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Coupling nitrogen removal and watershed
management to improve global lake water
quality

Xing Yan 1,4, Yongqiu Xia 1,2,4 , Xu Zhao 1,2, Chaopu Ti1, Longlong Xia 1,
Scott X. Chang 3 & Xiaoyuan Yan 1,2

Lakes play a vital role in nitrogen (N) removal and water quality improvement,
yet their efficiency varies due to differing watershed N input and lake char-
acteristics, complicating management efforts. Here we established the N
budget for 5768 global lakes using a remote sensing model. We found that
watershed N input reduction and lake water quality improvement are non-
linearly related anddependson lakeN removal efficiency. A 30% reduction inN
loading in watersheds with high N removal efficiencies can improve cumula-
tive water quality by over 70%. Stricter reduction could accelerate achieving
water quality goal (≤1mgN L–1), shortening the time by up to 30 years formost
lakes. However, heavily polluted lakes with low N removal efficiencies (50 of
534 lakes with >1mgN L–1) may not achieve the UN’s clean water SDG by 2030,
even with a 100% N input reduction. Our research highlights the need for
targeted N management strategies to improve global lake water quality.

Since theUnitedNations introduced ‘cleanwater and sanitation’ asone
of the 17 sustainable development goals (SDGs)1, water quality pro-
tection has been one of the global focuses to meeting the SDGs2–4.
Althoughmany efforts have beenmade to achieve the different targets
in SDGs5,6, water quality degradation is still a problemworldwide, from
the Gulf of Mexico in America7 to Taihu Lake in China8 and the Baltic
Sea in Europe9. Water quality degradation threatens the health of
humans and ecosystems, including reductions in biodiversity,
increased occurrences of harmful algal blooms, and reductions in
drinking water quality10,11. Unfortunately, the growing population
and climate change are expected to accelerate water quality
degradation12,13, especially in global lake systems, stressing the urgent
need for water quality improvement.

Managing soil nitrogen (N) input in watersheds to reduce N
loading to downstream lakes is one of the critical strategies to improve
lake water quality2. Efforts such as reducing fertilizer application,
constructing wastewater treatment plants, and planting cover crops
have been widely implemented to reduce N releasing to lakes14–16.

Despite these efforts, the relationship between watershed N manage-
ment and lake water quality improvement remains unclear, attribu-
table to factors such as the large variation in N release from the land,
the legacy of N flows, and the complex biogeochemical N cycles7,17,18.
Among these reasons, the inadequate consideration of biogeochem-
ical processes involved in lake N removal is one of the key barriers to
understanding the relationship between watershed N management
and lake water quality improvement2,15,19. Lake N removal through
denitrification, the dominant process for permanent N removal
through converting nitrate (NO3

–) to gaseous N (N2)
20, can sub-

stantially remove N from watersheds (e.g., 36 − 47% in the Mississippi
River watershed2,21). However, the impact of the lake N removal capa-
city on lake N budget has rarely been evaluated in designing strategies
to restore lake water quality. In particular, the long-term dynamic
response of water quality improvement to watershed N management
has not been adequately considered in studying the relationships
among watershed N management, watershed N loading to lakes, N
removal from lakes, and lake water quality improvement22,23. This may
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be attributed to accurately quantifying the varied N removal rates in
lakes through denitrification is challenging due to the high back-
ground concentrations of atmospheric N2, especially at the landscape
scale24–26.

We recently developed a remote sensing model to estimate
lake N removal at the landscape scale by linking several key
variables (e.g., concentrations of dissolved carbon, N, and oxygen
(DO), and temperature of lake water (WT)) controlling N removal
with remote sensing data, e.g., chlorophyll-a (Chla), chromo-
phoric dissolved organic matter (CDOM), and WT27 (see Meth-
ods). Using the remote sensing model that we developed, we
estimated N removals in 5768 lakes on a global scale. We then
developed and validated a dynamic mass balance approach to
couple the estimated N removal to the lake N budget. This
enabled us to evaluate how lake water quality improves with
different watershed N management scenarios. In this study, we
try to answer the following three questions: (i) what are the global
patterns of N removal in lakes; (ii) how much improvement of
lake water quality can potentially be achieved through watershed
N management; (iii) what strategies can be employed to achieve
global lake water quality goals towards SDG targets?

