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Sub-minute synthesis and modulation of
β/λ-MxTi3-xO5 ceramics towards accessible
heat storage

Pengfei Zhao1,5, Guangshi Li1,2,5 , Xiaolu Xiong 1,3 , Peng Cheng1,
Zhongya Pang1,2, Chenteng Sun1,2, HuCheng4, Caijuan Shi4, Xing Yu1,2, QianXu1,2,
Xingli Zou 1,2 & Xionggang Lu1

Nearly 50% of global primary energy consumption is lost as low-temperature
heat. λ-Ti3O5 holds promise for waste heat harvesting and reuse; however,
achieving reversible phase transitions between its λ and β phases under
accessible conditions remains a major challenge. Here, we proposed a simple
laser method that incorporates element substitution for sub-minute synthesis
(20–60 s) of λ-MxTi3-xO5 (M=Mg, Al, Sc, V, Cr, Mn, or Fe, 0.09 ≤ x ≤0.42). In
particular, aluminum-substituted λ-AlxTi3-xO5 demonstrated the lowest energy
barrier, with a transition pressure of 557MPa and temperature of 363 K.
Notably, compression of the (001) crystal plane could reduce the transition
pressure to only 35–40MPa, enabling the applicability of λ-AlxTi3-xO5 for wide
applications in heat recovery and future lunar explorations.

More than 70% of the global primary energy consumption is lost during
conversion, with nearly 50% being dissipated as low-temperature waste
heat1,2. Moreover, directly recovering and reusing the waste heat has
become a priority in recent years. λ-Ti3O5 has attracted significant
attention in the fields of thermal energy utilization and conversion due
to its unique physicochemical properties, such as photoinduced phase
transition and light absorption3,4. Tokoro et al. reported a long-term
heat-storage ceramic based on λ-Ti3O5 that exhibited intriguing rever-
sible phase transitions between λ-Ti3O5 and β-Ti3O5

5. The transition from
λ-Ti3O5 to β-Ti3O5 can be induced by pressure, resulting in the release of
heat. Conversely, the transition from the β-Ti3O5 to the λ-Ti3O5 can be
induced by temperature variation, achieving effective heat storage.
Notably, the pressure required for the λ→β phase transition is remark-
ably low (7–60MPa)6 compared to other materials7–12, but the tem-
perature required for the β→λ transition is relatively high (470–530K).
To further lower the phase transition temperature, a partially metal
substitution of λ-Ti3O5 has been synthesized, i.e., λ-MxTi3-xO5 (M=Sc or
Mg), and it requires lower temperatures (311–353K) for the β→λ phase
transition13,14; however, its pressure for the λ→β phase transition

increases to high pressure (680–2000MPa). Therefore, achieving
reversible phase transitions between the λ and β phases of Ti3O5 under
an accessible low pressure and low temperature remains a challenge.

In this study,we propose amethod called the laser-assisted vacuum
smelting (LVS) process to achieve a sub-minute (20–60 s) synthesis of
β-Ti3O5 and a series of metal-substituted λ-MxTi3-xO5 (M = Mg, Al, Sc, V,
Cr, Mn, or Fe, 0.09 ≤ x≤0.42) ceramics. The phase transition process of
λ-MxTi3-xO5 was then experimentally and theoretically studied, and the
λ-AlxTi3-xO5was demonstrated to possess an accessible low temperature
(351–371 K) for the β→λphase transition. In addition, the pressure for the
λ→β phase transition was further decreased to 35–40MPa by com-
pression on the (001) crystal plane, enabling it to have the promising
capability for industrial thermal energy recovery, storage, and even for
future lunar exploration applications.

Results
Sub-minute synthesis of β-Ti3O5 and λ-MxTi3-xO5

The schematic illustration of the proposed LVS process is shown in
Fig. 1a. This method differs from the traditional thermal reduction
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process and enables the sub-minute synthesis of Ti3O5 from TiO2
15–26.

