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Lanthanide single-atomcatalysts for efficient
CO2-to-CO electroreduction

Qiyou Wang1,2, Tao Luo1,2, Xueying Cao3, Yujie Gong4, Yuxiang Liu1, Yusen Xiao1,
Hongmei Li1, FranzGröbmeyer5, Ying-Rui Lu 6, Ting-ShanChan 6, ChaoMa 7,
KangLiu1, Junwei Fu1, ShiguoZhang 7,ChangxuLiu 8, ZhangLin2, LiyuanChai2,
Emiliano Cortes 5 & Min Liu 1

Single-atom catalysts (SACs) have received increasing attention due to their
100% atomic utilization efficiency. The electrochemical CO2 reduction reac-
tion (CO2RR) to COusing SAC offers a promising approach for CO2 utilization,
but achieving facile CO2 adsorption and CO desorption remains challenging
for traditional SACs. Instead of singling out specific atoms, we propose a
strategy utilizing atoms from the entire lanthanide (Ln) group to facilitate the
CO2RR. Density functional theory calculations, operando spectroscopy, and
X-ray absorption spectroscopy elucidate the bridging adsorption mechanism
for a representative erbium (Er) single-atom catalyst. As a result, we realize a
series of Ln SACs spanning 14 elements that exhibit CO Faradaic efficiencies
exceeding 90%. The Er catalyst achieves a high turnover frequency of
~130,000h−1 at 500mA cm−2. Moreover, 34.7% full-cell energy efficiency and
70.4% single-pass CO2 conversion efficiency are obtained at 200mA cm−2 with
acidic electrolyte. This catalytic platform leverages the collective potential of
the lanthanide group, introducing new possibilities for efficient CO2-to-CO
conversion and beyond through the exploration of unique bonding motifs in
single-atom catalysts.

The escalating CO2 emissions from fossil fuel consumption have exa-
cerbated environmental crises like climate change and ocean acid-
ification, highlighting the urgency to develop technologies for CO2

capture and utilization1,2. The electrochemical CO2 reduction reaction
(CO2RR) presents a promising strategy to convert CO2 into value-
added products like hydrocarbons and oxygenates3. Among the
potential products, carbon monoxide (CO) holds particular impor-
tance as a vital feedstock for various chemical processes, including the
production of methanol, acetic acid, and hydrocarbons via Fischer-
Tropsch synthesis4,5. Presently, single-atom catalysts (SACs) with

isolated active site have aroused widespread attention due to their
prominent ability to inhibit *H combination within competitive
hydrogen evolution6–8. A repertoire of atoms has been utilized as the
catalysts, ranging from main group to transitional metals7,9,10.

To improve the efficiency of SACs-based CO2RR to CO, numerous
strategies havebeenproposed to improve theweak *COOHadsorption
with single-line pathway (Metal-C), focusing on the regulation of
coordination number and atom species11–15. However, achieving strong
*COOH adsorption on traditional metal atom is inherently difficult
because of the weak Metal-C bonding by virtue of single-line
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pathway16,17. More importantly, strong*COOH adsorption may lead to
difficult CO desorption because the binding strengths of these two
intermediates via common Metal-C bond are positively correlated18,19.
Thus, achieving facile *COOH adsorption and CO desorption simulta-
neously remains a significant challenge, resulting in a limited turnover
frequency (TOF) in the range of few thousands to tens of
thousands11,12,20–23, and thus leading to low energy efficiencies and CO2

conversion efficiencies.
Here, we introduce a approach to address this fundamental bot-

tleneck during CO2RR to CO. Instead of relying on specific atoms to
facilitate the *COOH adsorption and CO desorption, we unveil that the
entire group of non-radioactive lanthanide (Ln) metals can serve as
optimal catalysts forCOproduction fromCO2RR. The large atomic size
of Lnmetals,which is over twice the size of a carbon atom, significantly
mitigates steric-hindrance effects for double-line (bridge)
adsorption24,25. Meanwhile, the oxophilicity of Ln metals26–28 facilitates
the formation of strong bridge adsorption by pattern of Metal-C and
Metal-O bonding for *COOH. Most importantly, the variable coordi-
nationnumbers of Ln atoms endow their transition ability from *COOH
bridge adsorption to *CO linear adsorption during CO2RR process.
circumventing the scaling relationship between *COOH and *CO.