Results and Discussion
Linking lake N loading and concentration withmodel-estimated
lake N removal
By linking the global lake N removal estimated using the remote sen-
sing model to the concentration of N in lake waters and lake N loading
(N entering a lake from surrounding surface rivers and underground
water transport anddirect atmosphericNdeposition, seeMethods and
Supplementary Fig. 1), we show that N removal plays a crucial role in
lake N budget and leads to nonlinear relationships between lake N
loading and N concentration in lake waters. The anticipated hotspots
of lake N loading, N concentration, and N removal rate simultaneously
exist in areas with high anthropogenic reactive N input (Fig. 1). Higher
N input to watershed soil facilitates N transport into the lake through

runoff, leading to elevated lake water N concentrations and increased
N removal capacity28–30. However, the global distribution of lake N
removal exhibits a distinct pattern of heterogeneity compared to theN
loading and N concentration in lake waters, driven by the nonlinear
relationships among these extensively interacting items of the N
budget. The net anthropogenic N input at the watershed scale (NANI,
the main source of lake N loading) is normally distributed (Fig. 1a).
However, the lake N removal rate and lake water N concentration
follow a skewed normal distribution (Fig. 1b). The NANI in theMidwest
US is lower than that in Europe. However, lake N removal rates are
comparable between these two regions. Although the Yangtze River
basin exhibits substantially higher NANI and lake water N concentra-
tions than the Mississippi watershed, the lake N removal rates do not
differ.

Furthermore, by calculating the ratio of annual lake N removal to
lake N loading (lake N removal ratio; Fig. 1d), we find that 2049 of the
5768 lakes remove >100% of the loaded N, suggesting that these lakes
have a strong self-purification capacity. Previous studies have rarely
reported a lakeN removal ratio greater than 100%,mainly because lake
N removal rates were usually estimated based on the mass balance
approach, in other words, based on the difference between N loading
and N export from the lake31. The N removal ratio of the lake cannot
exceed 100% when the N removal rates are estimated using the mass
balance approach. However, both the lakeN loading fromanupstream
watershed and the stored N in lakes (the product of lake N con-
centration and amount of lake water) provide the substrate for the N
removal process. This suggests that lake N removal can exceed N
loading, as part of the removed Nmay originate fromN already stored
in the lake. These lakes with an N removal ratio of >100% are mainly
distributed in areas with low watershed N input (e.g., Eastern Europe
and Siberia), as the N removal efficiency is higher under low lake N
loading32,33. We suggest that the reduction of watershed N input may
not be required in these lakes to achieve the desired water quality
because their water quality has the potential to self-improve due to the
strong N removal capacity and low N loading.

Fig. 1 | Global patterns of lake N budget and removal. a Watershed net anthro-
pogenic N input (NANI, themain source of lake N loading).b Lake annualN removal
rate. c Lake water N concentration. d Lake N removal ratio (the ratio of annual lake

N removal to lake N loading, see Methods). Data are shown at the HydroSHEDS
level-5 watershed scale; gray areas indicate areas with no data available.
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In this study, however, 3719 of the 5768 lakes remove ≤100% of N
loading, suggesting that these lakes are a net source of N for down-
stream water bodies (Fig. 1d); those lakes are mainly located in areas
with high watershed N input. The N removal processes in those lakes
are characterized by a biological saturation effect under high N
levels32,33. Although these lakes can remove a large proportion of lakeN
loading (having ameanglobalN removal ratioof 37%), it is necessary to
reduce N input in these watersheds as the ≤100% N removal ratio
indicates that the water quality of these lakes is degraded by N loading
from the watersheds.

