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Observed different impacts of potential tree
restoration on local surface and air
temperature

Yitao Li 1,2, Zhao-Liang Li 3 , Hua Wu 4, Xiangyang Liu3, Xu Lian 5,
Menglin Si 3, Jing Li3, Chenghu Zhou 6, Ronglin Tang1,2, Sibo Duan3,
Wei Zhao 7, Pei Leng3, Xiaoning Song2, Qian Shi8, Enyu Zhao9 & Caixia Gao10

Tree restoration can cool or warm the local climate through biophysical pro-
cesses. However, the magnitude of these effects remains unconstrained at
large scales, as most previous observational studies rely on land surface
temperature (Ts) rather than the more policy-relevant air temperature (Ta).
Using satellite observations, we show that Ta responds to tree cover change at
only 15–30% of the magnitude observed in Ts. This difference is supported by
independent evidence from site observations, and can be attributed to the
reduced aerodynamic resistance and the resultant flatter near-surface tem-
perature profiles in forests compared to non-forests. At mid- or high-latitudes,
the maximum seasonal biophysical Ta warming or cooling only accounts for
approximately 10% of the equivalent climate effect of carbon sequestration in
terms of magnitude, whereas the biophysical Ts effect can reach 40%. These
findings highlight the importance of selecting the appropriate temperature
metric in different applications to avoid exaggerating or underestimating the
biophysical impacts of forestation.

In the past decade, the significance of terrestrial ecosystems has
gained increasing recognition in high-level climate policies and pled-
ges aimed at combating global climate change1,2. A majority of these
commitments focus on forest ecosystems3,4, as global forested areas
currently store over 800 petagrams (Pg) of carbon and can absorb
~13 Pg of CO2 from the atmosphere annually5,6. Global efforts to reduce
the greenhouse effect through forest restoration, known as the bio-
chemical (bchem) feedback of forests, are essential to mitigate global
warming7,8. Meanwhile, forests present several biophysical (bph)

characteristics, such as lower albedo and greater roughness length,
resulting in the local cooling or warming effect compared to their
neighboring openlands9–11. The sign and magnitude of the local bio-
physical temperature effects can vary considerably based on spatial
location and background climate, and are typically characterized by a
shift from cooling effects in the tropics to warming effects in cold
regions12,13. Forest changes also affect the temperature of spatially
nearby regions through advective transport, and even global tem-
perature via altering the large-scale circulation patterns14. The
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magnitude of this nonlocal effect depends on the area extent and the
geolocation of the changes15,16. Forestation is advocated as an effective
solution to achieve the carbon neutrality goal by 2050, and its bio-
physical feedback can positively or negatively contribute to carbon-
related global climate mitigation (the biochemical effect)17,18.

Currently, forestation practices are predominantly concentrated
in limited and specific regions19,20. Given that CO2 is well-mixed in the
atmosphere, the biochemical feedback on temperature becomes less
important when focusing on the climate effects of forestation at
regional scales21. In contrast, the biophysical effects of forestation can
directly induce local cooling or warming, substantially mitigating or
exacerbating climate change22,23. The mapping of maximum local cli-
mate effect through potential forestation practices is informative for
policymakers to develop better regional adaptation strategies.

However, existing assessments of large-scale vegetation–climate
feedback are subject to various sources of uncertainty. Numerous
model-based studies have evaluated the biophysical effects of forest
changes under various scenarios over the last two decades24,25. Such
assessments are dependent on the model representation of surface
processes and are biased by the low resolution of simulations26,27.
High-resolution remote sensing (RS) data provide an avenue for
evaluating the potential biophysical effects of forest changes,
through a comparison between spatially adjacent forest and non-
forest pixels. Nonetheless, for most RS-based studies, the tempera-
ture metric is land surface temperature (Ts)12,28–34, which is a crucial
parameter involved in surface energy or water balance processes but
has limitations in characterizing the climate effects of forest change.
According to the report of the Intergovernmental Panel on Climate
Change (IPCC), the indicator used to describe global land warming
and frame climate change mitigation targets is land surface air
temperature (Ta) rather than Ts35. Despite the strong correlation
between Ts and Ta36, the Ts effect of forest change may significantly
differ from the Ta effect37. Ts-based assessments are useful formodel
refinement or informing the sign of Ta effect, but the values cannot
be directly considered in climate treaties or policies. Although a few
studies have explored the different responses of these two tem-
peratures in the context of forest change38–40, their results may be
affected by the uncertainties in numerical models or the sparse dis-
tribution of paired forest and non-forest sites. Consequently, it is still
unclear whether the biophysical effects of forest change on Ts are
comparable with those on Ta at large scales, posing challenges to the
direct application of RS-based assessments for policymaking pur-
poses and model result constraints.

This study aims to provide solid observational constraints for the
biophysical sensitivity of different temperature metrics to tree cover
change and evaluate the impact of potential tree restoration on the
local climate. We first estimate the local biophysical Ts and Ta sensi-
tivity to the full tree cover restoration (denoted as δTsbph and δTabph)
at the0.25° scale, basedon the space-for-timeanalogy (Supplementary
Fig. 1)12,41,42. Notably, the evaluated Ts indicates the radiometric tem-
perature of the land surface, and Ta indicates the air temperature at
2m above the land surface (Supplementary Fig. 2). The land surface
here refers to the interface layer between different land components
and the atmosphere (e.g., vegetation canopy)43. We revisit previous
evaluations of the climate effects of forestation by comparing δTsbph

and δTabph, and provide a comparative assessment of the sensitivities
across latitudinal, seasonal, and diurnal dimensions. Furthermore, we
use the FLUXNET2015 dataset44 and two gridded temperature datasets
to validate the differences between two sensitivities and elucidate the
underlying biophysical mechanisms. Finally, we translate the biophy-
sical temperature sensitivities to equivalent CO2 metrics22, and com-
pare themwith thebiochemical effects driven by thepotential biomass
increases, thereby informing the overall climate effects of forest-based
climate strategies.

