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Genome-wide profiling of highly similar
paralogous genes using HiFi sequencing

Xiao Chen 1 , Daniel Baker1, Egor Dolzhenko 1, Joseph M. Devaney2,
Jessica Noya2, April S. Berlyoung2, Rhonda Brandon2, Kathleen S. Hruska2,
Lucas Lochovsky2, Paul Kruszka2, Scott Newman2, Emily Farrow 3,4,5,
Isabelle Thiffault 3,4,6, Tomi Pastinen 3,4, Dalia Kasperaviciute7,
Christian Gilissen 8,9, Lisenka Vissers 8,9, Alexander Hoischen 8,9,10,11,
Seth Berger 12, Eric Vilain13, Emmanuèle Délot13, UCI Genomics Research to
Elucidate the Genetics of Rare diseases (UCI GREGoR) Consortium* &
Michael A. Eberle1

Variant calling is hindered in segmental duplications by sequence homology.
We developed Paraphase, a HiFi-based informatics method that resolves
highly similar genes by phasing all haplotypes of paralogous genes together.
We applied Paraphase to 160 long (>10 kb) segmental duplication regions
across the human genome with high (>99%) sequence similarity, encoding 316
genes. Analysis across five ancestral populations revealed highly variable copy
numbers of these regions. We identified 23 paralog groups with exceptionally
low within-group diversity, where extensive gene conversion and unequal
crossing over contribute to highly similar gene copies. Furthermore, our
analysis of 36 trios identified 7 de novo SNVs and 4 de novo gene conversion
events, 2 of which are non-allelic. Finally, we summarized extensive genetic
diversity in 9 medically relevant genes previously considered challenging to
genotype. Paraphase provides a framework for resolving gene paralogs,
enabling accurate testing in medically relevant genes and population-wide
studies of previously inaccessible genes.

Population-wide whole-genome sequencing (WGS) studies based on
short reads have enabled comprehensive characterization of variants,
particularly small variants, in ~90% of the human genome1–3. However,
there exist difficult regions and variant classes that remain largely
inaccessible to short reads4,5. A large portion of these difficult regions

occur within segmental duplications (SDs)6,7, where high sequence
similarity between copies of SDs results in ambiguous mapping of
short reads. In addition to difficulty mapping reads within SDs, high
sequence similarity promotes unequal crossing over, resulting in
hotspots for copy number variants (CNVs), as well as high rates of gene
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conversion8. These high rates of gene conversion promote sequence
exchange between SDs9,10, further increasing the errors in read align-
ment. While short-read-based computational methods have been
developed to improve the genotyping capability and diagnostic yield
in segmental duplications5,11–15, comprehensive variant calling in these
regions remains a challenge, and SDs have not been studied at the
population level by the current high throughput technologies.

Many medically relevant genes fall into SDs where traditional
alignment-based analysis has not been demonstrated to reliably detect
the full diversity of these regions. For example, spinal muscular atro-
phy is caused by variants in the SMN1 gene, which has a highly similar
paralog SMN216. Another disease, 21-Hydroxylase-Deficient Congenital
Adrenal Hyperplasia (21-OHD CAH), is caused by variants in the
CYP21A2 gene17, which resides in a 30 kb tandem repeat called the
RCCX module and has a pseudogene CYP21A1P. Variants in the
OPN1LW/OPN1MW gene cluster, which contains 1-5 copies of OPN1LW
or its paralog OPN1MW, cause color vision deficiencies18,19. To date,
these medically important SD-encoded genes are studied with multi-
step analyses including a combination of low or medium-throughput
assays such as multiplex ligation-dependent probe amplification
(MLPA), amplicon sequencing, or long-range PCR followed by Sanger
sequencing to detect copy number changes or individual variants20,21.
These tests are sometimes limited to a few known variants andmay be
prone to false negatives if the patient has a pathogenic variant that is
not part of the test. There remains a need to fully characterize these
genes both for research and clinical testing.

Recently, researchers have begun to study SDs using long-read
sequencing. High quality phased assemblies have been generated for a
number of samples22–24 using PacBio HiFi and Oxford Nanopore
Technologies (ONT) long reads, revealing the sequences of SDs and
providing biological and evolutionary insights7,10. However, SDs with
multiple copies of highly similar regions are prone to assembly errors,
especially in regions of extended sequence homology10,25. Alter-
natively, we developed a phasing approach, Paraphase, that identifies
haplotypes of genes and their paralogs, and demonstrated its ability to
accurately resolve the highly similar SMN1/SMN2 region26. That study
was limited to one difficult region, leaving a need for a genome-wide
demonstration.

HereweextendedParaphase to analyze 316 paralogous genes that
fall into 160 groups of SD regions across the genome, including many
medically relevant genes that were traditionally considered challen-
ging to genotype. Applying Paraphase to 259 individuals from five
ancestral populations, we showed the genetic diversity of these
regions across populations in copy number (CN) and sequence varia-
tion. We note that some of these regions show exceptionally low
diversity between genes and paralogs, signaling selective pressures
and/or high rates of gene conversion. Finally, we studied the Paraphase
derived haplotypes for these paralogous genes in 36 parent-offspring
trios and identified 11 de novo events, among which 7 are de novo
single nucleotide variants (SNVs) and 4 are consistent with de novo
gene conversion events.

