoallelic methylation in purified granulocytes and T cells samples (as
expected) but is fully methylated in hepatocytes, and pancreas ductal

epithelial samples. An average of 50% methylation is expected for known
iDMRs (dotted line). B Sequenced DNA fragments from within the highlighted
region, revealing intra-iDMR biallelic methylation. Indeed, almost all frag-
ments from the hepatocytes and pancreas are fully methylated, compared to
half of granulocyte and T cell DNA fragments.
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liver, blood vessels, kidney, and breast (Fig. 7A, Data S12). We further
checked which of these genes are distal (>100Kb) from previously
identified parental-ASM regions, and found 58 genes that are far away
from known iDMRs and parental ASMs15,31,32. For example, PRKRA
shows biased allelic expression inmost pancreatic samples (Fig. 7, S8),
with a novel parental-ASM region at a CpG island 60Kb from its TSS.

Previously Baran et al.16, identified parentally biased expression
and imprinted genes using the GTEx atlas. Four genes were identified
in both the analyses (SYCE1, MYOM2, DLGAP2, and BMP8A). DLGAP2
was previously implicated as imprinted in humans57, and interestingly,
altered DNA methylation of its maternal allele is associated with
increased diabetes risk58.

Recently, several studies have found parent-of-origin associations
with inherited phenotypes. UMODL159 and RTL160 are near a parental-

ASM region discovered in our work (Data S10, 11). Additionally, a
recent study byHofmeister et al., used theUK Biobank data for parent-
of-origin allelic phasing, enabling parent-specific GWAS48. They iden-
tified many of the genes discovered by us (Data S11), including
AC139099.2, SDK1, SNHG14, ESPNL, KCNQ1, and TRAPPC9. Using more
lenient thresholds, we found 104 genes in their list that show biased
expression and reside near bimodal regions in corresponding cell
types (Data S13).

Additionally, we used the PanelApp61 Genomic Imprinting panel.
The panel denotes multiple genes as having parental allele-biased
expression but weak evidence of imprinting. Several of these genes
(e.g. PSCA - associated with peptic ulcer, NAP1L5, SNU13, PTCHD3, and
PLEKHG4B - associated with asthma) reside near loci we identified as
having parental ASM. Additional panel genes near parental-ASM

Fig. 5 | Validation of a novel cell-type-specific parental-ASM region in the
CHD7 gene. A Fragment-level analysis of a novel parent-of-origin cell-type-specific
ASM region we identified (chr8:61627212-61627412, hg19) shows biallelic methyla-
tion (red) in endothelial cells, neurons, fibroblasts, and blood cells, but bimodal
methylationpatterns in hepatocytes andepithelial cells (1:1 ratioof fullymethylated
and fully unmethylated sequenced fragments of ≥3 CpGs). B–F Genetic/epigenetic
analysis of parental allele-specific methylation in tongue-epithelial cells, validated
across 15 families (a total of 33 children and their parents, Data S7). For each trio,we
used targeted-PCR next-generation sequencing (after bisulfite conversion) to
measure the genotype (rs7826035, C/T, chr8:61627312 hg19) and the methylation
status of six CpG sites (chr8:61627190-61627349 hg19, measured on the bottom
strand). B A trio (family ID IMP017) showing homozygous C/C for the mother, with
C/T heterozygosity for the father. The child T allele is therefore of paternal origin.

Blue bars correspond to relative allelic read count. Unmethylated DNA fragments
(green bars) are limited to the parental T allele, suggesting maternal-specific
methylation. C same as (B) for a family with three heterozygous children (family ID
IMP012).D A family where the T allele of heterozygous child 1 is maternal, whereas
unmethylated fragments (green) are all from the paternal C allele. Two additional
siblings are C/C homozygous and not shown (family ID IMP005). E–F Examples of a
C/C homozygous family and a C/T heterozygous family, where the parent-of-origin
of unmethylated fragments cannot be associatedwith a parent-of-origin (family IDs
IMP014, IMP011). All remaining families were homozygous (C/C, not shown).
G Bimodal tissue count track (orange) and -log10 of Fisher’smethod for combining
Fisher’s exact p values for allele-specific methylation at individual samples (blue
track), along with a gene annotation track showing the region surrounding the
identified DMR.
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regions (including PROSER2, ART5, MIR134, SNORD107, RYR3, CAC-
NA1A, ZNF714, MIR512, CBR1, PRMT2, ARVCF, RAB7A, FGF12, FAM149A,
and SCIN) appear in Data S14.

