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Elevated fasting insulin levels (FI), indicative of altered insulin secretion and
sensitivity, may precede type 2 diabetes (T2D) and cardiovascular disease
onset. In this study, we group Fl-associated genetic variants based on their
genetic and phenotypic similarities and identify seven clusters with distinct
mechanisms contributing to elevated Fl levels. Clusters fall into two types:
“non-diabetogenic hyperinsulinemia,” where clusters are not associated with
increased T2D risk, and “diabetogenic hyperinsulinemia,” where T2D associa-
tions are driven by body fat distribution, liver function, circulating lipids, or
inflammation. In over 1.1 million multi-ancestry individuals, we demonstrated
that diabetogenic hyperinsulinemia cluster-specific polygenic scores exhibit
varying risks for cardiovascular conditions, including coronary artery disease,
myocardial infarction (MI), and stroke. Notably, the visceral adiposity cluster
shows sex-specific effects for Ml risk in males without T2D. This study
underscores processes that decouple elevated FI levels from T2D and cardi-
ovascular risk, offering new avenues for investigating process-specific path-
ways of disease.

Alterations in insulin secretion and sensitivity arise many years before
the development of type 2 diabetes (T2D)">. Fasting insulin (FI) is an
accessible trait to characterize molecular alterations that precede the
development of T2D. FI is a biomarker with prognostic variability
between individuals and populations®. Elevated FI levels can herald
defects in mechanisms of insulin secretion and sensitivity and thus
inform T2D pathophysiology and coronary artery disease (CAD) risk>°.
The specific molecular alterations associated with FI that are linked to
disease risk remain largely unexplored.

The dynamic, overlapping, and molecular complexity under-
lying insulin sensitivity and resistance limits our knowledge about
the impact of these processes in the development of T2D®’. A better
understanding of the physiological mechanisms could advance our
pathophysiological understanding of the early stages of T2D and
could contribute to more targeted therapeutic and preventive stra-
tegies. While previous studies have aimed at clustering T2D genetic
variants®", these approaches often provide limited insights into the
molecular mechanisms underlying glycemic regulation as people
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with T2D often present with other metabolic alterations due to dis-
ease or treatment. To date, genome-wide association studies (GWAS)
have identified hundreds of genetic alleles associated with increased
fasting serum insulin levels'> . Very few of these genetic loci have
been functionally characterized because it is clinically complex to
separate functional mechanisms of insulin production and insulin
action in experimental studies. Therefore, one approach to identi-
fying molecular consequences of identified Fl-associated GWAS
variants is in silico bioinformatic analyses.

By implementing techniques previously applied to the clustering
of T2D loci, we undertook a genetic approach to cluster Fl-related
variants based on their association with body composition, inflam-
matory, and lipid traits in individuals without diabetes from five
ancestry groups to elucidate the mechanisms that underlie the varia-
tion in insulin resistance and insulin secretion and their impact on
cardiometabolic outcomes.

Results

Using extant association summary statistics, we identified seven dis-
tinctive genetic clusters with defined genetic and trait similarities in
the bNMF model. The clusters are labeled “FI-Lipodystrophy Cluster”
(Supplementary Table 1), “Adiposity-driven Hyperinsulinemia Cluster”
(Supplementary Table 2), “Insulin Resistance Mediated by Visceral
Adiposity Cluster” (Supplementary Table 3), Preserved Insulin Secre-
tion Cluster (Supplementary Table 4), “Elevated Insulin Secretion
Cluster” (Supplementary Table 5), “Proinsulin Cluster” (Supplementary
Table 6), and “FI-Liver/Lipid Cluster” (Supplementary Table 7), and are
described in detail below.

We constructed partitioned polygenic scores (pPS) denoting
genetic susceptibility to seven distinct mechanisms underlying FI
levels among 1,104,258 individuals from five studies. The pPS showed
similar distributions across cohorts and population groups (Supple-
mentary Table 8). We classified the seven genetic clusters based on
their association with T2D (Fig. 1; Source Data 1; Supplementary
Data 1), which was not an input in the clustering. While all genetic
clusters were defined by alleles increasing Fl levels, three clusters were
associated with non-elevated T2D risk (non-diabetogenic hyper-
insulinemia), and four with increased T2D risk as well as strong effects
on body fat distribution, liver, lipid, and inflammatory processes
(diabetogenic hyperinsulinemia), which show mechanisms underlying
impaired insulin sensitivity.

Among the three clusters characterized by non-diabetogenic
hyperinsulinemia, the first is a set of Fl-increasing alleles with con-
comitant effects to lower glycemic trait levels (fasting glucose, 2h
glucose, or Alc). The genetic variants within this cluster indicate pro-
cesses linked to elevated levels of FI while maintaining beta-cell func-
tion. Notably, CELFI and TCF7L2 were among the eight top-weighted
loci. Interestingly, in the case of TCF7L2, it is in the opposite direction
to the one described for T2D". We refer to this cluster as “Preserved
Insulin Secretion” (PIS) cluster. The second non-diabetogenic hyper-
insulinemia cluster was a set of Fl-increasing alleles with overlapping
effects on increased corrected insulin response and decreased 2h
glucose, denoting a putative pathway of increased insulin secretion;
referred to as “Elevated Insulin Secretion” cluster (EIS). This cluster
included GRBIO and REEP3 within the 28 top-weighted loci. The third
non-diabetogenic hyperinsulinemia cluster was a set of Fl-increasing
alleles with subtle effects on glucose homeostasis: increased levels of
proinsulin, C-reactive protein, and gamma glutamine transferase
(GGT), with HNF1A and ARAPI among the six top-weighted loci. This
cluster recapitulates a beta cell under stress, which we call “Proinsulin
cluster”.