Despite variations in atomic number across the Ln series (from 57
to 71), we realized SACs incorporating fourteen Ln with CO faraday
efficiencies exceeding 90%, highlighting the universal adaptability of
this mechanism. Using erbium (Er) as a representative SAC, we eluci-
date the favorable *COOH bridge adsorption and CO desorption
through density functional theory (DFT) calculations, operando atte-
nuated total reflection infrared spectroscopy (ATR-IR), and Er L3-edge
XAS measurements. As a result, the flow cell fabricated with Er SAC
exhibits a high turnover frequency (TOF) of approximately 130,000h−1

at 500mA cm−2, achieving a full-cell energy efficiency of 34.7% and
single-pass carbon efficiency (SPCE) of 70.4% at 200mAcm−2 for CO
production.

Results and discussion
DFT Calculations
To elucidate the improved adsorption/desorption on Ln single-atom
catalysts (SACs) for CO2RR, we conducted a systematic investigation
using Density Functional Theory (DFT) calculations, comparing them
with traditional SACs. For clarity without loss of generality, erbium (Er)
was chosen as the representative Ln, while calcium (Ca) and iron (Fe)
were selected as reference elements. Both Ca and Fe are employed as
typical SACs for CO2RR, with Fe known for its low energy barriers for
CO2 activation and Ca favoured for its facile CO desorption9,10,29.

Schematically, the intermediate *COOH exhibits a bridge
adsorption state on Er SAC, in contrast to the linear adsorption on Fe
and Ca SACs (Fig. 1a, b and Supplementary Fig. 1). However, the
intermediate *CO shares a linear adsorption on Er SAC, consistent with
those on Fe and Ca SACs. Free energy diagram indicates that Er SAC
(0.61 eV) and Fe SAC (0.63 eV) exhibit lower energy barriers for CO2

activation than that of Ca SAC (1.46 eV), proving the bridge adsorption
benefits *COOH formation (Fig. 1c). In addition, the CO desorption on
Er SAC (0.34 eV) and Ca SAC (−0.07 eV) are easier than that on Fe SAC
(1.06 eV). Thus, the bridge adsorption does not transition onto sub-
sequent *CO linear adsorption on Er SAC, thereby circumventing the
scaling relationship in terms of *COOH and *CO observed in typi-
cal SAC.

To further explore the interaction between metal sites and inter-
mediates,we examined the catalyst-intermediate adduct (M-COOH,M-
CO) (Fig. 1d and Supplementary Fig. 2). Charge density differences and
Bader charge analysis are conducted to analyze the intensity of che-
mical bonds between intermediates and metal sites. As shown in
Fig. 1d–f, show that charge transfer from Er and Fe SAC to *COOH is
0.500 and 0.584 e respectively, larger than that of Ca SAC (0.363 e),
indicating strong *COOH adsorption on Er sites by virtue of bridge

adsorption. Furthermore, Er SAC (0.012 e) and Ca SAC (0.005 e) pro-
vide negligible charge to *CO, compared to Fe SAC (0.136 e), demon-
strating the easier CO desorption on Er and Ca site than that on Fe site.
Thus, Er SAC facilitates the CO2RR to CO pathway through the bridge
adsorption of *COOH as well as the linear adsorption of CO.