Theoretically, the molten TiO2 can be spontaneously decomposed to
titanium suboxide and oxygen under vacuum conditions at a high
temperature (Supplementary Fig. 1)27,28. Therefore, the single-phase of
Ti3O5 can be obtained by precisely controlling the vacuum level and
the temperature of the molten TiO2 (Supplementary Fig. 2). With the
assistance of laser, TiO2 undergoes a high-temperature melt in a
vacuum environment, leading to the fracture and recombination of Ti-
O bonds (Supplementary Fig. 3). The composition of deoxygenation
products of the TiO2 melt is directly affected by the input power and
the irradiation timeof the laser (Supplementary Figs. 4 and 5). A single-
phase of β-Ti3O5 can be facilely obtained under vacuum conditions of
10–3 Pa after irradiating TiO2 with an 800W laser for 60 s, followed by
cooling to room temperature.

The X-ray diffraction (XRD) Rietveld refinement results suggested
that the obtained β-Ti3O5 had a monoclinic crystal structure (space
group: C2/m) with the lattice parameters a = 9.747 Å, b = 3.801 Å, and
c = 9.442 Å (Fig. 1b and Supplementary Table 1). As shown in Fig. 1c,
curve fitting was performed on the peaks of the Ti-2p XPS spectrum.
Two peaks with binding energies of 464.6 and 458.8 eV were assigned
to the characteristic Ti-2p1/2 and Ti-2p3/2, respectively. The Ti-2p1/2

peak was well-fitted by two peaks centered at 464.8 eV and 463.9 eV,
corresponding to the chemical states of Ti4+ and Ti3+, respectively. For
Ti-2p3/2, two peaks centered at 458.9 eV and 458.4 eV were attributed
to the two chemical states of Ti4+ and Ti3+, respectively. The atomic
structures of the synthesized β-Ti3O5 were further determined using
high-angle annular dark-field scanning transmission electron micro-
scopy (HAADF-STEM). Figure 1d shows a typical atomic-resolution
HAADF-STEM image of the sample along the [010] zone axis where the
bright spots represent theTi atomcolumns that are consistentwith the
atomic configuration of β-Ti3O5. The typical interplanar distance
(0.310 nm) combined with the fast Fourier transform result of the
electron diffraction pattern was indexed to the (003) plane of the β-
Ti3O5 crystalline phase, and this was consistent with the XRD pattern
(PDF cardNo. 82-1138) (Supplementary Fig. 6). Furthermore, the in situ
high-temperature X-ray diffraction (HTXRD) analysis displayed the
evolution of the characteristic diffraction peaks, such as of λ-(20-3), λ-
(203), and β-(20-3), β-(003), as they varied with temperature (Fig. 1e).
Specifically, as the temperature increased, the β-phase underwent a
phase transition to the λ phase (>453K). Subsequently, at 473 K, it
further transitioned to the α phase. Upon cooling, it returned to the λ
phase (<473K) and then recovered to the β-phase (<433 K) until
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Fig. 1 | Synthesis, crystal structure, and phase transition properties of β-Ti3O5.
a The experimental flow diagram for the synthesis of β-Ti3O5 using the laser-
assisted vacuum smelting (LVS) method. b X-ray diffraction (XRD) Rietveld
refinement result of β-Ti3O5 synthesized at 800W for 60 s. Source data are pro-
vided as a Source Data file. c High-resolution X-ray photoelectron spectroscopy