Among the four diabetogenic hyperinsulinemia genetic clusters,
we first identified a set of Fl-increasing alleles that were associated with
increased waist circumference, body fat percentage, and sub-
cutaneous adipose tissue (SAT). This suggests evidence of a cluster

characterized by increased FI driven by generalized adiposity with FTO
among the top-weighted 19 loci, we call it “adiposity-driven hyper-
insulinemia cluster”. Second, we identified a set of Fl-increasing alleles
characterized by visceral adiposity, lower corrected insulin response,
and sex-specific association with waist-adjusted BMI in males. In this
cluster labeled as “Visceral Adiposity cluster”, the 25 top-weighted loci
included MYOIA, BMP2, and ARLI1S genes previously described for their
association with lower BMI and energy storage into visceral and sub-
cutaneous adipose tissue depots'®”. The third cluster was a set of FI-
increasing alleles characterized by increased fat distribution in central
compartments and a detrimental circulating and hepatic lipid
deposition, which we called the “FI-lipodystrophy cluster”. The top 37
highly weighted loci included variants that lie in or near genes impli-
cated in monogenic forms of lipodystrophy (PPARG, IRS1, LYPLAL1, and
DNAH10)®. Finally, we identified a set of Fl-increasing alleles with a
concomitant effect on insulin sensitivity and alterations in liver
metabolism and inflammation, which could correspond to hepatic
insulin-resistance processes, which we called the “FI-liver/lipid”. Here,
Fl-increasing alleles in this cluster were associated with lower circu-
lating triglycerides, albumin, C-reactive protein, and the glucokinase
regulator GCKR as the top-weighted locus. Moreover, we noticed that
the majority of variants in the Fl-lipodystrophy cluster and Visceral
Adiposity cluster originate from the FI-BMI adjusted GWAS, contrast-
ing with the Adiposity-Driven Hyperinsulinemia cluster, where the
majority of variants stem from non-adjusted sources (see Supple-
mentary Data 2 for details on all variants used as input to the
bNMF model).

Associations between Fl-partitioned polygenic scores, T2D, and
cardiometabolic outcomes

Our meta-analysis analyses showed that the non-diabetogenic hyper-
insulinemia clusters were associated with differing risks of CAD (Fig. 2;
Source Data 2; Supplementary Data 1). For example, in all individuals
(with and without T2D), each 10-unit increase in the pPS of the PIS
genetic cluster was associated with lower odds of T2D (OR 0.72,
P<107%), CAD (OR 0.96, P<107°), MI (OR 0.95, P<107). The lower
T2D odds were also observed for the EIS cluster (OR 0.93, P <107), but
this cluster, unlike the previous one, was associated with increased
odds of CAD (OR 1.04, P<107), and HTN (OR 1.03, P<1075). No asso-
ciations with metabolic outcomes were observed for the Proinsulin
cluster.

The pPS for the four genetic clusters underlying processes of
diabetogenic hyperinsulinemia were all generally associated with an
increased risk of T2D, with estimated effect sizes ranging from 1.22
(P<107%) for the Fl-lipodystrophy cluster to 1.09 (P<10™*°) for the
Fl-Liver/Lipid cluster. However, directions of associations differed
for metabolic outcomes, including CAD, MlI, stroke, and eGFR. For
example, the Fl-lipodystrophy cluster was also associated with lower
eGFR, increased odds for CKD, and most cardiovascular outcomes
considered in this study, including CAD, MI, and stroke, while the FI-
Liver/Lipid cluster was associated with lower odds for CAD, MI, and
lower eGFR. Furthermore, in the sex-specific analysis, the Visceral
Adiposity cluster showed an increased risk of MI in males without
T2D (OR=1.008, P=9.8 x1072, p-value for interaction 0.018) (Fig. 3;
Source Data 3; Supplementary Data 3). Notably, this effect remained
consistent after adjusting for T2D status (P=0.03), and it was not
observed in males with T2D (OR=0.99, P=0.22). In general, our
results did not display any significant interaction between this cluster
and T2D status concerning cardiovascular risk (MI, stroke, or
CAD) (P>0.05).

Outcome associations with extreme pPS

Further, we investigated the extent to which the cluster associations
were consistent when individuals were categorized as having extreme
genetic risk (>90th percentile of a pPS). The analyses were generally
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consistent with our primary findings (Supplementary Data 4; Supple-  FI-genetic clusters associations in ancestry diverse populations
mentary Fig. 1). However, the effect sizes notably increased inthe 90th  To test the generalizability of our FI-cluster results, we performed
percentile group, in some cases up to six-fold in the case of the Visceral ancestry-specific analyses (Fig. 4; Source Data 4; Supplementary
Adiposity and the PIS clusters for high and low T2D risk, respectively. Table 9; Supplementary Data 5). We found that the associations
This underscores the incremental risk associated with higher between FI-pPS and T2D susceptibility had the same direction of effect
among all populations although with considerable differences in effect

genetic risk.
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Fig. 1| Seven potential mechanisms for hyperinsulinemia. Panel A Forest plot
displaying meta-analysis results from five cohorts (UKBB, MVP, ASPREE, MGBB, and
FHS) for cluster associations with type 2 diabetes. Data points represent the mean
effect size (odds ratio). Error bars indicate 95% confidence intervals (ClIs) calculated
using logistic regression models. All statistical tests were two-sided, with a sig-
nificance threshold set at a = 0.0008, based on a Bonferroni adjustment for mul-
tiple comparisons. The dotted vertical line at 1 represents the null effect (no
association). Panel B Each cluster is represented by a set of loci and a set of traits;
The loci and traits represented in the plots are the top-weighted for better visua-
lization; clusters might have more variants and traits. Loci with a number after the
period “.xx” represents that there was more than one SNP at that locus. The green
bars represent the weights with which each variant contributes to each cluster. In
the case of traits, the color of the bars represents the direction of the effect that was