Catalyst synthesis and characterization
To utilize the unique catalytical properties predicted by DFT calcula-
tions, Er SAC was prepared on carbon nanotubes (CNTs) through a
facile calcination method (Scheme in Supplementary Fig. 3). Only the
XRD diffraction peaks of CNT substrate was found, suggesting the
absence of metallic phases and a homogeneous dispersion of the Er
atoms (Supplementary Fig. 4)30,31. No metal contamination was found
in these precursors of Er SAC (Supplementary Figs. 5, 6). The metal
contents in Er SAC were estimated to be ~2.17wt% (Supplementary
Table 1), according to inductively coupled plasma optical emission
spectrometer (ICP-OES). Themorphology and the atomic Er dispersion
were investigated through different types of microscopies. The results
from scanning electron microscope (SEM), high-resolution transmis-
sion electron microscope (HRTEM) and aberration-corrected high-
angle annular dark-field scanning transmission electron microscopy
(AC HAADF-STEM) confirmed the single-atom nature of the Er sites on
CNT (Fig. 2a andSupplementary Fig. 8). In addition to Er,wedeveloped
a systematic procedure to SACs supported on CNTs utilizing all Ln
expect radioactive Promethium (Pm), encompassing Lanthanum (La),
Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm),
Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy),
Holmium (Ho), Thulium (Tm), Ytterbium (Yb), and Lutetium (Lu).
Significantly, the size of Ln atom is much larger than that of Ca, and Fe
atoms. Further investigations show that 16 SACs including Ln, Ca, and
Fe SACs have similar components andmorphologies as thoseof Er SAC
(Supplementary Figs. 7–25), demonstrating the universality of
preparation.

To acquire the structural information of SACs, synchrotron-based
X-ray adsorption near edge structure (XANES) spectra were con-
ducted. Er SAC shows a clear increase of C K-edge peak intensity at
∼288.5 eV, suggesting the possible formation of C-N-Er bonds, com-
pared to nitrogen doped carbon nanotubes (NC) (Fig. 2c)32–34. The
increase of pyridinicN peak at 400.7 eV indicates Er atoms dominantly
coordinate with pyridinic N atoms in Er SAC (Fig. 2d)35,36. Fourier
transformed (FT) extended X-ray adsorption fine structure (EXAFS)
manifests the atomic dispersion features of the Er, Fe and Ca atoms,
with a coordination number of ~6, ~4 and ~4 based on well-fitting
process respectively, consistent with the results from theoretical cal-
culations (Fig. 2e–g and Supplementary Figs. 10, 11, Supplementary
Table. 2).

To study the real-time intermediates formed onmetal sites during
CO2RR to CO, we carried out operando attenuated total reflection
infrared spectra (ATR-IR) and L3-edge XAS measurements for Er (Sup-
plementary Figs. 26, 27). Peaks located at range from 1910 to 1950 cm−1

and around 1640 cm−1 can be attributed to *CO (linear-bonded CO) and
H2O bending respectively (Fig. 3a, b and Supplementary Fig. 28 and
Supplementary Table 3)37,38. Notably, a new peak ranging from 1800 to
1840 cm−1 was identified, assigned tobridge adsorption of *COOHonEr
SAC, distinguishing it from Fe and Ca SAC9,39,40. Similarly, Er and Fe
SACs show stronger CO2 adsorption signals of CO2 adsorption based
on temperature program desorption, compared with that of Ca SAC,
facilitating the subsequent CO2 activation on Ca and Fe sites (Supple-
mentary Fig. 29). Furthermore, differing with the distinct CO adsorp-
tion peaks on Fe SAC, no such peak was observed on Er and Ca SACs,
suggesting facile CO desorption from Er and Ca sites, consistent with
the results from DFT calculations.

We further investigated the chemical structure and coordinating
environment of Er SAC under operating conditions using XAS. The
intensity of white line heightened slightly due to the increased
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chemical state during CO2 electroreduction (Fig. 3c). The Er-N bond
position of Er SAC shifted towards the Er-O side during CO2RR,
demonstrating the existence of Er-O from Er-*COOH bridge
adsorption41,42. Importantly, over the applied potential range relevant
to CO2RR, the Er-Er bondwas not observed (Fig. 3d), suggesting that Er
SAC maintained its original complex status without reduction to Er
nanoparticles or nanoclusters under operating conditions39,43.