Results
Biophysical temperature sensitivities to tree cover gain
The RS-based biophysical sensitivities of annual mean Ts and Ta show
similar spatial patterns in terms of sign (Fig. 1a, b). Both δTsbph and
δTabph exhibit positive values in northern high latitudes and negative
values in other regions, delineated at around 50°N (Fig. 1c). This spatial
distribution reflects a shift from non-radiative cooling in warm regions
to radiative warming in cold regions12,30. The estimated δTsbph aligns
well with a previous study of the potential Ts effect of forestation
based on the unmixing method45, suggesting the robustness to dif-
ferent analytical approaches (Supplementary Fig. 3). In terms of mag-
nitude, δTabph demonstratesmuch lower absolute values compared to
δTsbph (−0.14 ± 0.40K vs. −0.65 ± 1.22 K, global mean± standard
deviation), indicating that the local Ta effect of tree restoration is ~22%
of the Ts effect. The attenuated δTabph relative to δTsbph can be
observed across all latitudinal bands. At northern high latitudes, the
Ta-based warming induced by tree cover change accounts for 32% of
the Ts-based warming (0.17 vs. 0.53 K) (Fig. 1d). The ratio of Ta-based
cooling to Ts-based cooling is about 40% (−0.32 vs. −0.80K) at
northern mid-latitudes, 17% (−0.24 vs. −1.41 K) at tropics, and 23%
(−0.26 vs. −1.12 K) at southern mid-latitude (Fig. 1e–g). These quanti-
tative results are robust to the choice of input tree cover data (Sup-
plementary Fig. 4).

The monthly results further show similar seasonal variation pat-
terns of δTabph and δTsbph, with differing intensities of cooling or
warming (Supplementary Fig. 5). In boreal regions, where forest gains
predominantly lead to cold season warming effects, the positive
monthly δTabph are considerably lower than δTsbph. The ratios of
δTabph toδTsbph in these regions range from21% to30%.Conversely, at
mid-latitudes, where forestation typically induces a strong growing
season cooling effect, ~18% to 33%of the Ts-based cooling can translate
into Ta-based cooling. In tropical regions, where forestation results in
cooling throughout the year, the negative δTabph accounts for about
15% of δTsbph. These results highlight a consistent pattern in the
response of two temperature metrics to forest change, albeit with
varying magnitudes.

Previous studies have documented the diurnal asymmetry in the
Ts effect of forestation, characterized by cooling at the daytime and
warming at the nighttime12,46. Our investigation into responses of daily
maximum and minimum temperatures to tree cover gain reveals that
both the daytime and nighttime Ta effects (δTabphmax and δTabphmin) are less
pronounced compared to the corresponding Ts effects (δTsbphmax and
δTsbphmin) (Supplementary Figs. 6 and 7). Globally, the mean δTabphmax is
~18% of the mean δTsbphmax (−0.41 K vs. −2.24 K), whereas the mean
δTabphmin accounts for about 15% of the mean δTsbphmin (0.14 K vs. 0.94 K).
Across most latitudinal zones, the extent of maximum and minimum
Ta sensitivity is notably smaller than thatof Ts sensitivity. An exception
is observed in tropical nighttime, where the average δTabphmin and δTsbphmin
exhibit opposite signs (−0.04K vs. 0.13 K) with small absolute values.
Overall, we can conclude that roughly 15–30% of the previously
observed Ts effects of forest change can translate into climate signals,
a proportion that is notably lower than the nearly 50% conversion rate
estimated by earth system models39.

Validation of the magnitude of Ta sensitivity
Given that the Ta data used for assessment are empirically derived
from satellite Ts, rather than direct observations, the accuracy of
δTabph might be dampened by the potential misrepresentations of the
Ta retrievalmodel. To ensure the robustness of our findings, especially
the relative magnitude of Ta effects to Ts effects, we further validate
the RS-based δTsbph and δTabph against the temperature effects of
forestation (δTsbph* and δTabph*) inferred from the in situ observations
and gridded temperaturedata.Here, δTsbph* and δTabph* are estimated
in different shortwave radiation (SWd) bins to represent the relative
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changes with changing background radiation conditions (see “Meth-
ods” and Supplementary Fig. 8).

The results show that both δTsbph and δTsbph* are negatively
correlated with SWd, and the slope obtained from in situ observations
matches that derived from RS data (−1.14 vs. −1.39). For the Ta sensi-
tivity, the negative slope derived from in situ observations (−0.24) is
also nearly identical to the RS-based results (−0.27) (Fig. 2a, b). The
comparable slope values indicate that in situ observations can quan-
titatively reflect the decrease in temperature sensitivitywith increasing
radiation, as seen in the RS-based results. Meanwhile, the ratio of
slopes indicates that the relative magnitudes of Ta effects to Ts effects
are also comparable between the RS-based (19.4%) and in situ
results (21.1%).