found in each cluster, red for positive association and blue for negative association.
Purple lines distinguished diabetogenic hyperinsulinemia clusters; increased fast-
ing insulin, reduced glycemia, and preserved insulin secretion. Yellow lines dis-
tinguish clusters of non-diabetogenic hyperinsulinemia; increased fasting insulin
due to a strong effect on body fat distribution, liver, lipid, and inflammatory pro-
cesses. VAT visceral adipose tissue, SAT subcutaneous adipose tissue, 2hrG glucose
at 2 hours after an oral glucose tolerance test, LEP leptin, HDL high-density lipo-
protein, LVEDV left ventricular end-diastolic volume, WHR waist-hip ratio,
PATadjHtWt pericardial adipose tissue adjusted by height to weight ratio, HOMAB
Homeostasis Model Assessment of B-cell function, HIPC hip circumference, BFP
body fat percentage; VATSAT VAT:SAT ratio, Pl proinsulin, CIR corrected insulin
response, FG fasting glucose, HBAIC hemoglobin A1C, LDL low-density lipoprotein.
Source data are provided as a Source Data file.
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Fig. 2 | Forest plots showing meta-analysis results from five cohorts (UKBB,
MVP, ASPREE, MGBB, and FHS) for cluster association with disease outcomes.
Data points represent the mean effect size (odds ratio or beta estimate). Error bars
indicate 95% confidence intervals (Cls). All statistical tests were two-sided, with a
significance threshold set at p = 0.0008, based on a Bonferroni adjustment for
multiple comparisons. The dotted vertical line at 1 or O represents the null effect
(no association). Subgroup results are differentiated by colors, blue (non-T2D),
pink (T2D). PIS preserved insulin secretion, EIS elevated insulin secretion, and VAT

visceral adipose tissue. D: Diabetogenic; ND: Non-Diabetogenic. Panel A shows
associations of fasting insulin clusters with cardiometabolic outcomes; HTN
hypertension, CAD coronary artery disease, Ml myocardial infarction, ISTR
ischemic stroke, CKD chronic kidney disease. Panel B shows associations of fasting
insulin genetic clusters with T2D-exclusive outcomes; DR diabetic retinopathy,
diabetic neuropathy, INS insulin use. Panel C shows cluster associations with esti-
mated Glomerular Filtration Rate (eGFR). Source data are provided as a Source
Data file.
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Fig. 3 | Sex-specific associations between proteins and myocardial infarction
(MI) using the visceral adiposity cluster polygenic score. Panel A shows the
increased risk of MI in male individuals without type 2 diabetes (T2D) (N =155,271;
8038 cases) in the visceral adiposity cluster. Data points represent the effect size
(odds ratio) for the cluster’s association with MI. Error bars indicate 95% confidence
intervals (Cls) calculated using logistic regression models. All statistical tests were
two-sided. The vertical line at 1 represents the null effect (no association). Panel
B shows 39 proteins that displayed sex interaction; higher levels in males compared
with females. The values in the heatmap are the beta estimates from regression
analysis of the visceral adiposity cluster polygenic score with Myocardial Infarction
(MI) in the UK Biobank. Panel C displays the proteins that showed mediation effects
with P<107°, p values were adjusted for multiple comparisons of 0.05/39 proteins
tested (p=0.0012). Source data are provided as a Source Data file.

sizes. For example, the Visceral Adiposity cluster showed higher T2D
risk in Hispanic than non-Hispanic Black and non-Hispanic White
individuals. Similarly, the PIS-D cluster showed lower T2D risk in non-
Hispanic Black participants than the rest of the populations. Only two

out of the seven FI-pPS associations were replicated among South
Asian ancestry individuals: PIS, and FI-lipodystrophy cluster.

FI-genetic clusters associations with diabetes complications

In a subgroup analysis to evaluate complications in individuals with
T2D (n=208,268), we observed that the PIS cluster was associated
with lower odds of diabetic neuropathy (OR, 0.70, P<107) diabetic
retinopathy (OR 0.86, P<107®), and insulin use (OR 0.93, P<107)
(Fig. 2, Supplementary Data 1). Among the genetic clusters defined by
elevated FI levels with deeper metabolic alterations, we found that FI-
lipodystrophy and Adiposity-Driven Hyperinsulinemia clusters exhib-
ited the largest number of associations with T2D complications
including M, diabetic retinopathy, CKD, ISTR, and insulin use. Inter-
estingly, in individuals without T2D (n = 895,990), we observed that FI-
lipodystrophy (P<107), adiposity-driven hyperinsulinemia (P <107%),
and EIS (P<107) clusters maintained their associations with increased
CAD and Ml risk.