Evaluating catalyst performance for CO2RR
To evaluate the performance of catalysts, electrochemical tests were
first conducted in CO2 saturated 0.5M KHCO3 electrolyte (Supple-
mentary Figs. 30–40). Er SAC shows high Faradaic efficiencies of CO
(FECO)≥90% over a wide potential range from −0.47 to −0.97V vs. RHE
(Fig. 4a), with a maximal FECO reaching ~99% (Supplementary Fig. 38).
Furthermore, Er SAC retains a FECO above 90% at −0.67 to −0.87V vs.
RHE, even when the CO2 concentration was reduced to 30% (Supple-
mentary Fig. 36). The flow cell fabricated with Er SAC shows a large
current density of 500mAcm−2 under high CO Faradaic efficiency ≥90%
in 1M KHCO3 electrolyte (Fig. 4b and Supplementary Figs. 41, 42).

To avert low carbon utilization limits witnessed in neutral
solutions44–46, the performance of Er SAC was tested in acidic media,
1MKCl (pH adjusted to 1.0with sulfuric acid). Only tiny degradation of
FECO was observed when then current densities were increased by 10
times from 50 to 500mAcm−2, demonstrating its potential for large-
scale production. Such ≥90% Faradaic efficiency at 500mA cm−2 both
in neutral (top panel, Fig. 4b) and acidic electrolyte (bottom panel,
Fig. 4b and Supplementary Fig. 43) endows the SAC a high turnover
frequency (TOF) of ~130,000h−1. Furthermore, Er SAC can achieve a
full-cell energy efficiency of 34.7% at 200mAcm−2 (Supplementary
Figs. 44–47 andSupplementary Tables 4, 5)47–50. Todecrease resistance

of the system, we have tested the performance in the Membrane
Electrode Assembly (MEA). As shown in Supplementary Table 5, MEA
fabricated Er SAC shows high full-cell energy efficiency of ~32.5% even
at high current density of 300mA cm-2.

Moreover, we investigated the catalytic performance across
various CO2 flow rates spanning a wide range of current densities.
Notably, we achieved a remarkable single-pass carbon efficiency
(SPCE) of 70.4% for CO2RR to CO a large current density of
200mA cm−2, indicating that 70.4 out of 100 CO2 molecules can be
successfully transformed into CO at the outlet (Fig. 4c, d and Sup-
plementary Tables 6–11). The flow cell maintained stable operation at
100mA cm−2, with FECO >90% in acidic electrolyte (100 h, Fig. 4e),
and meanwhile showed a long-term stability in neutral electrolyte
(Supplementary Fig. 45). No obvious cluster and Er-Er bond are
observed on Er SAC after the test according to operando XANES
spectra (Fig. 3d) and TEM images, demonstrating the durability of
structure (Supplementary Fig. 46).

Figure 4f illustrates a comparative analysis of catalytic perfor-
mance between our study and a previous flow cell for CO2 to CO
conversion. To provide a comprehensive evaluation, we considered
five performance indicators: efficiency (both FE and SPCE), stability
(duration for FECO exceeding 90%), pH, and the operational current at
maximum SPCE. Our Er SAC surpassed previous reported data across
all performance metrics, a testament to the efficacy of the unique
mechanism elucidated earlier (Supplementary Tables 12–14).

To assess the generic catalytic abilities of Ln, similar tests were
conducted for the other thirteen SACs utilizing different elements. All
of Ln SACs keep a high FECO between 92.0% and 99.6% at −0.67 V vs.
RHE (Fig. 4a). The consistently high efficiency observed across SACs
using elements from the entire Ln group (except radioactive Pm)
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unequivocally demonstrates the universal catalytic activity of Ln as
predicted by DFT and indicated by operando spectra.