(XPS) spectra of the Ti 2p energy level from β-Ti3O5. d HAADF-STEM images of the
as-synthesized β-Ti3O5. The inset shows the atomic structure model corresponding
to the HAADF-STEM image, and the brightest columns in the image represent Ti
atoms. e In situ HTXRD patterns of the as prepared β-Ti3O5 with a heating and
cooling rate of 5 K/min.
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reaching room temperature, demonstrating the reversible phase
transition of β-Ti3O5 during the heating and cooling processes (Sup-
plementary Fig. 7)29–31. Therefore, the β-Ti3O5 single phase synthesized
from TiO2 using the LVS method existed in the λ phase in the tem-
perature range of 453 K to 473 K. Additionally, the DSC results reveal a
distinct peak during both heating and cooling processes, corre-
sponding to the reversible phase transition between β and λ phases
(Supplementary Fig. 8). Specifically, the phase transition temperature
fromβ to λphase is 462 K,while thephase transition temperature from
λ to β phase is 440K, with corresponding phase transition enthalpies
of 52.59 J/g (11.76 kJ/mol) and 52.01 J/g (11.63 kJ/mol), respectively.

β-Ti3O5 has been successfully synthesized using the LVS method;
however, the λ-Ti3O5 phase was metastable at room temperature. To
stabilize the λ-Ti3O5 at room temperature, ion substitution of λ-Ti3O5

has been shown to be a promisingmethod13,14,32–37. Figure 2a shows two
routes to obtain λ-MxTi3-xO5 by the LVS method, i.e., (I) λ-MxTi3-xO5

(M=Al or Sc) were obtained by directly adding Al2O3 or Sc2O3 to TiO2,
followed by laser-assisted vacuum decomposition. The parameters of
laser power and irradiation time were 800W and 60 s, respectively
(Supplementary Figs. 9 and 10); and (II) λ-MxTi3-xO5 (M = Mg, Al, Sc, V,
Cr,Mn, or Fe)wereobtainedby addingMgO,Al2O3, Sc2O3, V2O3, Cr2O3,
MnO, or FeO to β-Ti3O5, followed by laser-assisted melting. The para-
meters of laser power and irradiation time were 200W and 20 s,
respectively (Supplementary Fig. 11). A series of room-temperature
stable λ-MxTi3-xO5 (M = Mg, Al, Sc, V, Cr, Mn, or Fe, 0.09 ≤ x ≤0.42)
were successfully synthesized using the LVS method by mixing metal
oxides (MgO, Al2O3, Sc2O3, V2O3, Cr2O3, MnO, or FeO) and TiO2 as raw
materials. (Supplementary Figs. 12–25). Note that when mixing other
metal oxides (including SiO2, CaO, CoO, NiO, CuO, or ZnO), λ-MxTi3-
xO5 (M = Si, Ca, Co, Ni, Cu, or Zn, x = 0.15) could not be obtained using
the above two routes (Supplementary Fig. 26).

To evaluate the phase transition process of λ-MxTi3-xO5 (M=Mg, Al,
Sc, V, Cr, Mn, or Fe) from λ to β, DFT calculations were employed to
study the phase transition mechanism (Supplementary Table 2). Dif-
ferent substitution sites involving Ti1, Ti2, and Ti3 for all λ-MxTi3-xO5

materials were studied (Supplementary Figs. 27 and 28). The results
indicate that compared with Ti1 and Ti2 site substitutions, the Ti3 site
substitution shows more negative total energies, indicating that
Ti3 substitution leads to more stable configurations (Supplementary
Tables 3 and 4). As shown in Fig. 2b and Supplementary Figs. 29–36, a
series of transition processes from λ-MxTi3-xO5 to β-MxTi3-xO5 were
investigated. All λ-MxTi3-xO5 structures adapted in the calculations are
consistent with the doping ratios observed in the experiments, while
also considering Ti3 site substitution. λ-Ti3O5 transformed to β-Ti3O5 via
breaking of the Ti3–O5 bond and formation of the Ti3–O4 bond with a
transition energy barrier of 1.22 eV, which was similar to the phase
transition mechanism from β-Ti3O5 to λ-Ti3O5 revealed by Liu et al.38.
The results showed that the metal substitution led to an increase in the
transition energy barriers compared with Ti3O5. In addition, the λ-MxTi3-
xO5 phase was more favored energetically than β-MxTi3-xO5, indicating
greater stability of λ-MxTi3-xO5. The transition from λ-Ti3O5 to β-Ti3O5