Finally, to identify additional novel bimodally methylated regions
associated with disease, we used Phenotype-Genotype Integrator
(PhenGenI)62, ClinVar63, OMIM64, and the NHGRI-EBI GWAS Catalog65

(Data S15). The findings further support the idea that our atlas and
regions of bimodalmethylation are of clinical significance, and identify
promising candidates for previously undiscovered genes with parental
allelic bias.

Putative mechanism underlying tissue-specific biallelic expres-
sion of imprinted genes
Despite the common canonical examples wherein imprinted genes are
monoallelically expressed in all cell types, in certain instances
imprinted genes were shown to “escape” parental repression and to
exhibit biallelic expression in a tissue-specific manner16,66,67. One
notable example is IGF2, which is monoallelically expressed in most
tissues, but is expressed in the liver from both maternal and paternal
alleles16 (Fig. 8A). The mechanisms underlying the parent-of-origin
regulation of IGF2 are well studied - in the paternal allele, the primary
iDMR is methylated to prevent binding of the insulation factor CTCF,
thus allowing IGF2 activation by distal enhancers. Conversely, the
maternal allele is unmethylated and CTCF is bound, leading to distal
activation of H19, but not IGF266,68 (Fig. 8B). However, the regulatory
mechanisms underlying biallelic expression of IGF2 in the liver have
not been elucidated66,68.

Our data shows bimodal methylation at the IGF2 imprinted DMR
across all samples (Fig. 3A, B) including hepatocytes, suggesting that a
different mechanism is underlying liver-specific maternal activation.
We identified two genomic regions in the vicinity of IGF2 that are fully
unmethylated in hepatocytes (in both alleles) but are fully methylated
elsewhere in the human body3. These two putative enhancers are also
characterized by enhancer-specific chromatin marks (H3K4me1 and

H3K27ac), and were annotated as putative liver enhancers by
chromHMM69,70.

These findings suggest the presence of liver-specific enhancers
that activate IGF2 specifically in the liver, including in the otherwise
silenced maternal allele, thus overriding iDMR-driven maternal allele
repression (Fig. 8B–D). Based on this example, we developed a com-
putational score to compare allele-specific gene expression data56 with
the presence of differentially unmethylated neighboring regions, and
identified putative cell-type-specific enhancers for 34 imprinted genes
(Data S16), suggesting a general mechanism for tissue-specific escape
from parental imprinting.

Discussion
We describe here a comprehensive atlas of allele-specific DNA
methylation in all major human cell types, based on deep whole-
genome bisulfite sequencing of DNA from freshly isolated cells. A
unique strength of this atlas is that it is basedonDNA frompurified cell
types, allowing identification of bimodal methylation patterns that are
due to within-cell-type phenomena, rather than cell mixture effects.

Overall, we identified 325k genomic loci that exhibit bimodal
methylation patterns in at least one sample, covering 5.7% of the
genome and 11%of CpGs (average of 2.45% of CpGs in bimodal regions,
per sample).We observed differences in bimodality both between and
within-cell types, due to cell-type-specific effects in parental allele-
specificmethylation, aswell as genetic differences between individuals
in regions associated with sequence-dependent allele-specific methy-
lation. In 10% of bimodal regions (34k loci), we were able to identify
SNPs that segregate with methylation, demonstrating allele-specific
methylation. The remaining loci may feature allele-specific methyla-
tion with distant sequence determinants that cannot be captured with
short-read sequencing, or cases in which one random allele per cell is
methylated, similarly to the situation in the mammalian X
chromosome14. We were able to identify some definitive examples of
the latter (i.e. bimodal methylation that is neither parental nor allele-

Fig. 6 | Enrichment of functional annotations at putative parent-of-origin
allele-specific regions. A Percent of parental ASMs annotated as active promoters
and bivalent enhancers (chromHMM TssA and EnhBiv terms, respectively).
B Enrichment of gene regulatory activity, basedonH3K27acpeak annotation in 387
ChIP-seq experiments (AREs)53. C Enrichment for Polycomb repressive regions

(chromHMM ReprPC). D Local enrichment for origins of replication, identified
using peaks of nascent strand DNA (left), as well as early replication, measured as
the ratio of S to G1 phase DNA fragments53. E Enrichment of parental-ASM regions
with allelic difference in S/G1 ratio at heterozygous sites53.
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specific), therefore the scope of this phenomenon remains to be
determined. Additionally, it is possible that in some of our purified
samples there are hidden sub-types of cells that harbor distinct
methylation patterns (e.g. different types of pancreatic beta cells, all
expressing insulin).