In summary, we proposed and realized a series of Ln SACs with
catalytic performance for CO2RR to CO. The unique electron configura-
tion shared by Ln metals facilitates the bridge adsorption for favorable
*COOH formation, which circumvents the scaling relationship between

*COOH and *CO. Both DFT calculations and experimental characteriza-
tionswere employed toprove thebridge adsorptionof *COOH for Er SAC.

The adaptability of our strategy was validated through CO2RR
flow cells containing SACs incorporating 14 different Ln metal atoms,
all exhibiting FECO beyond 90%. Among them, the Er SAC demon-
strated a remarkable TOF of ~130,000 h−1 at a high current density of
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500mA cm−2, maintaining a CO Faradaic efficiency of ≥90% in both
neutral and acidic electrolytes. This achievement results in a significant
enhancement of full-cell energy efficiency to 34.7% and single-pass CO2

electrolysis (SPCE) to 70.4% at a large current density of 200mA cm−2.
These results underscore the promising potential of our approach for
practical industrial applications. Furthermore, with the recent pio-
neering work involving promethium (Pm), the investigation of this
only missing lanthanide element in our configurations will be an
interesting and valuable direction for future research51.

While previous studies have primarily focused on identifying
specific Ln atoms for targeted chemical transformations such as
nitrogen reduction, carbon dioxide reduction, and oxygen
reduction reactions31,52–55, our approach represents a departure
from this paradigm. Rather than singling out individual atoms, we
present a methodology that harnesses the collective catalytic
potential of the entire Ln group. The significance of our work
extends beyond the demonstrated conversion of CO2 to CO; it
opens avenues for exploring the applicability of our strategy
(using the entire Ln group) to a broader range of reduction
reactions and beyond. In addition to its fundamental implica-
tions, our approach offers an platform for CO2 neutralization,
with the unique ability to select different Ln atoms without
compromising efficiency. This flexibility introduces potential
benefits for practical applications, where the choice of Ln metals
can be guided by considerations such as availability, cost, and
compatibility, in addition to catalytic properties.

Methods
Preparation of single atom catalysts
La(NO3)3·6H2O (99.9%), Ce(NO3)3·6H2O (99.9%), Pr(NO3)3·6H2O (99.99%),
Nd(NO3)3·6H2O (99.9%), Sm(NO3)3·6H2O (99.9%), Eu(NO3)3·6H2O (99.9%),
Gd(NO3)3·6H2O (99.9%), TbCl3·6H2O (99.9%), Dy(NO3)3·6H2O (99.9%),
HoCl3·6H2O (99.9%), Er(NO3)3·6H2O (99.9%), TmCl3·6H2O (99.9%),

YbCl3·6H2O (99.9%), LuCl3·6H2O (98%), FeCl3 (99.9%), CaCl2 (99.9%), NaCl
(99.9%), KCl (99.9%) and Dicyandiamide (99.9%) were bought from
Shanghai Aladdin reagent co. Ltd. Carboxylated carbon nanotube (CNT,
30-50nm in diameter) and Ketjen black were purchased from Pioneer
Nanotechnology Co. Ltd. Before using CNT, 0.5M HNO3 (98%) was used
to remove the potential metal impurities at 80 oC for 12hours.