Results
Profiling 160 gene-coding paralogous regions with Paraphase
Paraphase resolves highly similar genes by realigningHiFi reads toone,
most relevant, gene chosen to represent all copies of the gene and its
paralogs. We call this gene the archetype gene. For example, to study
SMN1 and SMN2, we realign all of the reads that are aligned to either
SMN1 or SMN2 to just SMN1 because that is the fully functional copy.
The aligned reads are then phased into haplotypes for variant calling
(Fig. 1a). For this study, we identified 160 paralogous regions >10 kb in
length with >99% sequence similarity that were found between two
and four times in GRCh38 (Supplementary Data 1, also see Methods).
These paralogous regions encode 316 genes in total (excluding pseu-
dogenes). In this paper, the term “paralog group” is used to describe a

set of genes that are highly similar in sequence and are analyzed by
Paraphase as a group.

Among the 160 paralog groups (Supplementary Data 1), 149 have
genes located on the same chromosome, with 16 in tandem (less than
10 kb apart). To quantify the impact of sequence homology on read
alignments, we examined the mapping qualities (MAPQs) in these
regions in both short-read and long-read sequence data (Fig. 1b, see
Methods) with two metrics: base MAPQ (median MAPQ of all reads
overlapping a position) and summary MAPQ (median of base MAPQs
across all positions of a paraloggroup). For short-readdata,MAPQs are
extremely low (76.4% of the paralog groups have a summary MAPQ<
= 20, and 98.8% of the paralog groups have some bases with a base
MAPQ< = 20), indicating the difficulty ofmapping short reads to these
regions. Even for long-read data, 44.1% of the regions have a summary
MAPQ< = 20 and 75.2% have some bases with a base MAPQ<= 20. For
long-readdata, there are25 (15.6%) paralog groupswhere the summary
MAPQ is 60 and there are no bases with a baseMAPQ<= 20. These are
either regions where the sequence similarity is high but the homology
extends less than the HiFi read length of ~15-20 kb, or regions which
have lower sequence similarity but are included in Paraphase for fusion
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Fig. 1 | Paraphase design and the regions it analyzes. a Paraphase extracts read
(short horizontal lines) that align to a paralog group (gene: green, paralog:
magenta), realigns to the archetype gene, and phases reads into haplotypes (long
horizontal lines). Variant calling is performed on each haplotype. Copy number
changes canbe identified from thenumber of haplotypes, e.g. an extrahaplotype in
this example indicates a copy number gain in the paralog. b Comparison of sum-
mary MAPQs between HiFi and Illumina WGS data in 160 groups of paralogous
regions analyzedby Paraphase, highlightingmappingdifficulty in these challenging
regions for both short and long reads.

Article https://doi.org/10.1038/s41467-025-57505-2

Nature Communications |         (2025) 16:2340 2

www.nature.com/naturecommunications


calling (see Methods). Paraphase analysis can still improve the per-
formance in these highMAPQ regions because: 1) even reads with high
MAPQ can be misaligned due to reference genome artifacts, common
CNVs, and high rates of gene conversion, 2) gene fusions are hard to
detect because split alignments are unlikely to happen in regions of
homology and 3) lower MAPQs will be expected in data with shorter
read length, such as in HiFi hybrid capture data.

Validation of Paraphase calls
We first validated Paraphase variant calls in 8 medically relevant genes
in 21 disease or carrier samples identified using orthogonal methods
such as MLPA and Sanger sequencing (Table 1 and Supplementary
Data 2, also see Methods). For this validation, Paraphase correctly
identified all 30 of the clinical variants in these samples.

We also examined haplotypes called by Paraphase in 36 trios.
Among 14,734 full-length haplotypes called in the probands (also
requiring full-length haplotypes called in the two parents of each trio),
14,679 (99.6%) agreed exactly with one of the haplotypes observed in
the parents. Upon examining the 55 inconsistent cases, 43 (0.29%) are
not fully supported by reads and thus determined as Paraphase errors
(switch errors or missed haplotypes in the parent). The remaining 12
(0.081%) inconsistent haplotypes are fully supported by reads, and
thus are true recombination or de novo events (See “Identification of
de novo mutations and gene conversion” section).

In addition, we compared Paraphase variant calls against high
quality diploid assemblies in 47 HPRC samples (See Supplementary
Notes). Paraphase calls were consistent with the assembly in the
majority of paralog groups (defining the assembly as the ground truth,
82.4% of paralog groups have >95% recall and >95% precision) (Sup-
plementary Fig. 1). To better understand these differences, we manu-
ally reviewed the discrepant calls and determined that the reduced
precision and recall in some paralog groups is mostly due to errors in
the assembly (Supplementary Figs. 2 and 3, also see Supplementary
Notes) such as individual base errors and misassembly of the paralog
group leading to incorrect copy numbers.