was spontaneous as the temperature decreased. Therefore, the transi-
tion from λ-MxTi3-xO5 to the β-MxTi3-xO5 phase required an external
driving force, such as pressure. Evidently, λ-AlxTi3-xO5 required the
lowest energy barrier, indicating that the transition from λ-AlxTi3-xO5 to
β-AlxTi3-xO5was achievedmore easily, i.e., the required pressure was the
lowest. Subsequently, the transition process from λ-AlxTi3-xO5 to β-
AlxTi3-xO5 was performed based on a supercell of 1 × 1 × 2 that included
two Ti3–Ti3 layers (Fig. 2c). The energy barriers for transition from the
λλ-phase to the λβ-phase and the λβ-phase to the ββ-phase were 2.21 eV
and 1.77 eV, respectively. This result indicated that the energy barrier
decreased once the transition occurred. The computational results
indicated that the phase transition process from λ-MxTi3-xO5 to β-MxTi3-
xO5 was achieved by the movements of the Ti3–Ti3 dimers and the
corresponding oxygen atoms, while the Ti1 and Ti2 atoms remained

nearly unchanged. Additionally, once a phase transition is initiated
within a single unit cell, subsequent transitions proceed with a lower
energy barrier, thereby facilitating the transition from λ-MxTi3-xO5 to β-
MxTi3-xO5.

Pressure-temperature induced phase transition of λ-MxTi3-xO5

To further explore the structure and phase transition properties of λ-
AlxTi3-xO5, in situ andex situXRDcharacterizationswere conducted. As
shown in Fig. 3a, λ-Al0.12Ti2.88O5 possessed a monoclinic structure
(space group: C2/m), with lattice parameters a = 9.802 Å, b = 3.777 Å,
and c = 9.951 Å (Supplementary Fig. 37). The transmission electron
microscopy (TEM) image shows irregular block particles of λ-
Al0.12Ti2.88O5 (Supplementary Fig. 38). The HAADF-STEM image and
atomic-scale energy dispersive X-ray spectroscopy (EDS) mappings
confirmed thatAl replaced Ti atoms into theβ-Ti3O5 lattice (Fig. 3b and
Supplementary Fig. 39). The high-resolutionHAADF-STEM images of λ-
Al0.12Ti2.88O5 along the [010] zone axis, as shown in Fig. 3c and Sup-
plementary Fig. 40, were consistent with the atomical configuration.
The typical interplanar distances of 0.509 nm and 0.521 nm corre-
sponded to the (200) and (002) planes in the monoclinic structure,
respectively, in agreementwith theXRDpattern (PDF cardno. 82-1137).

The high-pressure XRDmeasurements results revealed that as the
applied pressure increased, the intensity of the diffraction peaks cor-
responding to λ-(20-3) and λ-(203) gradually diminished, while the
diffraction peaks associated with β-(20-3) and β-(003) gradually
intensified, suggesting a gradual phase transition from the λ to the β-
phase (Fig. 3d and Supplementary Figs. 41 and 42). The cross-pressure
for the phase transition of λ-Al0.12Ti2.88O5 was estimated to be
approximately 557MPa (Supplementary Fig. 43). The similar phase
transition from the λ to the β-phase was also observed in λ-MxTi3-xO5