Molecular profiling of Fl-partitioned genetic scores

We identified 447 significant proteins in at least one of the FI-pPS
(P<2.50e-06) (Supplementary Data 6). The Hepatic-Insulin Resistance
cluster captured a large number of associations (N = 335), followed by
the Fl-lipodystrophy cluster (N=128) (Supplementary Fig. 2). Adipo-
nectin (ADIPOQ) and Leptin (LEP) were among the significant proteins
in the Fl-lipodystrophy cluster. Both proteins showed negative asso-
ciations, consistent with the directional traits in the cluster input.
Notably, associations with several proteins, including IGFBP2, LPL,
FGF21, TNFRSF19, and TNFRSF21, showed effects in the opposite
direction from the Fl-Liver/Lipid cluster. Subclusters of significant
proteins exhibited distinct T2D risk profiles among the FI clusters. For
instance, the subcluster consisting of SHBG, CKB, IGFBP2, ADIPOQ,
CD300LG, and LPL displayed positive associations within the FI-
lipodystrophy cluster, aligning with the anticipated T2D profile. In
contrast, the Fl-Liver/Lipid cluster showed negative correlations,
indicating an opposite T2D risk profile.

Next, to detect sex-specific associations with protein abundances,
we identified that the Visceral Adiposity cluster revealed 39 significant
protein associations with sex interaction to a nominal level (p <0.01).
There was a clear pattern where males with higher pPS had increased
protein levels, a distinct pattern from females (Fig. 3; Supplementary
Data 7). These sex-specific proteins were enriched in the lysosome
(FDR =0.01) and complement and coagulation cascades (FDR =0.02)
pathways (Supplementary Data 8). Given that the Visceral Adiposity
cluster was associated with MI, we tested whether these proteins
mediated the association with MI. Notably, three of the sex-specific
proteins (CEACAMS, GALNTI10, and SFRP1) mediated the risk between
the Visceral Adiposity cluster and MI in males without T2D (P<107%%°)
(Supplementary Data 9). These results support the role of this cluster
in influencing cardiovascular risk specifically in males.

Comparison with T2D genetic clusters reveals FI-distinct domain
We also explored the contribution of Fl-specific genetic variants
and traits that differ from the T2D genetic domains, our results
showed that Visceral Adiposity cluster does not resemble any of
the T2D clusters. In terms of cluster-defining phenotypes, this
cluster displays a maximum correlation of 0.36 (Supplementary
Fig. 3) with T2D multi-ancestry clusters’®. In the LD analysis
between FI and T2D cluster variants, we found that of the 25
variants top-weighted in the visceral adiposity cluster, only three
variants were in LD>0.60 with T2D cluster loci'®; rs1861882
(0.75), rs3775380 (0.94), and rs1011731 (0.96) (Supplementary
Table 10). Furthermore, in the sex-specific protein associations,
out of the 39 nominally significant proteins identified, 33 (84.6%)
were distinct and did not show significant associations within any
of the T2D genetic clusters, including the three proteins
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Fig. 4 | Forest plots showing meta-analysis results from five cohorts UKBB,
MVP, ASPREE, MGBB, and FHS, of cluster association and disease outcomes in
different population groups. Data points represent the mean effect size (odds
ratio) for the combined effect across cohorts. Error bars indicate 95% confidence
intervals (Cls) calculated using logistic regression models. All statistical tests were
two-sided, with a significance based on a Bonferroni adjustment for multiple
comparisons. The dotted vertical line at 1 represents the null effect (no association).

SA South Asian, HS Hispanic, AF African, EU European. PIS preserved insulin
secretion, EIS elevated insulin secretion, VAT visceral adipose tissue, D diabeto-
genic, ND non-diabetogenic. Panel A shows type 2 diabetes associations (T2D),
hypertension (HTN), and myocardial Infarction (MI) with fasting insulin genetic
clusters. Panel B shows associations of fasting insulin clusters with diabetes com-
plications: diabetic retinopathy (DR), and insulin use across populations (INS).
Source data are provided as a Source Data file.

mediating the effect of this cluster with MI (Fig. 3C Supplemen-
tary Data 7). The rest of the clusters, particularly the Fl-lipody-
strophy, adiposity-driven hyperinsulinemia, and FI-Liver/Lipid
clusters appear to capture some traits or genetic variants akin to
their counterparts within T2D clusters, although with differences
in direction or effect sizes for outcome associations (Supple-
mentary Table 11).

Discussion

Twelve T2D genetic clusters have been identified related to
mechanistic processes. We hypothesized that clustering using
genetic loci associated with FI rather than with T2D would provide
insight into the relationship between FI and T2D and identify new
genetic clusters relevant to T2D, but not yet discovered because the
genetic variants were not significantly associated with T2D at the
genome-wide threshold. We identified seven distinctive FI genetic
clusters representing different molecular processes for increasing FI
levels, one of them with notable male-specific effects on protein
levels and cardiovascular risk not previously captured by T2D genetic
clusters. Our results ranged from clusters of variants with effects on
increased Fl, and a lack of increased risk of T2D (non-diabetogenic
hyperinsulinemia), to clusters of variants that increased FI and T2D
risk with demonstrated strong effects on body fat distribution, liver,
lipid, and inflammatory processes (diabetogenic hyperinsulinemia).
In addition, our findings provide important insights into granular
metabolic processes that decouple increasing FI levels from cardio-
vascular conditions. The non-diabetogenic hyperinsulinemia clusters
were surprisingly associated with both increased and decreased risks
of cardiovascular conditions.