Synthesis of single atom catalysts (SACs) followed a two-step
procedure. The first step synthesis of C3N4 nanosheets (NS),
Briefly, 0.88 g NaCl, 1.12 g KCl and 6 g dicyandiamide were grin-
ded, followed by being heated in a muffle furnace at 670 oC with a
2 oC/min heating rate and then retained 670 oC for 45 min. The
mixture after pyrolysis was dissolved in 200mL deionized (DI)
water under ultrasound treatment and 100mL ethanol was added
to precipitate C3N4 NS out. Then centrifugation was employed to
remove liquid supernatant. For further purification, the mixture
was transferred to a dialysis bag (MD55-3500) and dialysis in DI
water lasted more than 7 days. The C3N4 NS was obtained by
rotary evaporation at 60 oC. The second step is the preparation of
SACs. Briefly, 20mg C3N4 NS and 60mg CNT were spread out in
30mL DI water and shattered by 60min ultrasound. 0.05 mL of
0.1 M of the corresponding metal salt (nitrate or chloride) was
added slowly followed by stirring for 2 h. The liquid nitrogen
was added directly into the mixture to obtain an ice block, which
was then freeze-dried for 72 h to acquire aerogel. The aerogel was
pyrolyzed under the condition of 730 oC with a 5 oC/min heating
rate at Ar atmosphere, without any heat preservation, and cooled
to 25 oC. Note that, to inhibit the oxidation toward O coordination
environment, the Ca SAC should be vacuum sealed before char-
acterization and electrochemical test10.

Characterizations
The X-ray diffraction (XRD) patterns were collected through using
a D8 advance X-ray diffractometer (Rigaku, Japan) with Cu Kα
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radiation (λ = 0.15406 nm) at a scan rate (2θ) of 5 o/min. The
morphologies of the samples were imaged by field emission
scanning electron microscopy (SEM, Hitachi S-4800) and high-
resolution transmission electron microscopy with a spherical
aberration corrector (HRTEM, Titan G2 60-300) equipped with
X-ray energy dispersive spectrometer (EDS). The atomically dis-
persed metal atoms were detected by aberration-corrected
HAADF-STEM (Thermo Scientific, Themis Z). The BET specific
surface areas were obtained from JW-BK200C nitrogen sorption
analyzer (Beijing JWGB SCI. & Tech. Co., Ltd) with 100 °C pre-
treatment in high vacuum, and the pore size distribution was
calculated from the adsorption branch of the isotherms. X-ray
photoelectron spectroscopy (XPS) measurements were per-
formed on Thermo Fisher Scientific Escalab 250 XI, and all the
binding energies were calibrated by the C 1 s peak at 284.8 eV. C
and N k-edge X-ray adsorption spectra were collected from the
BL12B-a beamline in National Synchrotron Radiation Laboratory
(NSRL) and BL08U1A beamline of Shanghai Synchrotron Radia-
tion Facility (SSRF). The photon flux was 1 × 1010 photons
per second. The energy of the adsorption spectrum was first
calibrated with the Au 4 f peak. Lanthanide, Fe K-edge, Ca K-edge
and Lanthanide L3-edge of X-ray adsorption spectra were
obtained at beamlines 01C1 and 16A1 in the National Synchrotron
Radiation Research Center (NSRRC, Taiwan). Raman spectra were
obtained by a DXRI Raman Microscope (Thermo Fisher) using a
532 nm laser as the light source. CO2 temperature program des-
orption (TPD) curves were measured on Micromeritics AutoChem
2920. The content of metal atoms in the samples were measured
with inductively coupled plasma optical emission spectrometer
(ICP-MS, Agilent 7700). The gas phase products from electrolysis
were quantified by the on-line Gas chromatograph (GC, Shimidzu,
Model 2014).

Electrochemical measurements
All the electrochemical measurements were operated with an
electrochemical station and at 25 oC. Constant potential

electrolysis was carried out at various potentials for 60min to
analyze the products.