Potential improvement of lake water quality
We selected 534 lakes from the database that have N concentration
>1mgN L–1 and N removal ratio ≤100% for analysis (as a case study)
basedon themassbalanceapproach (seeMethods andSupplementary
Fig. 1).We carried out simulations for three scenarioswithwatershedN
input reductions of 2% (low-level reduction, SC1), 5% (intermediate-
level reduction, SC2), and 10% (high-level reduction, SC3) of annual
watershed N input based on N input data for each preceding year. For
each scenario, simulations were run for each lake to estimate the time
needed to achieve the water quality goal (1mgN L–1 of total nitrogen
(TN)). A long time is needed to achieve the water quality goal for lakes
with highN concentrations, particularly under the SC1 scenario (Fig. 2).
Improving water quality becomes increasingly challenging as lake N
removal capability decreases with decreasing lake N concentration.
Specifically, it takes approximately 5 ± 1 years to reduce the lake N
concentration from 3 to 2mgN L–1, compared to 19 ± 4 years to reduce
the lake N concentration from 2 to 1mgN L–1 under the SC1 scenario.
Furthermore, we evaluated the trade-off between the intensity of N
input reduction in watersheds and the time required to achieve the
water quality goal. Only 59% (51− 63%) of the lakes could reach the
water quality goal within 10 years under the low-level watershed N
input reduction of SC1, while the SC3 scenario could enable 82%
(77 − 85%) of the lakes to reach the water quality goal within the same
time frame.

We next set four scenarios with different timeframes (i.e., 10, 20,
30, and 40 years) to achieve the water quality goal of ≤1mgN L–1 and
then evaluated the required reduction intensity in watershed N input.
If the water quality goal is to be achieved in 10 years, a reduction of
more than 200 kg NANI km–2 yr–1 (compared with the value in each
preceding year) is required for some hotspot watersheds, including
the Yangtze River basin andMississippi watershed (Fig. 3a), to achieve
thewater quality goal. In addition, 77 of the 534 lakes could not achieve
the water quality goal even under a 100% reduction in watershed N
input, as the high lake N concentration and low removal ratio neces-
sitate more time to achieve the water quality goal. However, the
pressure to reduce watershed N input is greatly reduced under a 40-
year timeframe; only a reduction of 50kg NANI km–2 yr–1 than that in
each preceding year is required to achieve the water quality goal for
most of the above hotspot watersheds (51 out of 54) (Fig. 3d). Even so,
29 watersheds still could not achieve the water quality goal under the
40-year timeframe; those watersheds are mainly located in the Upper
Mississippi region in the US, the lower reaches of the Huaihe River of
China, and some watersheds in Europe.

Strategies to achieve the clean water target of SDG before 2030
Given that lake N concentration and water quality improvement effi-
ciency vary among lakes2,4, applying uniform N input reduction stra-
tegies yields differing outcomes globally34,35. We divided global lakes in
ourdatabase into three types to explore specific solutions for each lake
type to achieve the clean water target before 2030, by which we are
supposed to achieve theUN’s SDGs (Fig. 4a). Given that 73% of the data
in our dataset were collected between 2005 and 2015, with the average
being 2008, the analysis to achieve the SDGs by 2030 is aligned with a
20-year time limit scenario in our analysis (see Methods and Supple-
mentary Fig. 2).

Type I lakes (5234 lakes) are those that do not need to have
watershed N input reduced to achieve SDG’s clean water target. Out of
those lakes, 5036 lakes have already met the water quality goal of
≤1mgN L–1 (with a mean TN concentration of 0.55mgN L–1), and there
is no need to reduce watershed N input beyond the current N input
level within these lakes. The other 198 type I lakes do not yet meet the
water quality goal, but the capacity for N removal is greater than the N
loading rate (with ameanN removal ratio of 218%), and there is also no
need to reduce watershed N input for these lakes.