The performance of Paraphase will depend on the sequence
divergence between haplotypes, read length, and sequencing depth.
We performed a variety of simulated experiments to estimate how
these factors impact the accuracy of Paraphase (See Supplementary

Notes). Paraphase maintained high haplotyping accuracy with mini-
mums of 10 kb read length, 10X per-haplotype sequencing depth and
0.05% sequence divergence (Supplementary Fig. 4, also see Supple-
mentary Notes).

Copy number variability of paralog groups
We calculated the distribution of the total CN (defined by the number
of unique haplotypes, adjusted by depth) of each paralog group in 259
unrelated individuals across five ancestral populations. We assessed
the variability of the total CN by the percentage of individuals having
the mode CN. For this study, we say that a paralog group has low CN
variability if more than 90% of the individuals have themodeCN value,
and medium CN variability if between 80% and 90% of the individuals
have the mode CN value. Conversely, a paralog group is defined as
having highCN variability if less than 80%of individuals have themode
CNvalue. Basedon these definitions, 79of theparalog groups have low
CN variability, 17 have medium CN variability and 64 have high CN
variability (Fig. 2a, Supplementary Data 1). Additionally, 25.6% (41/160)
of the paralog groups had significant (Chi-squared test, p < 0.05, with
Bonferroni correction) deviations between ancestral populations
(Supplementary Fig. 5).

The CN variability can give us a general understanding of the
population-level “accuracy” of the reference genome (in this case
GRCh38). For example, an SD with two paralogous regions would
always have a CN of four in our analysis if the reference is correct and
generalizes across the population. Likewise, a paralog group where
every individual has a CN of two in the population is likely a false SD in
the reference.We identified 22paralog groupswheremore than95%of
all individuals have a total CN of two (Supplementary Table 1, Fig. 2b).
This suggests that duplications are rare in the population for these
genes and these SDs could represent errors in the reference genome.
Nineteen of these paralog groups overlap regions that were classified
as false duplications in GRCh38 based on the CHM13 T2T assembly27.
Three of these paralog groups (DEFB109B and its SD, CNTNAP3/
CNTNAP3C and POTED and its SD; see SupplementaryTable 1) were not
identified as false duplications inGRCh38 by the CHM13T2T assembly,
although they are only present once in the CHM13 assembly (Para-
phase analysis of CHM13 data shown in Supplementary Fig. 6).

Conversely, we found three paralog groups (CTAGE8/CTAGE9,
OR2A1/OR2A42, and RIMBP3/RIMBP3B/RIMBP3C) that are truly CN
variable regions in the population (Fig. 2a) but were attributed to false
duplications in GRCh38 due to missing genes in the CHM13 T2T
assembly27 (Paraphase analysis of CHM13 data shown in Supplemen-
tary Fig. 7). Population CN analysis provides a more accurate assess-
ment of false duplications in a reference genome than the analysis of a
single individual.

Paralog groups with exceptionally low within-group diversity
Paraphase identified 159,795 haplotypes from the 160 paralog groups
in the 259 samples. Extensive gene conversion and unequal crossing
over can result in highly similar gene copies that can no longer be
separated into different genes based on sequence alone. For example,
SMN1 and SMN2 are different in sequence in Exons 7–8 but are indis-
tinguishable in Exons 1-6 indicating that gene conversionmaybemuch
more common in Exons 1-6 than in Exons 7-826. Thus, a principal
component analysis (PCA) of haplotype sequences in Exons 7-8 can
separate SMN1 haplotypes and SMN2 haplotypes into distinct clusters,
but a PCA of haplotypes in Exons 1-6 does not differentiate the SMN1
haplotypes from SMN2 haplotypes (Supplementary Fig. 8).

To identify paralog groups with low within-group diversity, we
developed a metric based on the divergence between individual hap-
lotypes (see Methods). For example, in a paralog group with a gene and
a paralog, the gene will evolve independently from the paralog in the
absence of gene conversion. This means that the divergence will be
lower between two copies of the gene (i.e. gene-gene divergence) or two

Table 1 | Validated Paraphase calls in medically
relevant genes

Gene Number of
samples

Variants Number of
alleles

CYP21A2 3 Gene deletion 1

CYP21A1P-CYP21A2
fusion

1

Pathogenic small variant 4

STRC 2 Gene deletion 3

Pathogenic small variant 1

SMN1 1 0 copies of SMN1
(Absence of c.840C)

2

PMS2 4 Hybrid PMS2 with
PMS2CL sequence

1

Pathogenic SV 3

OPN1LW/
OPN1MW

5 Pathogenic small variant 3

Pathogenic CNV and
pathogenic small variant

2

IKBKG 1 Pathogenic SV 1

NCF1 3 Gene deletion 4

Pathogenic small variant 2

CFC1 2 Pathogenic small variant 2

Total 21 30
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copies of the paralog in the absence of any selective pressures. Con-
versely, the gene-paralog divergence will be significantly higher (Sup-
plementary Fig. 9). Increasing rates of gene conversion and unequal
crossing over will tend to make the gene more similar to the paralog

and thus drive the gene-paralog divergence down (Supplemen-
tary Fig. 9).