The comprehensive catalog of allele-specific and parental ASM
presented here is consistent with previously published maps of
parentally-derived ASM7,15,31,32. The main differences we present stem
from our use of homogenous samples of various purified cell types,
deeply sequenced acrossmultiple donors and cell types. Two previous

Fig. 7 | Imbalanced allelic gene expression is associatedwith identifiedbimodal
methylation. A Genes showing biased allelic expression (GTEx) are enriched for
regions of bimodal methylation (in matched cell types; blue bars) compared to
random genes (red). B Allele-specific read counts of phased expression from GTEx
are shown using density plots, for the biallelically expressed MYL4 gene in heart
samples (left), for the monoallelically and known imprinted gene IGF2 in colon
samples, and for PRKRA in pancreas samples, where 85% of expressed samples

(>100 total read count) show mono-allelic expression along the two axes. C The
proportion of mostly unmethylated reads (avg. methylation per fragment ≤35%,
green), of mixed-methylation reads (orange), and of mostly methylated reads (avg.
methylation per fragment ≥65%, red) at theMYL4 intronic enhancer in cardio-
myocytes (left), at the known imprintedDMR of IGF2 colon epithelial cells (center),
and at a putative parental-ASM region 60Kb downstream of PRKRA in pancreatic
acinar cells (right).
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studies utilized samples with uniparental disomy and conducted
bisulfite sequencing from blood to collectively discover 92 parental-
ASM regions31,32. Of the 36 regions identified by32 we classified all 36 as
bimodal, with 32 supported by SNPs indicating parental ASM31. Iden-
tified 79 regions, of which we classified 76 as bimodal, with 44 sup-
ported by heterozygous SNPs in our samples. A more recent study
utilized a WGBS blood dataset consisting of 285 samples with com-
plete parent-of-origin genetic information for over 1.9 million SNPs15,
and identified regions of parental ASM. 76% of these (174/229) were
recognized asbimodal in our atlas, and85 regions had enough samples
with heterozygous SNPs to be classified as parental ASM. The
remaining 55 regions did not pass our strict threshold for statistical
significance for bimodality. Thus our atlas reproduces most regions
identified by previous studies in blood cell types, and highlights the
importance of studying allele-specific methylation in a variety of
cell types.

The association of methylation patterns with SNPs allowed us to
identify 460 genomic regions with putative parental ASM. Reassur-
ingly, most known imprinted DMRs—loci with parentally determined
allele-specific methylation and regulatory involvement - are present in
this list (45/55). In addition, 78 of the loci we discovered are associated

with known imprinted genes, providing a putative mechanism of reg-
ulation, and 14 loci reside in vicinity to known imprinted DMRs (up to
100Kb). The remaining 373 loci represent a comprehensive landscape
of parental allele-specific methylation. We validated one such locus,
showing parentally-associated allelic differences in epithelial—but not
blood—cells, using trio analysis in swab samples. The validated region
is in the first intron of CHD7, in which heterozygous mutations are
causal for CHARGE syndrome. This developmental disorder is asso-
ciatedwith defects in the neural crest, a transient embryonic structure.
Strikingly, there is evidence of CHARGE syndrome being paternally
inherited47. Further work is needed to validate whether CHD7 expres-
sion is imprinted and whether the discovered region is involved in its
regulation. Further, the validation of this methodology and the exis-
tence of tongue epithelium-specific parental ASM markers exemplify
the plausibility of using tongue swabs to detect congenital imprinting-
related disease. To date, only screens using blood samples have been
developed27.