The H-cell with two 30mL chambers were separated by an
anion exchange membrane (Selemion DSVN, 95 µm of thickness).
Working electrode is made up of carbon paper (Toray, TGP-
H060) with catalysts coating, Ag/AgCl reference electrode
(3.5 M KCl) and Pt mesh counter electrode (1*1 cm2). At the high-
purity hydrogen saturated electrolyte, using Pt foil as working
and counter electrode to calibrate Ag/AgCl reference electrode.
Potentials for LSV curves in H-cell were referenced to reversible
hydrogen electrode (RHE) with the formula of E (RHE) = E
(Ag/AgCl) + 0.205 V + 0.059 V × pH after iR compensation. The
uncompensated solution resistance was compensated for 95% by
EIS measurement. Potentials for constant potential electrolysis
were not compensated. The preparation of electrode was as fol-
lows: 5 mg catalyst was added into 970 μL isopropanol and 30 μL
Nafion solutions (5 wt%, Sigma-Aldrich), followed by sonication of
30min to form a homogeneous catalyst ink. The catalyst ink was
dropped onto carbon paper (0.25 cm2) directly and then dried at
60 oC for 12 hours, which ensured 0.2 mg cm−2 mass loading of the
catalyst. The electrolyte was CO2 (20 sccm, calibrated by mass
flow controller) saturated 0.5 M KHCO3 (pH = 7.28 ± 0.05).

The flow cell comprises gas diffusion electrode (GDE, SGL29BC),
sandwich of flow frames, gaskets, counter electrode, reference elec-
trode and exchange membrane (95 µm-thickness Selemion DSVN for
KHCO3 electrolyte; 117 µm-thickness Nafion 117 for acidic electrolyte).
No special treatment before using SelemionDSVN. Before using, Nafion
117 was treated with 5% hydrogen peroxide at 80 oC for 1 hour, then
boiled in 5% dilute sulfuric acid at 80 oC for 1 hour. The preparation of
working electrode was home-made. Briefly, 1.5mg catalyst was added
into 950μL isopropanol, 75μL PTFE solutions (Polytetra-
fluoroethylene, 3wt%) and 24μL Nafionmixed solutions (5wt%, Sigma-
Aldrich), followed by sonication of 30min to form a homogenous
catalyst ink. The catalyst inkwas sprayed on a hydrophobic GDE (3 cm2)
and thendried at 70 oC for 8 h. The loadingof the catalyst is 0.5mg cm−2

and the area contacting electrolyte is 0.5 cm2. The IrO2-coating titanium
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foil is employed as counter electrode and an Ag/AgCl (with saturated
3.5M KCl) electrode as reference electrode. The flow rate of the elec-
trolyte was set at 30mLmin−1 in both cathodic and anodic chambers.
The cathodic acidic electrolyte and anodic acidic electrolyte in flow cell
are 1M KCl (pH adjusted to 1.02 ±0.02, with sulfuric acid) and 0.5
H2SO4 (0.01 ± 0.01) respectively. Before the test, all the electrolyte is
stored in the refrigerator. The cathodic neutral electrolyte and anodic
neutral electrolyte in flow cell are both 1M KHCO3. Potentials for flow
cell were referenced to reversible hydrogen electrode (RHE) with the
formula of E (RHE) = E (Ag/AgCl) + 0.205V +0.059V × pH after iR
compensation. The uncompensated solution resistance was compen-
sated for 95% by EIS measurement.

The Membrane Electrode Assembly (MEA) fabrication is like that
of flow cell, except no reference electrode and cathodic electrolyte
chamber. The area contacting electrolyte in MEA is also 0.5 cm2, and
the electrolyte is 0.5M K2SO4 (pH adjusted to 1.0 with sulfuric acid)
avoiding chlorine evolution on anode.

The cathodic products were analyzed by an on-line gas chroma-
tograph. High-purity N2 (99.999%) was used as the carrier gas. A TCD
was employed to measure the H2 fraction, and a flame ionization
detector equipped with a nickel conversion furnace was used to ana-
lyze the CO fraction. Mass flowmeters of different ranges are used to
measure the CO2 flow rate and calibrated by soap film flowmeter. The
Faradaic efficiency of products was assessed from gas chromatogram
peak according to the flowing equation:

FECO orH2
= x ×V ×

2FP0

iRT
ð1Þ

x: fraction value V: flow rate of CO2F: faraday constant (96485C/
mol)P0: normal atmosphere (101325 Pa), I: applied current R: gas
constant (8.314 J/(mol·K))T: room temperature (298 K, 25 oC).