Since daytimemaximum temperatures measure human exposure
to heat stress47, we also validate our findings of maximum Ta and Ts
sensitivities via in situ measurements (δTsbph*max and δTabph*max , Fig. 2c, d).
The slopes derived from in situ measurements are more pronounced
thanRS-based results, whichmay be due to the satellite overpass times
(around 13:30, see “Methods”) not precisely coinciding with the
occurrence of daily maximum temperatures. However, we show that
the ratios of Ta sensitivity slopes toTs sensitivity slopes are close in the
RS-based (16.9%) and site-based (17.4%) results (Fig. 2c, d). This result
suggests that site measurements corroborate the relative magnitude
of the RS-based maximum temperature sensitivity. In addition, we
confirm that the validation results are robust irrespective of the choice
of gridded temperature data used to control for the impact of mac-
roclimate background (Supplementary Fig. 9).We also perform similar
analyses on the site-based minimum Ta and Ts sensitivities (δTsbph*min
and δTabph*min , Supplementary Fig. 10), which supports the lower Ta-
based warming than Ts-based warming during the nighttime in the RS-

based results. We note that the relationship between δTabph*min and SWd

is not significant, which corresponds to the weak correlation between
δTabphmin and SWd in the RS-based results (r = −0.38). Overall, these
results verify themagnitude of the Ta sensitivities derived from the RS
data, providing a strong basis for further analysis.

Biophysical mechanisms of the diverse temperature responses
To elucidate the biophysical mechanisms underlying the smaller
magnitude ofδTabph than δTsbph, we also analyze the vertical profile of
temperature from the land surface to 2m height at both forests and
non-forested openlands, using the FLUXNET2015 and gridded tem-
perature datasets (see “Methods”). We first focus on winter observa-
tions at European sites, which represent high latitudes where
forestation leads to dormant season warming. We verify that site
observations used in our study can capture the pattern of weaker Ta-
based warming than Ts-based warming of forestation (0.16 vs. 1.63 K,
Fig. 3a). In such cold environments, the near-surface boundary layer is
generally in a stable condition, meaning that the atmosphere tends to
warm the land surface, resulting in the temperature inversion phe-
nomenon (Ta >Ts)48. The temperature profiles show that the attenua-
tion of δTabph* in openlands is driven by a more pronounced
temperature inversion compared to forests, where Ts is almost iden-
tical to Ta (Fig. 3a). Further examination of biophysical property dif-
ferences reveals that both the absolute values of sensible heat flux (H)
and aerodynamic resistance (ra) are greater in openlands than in for-
ests (H: −13.6 vs. −3.4W·m−2; ra: 178.1 vs. 30.7 s·m

−1, Fig. 3b). This implies
two key factors: first, higher heat flux transfer in openlands favors
more pronounced temperature gradients; second, lower transfer effi-
ciency (higher ra) can lead to larger temperature gradients even with
constant heat flux. These factors collectively result in more significant

Fig. 1 | Annual mean temperature sensitivity to the full tree cover restoration.
a Global pattern of air temperature sensitivity (δTabph). b Global pattern of land
surface temperature sensitivity (δTsbph). c The variation of δTabph and δTsbph

across latitudinal bands, with the shaded area indicating the standard deviation

across space. d–g Probability density of δTabph and δTsbph across northern high
latitudes (>50°N), northern mid-latitudes (20°–50°N), tropics (20°S–20°N), and
southernmid-latitudes (>20°S). The tree covermap for the sensitivity estimation is
from the GLOBMAP dataset.
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temperature gradients in openlands (Fig. 3a), thereby contributing to
the reduced Ta sensitivity. The quantitative analysis further shows that
the impact through ra (δTra , 55%) slightly outweighs the impact
through H (δTH, 45%) (Fig. 3c).

We also examine summer observations from North American and
Australian sites to understand themechanisms underlying the reduced
Ta cooling in mid- and low-latitude regions. Our results confirm that
observations from both regions are consistent with the result of the
smaller magnitude of δTabph* than that of δTsbph* (North America:
−0.25 vs. −2.23 K, Australia: −1.13 vs. -3.28 K, Fig. 3d, g). In these warm
regions, the land surface is warmer than the ambient air, and the
near-surface atmosphere is unstable, characterized by an upward
sensible heat flux. The diminished Ta-based cooling effect in forests
is attributed to stronger temperature gradients in openlands than in
forests (Fig. 3d, g). In terms of the biophysical properties, openlands
exhibit higher ra than forests (North America: 49.2 vs. 9.2 s·m−1;
Australia: 45.3 vs. 16.1 s·m−1), whereas the sensible heat flux appears
to be similar (Fig. 3e, h). The quantitative analysis also shows that the
weaker air cooling is primarily due to forest-resultant decrease of ra
(North America: 82%; Australia: 78%, Fig. 3f, i). Thus, it can be con-
cluded that larger ra values in openland lead to more pronounced Ts
and Ta gradients, resulting in attenuation of the Ta-based cooling
effect. These findings confirm the crucial role of ra in influencing the
impacts of both Ts and Ta in response to land cover changes49. We
note that the contribution of H is greater in European winter than in
North American or Australian summer. The possible reason is that H

is more dominant in the turbulent flux exchange during winter
(characterized by the higher Bowen ratio) than summer50, thus con-
tributing more to the temperature gradients between the land sur-
face and the near-surface air, and further to the attenuation of the air
temperature response.

Comparison of biophysical with biochemical effects based on
two temperature metrics
Most assessments of the climate benefits related to forestation have
concentrated on carbon sequestration (i.e., biochemical effects)51,52.
Here, the biomass carbon stock sensitivity to tree cover is estimated
via space-for-time analogy and converted to CO2 absorption equiva-
lents (δCO2e

bchem) to represent the biochemical effect. We also con-
vert the biophysical Ts and Ta sensitivities to the metric of equivalent
CO2 uptake (δCO2e

bph, Ts and δCO2e
bph, Ta, Supplementary Fig. 11).

These allow the comparison of the local biophysical and biochemical
climate effects and evaluation of the relative importance of the
former22,23.