We identified 23 paralog groups (termed low-diversity paralog
groups) where the within-group sequence divergence is comparable to
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Fig. 2 | Distribution of the total CN of each paralog group across populations.
One archetype gene is selected to represent the name of each group. a Paralog
groups with high CN variability. For the two paralog groups (OPN1LW and XAGE1A)

located on the X chromosome, only female samples are plotted.b False duplication
regions in GRCh38, where more than 95% of individuals have a total CN of two.
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the general allelic sequence divergence (See Methods). Among these, 4
are on chrY, 11 on chrX, and8on autosomes (Table 2). It is often not easy
to assign haplotypes of a paralog group to individual genes without
prior knowledge of how genes and paralogs differ from each other.
However, among the 23 low-diversity paralog groups, there are five
where the phased haplotypes extend into non-homologous regions so
that we can assign haplotypes to genes based on their flanking
sequence: AMY1A/AMY1B/AMY1C (Fig. 3a), CTAG1A/CTAG1B, BOLA2/
BOLA2B, SULT1A3/SULT1A4 and SLX1A/SLX1B (BOLA2/BOLA2B, SULT1A3/
SULT1A4, and SLX1A/SLX1B are three paralog groups in tandem and
genotyped as one region by Paraphase). PCA of the haplotype sequen-
ces shows that haplotypes of the different genes of the same group do
not formdistinct clusters and thus are indistinguishable fromeach other
by sequence alone (Fig. 3b–d, also see Supplementary Fig. 10).

The 23 low-diversity paralog groups show two different patterns
in their genomic structure, CN variability and evolutionary history
(Table 2). Those on autosomes have high CN variability and many are
human-specific duplications (See Discussion). Conversely, low-
diversity paralog groups on sex chromosomes mostly have low CN
variability, are arranged in palindrome structures and evolutionarily
conserved, i.e. all genes are present in other primates where they are
also in palindromes28,29. Additionally, there are 3 palindromic paralog
groups on chrX where the genes and paralogs are in tandem so Para-
phase can identify copies on the same chromosome. In these 3 paralog
groups, the gene copies in cis aremore similar to eachother than those
in trans (Fig. 3e), suggesting that gene conversion between arms of
palindromes happens more frequently in cis (possibly through form-
ing a hairpin structure) than in trans.

Identification of de novo mutations and gene conversion
In 36 parent-offspring trios we identified 12 events (6 paternal and 6
maternal) where a haplotype in the proband is different from the
corresponding haplotype in the parent (Supplementary Figs. 11–12).
Eleven of these are de novo events where the proband haplotype

differs from the parent haplotype by one SNV. Among these, 7 are de
novo SNVs (not observed in either parent) and 4 are products of gene
conversion (observed in a parent but on a different haplotype). Among
the gene conversion cases, 2 are non-allelic (an example is shown in
Fig. 4), 1 is allelic and 1 could be either allelic or non-allelic. Among the
11 de novo events, 4 are intergenic, 6 are in introns, and 1 is in an exon
(synonymous). The remaining case of the 12 events is a hybrid haplo-
type between two haplotypes from the same parent, which could arise
through equal or unequal crossing over (inconclusive without longer
range phasing information in the parent due to the high copy number
of the paralog group) (Supplementary Fig. 12).

Resolving medically relevant paralogous genes
As a demonstration of how Paraphase can be used to study paralog
groups in the population, we examined variant and haplotype fre-
quencies across populations in three known medically relevant para-
log groups, CYP21A2/CYP21A1P, PMS2/PMS2CL, andOPN1LW/OPN1MW.

Variants in CYP21A2 cause 21-Hydroxylase-Deficient Congenital
Adrenal Hyperplasia (21-OHD CAH)17. CYP21A2 resides in a 30 kb tan-
dem repeat called the RCCX module that includes its pseudogene,
CYP21A1P, together with two other pairs of paralogs, C4A/C4B and
TNXB/TNXA17,20 (Fig. 5a). This region is susceptible to gene
conversion17, as well as deletions and duplications of the RCCXmodule
resulting in CN changes and disease-causing hybrid genes between
CYP21A2 and CYP21A1P. Here, complete haplotype sequences resolved
by Paraphase allowed us to fully reveal the genetic diversity in this
region. The total CN of RCCX is highly variable across populations
(Fig. 5b) with 38.2% of individuals having a CNV. Figure 5a shows
examples of samples with various CNs. In addition, we identified a
duplication allele (Fig. 5a, bottom panel) that carries a copy of
CYP21A1P, a copy of CYP21A2 with a stop-gain variant Q319X, and a
second functional copy of CYP21A2. We found that this allele is at 1-2%
frequency in the populations (Supplementary Table 2) and, without
phasing the full region, could be misidentified as a pathogenic allele