Fig. 2 | Global patterns of the time needed to achieve the water quality goal
(≤1mgN L–1) under different watershed N input reduction scenarios. Three
scenarios are (a) 2% (low-level reduction, SC1), (b) 5% (intermediate-level reduction,
SC2), and (c) 10% (high-level reduction, SC3) reduction in annualwatershedN input
compared to those in each preceding year. The sub-graphs in the lower left corner
show the relationship between the years needed and the exceedance of targeted N
concentration in lakewaters (thedifferencebetween the current concentration and
the water quality goal of ≤1mgN L–1, ETNC). The pie charts represent the propor-
tion of lakes that require 0 − 10, 10 − 20, 20 − 30, 30− 40, and >40 years to achieve
the water quality goal. Data are shown at the HydroSHEDS level-5 watershed scale.
Blue polygons indicate that the lake water quality is ≤1mgN L–1, and there is no
need to reduce watershed N input. Gray areas indicate areas with no data available.
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Type II lakes (484 lakes) could achieve the water quality goal
within 20 years by reducing an average of 13% lake N loading received
from upstream in the watershed. The watershed N management stra-
tegies in type II lakes tomeet thewater quality goal dependon the ratio
of reduction in lake N storage to the reduction in lake N loading (water
quality improvement efficiency). Lakes with high water quality
improvement efficiency have large reductions in lake N storage but
small reductions in lake N loading; watershed N management should
have higher water quality improvement benefits for those lakes. Lake
water quality improvement efficiency increases with the lake N
removal ratio under SDG’s clean water target before 2030 (Fig. 4b),
such as the increasing water quality improvement efficiencies in
Poyang Lake, Taihu Lake, andGeLake inChina, Cayuga andWinnebago
Lake in the US, and Lake Sihlsee in Europe (Fig. 4c−h). We find that a
30% reduction in cumulative N loading in target watersheds with high
lake water quality improvement efficiencies can achieve more than
70%of the cumulativewater quality improvement (sumof reduction in
lake N storage for all lakes) (Supplementary Fig. 3).

Type III lakes (50 lakes) are those that could not achieve water
quality goals before 2030, even with a 100% reduction (an extreme
scenario) in lake N loading received from upstream in the watershed.
This may be attributed to the heavy pollution in these lakes and the low
water quality improvement efficiency, such as lakes in the Upper Mis-
sissippi watershed in theUS and in the lower reaches of theHuaiheRiver
in China. In addition to reductions in lake N loading, enhanced removal
in lake N storage, including sediment dredging and algae salvaging, are
also required to achieve the water quality goal in these lakes36,37.

Given the challenges faced by policymakers to achieve the SDG
goals on a global scale1,38,39, there is an urgent need to quantify lake N
removal efficiencies for formulating strategies to improve water
quality in target watersheds. However, each watershed and lake is
unique, and there will not be a ‘one size fits all’ solution for all water-
sheds. Developing a specific water quality improvement strategy for
each lake is often limited by the availability of detailed data on the
lake’s N budget40–42. Our study quantifies the relationship between the
amount of the reduction in watershed N input and improved lake

Fig. 3 | Global patterns of the required reduction in watershed net anthro-
pogenic N input (NANI) to achieve the lake water quality goal (≤1mgN L–1)
within 10, 20, 30, and 40 years. a–d Blue polygons represent lakes with ≤1mgN
L–1, and for those lakes there is no need to reduce NANI. The deepest yellow
polygons represent lakes that could not achieve the water quality goal within the
target timeframe, even if the NANI in those watersheds is reduced to zero. Data are

shownat theHydroSHEDS level-5watershed scale. Gray areas indicate areaswithno
data available. e Number of regional lakes that require no reduction in NANI to
achieve the water quality goal. f Regional NANI reduction required to achieve the
water quality goal.gNumber of regional lakes that cannot achieve thewater quality
goal within the target years regardless of watershed management practices.
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quality on a global scale. The results suggest the need for target
measures to reduce external N loading to certain lakes, and save
resources by not focusing on lakes that alreadymeet the water quality
criteria or are likely to reach this level with no management measures.
Moreover, our study provides a specific strategy for watershed man-
agement of 5768 global lakes to achieve the UN’s SDG goals for water
quality improvement.

Methods
This section details our analytical methods, the modeling approach,
and underlying datasets for estimating global lake N removal, lake N
budget, and potential strategies for achieving water quality goals
under various watershed N management scenarios.

N removal and N budget in global lakes
Overview of the remote sensing model for lake N removal estima-
tion. The remote sensingmodel was used to estimate lake N removal27.
In principle, most of the environmental variables that control lake N
removal (e.g., dissolved carbon and N, DO, and WT) can be directly or
indirectly derived from remote sensing data (e.g., Chla, CDOM, and
WT), providing an approach to estimate lake N removal through

remote sensing techniques8,27,43. Low-level occurrence of algae and the
subsequent decomposition of the algae not only provides substrate N
to stimulate denitrification, but also create favorable conditions for
sediment denitrification44. However, excessive algal decay can deplete
DO and potentially disrupt the coupling of nitrification and deni-
trification and inhibit denitrification in sediments43. Meanwhile, war-
mer temperatures tend to linearly increase denitrification by
enhancingmicrobial respiration rates, consumingoxygen and creating
anaerobic conditions8,45. Therefore, a final additive conceptual model
that includes a quadratic polynomial and linear terms links the
dynamic N removal to Chla and WT (Supplementary Fig. 1).