The spatial map shows that δCO2e
bchem in tropical rainforest

margins can exceed 600 t·ha-1 (Fig. 4a), which is comparable to the
previous estimation of tropical intact forest based on ecological
research network observations5. This value is greater than δCO2e

bchem

in temperate and boreal forests, suggesting the highest carbon benefit
of restoring damaged or degraded tropical forests. Latitudinally,
δCO2e

bchem at low latitudes is higher than that atmid- or high latitudes,
with a global mean of 268.2 ± 37.8 t·ha−1 (mean ± uncertainty) (Fig. 4b).

Fig. 2 | Validation of the monthly land surface temperature and air tempera-
ture sensitivities. a Remote sensing-based relationships between mean tempera-
ture sensitivities (δTsbph and δTabph) and background shortwave radiation (SWd).
The boxplots show themonthly temperature sensitivities within the corresponding
SWd interval. The boxes indicate the interquartile range; the whiskers indicate the
data range (5th and 95th percentiles); the lines and dots inside the boxes are the
medians and means, respectively. b FLUXNET-based relationships between the

mean temperature sensitivities (δTsbph* and δTabph*) and SWd. The shaded area
indicates the standard error for themean sensitivity within each SWd bin. c Same as
(a), but for the maximum temperature sensitivities derived from remote sensing
data (δTsbphmax and δTabphmax). d Same as (b), but for the maximum temperature sen-
sitivities from FLUXNET measurements (δTsbph*max and δTabph*max ). Here, Climatic
Research Unit (CRU) temperature data are used to exclude the impact of macro-
climate background in FLUXNET temperature measurements.
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In terms of the biophysical effect, δCO2e
bph, Ts (41.7 ± 9.3 t·ha−1) pro-

vides a global average of 15.7% additional benefits to δCO2e
bchem

(Fig. 4b). However, if the more relevant biophysical Ta effect is con-
sidered, the ratio of δCO2e

bph, Ta (9.3 ± 2.9 t·ha−1) to δCO2e
bchem is

only 3.5%.
We then focus on northern high latitudes, where tree restoration

shows a biophysical warming effect. The resultant negative
δCO2e

bph, Ts couldoffset 9.5% of theδCO2e
bchem annually (Fig. 4b). The

high-latitude biophysical warming is more pronounced in the cold
season and can reduce the biochemical climate effect by 42.4% in
March (Fig. 4c). However, when δCO2e

bph, Ta is used as the indicator,
the offset of biophysical to biochemical effects is only 3.3% at the
annual scale, with the maximum monthly value of 10.6% (February)
(Fig. 4b, c). In mid-latitudes, the seasonal δCO2e

bph, Ts can enhance
δCO2e

bchem by up to 33.7% (northern hemisphere) and 40.5% (south-
ern hemisphere) during summer. However, these seasonal ratios are
only about 10% considering δCO2e

bph, Ta (Fig. 4d, f). In low latitudes,
annual positive δCO2e

bph, Ts is equivalent to 25.5%of δCO2e
bchem, while

the ratio for δCO2e
bph, Ta is only 6.2%, with insignificant seasonal var-

iations (Fig. 4b, e). These results suggest that the relative importance
of biophysical effects largely depends on the evaluated temperature
metric, and the role of biophysical effects in the overall climate effect

(usually measured by Ta) may not be as important as estimated in
previous Ts-based studies22,23.

Discussion
Previous studies have demonstrated that in boreal regions, forests can
warm local Ts because the tree canopy is darker than the snow back-
ground and absorbs more solar radiation; in tropical regions, forests
show strong local Ts cooling, mainly due to the higher evapo-
transpiration rates than other vegetation or bare land; in temperate
regions, the net Ts effect depends on the relative magnitude of these
two processes10,12,28,30. However, the Ta effects cannot be simply
extrapolated from the Ts effect, as the vertical mixing or coupling
between Ts and Ta is much stronger in “rougher” forests than
in “smoother” openlands13,37–39,53. Leveraging satellite observations, we
start by analyzing the biophysical sensitivities of Ta and Ts to tree
cover gain. We quantify that ~15–30% of the Ts response could be
translated into the Ta response. The less substantial Ta response than
the Ts response is validated and further elucidated through in situ
measurements, related to the distinct aerodynamic characteristics of
forest canopies. Our findings underscore the duality of local Ts and Ta
effects induced by tree cover gain, providing a universal metric for
translating previous Ts-based results into climate effects. Through the

Fig. 3 | Attribution of differences in temperature sensitivities. a Vertical evolu-
tion of temperature at zero‐plane displacement plus heat roughness length (Ts) to
the temperature at 2m above vegetation height (Ta) derived from winter obser-
vations of European forest and openland sites. The number n at the upper right
represents the number of sites, and the shaded area indicates the standard error of
multiple-site means. The relative temperature of the x-axis is calculated by sub-
tracting the gridded CRU temperature data from the FLUXNET observations.
b Comparison of estimated aerodynamic resistance (ra) and measured sensible

heat flux (H) between forest and openland sites. The error bars indicate the stan-
dard error. c Bar plots of the mean air temperature sensitivity (δTabph*), land sur-
face temperature sensitivity (δTsbph*) and their difference (Diff) contributed by
variations in aerodynamic resistance (δTra ), and sensible heat (δTH). The error bars
indicate the standard error. d–f Same as (a–c), but for summer observations from
North American sites. g–i Same as (a–c), but for summer observations from
Australian sites.
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comparison of biophysical and biochemical effects, we find that using
Ts as the indicator may overestimate the role of biophysical processes
in the overall climate effect of forestation. The evaluation based on the
more relevant Ta can present better policy guidance for prioritizing
the location of forestation.