Table 2 | Paralog groups with low within-group diversity

Paralog groups Palindromic High CN variability Human-specific duplication

chrY BPY2/BPY2B/BPY2C x

CDY1/CDY1B x

CDY2A/CDY2B x

HSFY1/HSFY2 x

chrX CENPVL1/CENPVL2 x

CTAG1A/CTAG1B x

CXorf49/CXorf49B x

DMRTC1/DMRTC1B x

FAM156A/FAM156B x

MAGED4/MAGED4B x

NXF2/NXF2B x

SSX2/SSX2B x

SSX4/SSX4B x

TCP11X1/TCP11X2 x

XAGE1A/XAGE1B x x

Autosomes SLX1A/SLX1B x x

BOLA2/BOLA2B x x

SULT1A3/SULT1A4 x x

NPIPA2/NPIPA3 x x

AMY1A/AMY1B/AMY1C x x

SERF1A/SERF1B x x

EIF3C/EIF3CL x

TRIM49D1/TRIM49D2 x
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Fig. 3 | Paralog groups with low within-group diversity. a Haplotypes of the
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represents a haplotype in the population. Colors represent different genes in a

paralog group as assigned according to the ending sequences of each haplotype
(which extends into non-homologous regions). e Sequence divergence between
haplotypes in cis vs. trans in three palindromic paralog groups. Within each box-
plot, the center lines denotemedian values; boxes extend from the 25th to the 75th
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n = 163), SSX4 for SSX4/SSX4B (cis n = 275, trans n = 308).

Article https://doi.org/10.1038/s41467-025-57505-2

Nature Communications |         (2025) 16:2340 6

www.nature.com/naturecommunications


due to the presence of Q319X. Researchers have previously found that
individuals with Q319X frequently have a duplication of CYP21A2,
which complicates CYP21A2 testing30. Paraphase can distinguish a
CYP21A2 +CYP21A2(Q319X) allele vs. a CYP21A2(Q319X) allele.

Pathogenic variants in PMS2 cause Lynch syndrome31. In its last
few exons (Exons 12-15), PMS2 has high sequence similarity to its
pseudogene PMS2CL, and gene conversion and unequal crossing overs
are known to promote sequence exchange between the two genes32–34.
We examined the haplotypes of PMS2 and PMS2CL in the population. In
Exon 15, the sequences ofPMS2 and PMS2CL are indistinguishable from
each other, lacking any differentiating variants (Fig. 5c, also see PCA in

Supplementary Fig. 13). For example, a commonly considered PMS2CL-
specific variant35, NM_000535.7:c.*92dup, is in 72.8% of PMS2CL hap-
lotypes and 31.1% of PMS2 haplotypes. We found that gene conversion
happens between PMS2 and PMS2CL occasionally in Exon 12 and fre-
quently in Exons 13-14 (See Methods and Fig. 5c, d). Interestingly, our
analysis showed more evidence of gene conversion in individuals of
African ancestry, and more than 75% of African PMS2/PMS2CL haplo-
types are partially or fully converted (Fig. 5d).

OPN1LW and its paralog OPN1MW are responsible for red-green
color vision deficiencies and other vision conditions such as blue cone
monochromacy (BCM)18. The region is arranged in a gene array and
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only the first two genes in the array are expressed18. Paraphase iden-
tifies all copies of the repeat, assigns genes to OPN1LW or OPN1MW,
and identifies the first two copies in the array on each chromosome.
Figure 5e shows an allele with one copy each ofOPN1LW andOPN1MW
(top panel), and an allele that only has OPN1LW in the first two copies

of the array (bottom panel), leading to color vision deficiencies. Our
analysis showed that the total CN of this paralog group is highly vari-
able among populations (Fig. 5f). Allele frequencies are summarized in
Supplementary Table 3, including alleles that cause color vision
deficiencies.
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In addition to the three paralog groups described above, we also
summarized population results for other medically relevant genes,
including SMN1/SMN2 (spinal muscular atrophy16, Supplementary
Fig. 14), STRC (hereditary hearing loss and deafness36, Supplementary
Fig. 15), HBA1/HBA2 (Alpha thalassemia37, Supplementary Table 4),
IKBKG (Incontinentia Pigmenti38, Supplementary Table 5), the CFH
gene cluster (CFH/CFHR1/CFHR2/CFHR3/CFHR4) (atypical hemolytic
uremic syndrome39 and age-related macular degeneration40,41, Sup-
plementary Table 6) and GBA (Gaucher and Parkinson’s disease42,43,
Supplementary Table 7). Together, we identified medically relevant
variants in at least one of these 9 paralog groups in 75%, 49.6%, 45.8%,
52.2%, and 17.4% of individuals of African, European, Admixed Amer-
ican, South Asian and East Asian ancestries, respectively.

Discussion
In this paper, we applied Paraphase to 160 segmental duplication
regions where large (>10 kb) regions of high (>99%) sequence simi-
larity exist between genes and their paralogs. By phasing reads from
the same paralog group together, Paraphase can recover misaligned
reads and correctly resolve genes together with their highly similar
paralogs/pseudogenes. This method enables high-throughput CN
detection and genotyping of SD-encoded genes with only HiFi data at
standard WGS depth (30X).