This work expands upon previous studies clustering T2D and FI-
related loci®'*?". Yaghootkar et al. studied 11 FI loci and eight traits,
identifying a lipodystrophy-like genetic cluster, which was subse-
quently also recaptured in T2D genetic clustering efforts®*'°. Our

analysis advances prior research by including 230 FI loci and related
traits and adds a more granular analysis of the mechanisms underlying
T2D and cardiometabolic risk. Our results support the notion that
insulin resistance associated with increased fat distribution in central
compartments is a key contributing factor to T2D risk. Both the traits
and genetic loci comprising the diabetogenic hyperinsulinemia clus-
ters reflect this adverse metabolic physiology. The top loci in the
visceral adiposity cluster MYO1A, BMP2, and ARLS increased systolic
and diastolic blood pressure, as well as hypertension®>”. Furthermore,
151552245 in MYOIA has shown evidence of increased cardiovascular
risk in non-T2D individuals*. The FI-lipodystrophy cluster with
reduced subcutaneous adipose tissue and genetic risk driven by
mostly BMI-adjusted variants relates to a “lipodystrophy-like” pheno-
type previously described by Yaghootkar?, Lotta”, Udler®, Kim’, and
Smith'®. Moreover, the adiposity-driven hyperinsulinemia cluster
appears to represent a mechanism of insulin resistance concomitant
with increments in body fat. (rs4280233 at FTO, rs10938397 at
GNPDA2, and rs7138803 at BCDIN3D***. In addition, our findings
support the evidence that excessive visceral adiposity strongly con-
tributes to cardiovascular risk?’. Consistent with an adverse impact of
excessive visceral adiposity, the diabetogenic hyperinsulinemia clus-
ters accurately captured the heightened risk of cardiovascular out-
comes such as HTN, CAD, M|, ISTR, stroke, and CKD, associations that
remained consistent regardless of the presence of T2D.

Our findings unveiled a diabetogenic cluster with notable sex-
specific associations that influence cardiovascular risk in males, an
aspect not previously captured by T2D genetic clusters. The primary
reason why this cluster remained unidentified within the T2D cluster-
ing is that the genetic variants it comprises were not significantly
associated with T2D at the genome-wide threshold. For instance, three
of the top-weighted variants with low LD with the T2D multi-ancestry
clusters did not reach genome-wide significance for T2D: rs1552245 at
MYOLA (P=0.078)*, rs979012 at BMP2 (P=0.088)", as well as
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rs4773173 at COL4A2 (P=0.015)*°. Moreover, the sex-specific effects
observed within the visceral adiposity cluster arise from its impact on
central fat distribution, as indicated by the higher waist adjusted by
BMI in males. Furthermore, our study successfully captured the sex-
specific effect of this cluster through proteomic associations. Biolo-
gical sex has been shown to play a significant role in shaping the
pathophysiology of cardiovascular diseases®’. Recently, proteomic
variances between males and females and their correlation with dis-
tinct rates of cardiovascular risk outcomes have been elucidated®,
revealing sex-specific protein mechanisms in cardiovascular health.
Particularly, disparities between sexes have been observed in MI, with
men often experiencing earlier onset and greater severity compared to
age-matched women®. In our study, we identified 39 proteins exhi-
biting higher abundances in males compared to females. Three of
them mediate the association between Visceral Adiposity cluster and
MI. One of them, SFRP1 stimulate adipogenesis in both human and
murine in vitro models*, it also positively correlated with insulin
sensitivity, possibly via effects on adipokine secretion®. Previous
research has suggested a close association between SFRP1 and myo-
cardial fibrosis, as well as cardiac remodeling*®*'. The higher protein
abundances in males observed in our study correlate to the effects of a
loss of function observed in animal studies** suggesting a compensa-
tory response within the cellular system. The protein quantification
downstream of the visceral adipose tissue genetic cluster, coupled
with their interaction with sex, served as a novel avenue for identifying
translatable therapeutic targets related to cardiovascular risk in males
prior to the onset of T2D.

The non-diabetogenic clusters, characterized by alleles associated
with increased FI and decreased risk of T2D, suggest mechanisms
involving increased insulin resistance coupled with compensatory
insulin production. In particular, the PIS cluster may be influenced by
the gene expression of ADCY5, which is known to regulate insulin
secretion from human islets*’. This cluster features the opposite allele
(rs11708067-G) compared to the T2D beta-cell cluster identified by
Udler et al. , which contains the rs11708067-A allele. The rs11708067-A
allele is linked to the reduced function of an islet enhancer, leading to
decreased ADCYS expression and impaired insulin secretion*’. Simi-
larly, the rs7903146-T allele in TCF7L2 is associated with compromised
beta-cell function®. The alleles in the preserved beta-insulin secretion
cluster (rs11708067-G, rs7903146-C, and rs11039290-A) contribute to
incremental increases in insulin production. This increased production
may enhance or preserve beta-cell function, potentially leading to
lower blood glucose levels and reduced cardiometabolic risk. Alter-
natively, these findings could reflect an early compensatory response
when glycemia is normal or only slightly elevated>***’. Furthermore, it
is crucial to acknowledge that the alleles within the PIS cluster were
selected for this analysis due to their association with increased FI
levels, and they exhibit a decreased risk for T2D; as noted above, the
alternative alleles increase T2D risk and are associated with reduced
insulin secretion. The observed effects of the T2D-reducing alleles may
be attributed to collider bias, particularly since the FI GWAS was
conducted in individuals without T2D.

We identified two clusters where the association with T2D was
decoupled from CAD risk, one diabetogenic and one non-diabetogenic
cluster. The hepatic insulin resistance cluster was the only diabeto-
genic cluster that exhibited evidence of decreased cardiovascular risk.
Top weighted loci in this cluster have been connected to fatty liver
disease (GCKR)*® and hepatic glycogen storage (RPII-10A14.4/
PPPIR3B)*°~!, and the top-weighted trait was decreased serum trigly-
ceride levels, suggesting that the cluster association with reduced CAD
risk might be explained by loci impacting hepatic storage of trigly-
cerides and/or glycogen. This cluster correlates with the liver lipid
cluster previously identified by Udler et al. ® and is consistent with the
finding by DiCorpo et al. *? that adjusting for serum triglycerides in a
regression model partially attenuated the associations with CAD. The

second instance of decoupled associations between T2D and CAD
involved the non-diabetogenic EIS cluster which was significantly
associated with reduced T2D risk but increased CAD risk.