The following points should be noted when our results are inter-
preted. First, akin to prior observational studies, our assessment of
biophysical effects does not account for nonlocal or teleconnected
effects25, which could be substantial under scenarios of extensive
global tree restoration. For instance, widespread restoration might
alter atmospheric circulation patterns54 and hydrological processes55

at large ormesoscale scales, thereby affecting the temperature of non-
forested areas. The nonlocal effect of forestation can even exceed the
local effects in model simulations15. Therefore, our estimation of cli-
mate benefits should be viewed as the local effect of tree restoration at
specific locations. The complex nonlocal feedbacks are better quan-
tified through model simulations, and our findings can serve as con-
straints for model-based evaluations to more accurately quantify
higher-order feedbacks. Second, the estimated biophysical sensitivity
of tree restoration is contingent upon current climate conditions, and
the impact may evolve in the future. For example, the positive bio-
physical sensitivity in boreal regions might become negative as snow-
induced radiative effects decrease in a warmer world; the impact of
rising CO2 levels could also have profound impacts on the climate
consequences of forestation56. Nonetheless, our observational assess-
ment could be useful for selecting models that better present the
biophysical properties of forests and based onwhich to investigate the
climate effects of forestation in future scenarios. Caveats should also
be noted for our comparison of biophysical and biochemical effects.
Both evaluated biophysical and biochemical effects represent poten-
tial cumulative results. It may take a shorter period for biophysical
processes (a single decade) to come into effect than biochemical
processes, as the newly restored forests gradually absorb CO2 and
reach equilibrium after several decades. In addition, potential

variations in soil carbon are ignored in the biochemical part. In con-
trast to increases in biomass, tree restoration could have positive and
negative effects on soil carbon, depending on the climate background
and the ecosystem type57–59. At the global scale, forestation can
increase soil organic carbon, but the value is highly uncertain60.
Neglecting the potential change in soil carbon may lead to a slight
underestimation of the biochemical effect61. The evaluated change in
biomass should be the main contributor to carbon sequestration62.

In the context of global climate change, Ts and Ta show com-
parable variation patterns and trend values36. However, when asses-
sing the temperature effects of afforestation or deforestation, the Ts-
based values can be about five times higher than the Ta-based values.
This significant difference in magnitude highlights that attention
should be given to the evaluated temperature metrics and the
application scenarios when interpreting the biophysical effects of
land cover changes. For instance, Ts (i.e., canopy temperature) could
be the more appropriate metric when considering the effects of
biophysical processes on ecosystem metabolism of photosynthesis,
respiration, and transpiration37,63. Meanwhile, the more relevant Ta
should be used in analyses related to regional climate adaptation of
tree restoration. We highlight that this issue should be considered in
future RS-based studies focusing on the thermal buffering effects of
forests.

Although Ta-based biophysical effect represents only a small
proportion of equivalent biochemical effect, its role in local climate
modulation should not be overlooked in regional adaptation strate-
gies. In particular, the diurnal and seasonal changes in biophysical
temperature effects should be considered when formulating com-
prehensive forest-based policies. For instance, we observe maximum
temperature cooling and minimum temperature warming effects of
forests at high latitudes. This suggests that tree restoration in such
cold regions may be a solution to reduce the risks or impacts of
daytime warming on the ecosystem. Meanwhile, we show that tree
restoration at mid-latitudes can generate considerable summer

Fig. 4 | Comparisonof thebiophysical (bph) andbiochemical (bchem) effects of
potential tree cover gain. a Global pattern of the biochemical effect of potential
tree cover gain (δCO2e

bchem). b Global and latitudinal means of biochemical and
biophysical effects of potential tree cover gain. The Ts-based and Ta-based bio-
physical effects are shown as the equivalent CO2 uptake (δCO2e

bph, Ts and

δCO2e
bph, Ta). The error bars indicate the uncertainty of the mean. c–f Monthly

ratios of Ta-based and Ts-based biophysical effects to equivalent biochemical
effects across northern high latitudes (>50°N), northern mid-latitudes (20°–50°N),
tropics (20°S–20°N), and southern mid-latitudes (>20°S). The shaded area indi-
cates the uncertainty of the ratios.
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maximum Ta cooling, indicating the potential for reducing the
impact of hot extremes. Particularly for those mid-latitude countries
with ambitious tree restoration goals, tree restoration can offer local
climate benefits of mitigating summer heat stress in populated areas.

The biophysical warming effects of boreal forests should be given
specific attention in relatedmitigation policies, although our results of
negative biophysical climate effects at high latitudes may not be as
strong as previous findings64,65. This is because those studies focus on
the additional radiative forcing induced by the darker forest canopy
but ignore the impact of turbulent fluxes. The overlooked non-
radiative effects could partially offset the albedo effects, leading to the
observed net warming in our results. From the perspective of the
whole climate system, the non-radiative effects represent the redis-
tribution of energywithin the climate system andmay lead towarming
in downwind regions or at the higher boundary layer66. Thus, our
results concerning the biophysical effects should be treated as the
reference for local climate adaptation rather than global climate
mitigation. The fact that the mitigation potential of high-latitude for-
estation could be reduced or even offset by the albedo impacts should
be considered by forest-related global policies. Moreover, tree
restoration can have numerous ecological, hydrological, and eco-
nomic impacts besides the assessed temperature effects. Restoration
in inappropriate geolocations (e.g., tropical savannas) can have
counterproductive consequences such as ecosystem degradation,
biodiversity loss, and water availability reduction67–71. These impacts
should also be considered in the development of comprehensive
forest-related strategies to avoid the misconception that “restoring
trees is the panacea for the current crisis”.