(M = Mg, Sc, V, Cr, Mn, or Fe) (Supplementary Figs. 44–50). Figure 3e
and Supplementary Fig. 51 show that as the temperature increased
from 300K (25 °C) to 363 K (90 °C), the diffraction peaks of β-(20-3)
andβ-(003) graduallyweakened,while thediffractionpeaks of λ-(20-3)
and λ-(203) gradually strengthened. This result indicated the gradual
transition of the β-phase into the λ-phase with an estimated crossover
temperature of ~363 K (Supplementary Fig. 52). Upon further heating
to 403K, the diffraction peaks for the β-phase nearly vanished, indi-
cating the transition from the β-phase to the λ-phase was completed.
At high temperatures (>453 K), the λ-phase undergoes a second-order
phase transition to the α phase, but then it reverts to the λ-phase upon
cooling. Therefore, during the cooling process, theα-phase underwent
a phase transition to the λ phase that existed stably in the temperature
rangeof 403–300K. A similar phase transition fromβ-phase toλ-phase
was also observed in β-MxTi3-xO5 (M = Mg, Sc, V, Cr, Mn, or Fe) (Sup-
plementary Figs. 53–57). Furthermore, the enthalpy during the β→λ
phase transition directly reflected the heat storage capacity of β-MxTi3-
xO5. The differential scanning calorimetry test results showed that,
except for β-MnxTi3-xO5, the above pressure-treated samples exhibited
significant endothermic peaks, with β-AlxTi3-xO5 having more pro-
nounced heat storage capabilities (Fig. 3f and Supplementary Fig. 58).
When xdecreased from0.13 to0.10, the phase transition enthalpy ofβ-
AlxTi3-xO5 increased from 15.70 J/g (3.51 kJ/mol) to 21.78 J/g (4.87 kJ/
mol), and the phase transition temperature increased from 351 K to
371 K. It is noted that β-AlxTi3-xO5 had an excellent heat storage per-
formance, showing reversible phase transition characteristics under
the influence of external pressure and temperature. However, the
phase transition pressure from λ to β still required several hundred
MPa, making the application limited.

To understand the phase transition and develop a new strategy
to further reduce the phase transition pressure of λ-Al0.12Ti2.88O5,
the microstructure of λ-Al0.12Ti2.88O5 after pressure treatment was inves-
tigated. The sample showed distinct phase interfaces between the β and
λ phases (Supplementary Fig. 59). Further analysis at the interfaces
showed that the β and λ grains had a specific orientation relationship of
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[010]β//[010]λ, [001]β//[001]λ, and (100)β//(100)λ, respectively (Fig. 3g),
indicating ahighdegreeof latticematchingbetweenβ- andλ-Al0.12Ti2.88O5

(Fig. 3h). The close-up integrated differential phase contrast (iDPC)-STEM
images revealed the atomic stacking order at the phase interface along
the [010] zoneaxis (Fig. 3i andSupplementary Fig. 60). To achieve atomic-
scalematching, Ti atomswere stacked in the sequenceof ···Ti2-Ti1-Ti3-Ti3-

Ti1-Ti2··· along the [001] zone axis, and the β as well as λ phases were
interconnected through the Ti2β and Ti2λ layer. Based on the DFT cal-
culation results and the unique structural configuration observed at the
phase interface, it was inferred that compression on the (001) crystal
plane of the λ phase may be an effective pathway to greatly reduce the
excessively high pressure for its transition to the β-phase.
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Accordingly, to investigate the phase transition characteristics
along the [001] zone axis of the λ-Al0.12Ti2.88O5, we conducted uni-
axial static compression tests for micropillars. A crystal grain with
(001) preferred orientation was identified in λ-Al0.12Ti2.88O5 using an
electron backscatter diffraction orientation analysis. Next, we uti-
lized a top-down focused-ion beam fabrication procedure to obtain
the [001]-oriented micropillars to study the stress-strain behavior of
λ-Al0.12Ti2.88O5 (Fig. 4a and Supplementary Fig. 61). In the uniaxial
static compression tests, significant strain was detected in the