After building the conceptual remote sensingmodel, we used lake
data from around the world to validate our model hypothesis. We
conducted a meta-analysis on the relationship between Chla and N
concentration in 39,411 lakes worldwide in a database that was also
used in the present study. The results showed a good regression
relationship between the concentrations of Chla and N in global lakes
(R2 =0.34, p <0.01), especially in shallow lakes, where a robust linear
correlation between Chla and N concentration existed27,46. Moreover,
the concentrations of Chla serve well as a proxy for N concentration
even when lake algae growth is limited by the phosphorus (P)

Fig. 4 | Implementation of strategies to achieve the UN’s SDG’s clean water
target before 2030. a A flow chart for classifying lakes into three types to design a
strategy for achieving the water quality goal for each lake in this dataset.
b Relationship between lake water quality improvement efficiency and lake N
removal ratio. Lakes with high water quality improvement efficiency indicate high

water quality improvement but low watershed N input reduction. c–i Typical lakes
with different water quality improvement efficiencies in this study. Water quality
improvement efficiency is dimensionless and calculated as the ratio of the reduc-
tion in lake N storage to the reduction in lake N loading.
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concentration (where N:P > 22.4) (R2 = 0.25, n = 14,881, p < 0.01, Sup-
plementary Fig. 4). Then, we analyzed more than 20 previous studies
which demonstrated that the rate of denitrification N removal from
lakes can be well estimated from environmental factors that control
the biogeochemical process of denitrification, especially water NO3

−

and temperature (Supplementary Table 1). Therefore, our approach of
using the remote sensingmodel that employsChla and temperature to
estimate the rate of lake denitrification is robust.

We thenparameterized and validated the conceptualmodel at the
local and global scales. Lake Taihuwas used to parametrize the remote
sensing model as this lake covers nearly 90% of the range of variation
in global lake N removal rates27,47. Next, the remote sensing model was
validated at the global scale by comparing our global lake N removal
estimations with the RivR-N model, which was empirically derived
fromwater residence time anddepth for estimating the lakeN removal
ratio across America and Europe48. In general, our estimates fit well
with the results of the RivR-N model (see Supplementary Note 1).

Estimation of N removal rate in global lakes. Combining the devel-
oped remote sensing model and the datasets of Chla and the annual
surface water temperature of lakes, we estimated the N removal of
global lakes in the HydroLAKES database, which includes 1.4 million
lakes with a surface area >10 ha. Global lake Chla concentration data
were obtained from Filazzola et al.49 which synthesized Chla values of
11,959 freshwater lakes across 72 countries from 3322 published arti-
cles. If a lake had multiple observations, the average of the multiple
observations was considered as the lake Chla concentration in this
study. The annual surface water temperature of global lakes was cal-
culated based on the Copernicus Global Land Service database50,
which provides monthly global lake surface water temperature data at
a 1-kilometer grid-scale. The monthly mean surface water tempera-
tures of global lakes between September 2017 and August 2018 were
averaged as the annual mean lake surface water temperature. As a
lake’s annual surface water temperature largely depends on the lake’s
latitude (Supplementary Fig. 5), we used the latitude data to estimate
the annual surface water temperature of lakes in the Chla dataset.

To constrain the scope of the application of our remote sensing
model, we excluded deep lakes by comparing the thermocline depth
of the lake (THER) with the average lake water depth. The THER was
calculated based on the empirical relationship between the THER and
lake surface area (SA) from127global lakes (Eq. (1))51.When the average
depth of a lake is greater than the THER, we consider such lakes to be
deep lakes, characterized by incomplete mixing and stratification of
nutrients, temperature, and dissolved oxygen, and such a lake is not
suitable to apply the remote sensingmodel52. Finally, theN removals of
a total of 5768 lakes (Supplementary Fig. 6) were estimated, and these
estimates are shown at the HydroSHEDS level-5 watershed scale.