Our study reveals several noteworthy associations that merit
further examination. Notably, the FI-Liver/Lipid cluster demonstrates a
significant association with a lower risk of MI. This finding is consistent
with recent research by Ahmed et al. *, which identified 13 genetic
variants associated with impaired hepatic triglyceride export. Their
study showed that liver fat-increasing alleles were correlated with a
reduced risk of coronary artery disease and MI but an elevated risk of
type 2 diabetes, underscoring the heterogeneous effects of liver fat on
health outcomes. Additionally, the FI-Liver/Lipid cluster is associated
with a reduced eGFR, a marker of kidney function. The connection
between lower MI risk and reduced eGFR within the Fl-Liver/Lipid
cluster suggests that mechanisms implicated in diabetogenic path-
ways related to hepatic function may influence multiple disease out-
comes through complex and interrelated mechanisms. This
emphasizes the need for further research to elucidate the pathways
linking insulin resistance with cardiovascular and renal diseases and to
explore how these associations might inform personalized interven-
tion strategies.

This study exhibits several strengths; first, the large-scale GWAS
provided the necessary data to establish FI clusters for various perti-
nent outcomes. It utilized a substantial dataset (comprising over a
million individuals) from diverse ancestries to assess both the corre-
lation between these clusters and prevalent disease states and their
ability to distinguish between diabetes and non-diabetes. The study
also has some limitations; we acknowledge the potential bias stem-
ming from the hyperbolic association, where elevated insulin secretion
might be driven by insulin resistance as a compensatory mechanism
rather than by genetic factors alone. Insulin responses, which reflect
basal beta cell function, are inversely related to insulin action across
varying degrees of glucose intolerance***”**, This physiological com-
plexity complicates the task of isolating these two mechanisms, mak-
ing it difficult to disentangle their individual genetic contributions. We
also acknowledge some overlap in the GWAS discovery studies and the
multi-ancestry cohort outcome studies. This inclusion may introduce
overfitting in our models; however, we assessed the meta-analysis
association analysis with and without the FHS cohort and did not
observe significant differences in our results. Another limitation of our
study is the inclusion of variants with subthreshold GWAS significance
levels, with only 20.43% reaching genome-wide significance for FI
(N=47). However, to address this concern, we conducted a sensitivity
analysis focusing on variants meeting the stringent criterion of
p<5x1078, This stricter selection led to the identification of four
clusters—PIS, Adiposity, VAT, and Fl-Liver/Lipid—from a subset of 47
GWAS-significant variants, which corresponds closely to four of the
original seven clusters, thereby reinforcing the robustness of our
findings (Supplementary Fig. 4). Moreover, 88% of the full set of 101
variants highly weighted in at least one cluster were associated with at
least one metabolic trait at genome-wide significance. This supports
their relevance in metabolic regulation and provides clarity on how
these alleles potentially influence FI, demonstrating that broader
metabolic associations beyond FI are integral to understanding the
allelic impact on metabolic traits. Another limitation is that SNPs and
traits GWAS summary statistics utilized in the bNMF algorithm repre-
sent studies conducted in individuals of European ancestry only. To
further enhance our understanding of the behavior of these clusters
across diverse populations, future research should encompass multi-
ancestry GWAS results. Finally, the sample size of South-Asian ancestry
individuals might limit our capability to detect significant associations
of Fl genetic clusters with cardiovascular outcomes in this
population group.

Our clustering approach offers valuable insights to decouple
hyperinsulinemia from T2D and cardiovascular conditions, presenting

Nature Communications | (2025)16:2569


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-57452-y

Step Step

Step
2c

SNP and trait

Cluster

selection for cluster development

development

Creation of
Partitioned polygenic
scores (pPS)

PS association
P with pPS association

cardiometabolic  |----»  With circulating
outcomes proteins

Bayesian Non-
Negative Matrix
Factorization

| =

1oglP)

230 SNPs associated with
fasting insulin and 43 traits that
influence insulin homeostasis

Seven fasting-insulin
genetic clusters

Non-
diabetogenic

hyperinsulinemia

L L

Diabetogenic
hyperinsulinemia

Proteomic sig
of fasting-insulin

Non-Diab Diab > TM multi- Lower risk of Increased risk geneticclusters
hyperinsulinemi hyperinsuli _ancestry T2D and of T2D and
(N=3) (N=4) individuals from distinct risk for distinct risk for
Increased fasting Increased fasting five cohorts cardiovascular cardiovascular
insulin, reduced insulin with conditions. conditions.

glycemia, and
preserved insulin
secretion

increased fat
distribution in
central
compartments,
liver, lipid, and
inflammatory
processes.

Sex-specific proteomic

Diabetogenic VAT e 5
associations in

cluster is associated

diabetogenic VAT

with Increased risk of
cluster (NEK7, SFRP1)

myocardial infarction
in males without T2D

Fig. 5 | Study design and main results. This figure was created in BioRender. Sevilla, M. (2024) https://BioRender.com/u86n272.

a novel avenue for patient’s risk stratification for precision medicine
approaches. The outcomes of this study can aid in identifying groups
that require targeted therapeutic approaches, or exploring pathways
aimed at preventing disease onset. This represents a significant stride
towards genetically informed patient prevention and management of
T2D, which is crucial given the limitations of current therapeutic
approaches in addressing disease heterogeneity and predicting future
disease trajectories.