Methods
Tree cover map
In this study, two tree canopy cover datasets derived from different
sensors are used for the analysis, including the recently released
GLOBMAP fractional tree covermapwith a spatial resolution of 250m72,
and the Global Forest Change (GFC) tree cover map with a spatial
resolution of 30m73. Considering the data availability, we use the tree
cover maps of 2010 (TC2010) of both two products to calculate the
biophysical temperature sensitivities to ensure robustness. Both TC2010

maps from GLOBMAP and GFC are preprocessed and spatially aggre-
gated to the 1 km resolution for further analysis (Supplementary Fig. 12).

Satellite-based Ts and Ta
The thermal infrared sensors onboard satellites provide direct mea-
surements of Ts. In forested land, Ts represents the mixture tem-
perature of the tree canopy and the exposed soil at the observed angle.
Here, themonthlymeanTs data of 2010 aregeneratedby thedaily four
observations from Moderate Resolution Imaging Spectroradiometer
(MODIS) onboard Terra and Aqua satellites (observed at 1:30, 10:30,
13:30, and 22:30). Specifically, the four instantaneous Ts observations
(MOD11A1/MYD11A1) are first converted to the dailymean values using
the weighted average method74, and the daily values are then tempo-
rally aggregated to monthly mean values75. The synthesized monthly
Ts data are the all-sky average with the spatial resolution of 1 km, and
show satisfactory accuracy compared to the in situ measurements
(rootmean square error of 1.6 K). ThedailymaximumandminimumTs
data are calculated from the mean values of MODIS observations
(13:30 and 1:30) at the monthly scale.

The other temperature metric used for assessment is Ta, the air
temperature at ~2m above the interface layer between the land com-
ponents and the atmosphere. Specifically, for forested areas, the
reference plane is the canopy, whereas for openlands, the reference
plane is approximately the ground (Supplementary Fig. 2). Here, we
use a state-of-the-art spatiotemporal seamless Ta dataset to analyze
the local climate effect of potential forestation76,77. This dataset is
derived froma statisticalmodel that correlates Ta fromabout 100,000

weather station records with satellite Ts (observed at 13:30 and 1:30)
and other auxiliary variables. It provides global 1 km daily maximum
and minimum air temperature data, with accuracies of ~2 K and ~1.5 K,
respectively. We first aggregate the daily data to the monthly scale.
Then, the monthly mean Ta data are calculated by arithmetically
averaging the monthly maximum and minimum Ta values. Satellite
monthly mean Ta and FLUXNET monthly mean Ta show good agree-
ment. The validation results for forest and non-forest sites show
comparable accuracy (Supplementary Fig. 13).

Calculation of biophysical temperature sensitivity maps
The biophysical sensitivity in this study is defined as the potential
local temperature change when tree cover increases from 0 to 100%.
A positive (or negative) sensitivity value at a given location indicates
a local warming (or cooling) effect due to full restoration. This sen-
sitivity is estimated using the space-for-time method12,53, which
assumes that the spatial variability of Ts or Ta within a designated
area reflects land surface property differences, given that pixels
within this area share the same macroclimate. Specifically, for each
0.25° × 0.25° grid cell23, we filter out pixels with more than 1% water
body coverage or less than 10% tree cover according to the forest
definition by the Food and Agricultural Organization78. This process
is to reduce the impact of non-forest land cover types on the esti-
mation of temperature sensitivity. We also exclude pixels with ele-
vation differences exceeding 100m from the average elevation of the
0.25° grid to avoid the potential impact of altitude on temperature.
The water coverage and elevation data are from Joint Research
Center Global Surface Water Mapping Layers v1.479 and GMTED2010
datasets, respectively.

After the screening process, δTsbph and δTabph can be estimated
using a linear regressionmodel between tree cover and corresponding
temperature values for each 0.25° grid13,80,81 by Eqs. (1) and (2):

Ts =δTsbph × TC2010 + bs ð1Þ

Ta=δTabph × TC2010 + ba ð2Þ

where, bs and ba are the regression intercepts. To ensure the reliability
of the results, biophysical sensitivity calculation is performed only
when the total sample size of the linear regression model exceeds 90
(more than 10% of pixels within the 0.25° grid) and the difference
between the highest and lowest tree cover is greater than 40%. δTsbph

and δTabph are calculated using monthly data from 2010, and the
extreme 1% values at both ends are removed from each sensitivitymap
to exclude outliers. The annual sensitivity is then averaged from these
monthly results. In addition to mean temperature, we also calculate
sensitivities for maximum andminimum temperatures using the same
method, thereby exploring the diurnal temperature effects of fores-
tation in more detail. Notably, all the sensitivity results should be
interpreted as the temperature consequences of restoration with
native forest type, as the gridded tree cover data of existing species are
used as inputs to the spatial regression model.

Validation of RS-based biophysical sensitivities
Previous model-based and site-based studies have shown that Ts and
Ta exhibit distinctive responses to forestation or deforestation pro-
cesses at various scales38–40. Here, our RS-based quantitative analysis
also shows that the Ta effect is considerably weaker than the Ts effect.
However, it is important to note that the Ta data employed for cal-
culating biophysical sensitivity are derived from a statistical model
using satellite Ts observations as inputs, rather than fromdirect space-
based measurements. This raises the possibility that the calculated
δTabph might be influenced more by uncertainties inherent in the Ta
statistical model across different land cover types, rather than
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accurately reflecting the true Ta effect of tree cover change. Therefore,
there is a need to corroborate themagnitude ofδTabph and the relative
ratio of the two sensitivities using additional evidence.