LogTHER=0:185 Log SA+0:842 ð1Þ
The role of N removal in lake N budget. The N removal ratio (Rratio) is
used to evaluate the role of N removal in lake N budget, defined as the
proportion of lake N loading (Nloading) that can be permanently
removed through N2 emissions (Noutput,removal).

Rratio =
Noutput, removal

Nloading
ð2Þ

The Noutput,removal was calculated using the permanent annual lake N
removal rate (N2,emission) and SA, in which the N2,emission was estimated
using the remote sensing model we developed27, and the lake SA was
obtained from the HydroLAKES database.

Noutput, removal =N2, emission × SA ð3Þ

The annual lake N loading (Nloading) was estimated as the sum of the
lake N inflow through surrounding surface rivers and underground
water loads (Nloading,inflow) and the direct atmospheric N deposition
into the lake (Nloading,deposition):

Nloading =Nloading, inflow +Nloading, deposition ð4Þ

The N inflow from the surrounding surface rivers and underground
water loads (Nloading,inflow) was considered as N entering a lake from
upstreamwatershed soil N losses, which was estimated as the product
of soil N input in awatershed and river loading coefficient (a). The river
loading coefficient a (0.3–0.5) represents the ratio of the soil N input in
a watershed that can enter the lake through surface rivers and trans-
port of underground water loads, which was based on literature
values2,8,15,53.

Nloading, inflow =NNANI ×a ð5Þ

Here, watershed N input was considered the watershed Net Anthro-
pogenic N Input (NNANI), including atmospheric N deposition, input
from N fertilizers, net import or export of N in agricultural commod-
ities, and N fixation54. The global country-scale NANI for 2009 was
obtained from Han et al.55. Considering that most lakes studied are
distributed in the United States and China, we used a finer-resolution
NANI database of the United States for 2012 and of China for 2007 for
county-scale analysis56,57.

Atmospheric N deposition (Nloading,deposition) data were obtained
from Ackerman et al.58, who used the GEOS-Chem Chemical Transport
Model to estimate thewet anddry deposition of inorganicNglobally at
a spatial resolution of 2° × 2.5°. The product of the mean lake N
deposition rate (Ndeposition,mean) and lake SA was considered the total
amount of N deposition directly from the atmosphere to the lake:

Nloading, deposition =Ndeposition,mean × SA ð6Þ

Watershed N management and water quality improvement
In this study, we developed amass balance approach to link watershed
N management and lake water quality improvement (Supplementary
Fig. 1). Here, we considered the main N budget of the lake, including N
loading, N outflow, N removal, and N storage. Theoretically, sediment
N burial, resuspension, and diffusion also contribute to the lake N
budget. However, they account for a small share of the lake N budget
and are likely to balance each other in shallow lakes59,60. Therefore, we
did not account for these N budget terms in the mass balance model.
Following the equations below, we simulated how lake water quality
improves with watershed N management, which includes: (i) how
many years are required to achieve the water quality goal (≤1mgN L–1)
at a fixed annual watershed N input reduction rate (2%, 5%, and 10%
annual reduction compared to the N input in each preceding year); (ii)
what is the reduction intensity of the watershed N input to achieve the
water quality goal within limits of 10, 20, 30, and 40 years?

dNstorage

dt
=
dNloading

dt
� dNoutput, outflow

dt
� dNoutput, removal

dt
ð7Þ

dNloading

dt
=Nloading ×b ð8Þ

dNoutput, outflow

dt
=Nouput, outflow ×b ð9Þ

dNoutput, removal

dt

� �
=ðNoutput, removalÞ =

dNloading + dNstorage

dt

� �
=ðNloading +NstorageÞ

ð10Þ
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Where Nstorage is the lake N storage, calculated from the lake water
volume multiplied by N concentration and can be obtained from the
HydroLAKES database; Nloading is the loading of N through rivers and
underground water loads and the atmospheric N directly depositing
into the lake surface, calculated according to Eq. (4); Noutput,removal is
the lake N output that can be permanently removed through N2

emission, estimated according to Eq. (3); Noutput,outflow is the lake N
output through downstream outflow of rivers, and the current
Noutput,outflow canbe calculated according tomassbalance (Eq. (11));b is
the fraction of watershed N input that must be reduced to achieve the
water quality goal. In our mass balance approach, the current lake N
removal (Noutput,removal) is related to the sum of the current lake N
loading (Nloading) and storage (Nstorage); thus, the dynamic N removal
with watershed N reduction can be calculated according to the pro-
portional relationship in Eq. (10).