In summary, through the examination of a key intermediate trait,
FI, we gained detailed insights into the heterogeneity of T2D and car-
diovascular conditions. By clustering Fl-related loci and traits, we
identified seven genetic clusters of FI that have both increasing and
decreasing effects on CAD risk which are not always aligned with T2D
risk. Our findings challenge the assumption that increasing FI levels
always correlates with unfavorable outcomes. Moreover, the study of
proteins downstream of process-specific genetic variation served as a
novel avenue for identifying translatable therapeutic targets related to
cardiovascular risk in males without T2D.

Methods

Figure 5 summarizes our study approach and the implemented ana-
lyses. To generate FI clusters, we gathered association summary sta-
tistics for FI and related metabolic traits to identify clusters of genetic
variants and traits sharing similar physiological characteristics. Each
cluster is defined by a set of Fl-increasing alleles with weights derived
from the clustering procedure. We used this information to generate
partitioned polygenic scores (pPS) for the different clusters among
1,104,258 multi-ancestry individuals from five studies; Million Veterans
Program (MVP), UK Biobank (UKBB), Mass General Brigham Biobank
(MGBB), ASPirin in Reducing Events in the Elderly Study (ASPREE),
Framingham Heart Study (FHS). A brief description of each con-
tributing cohort is provided in Supplementary Data 10. We meta-
analyzed the associations between each pPS and several cardiometa-
bolic outcomes. Finally, we tested our FI-pPS against 2923 proteins
available in UK Biobank* to explore molecular mechanisms underlying

each pPS, and to contrast these associations with previous T2D clus-
ters. Analysis of the UK Biobank was conducted under application
#42614. Data analysis was approved by the Mass General Brigham
Institutional Review Board (Boston, MA).

Identification of genetic clusters

First, we leveraged association summary statistics to identify genetic
variants previously associated with increased FI. These FI association
summary statistics are listed in Supplementary Table 12. These GWAS
were performed in population groups described as European ancestry
and in individuals who did not have diabetes'®. Then we obtained
association summary statistics for the identified Fl-associated genetic
variants for additional traits that span cardio-metabolic domains
(glycemic, anthropometric, body composition, inflammation, lipids,
hormones, and liver function) available in the Accelerating Medicines
Partnership Common Metabolic Diseases Knowledge Portal®® or the
UK Biobank”. These traits were further pruned using a correlation
threshold |r[<0.85 between the Z-scores of each trait in the SNP-trait
matrix. This selection of non-completely overlapping traits is critical to
ensure that each phenotype provides additional information and
contributes to the generation of the matrix.

We used a Bayesian non-negative matrix factorization (bNMF)
clustering approach to group Fl-associated variants into clusters of
genetic variants with molecular and clinical similarities. The bNMF
algorithm factorizes the inputs into two matrices with an optimal
rank K, corresponding to the association matrix of variants and traits
to the number of clusters’. The maximum posterior solution at the
most probable number of clusters was selected for downstream
analysis. The input for the bNMF approach initially comprised 230
distinct genetic variants associated with fasting insulin (FI) at a sig-
nificance level of p<5x107 (Supplementary Data 2) and 43 traits
(Supplementary Table 13). Additionally, we conducted a sensitivity
analysis using a more stringent threshold, including only variants
with p<5x107 for FI in European (N=39) or Multi-ancestry (N=8)
GWAS. The trait effect sizes were aligned to the FI risk-increasing
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allele, which was determined using the Lagou (FI) and Chen
(FladjBMI) GWAS®. The cut-off value to define top weighted variants
and traits that characterize each cluster was 0.84. This was deter-
mined by the optimal threshold to define the beginning of the long
tail of the distribution of clusters’ weights across all clusters. The
most highly associated traits determined the main features of each
cluster’. The bNMF algorithm was implemented in R with open-
source code available at our GitHub repository (see the section
“Code availability”).

Generation of Fl-partitioned polygenic scores

pPS were calculated for each study participant in each cohort by
summing the weights of the gene variants derived from the bNMF
clustering algorithm, as has been described before®°*%, Within each
cohort, we used directly genotyped variants or imputed variants. If a
genetic variant was unavailable or ambiguous, we used available
proxies based on r* > 0.8. To prevent unintentional allele swapping,
the frequencies of the alleles used in developing the clusters for
hyperinsulinemia were compared with European ancestry individuals
from the Mass General Brigham Biobank (MGBB). The genotyping
information and imputation methods from the different studies
included in our study are described in Supplementary Data 10. The
median and distribution of the pPS were comparable across the
included studies.

Biobank and cohort analyses

For individual-level data, informed consent was obtained from all par-
ticipants in all datasets. We complied with all relevant ethical regulations
when analyzing genetic data from human research participants. Indivi-
duals were not compensated for participation in this study.

Associations between FI-pPS, and cardiometabolic outcomes
The primary outcomes were T2D, CAD, myocardial infarction (MI),
stroke, ischemic stroke (ISTR), hypertension (HTN), chronic kidney
disease (CKD), and estimated glomerular filtration rate (eGFR). The
rationale for investigating these outcomes was because of the asso-
ciation of FI levels with metabolic, renal, and cardiovascular condi-
tions. Outcome definitions were generally consistent across studies,
and the study-specific definitions can be found in Supplementary
Data 10. These outcomes were based on the most recent information
available from observational longitudinal studies and at baseline in the
study with intervention; ASPREE.