The substantial number of loci with putative parental allele-
specific methylation allowed us to characterize these regions, reveal-
ing enrichment for regulatory regions (bearing chromatin marks of
enhancers and promoters) and for polycomb targets, consistent with a

Fig. 8 | Putative novel enhancers overcome IGF2 imprinting in human hepa-
tocytes. AAllele-specific read counts for IGF2 (GTEx) show expression of either the
A (X-axis) or B (Y-axis) alleles (blue dots). Conversely, mRNA from liver cells (red)
show a diagonal, 1:1 allelic ratio, consistent with liver-specific escape of imprinting.
B Known imprinting control mechanism for IGF2/H19. In the paternal allele (top),
methylated CpGs (black lollipops) prevent CTCF from binding the iDMR, facilitat-
ing the activation of IGF2 by a distal enhancer. Conversely, in the maternal allele
CTCF binds as the DMR is unmethylated, acting as an insulator66,68. We propose a
mechanism by which liver-specific enhancers activate IGF2 in both maternal and

paternal alleles, thus escaping maternal imprinting. C Genomic view of the
H19/IGF2 locus. The putative liver enhancers (highlighted in blue) show strong
H3K4me1 and H3K27ac ChIP-seq peaks in adult liver tissue (green and blue
tracks), but not elsewhere. chromHMM adult liver (AL) track shows a putative
annotation of this region as active enhancers (yellow). D Fragment-level ana-
lysis using our whole-genome methylation atlas shows fully unmethylated
fragments (green) in six hepatocyte samples, at two adjacent putative
enhancers (black frame), compared to fully methylated fragments in other cell
types, where IGF2 is maternally imprinted.
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role in regulation of monoallelic expression of nearby genes. Putative
parental ASM loci also tend to reside near origins of DNA replication,
raising the testable hypothesis that parent-of-origin dependent asyn-
chronous DNA replication controls parent-of-origin-dependent allele-
specific methylation71,72. Further analysis is required to investigate the
relationship between cell-type-specific allele-specific methylation and
cell-type-specific asynchronous DNA replication. While the replication
origins we analyzed are from erythroblasts, similar enrichment was
obtained for other replication datasets.

One striking phenomenon emerging from the atlas is tissue-
specific escape from imprinting. Previous studies of imprintingmostly
focused on blood cells, and assumed that parental imprinting in the
gametes persists in all tissues19–22. The presence of multiple rarely
studied cell types in the atlas exposed the fact that many loci with
parent-of-origin determined methylation (including almost a quarter
of known iDMRs, 13/55) escape mono-allelic methylation and become
fully methylated or fully unmethylated in specific cell types. The bio-
logical significanceof this fascinating phenomenon and the underlying
molecularmechanisms likely vary, dependingon the affected gene and
cell types. Our analysis of selected cases suggests one way by which
specific cell types may overcome monoallelic expression imposed by
parent-of-origin-dependent methylation. As we showed for IGF2, the
presence of a tissue-specific enhancer near the gene (in this case, a
proximal enhancer that is fully unmethylated only in hepatocytes)
likely allows expression from both alleles, despite monoallelic avail-
ability of the remote enhancer. Clinically, our findings suggest that
tissue-specific ASM may represent a previously unknown mechanism
for autosomal dominant diseases that do not show imprinting
in blood.

The comprehensive atlas of parental and sequence-dependent
ASM in a variety of human cell types provides a platform for additional
computational and molecular analysis, to address the fundamental
questions of how, why, and to which extent cells distinguish between
different alleles of the same gene, a phenomenon with important
biological and clinical implications.

Methods
Experimental model and study participant details
WGBS data were sequenced at 150 bp paired-end reads, with an aver-
age of 984 million pairs per sample, mapped to the Human genome
(hg19), and analyzed using the wgbstools39 (github.com/nloyfer/
wgbs_tools) as described in Loyfer et al.3.

The clinical study of the trios was approved by the ethics com-
mittee of the HadassahMedical Center. Procedures were performed in
accordance with the Declaration of Helsinki (HMO-0198-14). Swab
sampling donors have provided written informed consent. Participant
details are provided inData S5. Therewas no selection criteria to reject
participants.