Noutput, flow =Nloading � Noutput, removal ð11Þ

In our simulation, as the targeted lake water quality (c) of ≤1mgN L–1

was set for analysis30, we couldcalculate theN storage in the target lake
based on Eq. (12), where WV represents the lake water volume.

Nstorage, target =WV× c ð12Þ

Finally, the magnitude of lake N loading that must be reduced to
achieve the water quality goal within a given year can be calculated
according to Eqs. (7)–(12). Specifically, in Supplementary Fig. 7, we
used anexample to illustrate how to simulate the effect ofwatershedN
management on the lake N budget in the next year based on the lake N
budget in each preceding year.

Model validation and uncertainty analysis
We validated our mass balance approach for water quality improve-
ment response to watershed N management in 49 HUC-8 watersheds
of northeastern USA (Supplementary Fig. 8). The data of the 49
watersheds were obtained from the LAGOS-NE database61, which syn-
thesized 51,101 lakes Chla and N concentrations between 2001 and
2013. We selected the watersheds in the LAGOS-NE database where
NANI decreased from 2002 to 2012 to verify the accuracy of the mass
balance model, and finally obtained data from 49 HUC-8 watersheds.
To reduce the uncertainty, we used the average of 2001, 2002, and
2003 as the valueof 2002; and took the averageof 2011, 2012, and 2013
as the value of 2012. Based on the TNandChla concentrations in 2002,
the N input reduction rate from 2002 to 2012, and the mass balance
model, we estimated each watershed’s TN concentrations in 2012. By
comparing our estimated TN concentrations in 2012 with the field-
measured TN concentrations in 2012, we evaluated the applicability of
the mass balance model to simulate the response of lake water quality
improvements to watershed N management. The coefficient of
determination (R²) between the model-predicted and measured TN
concentrations reached 0.97, indicating a high predictive accuracy of
the model (Supplementary Fig. 9).

Monte Carlo simulations were used to characterize the uncer-
tainty associated with estimated lake N removal, lake N loading, and
the required watershed N input reduction and times. A total of
1000 simulations for each input variablematchupofChla andWTwere
conducted to estimate the uncertainties of the lake N removal for each
lake. 1000 parameter sets for the lake N loading coefficient were
sampled based on Monte Carlo to simulate the uncertainty of global
lake N loading. 1000 simulations of lake N removal andN loading were
sampled to identify the uncertainty of the required watershed N input
reduction and times to achieve the water quality goal for each lake.
Uncertainty ranges were provided with 95th confidence intervals from
the Monte Carlo simulations.

Data availability
The HydroLAKES dataset was retrieved from Global HydroLAB
(https://wp.geog.mcgill.ca/hydrolab/hydrolakes/). The HydroSHEDS
dataset was obtained from Global HydroLAB (https://www.
hydrosheds.org/). The Chlorophyll and Water Chemistry databases
were retrieved from Scientific Data (https://doi.org/10.1038/s41597-
020-00648-2). The dataset of global watershed Net Anthropogenic
Nitrogen Inputs (NANI) was synthesized from Geoderma (https://doi.
org/10.1016/j.geoderma.2019.114066), Science of the Total Environ-
ment (https://doi.org/10.1016/j.scitotenv.2018.04.027), and Bio-
geochemistry (https://doi.org/10.1007/s10533-011-9606-y). The Lake
Surface Water Temperature data was retrieved from the Copernicus
Global Land Service (https://land.copernicus.eu/global/products/
lswt). Source data are provided with this paper62.

Code availability
The Python (version 3.7) used for the present analysis is available from
https://www.python.org/. The estimating of the lake N budget,
potential strategies to improve lake water quality, and uncertainty
analysis data used in this study are available on Figshare (https://doi.
org/10.6084/m9.figshare.26509543)62.
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