The RS-based local temperature sensitivity can be validated
through the differences in measurements between spatially adjacent
paired forest and non-forest sites. However, the sparse spatial dis-
tribution of such paired sites is insufficient to support global-scale
validation of biophysical sensitivity34,82. Inspired by the methodology
proposed in a previous study83, we use comprehensive flux tower
measurements with the requisite variables from the monthly FLUX-
NET2015 Tier 1 dataset (Supplementary Table 1), along with inter-
polated air temperature data from the Climatic Research Unit (CRU
TS4.06) and Berkeley Earth Surface Temperatures (BEST)84,85 to vali-
date the results. The method is based on assumptions that inter-
polated air temperature data primarily reflect macroclimate
conditions and is, therefore, less sensitive to land cover; while the
in situ measurements reflect the both impacts of land cover and
macroclimate climate. Compared with traditional paired analysis, this
methodology enables us to analyze the effects of Ts andTadue to land
cover changes, leveraging spatially distant tower data or temporally
asynchronous observations.

The specific process of validation is as follows (Supplementary
Fig. 8). In situ data for Ta are measured above the vegetation canopy,
whereas Ts is estimated using the longwave radiation measurements86

by Eq. (3):

Ts =
LWu � 1� εð ÞLWd

εσ

� �1
4 ð3Þ

where, LWu and LWd represent upward and downward longwave
radiation from the FLUXNET2015 dataset, respectively; σ denotes the
Stephan–Boltzmann constant (5.67 × 10−8 Wm−2 K−4), and ε is emissiv-
ity, estimated based on an empirical relationshipwith albedo87. For the
gridded data, we first make corrections using the lapse rates to com-
pensate for the elevation difference between the site and the corre-
sponding grid. The lapse rate for the target grid is estimated by the
regression slope of the gridded temperatures and elevationswithin the
5 × 5 window.

By deducting the corrected gridded temperature data, the in situ
measurements can effectively represent the land cover impacts on
local Ts and Ta, assuming that macroclimate affects both temperature
metrics similarly. Since the forest data cannot bedirectlymatchedwith
the openland data, we bin both forest and openland data points using
the SWd interval of 10w·m−2. For each SWd bin, we calculate the dif-
ference between mean values of forest and openland data points to
represent the temperatureeffectof forestation (i.e.,δTsbph* orδTabph*)
under the specific radiation background using Eqs. (4) and (5):

δTsbph* = Tssitef � Tgrid
f

� �
� Tssiteo � Tgrid

o

� �
if SWd 2 ð10k, 10k + 10Þ

ð4Þ

δTabph* = Tasitef � Tgrid
f

� �
� Tasiteo � Tgrid

o

� �
if SWd 2 ð10k, 10k + 10Þ

ð5Þ

Here, Tssitef and Tasitef refer to Ts and Ta measured at forest sites,
respectively; Tssiteo and Tasiteo refer to Ts and Ta measured at openland
sites; Tgrid

f and Tgrid
o refer to the corresponding gridded temperatures

after the elevation correction; k indicates counting of the SWd bin.
According to the metadata of the FLUXNET2015 dataset, forest sites
include the following four IGBP land cover types: evergreen needleleaf
forests, evergreen broadleaf forests, deciduous broadleaf forests, and
mixed forests; openland sites are categorized as other non-forest
vegetation types.

Then, the relationships between two temperature sensitivities and
SWd are explored using the weighted least squares (WLS) regression
model, in which the samples are δTsbph* or δTabph* of all SWd bins and
the sample weights are defined as the inverse of the standard error of
δTsbph* or δTabph*. The derived relationships are then compared with
those from RS-based results for validation. Here, the monthly ERA5-
Land shortwave radiation data are used to build the relationships with
RS-based sensitivities. We also compare and validate the maximum
and minimum temperature sensitivities.

Analysis of near-surface temperature profiles
To further investigate the biophysical mechanism behind the varying
magnitudes of δTsbph and δTabph, we estimate and compare the ver-
tical evolution from Ts to Ta in forest and openland sites. This com-
parison analysis uses daily meteorological, turbulence, and radiation
records from sites in North America, Europe, and Australia (Supple-
mentary Table 1). Specifically, we focus on winter observations from
European sites (or summer observations from North American or
Australian sites) to examine the typical magnitude differences in air
and land surface warming (or cooling) effects of forestation.

Here, we first normalize the Ta measurements to the theoretical
values at the 2-meter above the vegetation canopy to exclude the
potential impact of measurement heights on the results38. This nor-
malization process is based on the parametrization of aerodynamic
resistance (ra) using the Monin–Obukhov similarity theory88. Specifi-
cally, the theoretical relationship between Ts (the extrapolated tem-
perature value at the height of heat roughness length plus zero-plane
displacement) and Ta (themeasured temperature above the canopy at
height z) can be expressed by Eqs. (6) and (7):

Ta zð Þ=Ts� HraðzÞ
ρCp

ð6Þ

ra zð Þ= 1
0:4u* ln

z� d
Zoh

� �
� ψh

z� d
L

� �� �
ð7Þ

where ρ is the air density, Cp is the specific heat of air at constant
pressure, d is the zero‐plane displacement and is assumed to be 67% of
the vegetation height89, u* is the friction velocity, Zoh is the heat
roughness length, andΨh indicates the stable correction for heat, which
is the function of the Monin–Obukhov length (L)88. Zoh, the only
unknown parameter required to solve the temperature profile, is
determined under certain conditions38: (1) H has the same sign as Ts–Ta;
(2) the absolute value of H exceeds 20w·m−2; (3) u* is greater than
0.01m·s−1; and (4) the atmospheric stability parameter (z�d

L ) falls
between 1 and -238. Invalid roughness length values are then filled using
the relationship between the logarithm of inferred Zoh and the friction
velocity38,90.