DNA processing and analysis
Swab samples were collected with an inoculating loop by swabbing it
against the tongue of healthy donors for 20 s and breaking the
inoculating loop into a 2ml Eppendorf tube with 200 μl of PBS. The
sample was saved in a freezer at −20C until extraction. DNA extraction
was performed via DNeasy Blood and tissue kit (QIAGEN) according to
the manufacturer’s instructions with the following change: incubation
time of AL buffer was performed overnight. The DNA concentration
was measured using Qubit High Sensitivity double-strand molecular
probes (Invitrogen) and bisulfite treatment (Zymo). Bisulfite-treated
DNA was PCR amplified using primers (Data S6) specific for bisulfite-
treated DNA but independent of methylation status atmonitored CpG
sites or genotype. We used a multiplex 2-step PCR protocol as
described in Neiman et al.73. Pooled PCR products were subjected to
multiplex NGS using the NextSeq 500/550v2 Reagent Kit (Illumina).
Sequenced reads were separated by barcode, aligned to the target

sequence, and analyzed using custom scripts written and imple-
mented in R. Reads were quality filtered based on Illumina quality
scores. Reads were identified by having at least 80% similarity to target
sequences and containing all the expectedCpGs in the sequence. CpGs
were considered methylated if “C” was read at a CpG site and were
considered unmethylated if “T” was read. The efficiency of bisulfite
conversion was assessed by analyzing the methylation of non-CpG
cytosines. We then determined the fraction of molecules in which all
CpG sites were unmethylated. Further ASM analysis was similar to
those of the WGBS samples. Reads were segregated by genotype at
SNP rs7826035 (C/T, chr8:61627312, Data S6). As this SNP is a C/T
variant, only bottom-strand reads are considered. Tongue swab sam-
ples contain amix of blood and tongue-epithelial cells. Since the novel
region detected is biallelically methylated in blood cells we verified
that unmethylated fragments (which must come from tongue-
epithelial cells) always contained the paternal genotype. Alleles are
required to contain ≥1000 sequenced reads (per sample), and samples
with ≥40% for each allele were considered heterozygous. We classified
children as exhibiting paternal-specific demethylation if over 95% of
unmethylated fragments contained the paternal genotype (Data S7).

Raw sequencing counts, split by sample/allele are included in
Data S17. Gzipped files are named as “[Trio_ID][Member_co-
de].chr8:61627312.[Geno].pat.gz”, where Trio_ID is indicative of family,
Member_code is A for father, B for mother, and C[0-9] for child ID.
Reads were split by genotype (C or T), after which only CpG sites are
retained in a tab-separated .pat format (from wgbstools, https://
github.com/nloyfer/wgbs_tools), including chromosome, genomic
CpG index of first CpGs in pattern, binary methylation pattern (C =
meth, T = unmeth, . = N/A), and number of sequenced reads showing
that pattern.

chr8 12699028 CC.CCC 1
chr8 12699028 CCCCCC 49
chr8 12699028 CCCCTC 3
chr8 12699028 TTTTTT 5

Data and identification of bimodal methylation regions
Sequenced read pairs were then merged, and classified as hyper-
methylated (M) if covering three CpGs or more, with an average
methylation (per fragment) ≥65%. Similarly, hypo-methylated (U)
fragments were defined as having average methylation ≤ 35%.
Fragments with less than 3 CpG sites are ignored, and the remaining
fragments, with an avg. methylation of (35%-65%), were classified as
mixed (X). For each CpG site, we calculated the {U,X,M} propor-
tions across all overlapping fragments with ≥3 CpGs. Bimodal
regions were then defined as contiguous regions (≥5 CpGs) where
the proportion of both hyper- and hypo-methylated fragments (i.e.,
U, M) is ≥ 20%.

We then devised a statistical test to distinguish between a null
hypothesis model H0 of one epi-allele (possibly showing ~50%
methylation, on average), vs. a mixture model H1 of two equally likely
epi-alleles (A, B), corresponding to DNA fragments originating from
the methylated and the unmethylated alleles. Both models assume
conditional independence between neighboring CpGs, and model the
expected methylation at the i’th CpG (for a given epiallele) using a
Bernoulli parameter P rijepiallele

� �
where ri is an indicator forwhether

the DNA fragment r shows that CpG i is methylated. For H0, these
probabilities could be estimated using a maximum likelihood esti-
mator, based on the empirical probability of methylation at the i’th
CpG (beta value). For H1, we used the expectation-maximization (EM)
algorithm, to iteratively infer the posterior probability that each frag-
ment r is associated with each epiallele Pr Ajrð Þ, Pr Bjrð Þ, and estimated
the expected methylation P rijA