cylindrical micropillars (Supplementary Movies 1 and 2), but no
cracking phenomenon was observed in the micropillar 2 (Fig. 4b, c).
The stress–strain curve demonstrated that the occurrence of sig-
nificant plastic deformation was found in the cylindrical micropillars
during the compression process (Supplementary Figs. 62 and 63).
Figure 4d shows that the micropillar underwent typical elastic
deformation during the initial stage (stage I). When the pressure
reached 35–40MPa, significant plastic deformation occurred (stage
II) that resulted in a phase transition from the λ-phase to the β-phase.
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data are provided as a Source Data file. b The HAADF-STEM image and electron
energy loss spectroscopy atomic mapping of the as-prepared λ-Al0.12Ti2.88O5.
c High-resolution HAADF-STEM image of the λ-Al0.12Ti2.88O5 phase along the [010]
zone axes. The inset displays the atomic structure model corresponding to the
HAADF-STEM image, and the brightest columns in the image represent the Ti or Al
atoms.d XRD patterns of λ-Al0.12Ti2.88O5 in the range of 0.2MPa to 6GPa. eHTXRD

patterns of β-Al0.12Ti2.88O5 in the range of 300K and 463K. f Differential scanning
calorimetry curves of the β-AlxTi3-xO5 (x =0.10, 0.11, 0.12 and 0.13). g Fast Fourier
transform of Supplementary Fig. 59 at the interface shows that the β and λ grains
have a specificorientation relationshipof [010]β//[010]λ, [001]β//[001], and (100)β//
(100)λ.hHAADF-STEM image of anβ/λ-Al0.12Ti2.88O5 phase interface taken from the
post-compression λ-Al0.12Ti2.88O5 along the [010] zone axes. i The close-up inte-
grated differential phase contrast (iDPC)-STEM image revealed the atomic stacking
order at the phase interface in the region highlighted by the orange dashed square
in (h).
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After the pressure exceeded 200MPa, the material reverted back to
the elastic deformation (stage III). During the unloading, the strain of
the micropillar partially recovered. We further analyzed the micro-
structure of the post-compression micropillar 2. A typical atomic
structure of the β-phase was observed, indicating a phase transition
from the λ-phase to the β-phase after compression (Supplementary
Fig. 64b–d). These findings further confirmed that applying pressure
on the (001) crystal plane was an effective approach to fundamen-
tally address the issue of excessive pressure during the λ→β phase
transition.

Discussion
A series of ceramics, namely λ-MxTi3-xO5 (M=Mg, Al, Sc, V, Cr, Mn, or
Fe), were synthesized using the LVS method. The LVS method has
demonstrated many advantages such as sub-minute reaction times

(20–60 s), reductant-free, and feasible synthesis routes (Supplemen-
tary Table 5). The ceramic, λ-AlxTi3-xO5, exhibited a more pronounced
heat storage performance (15.70 J/g–21.78 J/g) with a phase transition
temperature range of 351–371 K. However, the phase transition pres-
sure of λ-MxTi3-xO5 needs to exceed several hundred MPa, such as λ-
Al0.12Ti2.88O5 (557MPa) and λ-Sc0.09Ti2.91O5 (680MPa)13, and this poses
a significant challenge for practical applications. The primary external
factor that triggers the transition from λ-MxTi3-xO5 to β-MxTi3-xO5 is
compression on the (001) crystal plane (c-axis) of λ-phase. In poly-
crystalline powders, λ-MxTi3-xO5 grains typically exhibit anisotropy,
whereby compression, the actual stresses on the (001) crystal plane
are insufficient to induce the λ→ β phase transition39,40. Therefore, we
proposed a strategy of applying pressure along the [001] zone axis of
λ-AlxTi3-xO5 to investigate the process of pressure-induced phase
transition on the (001) crystal plane. In uniaxial static compression
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Fig. 4 | The [001] uniaxial static compression experiment. a [001]-oriented λ-
Al0.12Ti2.88O5 micropillar 2 with a height-to-diameter ratio of 2:1. b, c Scanning
electron microscopy images of micropillar 2 during and after loading, captured in
the in-situ test. The compression tests were conducted using an Alemnis Standard
Assembly platform that was equipped with a diamond flat punch indenter with a
diameter of 10μm. d The obtained stress-strain curve during the in-situ compres-
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Plastic deformation occurred, resulting in a phase transition from the λ-phase to
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experiments, the λ→βphase transitionwas inducedat anextremely low
pressure (approximately 35–40MPa), which was more than ten times
lower than polycrystalline powders (Fig. 4e). In addition, as the pro-
posed laser-based synthesis method utilizes vacuum metallurgy, it
holds potential for future applications in vacuum environments, such
as applications for future lunar thermal energy management. With
lunar surface solar radiation as the heat source and lunar regolith41,42

(rich in Ti andAl elements) as the rawmaterial43,44, there is potential for
the in-situ preparation and utilization of λ-MxTi3-xO5 ceramics for
thermal storage applications (Fig. 4f).