With the Zoh inferred for both forest and openland sites, Ta canbe
estimated by modifying z to 2m above the vegetation canopy in Eq.
(6). Then, the impact of potential afforestation on Ta and Ts can be
derived by comparing the near-surface temperature profiles of forest
and openland sites. Similar to the sensitivity validation approach, we
exclude the impact of background climate using the corresponding
gridded air temperature data to ensure the comparability of the
measurements. Meanwhile, through the first-order expansion of the
analytical expression for Ta, we can decompose the air temperature
sensitivity into the contributions from two biophysical parameters
(δTH and δTra ) using Eq. (8), given the known sensitivity at Zoh + d
(δTsbph*):

δTabph* =δTsbph* +δTH +δTra ð8Þ

Here, δTH and δTra are calculated by the partial derivatives ∂Ta
∂H

�
and

∂Ta
∂ra

�
and the parameter difference between forest and openland (δH
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and δra, defined as forest minus openland) using Eqs. (9) and (10):

δTH =
∂Ta
∂H

δH ð9Þ

δTra =
∂Ta
∂ra

δra ð10Þ

This decomposition process allows a quantitative evaluation of
why the absolute Ta response to forestation is smaller than the Ts
response. Specifically, if δTH is dominant, it implies that the dif-
fering sensible fluxes for heating or cooling the near-surface
atmosphere are responsible for the milder air temperature
response; if δTra is more significant, it suggests that changes in heat
convection efficiencies, leading to different steepness in the tem-
perature profiles, contribute to the attenuation of the air tem-
perature response.

Comparison of biophysical and biochemical effects
In addition to regulating the energy balance process, forestation
can enhance the land carbon sink through vegetation photosynth-
esis, thereby generating negative biochemical feedback on the cli-
mate system91. To quantify this biochemical impact, we first
estimate the biomass carbon density sensitivity to ideal restoration,
using Global Aboveground and Belowground Biomass Carbon
Density Maps of 2010 (in t·ha−1)92, along with TC2010 and the “space-
for-time” strategy. We convert the biomass carbon stock sensitivity
to CO2 absorption equivalents (i.e., δCO2e

bchem) based on the molar
mass ratio. Notably, δCO2e

bchem provides a simple estimate of the
ideal carbon stock in biomass under current climate and dis-
turbance regimes for further comparison with the biophysical
effect. The period for restored forests to reach such carbon
potential, as well as the role of changing climate and soil carbon flux
in this process are neglected.

The biophysical Ts and Ta sensitivities are also unified to the
metric of CO2 equivalents (δCO2e

bph, Ts and δCO2e
bph, Ta) using Eqs.

(11) and (12), based on the transient climate response to cumulative
emissions for both Ts (TCRETs) and Ta (TCRETa) derived fromCoupled
Model Intercomparison Project Phase 6 (CMIP6) simulations (Sup-
plementary Fig. 11):

δCO2e
bph, Ts =

δTsbph

TCRETs
×

1
AE

ð11Þ

δCO2e
bph, Ta =

δTabph

TCRETa
×

1
AE

ð12Þ

where, AE indicates the earth surface area (5.1 × 108 km2). The gridded
TCRETs and TCRETa are estimated following the previous study22,
using 12 model simulations (ACCESS_ESM1-5, CanESM5-1, CMCC-
ESM2, CNRM-ESM2-1, FIO-ESM-2-0, GISS-E2-1-H, INM-CM5-0, IPSL-
CM6A-LR, MIROC6, MPI-ESM1-2-LR, MRI-ESM2-0 and NESM3) of the
“1 percent per year increase in carbon dioxide” experiment
(1pctCO2). In the calculation, we consider that 1 ppm of atmospheric
CO2 corresponds to 7.82 gigatonnes CO2 and assume that the
airborne fraction of the CO2 flux is 43%13, as the 1pctCO2 experiment
is based on the increase in CO2 concentration, rather than the
emission. Notably, δCO2e

bph,Ts and δCO2e
bph,Ta calculated by Eqs.

(11) and (12) represent the CO2 emission equivalents. We further
convert their signs to align with the δCO2e

bchem, which represent the
CO2 absorption equivalents. We compare the biophysical and
biochemical effects based on the above metrics at both annual and
monthly scales.

Data availability
All the data that support the findings of this study are openly available.
GLOBMAP fractional tree cover can be downloaded from https://zenodo.
org/records/10589730. GFC tree cover data are available at https://glad.
umd.edu/dataset/global-2010-tree-cover-30-m. MODIS land surface tem-
perature data are available at https://ladsweb.modaps.eosdis.nasa.gov/
search/. Satellite-based air temperature data can be downloaded from
https://iastate.figshare.com/collections/A_global_1_km_resolution_daily_
near-surface_air_temperature_dataset_2003_2020_/6005185. The Joint
Research Center Global Surface Water Mapping Layers are available at
https://developers.google.com/earth-engine/datasets/catalog/JRC_GSW1_
4_GlobalSurfaceWater. GMTED2010 Elevation data are available at https://
developers.google.com/earth-engine/datasets/catalog/USGS_
GMTED2010. CRU gridded temperature data can be downloaded at
https://catalogue.ceda.ac.uk/uuid/e0b4e1e56c1c4460b796073a31366980.
BEST gridded temperature data can be downloaded at https://
berkeleyearth.org/data/. ERA5-Land reanalysis data are available at
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-
monthly-means. Global Aboveground and Belowground Biomass Carbon
DensityMaps are available at https://developers.google.com/earth-engine/
datasets/catalog/NASA_ORNL_biomass_carbon_density_v1. FLUXENET2015
dataset is available at https://fluxnet.org/. CMIP6 simulations can be
downloaded from https://esgf-node.llnl.gov/search/cmip6/.

Code availability
The Python codes used to generate all the results are available at
https://zenodo.org/records/14633331.
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