An important benefit of the paralog group-centered approach is
that it is not influenced by theCNdifferencebetween an individual and
the reference. This approach can work even when the CN of a paralog
groupdoes not agreewith the referencegenome inmost individuals of
the population, such as in the case of false segmental duplications in
GRCh38. In addition, by calling variants against the same reference
gene within a paralog group, Paraphase outputs gene copies that can
be easily compared against each other, allowing us to perform within-
group divergence analysis, as well as to detect de novo mutations
including gene conversion events between paralogs. Our analysis of 36
trios identified 7 de novo SNVs and 4 de novo gene conversion events,
demonstrating the power of long-read sequencing in detecting de
novo variations44,45, particularly in previously inaccessible regions of
the genome.

Among regions analyzed by Paraphase, we observed that paralog
groups on sex chromosomes are more CN invariable (93.1% of paralog
groups on sex chromosomes have low CN variability vs. 39.7% on
autosomes) and have drastically lower within-group diversity (median
pairwise haplotype divergence 0.00033 on sex chromosomes vs.
0.00187 on autosomes, p-value 4.179e-11). This could be related to the
fact that most paralog groups on sex chromosomes are arranged in
palindrome structures (86.2% vs. 16.8% on autosomes). Unequal
crossing-overs between arms of a palindrome results in inversions and
do not change the copy number. Arm-to-arm gene conversion is
known to occur frequently to prevent sex chromosomes from accu-
mulating deleterious mutations in the absence of homologous
chromosomes29,46, and could contribute to the low within-group
diversity.

We identified 23 paralog groups with extremely low within-group
diversity (Table 2), where genes and their paralogs are as similar as
alleles from the same gene. Consistent withmost other paralog groups
on sex chromosomes, the low-diversity paralog groups on sex chro-
mosomes are all arranged in palindromes and mostly have low CN
variability. For these paralog groups, both the genes and the palin-
drome structure are evolutionarily conserved in other primates. The
low-diversity paralog groups on autosomes, however, arenot arranged
in palindrome structure and mostly have high CN variability. Inter-
estingly, many of these paralog groups are duplicated exclusively in
the human lineage, with positive selection detected, e.g.
AMY1A/AMY1B/AMY1C47, BOLA2/BOLA2B48,49 and SULT1A3/SULT1A450. It
is possible that recent duplication and positive selection and/or gene
conversion could play a role in the evolution of these genes,

preventing sequence divergence and maintaining an elevated gene
dosage in humans. Beyond paralog groups with low within-group
diversity throughout the entire gene body, one future direction is to
extend this analysis to identify local low-diversity regions resulting
fromgene conversions, such as the gene conversion found in Exons 1-6
of SMN1/SMN2 (Supplementary Fig. 8), and Exon 15 of PMS2 (Fig. 5c,
Supplementary Fig. 13).

The SD-encoded genes presented in this paper were previously
inaccessible to population-wide genomic analyses and hence are lar-
gely missing from variant annotation databases such as gnomAD3,
creating hurdles in variant interpretation. Here we provide a database
(https://zenodo.org/doi/10.5281/zenodo.10909886) of variant allele
frequencies collected from the population samples used in this paper.
This annotation resource can be further expanded as more HiFi data
are generated and analyzed with Paraphase.

One limitation of Paraphase is that currently it focuses on paralog
groups with 2-4 paralogous genes in GRCh38 and does not include
other highly similar genes with even higher CNs. This excludes 79
genes that fall into SDs in our analysis. Nevertheless, Paraphase can be
customized to analyze user-specific regions, allowing new targets to be
added in the future.

Paraphase, combined with HiFi long reads, provides a single fra-
mework for resolving paralogous genes. In medically important genes
challenged by pseudogenes or paralogs, Paraphase helps enable more
accurate testing to detect pathogenic variants, thus bringing us one
step closer to consolidating the numerous currently offered genetic
tests into a single test. Furthermore, in previously inaccessible and less
studied genes, population-wide sequencing-based analysis with Para-
phase will facilitate the discovery of novel gene-disease associations.

Methods
Paraphase: HiFi-based caller for highly similar paralogous genes
Paraphase is designed to work with both PacBio HiFi WGS and target
enrichment data. Paraphase resolves a group of highly similar genes by
extracting HiFi reads aligned to any member of the paralog group,
realigning them to the archetype gene, and phasing them into haplo-
types, followed by variant calling on each haplotype26 (Fig. 1a). Briefly,
haplotype phasing is achieved by identifying variant sites in the target
region and reducing reads to just the bases at variant sites, followed by
graph-based assembly of simplified reads into haplotypes. Reads are
then assigned to the haplotypes that they correspond to. For each
haplotype, variant calling (fully phased) is done by taking the con-
sensus sequence at each position across reads that have been assigned
to the same haplotype and reporting the base differences between the
consensus and the reference. Realigning all reads from all genes of the
same paralog group to one gene bypasses the error-prone process of
aligning reads to multiple similar regions. This framework enables all
copies of the paralog group, including genes and their paralogs or
pseudogenes, to be examined for variants and annotated for func-
tional status.