Noticeably, it took more than one hour and two hours of elec-
troreduction time to wait for the gas components balance in the
chamber when testing the faradaic efficiency at 2 and 1 sccm flow rates
respectively. The GC standard curve was calibrated by using standard
mixture gas with different concentrations, especially at high-
concentration products at low flow rates.

TOF calculations
We calculate the TOF according to the following equation:

TOFðh�1Þ= Iproduct=nF
mcat ×α=Mmetal

*3600 ð2Þ

Iproduct: partial current for CO, An: number of electrons transferred forCO,
2F: Faradaic constant, 96,485C/molmcat: catalyst mass in the electrode,
gα: mass ratio of active atoms in catalystsMmetal: atomic mass of metal

Full-cell energy efficiency (EE) calculations:

EEð%Þ= 100%×
Ea � Ec

V f ull
× FECO ð3Þ

where Vfull and FECO denote the full-cell voltage and FE of CO,
respectively. Ea and Ec are the standard reduction potentials for the
anode and cathode (CO2-to-CO) reactions, respectively

50.
SPC of CO2 calculations at 25 °C, 1 atm:

CO2consumed ðLmin�1Þ= ðjmAcm�2Þ 1 A
1000mA

� �
×

60s
1min

� �
×

1mol e�

96485C

� �

×
1molCO
2mol e�

� �
×

1molCO2

1molCO

� �
×

24:05 L
1molCO2

× ð0:5 cm2Þ

ð4Þ

SPCð%Þ= 100%× CO2consumed ðLmin�1Þ
CO2flow rate ðLmin�1Þ

� �
ð5Þ

Where j is the partial current density CO production from CO2

reduction56,57.

Operando attenuated total reflection-infrared spectroscopy
(ATR-IR)
ATR-IR was conducted on a Nicolet iS50 FT-IR spectrometer. The Au-
coated Si semi-cylindrical prism (20mm in diameter) was employed as
the conductive substrate for catalysts and the IR refection element.
The catalyst’s ink was dropped on the Au/Si surface as the working
electrode and the mass loading of the catalyst was 0.5mg/cm2. Oper-
ando ATR-IR spectra were recorded during stepping the working
electrode potential39.

Computational methods
Density functional theory (DFT) calculations were employed by
Vienna Ab initio Simulation Package (VASP) with the projector
augment wave (PAW) method58–62. The exchange and correlation
potentials were present in the generalized gradient approxima-
tion with the Perdewe-Burkee-Ernzerh of (GGA-PBE)63. A vacuum
region of 15 Å is employed to decouple the periodic replicas
to avoid the interaction in-fluence of the periodic boundary
conditions. Spin polarization was considered in all calculations.
van der Waals (VDW) interactions were corrected using the
D3 method of Grimme64. Meanwhile, a k-point Γ-centered mesh
is generated for Brillouin zone samples for geometry optimiza-
tion. The energy cutoff, convergence criteria for energy and
force were set as 500 eV, 10−5 eV/atom and 0.01 eV/Å, respec-
tively. The optimized computational models are provided in
supplementary data 1.

The computational hydrogen electrode (CHE) model was used to
calculate the free energy diagram65–67. The reaction free energy (ΔG)
was calculated as follows:

ΔG=ΔE +ΔZPE� T*ΔS ð6Þ

where ΔE is the chemisorption energy calculated by the DFT method.
ΔZPE and ΔS are the differences in zero-point energies and entropy
during the reaction, respectively.

Data availability
Full data supporting the findings of this study are available within the
article and its Supplementary Information, as well as from the corre-
sponding author upon reasonable request. Source data are provided
with this paper.
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