� �
, P rijB

� �
of each CpG i given the two

epialleles.
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In H0 we define the probability to be methylated at CpG i as: θi.
Thus, the likelihood of one region, based on H0, could be viewed

as the product of likelihood across all fragments as in Eq. 1:

Y
j

Y
i

θ
rji
i 1� θi

� �1�rji ð1Þ

Alternatively, based on H1 where the probability to be methy-
lated at CpG i on allele A isθ1i and on allele B is θi

2, the likelihood could
be described as in Eq. 2:
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We infer the posterior probability P Ajrð Þ per read. We assign each
read to an allele by choosing the allele with the maximum posterior
probability (hard assignment). We then calculate the expected
methylation probability per CpG, for each of the A or B epialleles
(expected counts).

Finally, we applied a log-likelihood ratio test to estimate the sta-
tistical significance of each bimodal region (comparing the two-
epiallelemixturemodel H1 with the nested, single-epiallele, H0model),
using the software package wgbstools (test_bimodal function)39.
p values were then corrected for multiple hypotheses using the
Benjamini-Hochberg FDR correction scheme74.

To further extend identified bimodal regions beyond domains of
densely located CpG (resulting with sequenced fragments covering ≥3
CpGs), we allow expansion into flanking regions, as bimodality is
maintained (namely, while both hypo- and hyper-methylated frag-
ments are ≥20%).

This computational procedure was applied to each sample inde-
pendently, to account for genetic andenvironmental changes.We then
set the start and end position of each bimodal region to the closest
methylation block boundary, as determined using a genome-wide
segmentation of the genome, using the wgbstools package as descri-
bed in Loyfer et al.3,39.

Allele-specific methylation
To associate bimodal regions with two independent allele-specific
methylation (ASM) patterns, we integrated these regions with
1,360,985 SNPs showing a minor allele frequency (MAF) ≥ 1%, using
GnomAD46 data (Ashkenazi Jewish population). For each such SNP, we
retained the heterozygous samples (≥5 fragments from each allele),
and built a contingency table comparing the number of U/X/M frag-
ments (≥3CpGs) from each individual genotype. Fisher’s exact test was
then used to test for association between allele and methylation pat-
terns, followed by Benjamini-Hochberg FDR correction74 (Data S3).

Sequence-dependent and parent-of-origins ASMs
Once allele-specific methylation (ASM) was identified, per sample, we
performed a broad cross-sample analysis to test for sequence-
dependent (SD-ASM) and parent-of-origin effects. For SD-ASM, all
samples (of a given cell type, or in general) are expected to show
concordance between genotype and methylation. That is, regardless
of donor heterozygosity, all fragments from a given allele (genotype)
are expected to be methylated, whereas fragments from the alter-
native allele are not. Conversely, parent-of-origin effects are expected
to show bimodality regardless of heterozygosity, and switch alleles
between unrelated donors. Specifically, we require ≥3 samples to
exhibit ASM and that the association between genotype and hyper/
hypomethylation switch across samples. Thus if one sample allele A is
associated with unmethylated epialleles and in another sample allele A
is associated with methylated epialleles, the region is classified as
putatively parent-or-origin derived ASM, as opposed to SD-ASM.

Parental ASMs were defined as novel if they were not identified in the
previous studies of Zink et al., Court et al., and Joshi et al.15,31,32.

Gene enrichment analysis
These putative parent-of-origin ASM regions were compared against
all imprinted genes, as reported by Tucci et al.75, as well as known
imprinted DMRs (iDMRs) from Monk et al.28. For the definition of
promoters, bivalent enhancers, and polycomb repressive we used
chromHMM genomic annotations76. Each type was merged (“bedtools
merge”) across all cell types. Active regulatory elements were deter-
mined using H3K27ac ChIP-seq data52. Origins of replication and S/G1
ratio bedGraphfiles were taken fromMukhopadhyay et al. 53. Statistical
enrichment was estimated by intersecting the merged annotation
track with the list of putative parental-ASM regions (“bedtools inter-
sect”). Statistical significance was estimated using a two-tailed per-
mutation testof 100 randomized length-preserving chromosome-wide
shuffles, fitted using a Normal distribution.