When twoparalogous regions are in tandem, Paraphase uses read-
based phasing to further phase gene haplotypes into alleles, i.e. gene
copies on the same chromosome, by grouping haplotypes that have an
overlapping set of supporting reads. For example, for the RCCX
module demonstrated in Fig. 5a, reads are grouped by the haplotypes
they originate fromandhaplotypes of the same color (greenorpurple)
represent those from the same allele.

Gene fusions between paralogs are called by detecting haplotypes
whose flanking regions (upstream and downstream of the paralogous
region) are consistentwith two different genes. Fusion breakpoints are
called by detecting a switch in bases at the paralogous sequence var-
iant (PSV) sites that have been carefully curated previously.

Within Paraphase, there are a few gene-specific callers formedically
relevant genes. These callers use gene-specific information during ana-
lysis, for example, known sequence differences between genes and
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paralogs/pseudogenes. In addition, these callers produce gene-specific
output information such as hybrid gene structures and known patho-
genic variants, including large difficult-to-call structural variants.

For a single WGS sample, across 160 paralog groups, Paraphase
requires 4Gb memory and typically completes analysis in 90minutes
(1 thread) or 15minutes (16 threads). All results presented in this paper
were generated using Paraphase V3.1.2.

Genome-wide identification of highly similar genes for analysis
by Paraphase
Weextracted 19,394 Ensembl protein-coding genes (>20 kb sequences
centered on each gene, adding flanking sequences for shorter genes)
and aligned them against GRCh38 (ALT contigs excluded, pseudoau-
tosomal regions (PARs) masked) with blastn51 (Version 2.16.0 + , com-
mand “-outfmt = ‘6 std qlen slen’ -word_size 50 -max_hsps 30”). We
selected genes that had alignment matches >10 kb in length and >99%
in sequence similarity as candidate paralog groups. Genes that do not
meet the criteria are considered sufficiently different from the rest of
the genome, and they are likely to have no alignment problems and
should be genotyped correctly by the standard HiFi workflow. The
majority of genes have zero paralogs, and the remaining ones vary in
the number of paralogs (Supplementary Fig. 16). Among genes with
three or fewer paralogs, which represent the majority of genes with
paralogs, we incorporated 155 groups of regions into Paraphase. In
addition, we included genes impacted by shorter homology or lower
sequence similarity, where gene fusions are highly medically relevant
yet difficult to call by conventional SV callers due to homology,
including HBA1/HBA2 (Alpha thalassemia), GBA1/GBAP1 (Gaucher and
Parkinson’s disease), CYP2D6/CYP2D7 (pharmacogenomics), CYP11B1/
CYP11B2 (Glucocorticoid-remediable aldosteronism) and CFH/CFHR1/
CFHR2/CFHR3/CFHR4 (atypical hemolytic uremic syndrome and age-
relatedmacular degeneration). In total, Paraphase analyzes 160groups
of regions (Supplementary Data 1), which encode 316 genes in total
(pseudogenes are not included).

Calculation of base MAPQ and summary MAPQ
We selected 20 samples from five ancestral populations with both
Illumina (data downloaded from the 1000 Genomes Project1) and HiFi
WGSdata available to assess alignmentMAPQs. For eachbase position,
we calculated a “base MAPQ”, defined as the median values across the
MAPQsof all reads fromall 20 samples aligned to theposition.We then
calculated a “summary MAPQ” for each paralog group, defined as the
median value of the baseMAPQ values across all base positions of that
paralog group.

Validation against clinical samples with known variants
Validation samples were collected from 21 clinical samples (disease or
carrier samples) with 30 pathogenic variants in 8 disease-causing
genes that were previously validated by orthogonalmethods52, such as
MLPA and Sanger sequencing (Table 1 and Supplementary Data 2).
Data (standard30XHiFiWGS) for these clinical sampleswere collected
from Radboud University Medical Center, GeneDx, and Genomics
Research to Elucidate the Genetics of Rare diseases (GREGoR) Con-
sortium. In addition, we used 36 trios to examine the consistency of
haplotypes called in probands vs. parents. Among the 36 trio, 8 were
collected fromRadboudUniversityMedical Center45, 10 were from the
100,000 Genomes Project and 18 were from Genomics Research to
Elucidate the Genetics of Rare diseases (GREGoR) Consortium.

Comparison against assemblies
We compared Paraphase variant calls against high-quality diploid
assemblies in 47 HPRC samples23. Contigs from assemblies were
aligned with Minimap253 (Version 2.26-r1175, command “-x asm5”)
against Paraphase target regions to identify haplotypes of eachparalog
group in the assembly. Variants in the assembly were called by

identifying base differences from the reference with a custom Python
script. Segments from contigs were matched against Paraphase-called
haplotypes by matching variants. Assembly-based variant calls were
compared against Paraphase variant calls amongmatching haplotypes
between Paraphase and the assembly. For this analysis, the assembly
wasdefined as the ground truth. Thus, for Paraphase-calledhaplotypes
that do not have a matching segment in the assembly, all variants
called on those haplotypes were considered false positives by Para-
phase. For segments in the assembly that do not have a matching
Paraphase haplotype, all variants on those segments were considered
false negatives by Paraphase.