Secondary outcomes included diabetes complications defined as
neuropathy, retinopathy, kidney disease occurring in individuals with
diabetes, and insulin use. Secondary outcome definitions can also be
found in Supplementary Data 10.

Each cohort received a harmonized statistical analysis plan with a
standardized definition of pPS, statistical models, covariates, and
outcome definitions. We used multivariable regression models to
estimate effect sizes and the odds of primary outcomes for each pPS.
We computed pPS on a continuous scale and presented estimates for a
10-unit increase in polygenic scores. Models were adjusted for age, sex,
and the 10 principal components (PCs) of genetic ancestry. For analysis
in ASPREE, we also included the country of recruitment as a covariate.
For analyses conducted in the UK Biobank, only PCs that reached the
nominal significance threshold for association in the null model were
included. Sex-stratified analyses were conducted in the UK Biobank
across all outcomes to investigate potential sex-specific effects of the
FI-pPSs. In a secondary analysis, in all cohorts, we categorized indivi-
duals according to the distribution of pPS and conducted association
analyses comparing individuals in the top 10" distribution of each pPS
against the rest. Because the median and distribution of the polygenic
scores across the cohorts were consistent, we used the MGBB cohort
to standardize the cutoff point to define high genetic risk among the
five cohorts.

For multi-ancestry cohorts, we conducted subgroup analyses
stratified by race/ethnicity population groups. To ensure accurate
race/ethnic classification of participants, we employed a combination
of self-reported race/ethnicity and genetic-derived continental ances-
try approaches. We first classified individuals with their self-reported
race/ethnicity and then cross-referenced this information with their
genetic PCs to verify the accuracy of the classification. Individuals who
did not match their self-reported race/ethnicity with their genetic PCs
were excluded from the specific ancestry group. The MVP study used
the Harmonized Ancestry and Race Ethnicity (HARE) algorithm®®, We
also conducted subgroup analyses stratified by T2D status.

Outcome-specific study-level regression coefficients were com-
bined by inverse-variance weighted fixed effects meta-analysis. The R
package “meta” version 4.18-2 was used to combine estimates of effect
and produce an overall association test. We used the /> statistics to
assess between-study heterogeneity. We considered a two-sided o
level of 0.0008 based on a Bonferroni adjustment for performing 56
tests, including eight outcomes and seven genetic clusters. Statistical
analyses were carried out using R software, versions 3.5.1 and 4.1.1.

Associations between FI-pPS and protein abundances

To explore molecular mechanisms underlying pPS and contrast these
associations with previous T2D clusters we tested our FI-pPS against
2923 proteins available in UKBB™. Details regarding the assay have been
described in detail. Normalized protein expression (NPX) units are
generated by normalization to the extension control and further nor-
malization to the plate control and reported on a log2 scale. We used
linear models to estimate the effect of the association of pPS and NPX,
correcting for age, age?, sex, and 10 genetic principal components.
Additionally, we performed models testing the interaction between sex
and pPS to find sex-specific protein associations adjusting for the same
covariates. All models were adjusted for multiple comparisons, setting a
p-value of 2.50 x107 as significant (0.05/2923 proteins/7 clusters). We
also tested the association of these proteins with prevalent T2D
adjusting for the same set of covariates. Using all proteins with at least
one significant association with an FI-pPS, we performed hierarchical
clustering of the effect estimates for each FI-pPS. Finally, we conducted a
pathway analysis with the proteins identified in the sex-interaction
analysis using the KEGG library (Kyoto Encyclopedia of Genes and
Genomes) through the Enrichr tool®*

We employed a mediation analysis to evaluate the extent to which
the association between genetic cluster and disease risk is mediated by
the plasma proteins, adjusting for the covariates described above.
Individual mediation analysis was performed using the R package
mediation (v4.5.0; Tingley 2014). P values were adjusted for multiple
comparisons of 0.05/39 proteins tested (p = 0.0012).

Comparison against existing T2D clusters

The comparison with existing T2D genetic clusters®'® was performed
across three levels of data: phenotypic, genetic, and protein associa-
tions. First, to explore phenotypic differences driving the formation of
the clusters, we assessed the correlation between trait weights in Fl and
T2D clusters using Spearman correlation. Next, we tested the linkage
disequilibrium (LD) of each top-weighted variant in the Fl-clusters with
the genetic variants included in the T2D genetic clusters'™. Finally, we
tested the extent to which the FI clusters captured different protein
associations from T2D clusters'.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The UK Biobank (UKB) whole-genome sequence data can be accessed
through UKB Research Analysis Platform (RAP), through the UKB
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approval system (https://www.ukbiobank.ac.uk). The Mass General
Brigham Biobank (MGBB) individual-level data are available from https://
personalizedmedicine.partners.org/Biobank/Default.aspx, where the
data is available through Institutional Review Board (IRB) approval and
therefore not publicly available. ASPirin in Reducing Events in the Elderly
Study data is available through internal approval https://ams.aspree.org/
public/ The Framingham Heart Study genomic data analyzed in the
current study are available through restricted access via the Genotypes
and Phenotypes (dbGaP) Exchange area in the database of repositories
phs000974 and phsO00007. The Million Veterans Program data that
support the findings of this study are not openly available due to reasons
of sensitivity and are available from the corresponding author upon
reasonable request. Source data are provided with this paper.

Code availability

Code for variant pre-processing, bNMF clustering, is available at https://
github.com/gwas-partitioning/bnmf-clustering. https://doi.org/10.5281/
zenodo.14218909 Code for polygenic risk scores is available at https://
github.com/manning-lab/polygenic-risk-scores-pipeline. https://doi.org/
10.5281/zenodo0.14217974.
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