Identifying biased allelic expression
Allele-specific expression data from GTEx (https://gtexportal.org/
home/datasets, v8 phASER haplotype matrix) was used. For each
gene, a background noise model was applied by fitting a Normal dis-
tribution for the A vs. B allele-specific read count, at discrete bins of
expression levels (100–150 read counts, 150–200, 200–250, etc.
Samples below a total of 100 reads per gene were discarded). We then
calculated the fractionof reads in the expressed allele, and fit a Normal
distribution for each bin. A gene with expressed allele fraction
≥3 standarddeviations above themeanof genes in its binwas classified
as showing allelic bias in that sample.

Associating tissue-specific allelic bias with bimodal methylation
Using the allele-specific read count data from GTEx, we classified
a tissue/gene pair as showing allelic bias if ≥25% of samples in that
tissue show allelic bias. Cell-type-specific bimodality was defined
as genomic regions for which ≥90% of sequenced samples are
classified as bimodal. We identified 2246 such genes. GTEx tissues
and our purified cell types were matched across 23 tissues/cell
types, and the mutual information across genes with allelic
expression and bimodal regions (≤250Kb away) was computed.
We compared the number of genes identified to what happens at
random using permutation testing (two-tailed). We selected 2246
genes at random and counted the number which were near
(≤250Kb away) parental ASM regions with bimodal patterns in
matching cell types as those exhibiting bias. We ran 50 iterations
of random permutations. GTEx tissue type were compared to our
cell type, as follows (GTEx vs Atlas names): Blood: Blood-Mono
+Macro; Blood Vessel: Vascular endo..; Brain: Neuron; Breast:
Breast-Basal-Ep; Colon: Colon-Ep; Heart: Heart-Cardio; Kidney:
Kidney-Ep; Liver: Liver-Hep; Lung: Lung-Ep-Alveo; Pancreas: Pan-
creas-Acinar; Prostate: Prostate-Ep; Small Intestine: Small-Int-Ep;
Stomach: Gastric-Ep.

Associating parental ASM and parent-of-origin phenotypes
Parental GWAS data was downloaded from Hofmeister et al. 48. We
used a threshold of 1E-5 on the general GWAS additive model.We then
required that the significant parental association have a p value < 5E-4
and the non-significant parental association have a p value ≥0.1.

Escape from imprinted expression mechanisms
For every imprinted gene we find those which exhibit biallelic
expression in at least one tissue type. Each gene/sample is classified as
biallelically expressed if the allelic bias is within one standard deviation
of the noise model described above. Tissue/gene pairs are classified as
biallelically expressed if at least 25% of samples show biallelic expres-
sion. For each such gene/tissue we search for hypomethylated DMRs
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using wgbstools’ find_markers command with the following para-
meters: “--min_cpg 5 --delta_quants 0.35 --tg_quant 0.15 --bg_quant 0.4”.
For our analysis of IGF2 (Fig. 8), ChIP-seq from Roadmap Epigenomics’
Adult Liver was used (H3K27ac and H3K4me1 from Donor 3, DNA_Lib
1057)69, as well as chromHMM primary annotations for Adult Liver70.

Quantification and statistical analysis
Quantification of bimodal regions, ASM, and putative parent-of-
origin ASM are described above. Bimodal regions are detected
using the EM algorithm to fit model parameters and then a log
odds ratio test is used to determine significance (described
above). FDR is used to correct for multiple hypothesis testing,
with a threshold of 0.05. For ASM analysis, Fisher’s exact test is
used to determine significance of ASM with an FDR threshold of
0.1. All regions and their significance can be found in Data S1 and
Data S3. Enrichment analysis used permutation testing, as
described above, with an FDR threshold of 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The WGBS data are available from GEO (GSE186458), with raw data
deposited to EGA (EGAS00001006791). Sequenced targeted trio data
fromCHD7, are available inData S17 (rawmethylation patterns, split by
allele), and in Data S7 (U/X/M read counts). Fastq/bam files are pro-
tected due to data privacy concerns, and are available upon request.

Code availability
Code is available at https://github.com/yonniejon/imprint_atlas.
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