Simulation analysis
We conducted simulation experiments to assess haplotyping accuracy
when varying read length, haplotype depth and paralog divergence.
Reference sequences were extracted from GRCh38 corresponding to
Paraphase target regions (plus 50kb flanking sequences). Five para-
logous copies of each gene were simulated at different divergence
levels (0.01%, 0.05%, 0.1%, and 0.15%) with Mutation-Simulator54 (Ver-
sion 3.0.2, command “-sn” for specified divergence levels). HiFi reads
of different lengths (5 kb, 10 kb, and 15 kb) anddepths (5X, 10X and 15X
haplotype depth) were then simulated from those simulated gene
copies with a workflow that consists of PBSIM355 (Version 3.0.4, com-
mand “--strategy wgs --method qshmm --qshmm QSHMM-RSII.model
--pass-num 8”), which simulated CLR reads, and the ccs software
(Version 6.4.0, default parameters, https://github.com/
PacificBiosciences/ccs), which generated consensus HiFi reads. For
each target region, Paraphase was run on simulated data, with reads
from all paralogous copies merged. Paraphase variant calls were
compared against variants simulated byMutation-Simulator. Precision
and recall were calculated in the same way as described above in the
“Comparison against assemblies” section.

Population samples
For frequency calculations, we used HiFi WGS data from 259 unrelated
individuals from five ancestral populations (113 Europeans, 52Africans,
48 Admixed Americans, 23 South Asians, and 23 East Asians), collected
from the Human Pangenome Reference Consortium (HPRC)22,23, the
100,000 Genomes Project, Radboud University Medical Center45,
Genomics Research to Elucidate the Genetics of Rare diseases (GRE-
GoR) Consortium, and Genomic Answers for Kids (GA4K) at Children’s
Mercy Kansas City.

Paralog groups with low within-group diversity
We searched for paralog groups within which the haplotype diversity is
comparable to the general sequence diversity between alleles of the
same gene. To profile the average allelic sequence divergence, we used
Paraphase to phase haplotypes sequences for 600 randomly selected
genes (400 on autosomes and 200 on chrX) that fall outside of SDs, i.e.
each individual is expected to have two copies of a gene when there is
no CNV, in the same set of 259 individuals. For each of the randomly
selected genes, we calculated pairwise divergence values between any
two haplotypes of the same gene among individuals of the same
ancestral population. Between a pair of any two haplotypes, sequence
divergence was calculated by dividing the number of base differences
(SNVs only) by the length of the region. Focusing only on SNVs in non-
homopolymer regions, 90% of the pairwise sequence divergence values
among haplotypes were lower than 0.00156 for autosomal genes
(Supplementary Fig. 17), and for chrX genes, 90% of the sequence
divergence among haplotypes were lower than 0.00101 (Supplementary
Fig. 17), consistent with a lower mutation rate on chrX56. We then cal-
culated pairwise sequence divergence values between any two haplo-
types of the same paralog group targeted by Paraphase. To obtain
candidate paralog groups where the within-group sequence divergence
is as low as the general allelic diversity, we required that 90% of the
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pairwise sequence divergence values among haplotypes of the same
paralog group to be lower than 0.00156 and 0.00101 for autosomal and
sex chromosome paralog groups, respectively. For both randomly
selected genes and Paraphase paralog groups, only haplotypes from the
same ancestral populations were compared for pairwise divergence
calculation. For paralog groups reported in Table 2, we further filtered
out paralog groups where the homology does not span the entire gene,
i.e. partial paralogs. Principal component analysis (PCA) within a paralog
groupwas conducted on SNV sites identified across all haplotypes of the
paralog group using the prcomp function in R.

PMS2 gene conversion calling
PMS2 and PMS2CL haplotype sequences in Exon 12 region
(chr7:5,981,000-5,985,000, GRCh38) and Exons 13-14 region
(chr7:5,977,000-5,980,000) are separated into two main groups
(PMS2-like and PMS2CL-like) based on the PCA (Supplementary Fig. 13).
Variants (called against the PMS2 reference sequence) that are present
in >95% of the PMS2CL-like group and <5% of the PMS2-like group are
selected as signature sites for calling gene conversion. Gene conver-
sion is called when a PMS2CL haplotype has <20% of the signature
variants or when a PMS2 haplotype has >80% of the signature variants.
A partial conversion in Exons 13-14 is a special haplotype common in
the population, called based on a predefined subset of the signature
variants (Fig. 5c, middle panel, first haplotype).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
HiFi WGS data for HPRC samples are documented in https://github.
com/orgs/human-pangenomics/repositories and can be downloaded
from https://s3-us-west-2.amazonaws.com/human-pangenomics/
index.html?prefix=working/ for analysis.

Code availability
Paraphase is implemented in Python and is freely available for down-
load from GitHub (https://github.com/PacificBiosciences/paraphase).
It can also be installed via Conda or PyPI.
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