In summary, the proposed LVSmethod and uniaxial compression
strategy were shown to substantially enhance the synthesis efficiency
and minimize the phase transition pressure. Therefore, achieving
reversible phase transitions between the λ and β phases at low pres-
sures (35–40MPa) and temperatures (363 K) in λ-AlxTi3-xO5 heat sto-
rage ceramics has become feasible with a pressure well below the
recently reported 680MPa. This work presented a proof-of-concept
for further reducing the phase transition pressure of λ-Ti3O5-based
ceramics and provided a method for the synthesis and modulation of
λ-MxTi3-xO5 ceramics for potential wide applications in thermal energy
management. The principles of element substitution and crystal plane
modulation may also be applicable to other pressure-induced heat-
storage materials.

Methods
Chemicals
TiO2 (≥98.00%), MgO (98.50%), Al2O3 (99.99%), SiO2(99.90%), CaO
(97.00%), Sc2O3 (99.90%), V2O3 (95.00%), Cr2O3(99.00%), MnO
(99.00%), FeO (99.50%), CoO (99.00%), NiO (98.00%), CuO (99.50%),
ZnO (99.00%) were purchased from Sinopharm Chemical Reagent
Co., Ltd.

Material synthesis by laser-assisted vacuum smelting (LVS)
Our experiments were carried out in a vacuum thermal decomposition
system with a pressure better than 1 × 10–3 Pa. β-Ti3O5 and λ-MxTi3-xO5

were synthesized using the LVS method. In this method, TiO2 powder
or a mixture powder (metal oxides and TiO2 powder were homo-
geneously mixed) was pressed into tablets with a diameter of 7mm
under a uniaxial pressure of 100MPa and placed into a copper cruci-
ble. The crucible was then transferred to a vacuum cavity and
decomposed at different powers and times under a pressure of
1 × 10–3 Pa. Subsequently, the synthesized products were ground into
fine powders for further characterization.

X-ray diffraction measurement
The crystal structures of β-Ti3O5 and λ-MxTi3-xO5 were determined by
X-ray diffraction instrument (XRD, Bruker D8 ADVANCE A25X, Ger-
many) using Cu-Kα radiation with a scan rate of 1°min–1. The In-situ
HTXRDmeasurements were carried out using an Anton Paar XRK 900
reaction chamber with a heating rate of 5 K/min and a holding time of
5min at each temperature interval (λ = 1.5406Å). The phase compo-
nents were calculated by Rietveld refinement analysis using Total
Pattern Analysis Solutions (TOPAS) 4.2 software.

Theoretical calculations
All calculations were performed using Vienna ab-initio Simulation
Package (VASP). The projector-augmented wavemethod was used45,46.
The exchange-correlation energy was described by generalized gra-
dient approximation (GGA), employing the Perdew–Burke–Ernzerhof
functional47. The calculations were optimized with an energy cutoff of
520 eV and the convergence criteria for force and energy are set to
0.01 eV/Åand 10–6 eV, respectively. For Brillouinzone integration48, the
k-point mesh was set to 3 × 3 × 3. As shown in Supplementary Fig. 27,
the crystalline structure for λ-Ti3O5 and β-Ti3O5 is the monoclinic and
C2/m crystal, consisting of 12 Ti and 20O atoms. As listed in

Supplementary Table 2, the calculated lattice parameters of both λ-
and β-Ti3O5 are consistent with the experimental results5. After opti-
mization, according to the realistic ratio in the experiment, different
contents of Mg, Al, Sc, V, Cr, Mn or Fe were used to replace the Ti
atoms in λ-Ti12O20, resulting in λ-Mg1Ti11O20, λ-Al1Ti11O20, λ-Sc1Ti11O20,
λ-V2Ti10O20, λ-Cr4Ti8O20, λ-Mn4Ti8O20, and λ-Fe2Ti10O20. In addition, a
1 × 1 × 2 supercell containing 64 atoms of λ-Al2Ti22O40was employed to
investigate the transformation from the λλ-phase to the ββ-phase. All
transition state structures were located by using the climbing image
nudged elastic band (CI-NEB) methods49. All calculations were spin-
polarized.

Static compression testing
λ-MxTi3−xO5 powder was molded into cylinders (Φ 3.0 × 3.0mm2) and
loaded into a high-pressure device (ZSM-10G, Zhengzhou Abrasives
Grinding Institute, China). Then, the samples were pressed at different
pressures. The pressure was calibrated by Bi and ZnTe phase transi-
tions at high pressures.

High-pressure synchrotron XRD experiments
In situ high-pressure X-ray diffraction experiments were carried out
at the 4W2 beamline of the Beijing Synchrotron Radiation Facility
using a wavelength of 0.6199Å. A symmetric diamond anvil cell with
a 300μm culet size was used for the measurements. The prepared λ-
MxTi3-xO5 was placed into a 130 µm diameter hole in a pre-indented
Re gasket with a thickness of 40 µm for XRD. The pressures
were calibrated according to the ruby fluorescence method with an
error of ±0.1 GPa50. The powder diffraction patterns were collected by
a Pilatus 3 × 2M image plate and integrated using the FIT2D software
package.

X-ray photoelectron spectroscopy
X-ray photoelectron spectroscopy (XPS) analysis was conducted on a
Thermal SCIENTIFIC ESCALAB 250XI system with a base pressure of
∼2 × 10−9 mbar. The spectra were obtained using an Al Kα radiation
(hυ = 1486.6 eV) beam (500μm, 25W). Binding energy was calibrated
by the adventitious C 1s peak at 284.8 eV.

Thermal property measurement
The heat absorption properties of λ-MxTi3-xO5 were measured by dif-
ferential scanning calorimetry (DSC, PerkinElmer STA-8000) with a
heating/cooling rate of 5 K/min and an air gas flow of 100mL/min.
Before testing, all samples were compressed by 6GPa static high
pressure to change their phase composition from λ phase to β phase.

TEM and HRTEM observations
The atomic structures of the synthesized β-Ti3O5 and λ-AlxTi3-xO5 were
characterized in Hitachi HF5000 under a voltage of 200 kV and
atomic-resolution high-angle annular dark-field scanning transmission
electronmicroscopy (HAADF-STEM) images were obtained. The cross-
sectional microstructures perpendicular to the pressure were char-
acterized in FEI TitanCubed Themis G2 300 under a voltage of 300 kV.
TheHAADF-STEM and iDPC images of the phase interface inβ/λ-AlxTi3-
xO5 were obtained. Atomic-resolution Annular dark field (ADF-STEM)
images of the cross-sectional microstructures in cylindrical micro-
pillars were obtained, using a double aberration-corrected JEOL JEM-
ARM 300 under a voltage of 300 kV.

Micromechanical testing
Cylindrical micropillars with a height-to-diameter ratio of 2:1 were
prepared along the [001]-oriented using focused-ion beam (FIB) mil-
ling technique (Helios G4 PFIB, Thermo Fisher, USA). In-situ com-
pression tests were conducted using an Alemnis Standard Assembly
platform,whichwas equippedwith a diamondflat punch indenterwith
a diameter of 10μm.
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Data availability
The data generated in this study are provided in the Supplementary
Information/SourceData file. Source data are providedwith this paper.
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