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Synthesis of crystalline two-dimensional
conjugated polymers through irreversible
chemistry under mild conditions

Haoyong Yang 1, Junyi Han1, Shengxu Li 1, Petko St. Petkov 2, Qunji Xue1,
Xinliang Feng 3,4 & Tao Zhang 1

Two-dimensional conjugated polymers (2DCPs) are a class of monolayer to
multilayer crystalline polymeric materials with conjugated linkages at two-
orthogonal directions that promise applications from membranes to electro-
nics. Current interfacial synthesis methods have succeeded in constructing
2DCPs from dynamic covalent chemistry, e.g., imine linkages. However, these
methods are unsuitable for fabricating the 2DCPs of robust olefin linkages due
to the inadequate reversibility. Herewe report the synthesis of 2DCPs linkedby
olefin bonds via amphiphilic-pyridinium-assisted aldol-type interfacial poly-
condensation. The synthesis is achieved by an alkyl-quaternized tri-
methylpyridine that can self-assemble into ordered monolayer at water
interface and further react in situwithmultifunctional aldehydes via aldol-type
topologic polycondensation. The resultant 2DCPs show long-range molecular
ordering, large lateral size and well-controlled thickness. Both experimental
and theoretical analyses show that the pre-assembled trimethylpyridinium
monolayer at water interface significantly boosts its condensation reactivity,
thereby facilitating the synthesis of 2DCPs under mild conditions. The inte-
gration of the 2DCPs with inherent positive charges in an osmotic power
generator gives excellent output power density reaching 51.4Wm−2, superior
to the most reported 2D nanoporous membranes.

Two-dimensional conjugated polymers (2DCPs), defined as mono-
to multi-layer crystalline porous polymers1,2, exhibit significant
potential ranging from membranes to electronics due to their
periodic conjugated frameworks and ordered nanopores3–5. To
achieve such crystalline polymer materials, dynamic covalent
chemistry is typically employed to allow reversible bond formation
and structural self-correction6,7. So far, various interfacial synthesis
methods have enabled the preparation of 2DCPs with reversible
covalent bonds (e.g., C = N bond) at liquid interface8,9 or on water
surface10,11. Nevertheless, the inherent reversibility of these bonds

sacrifices their structural chemical stability as well as application
scope12,13.

In contrast, recent advances have successfully constructed olefin-
linked covalent organic frameworks (COFs) using irreversible chem-
istry under solvothermal conditions14–16, which possess enhanced
chemical stability and π-conjugation arising from the robust olefin
linkage17,18. Such characteristics indeed render them as promising
candidates for applications in electronic19,20, catalysis21,22 and
membrane23,24. However, these polymers are typically obtained as
insoluble powders and require harsh synthesis conditions25,26. This is
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because the existing interfacial synthesis methods for reversible
chemistry are ineffective in synthesizing the 2DCPs with olefin lin-
kages, due to the limited reversibility of the C =C bond27.

In this work, we achieve the synthesis of crystalline olefin-linked
2DCP films via amphiphilic-pyridinium-assisted aldol-type interfacial
polycondensation (AP-ATIP). The amphiphilic trimethylpyridine
monomer, synthesized via alkyl-quaternization, can self-assemble into
ordered monolayer at water interface. Subsequently, it undergoes in-
situ aldol-type polycondensation reaction with aldehydemonomers to
form crystalline 2DCP films on the water surface. The resultant 2DCPs
feature with long-range molecular ordering, charged skeleton, robust
C = C linkage, and ultrathin thickness (< 25 nm), andwhen applied in an
osmotic energy generator, the 2DCPs exhibit a cation selectivity
coefficient (S) of 0.68 and output power density reaching 51.4Wm−2

under harsh condition (pH = 3.5).

Results
Synthesis methodology
Initially, a series of amphiphilic N-alkyl-2,4,6-trimethylpyridinium
(ATMP) monomers were prepared through one-step alkyl quaterniza-
tion, where the methyl substituents can be activated to conduct aldol-
type polycondensation with aldehydes to construct olefin linkage
(Fig. 1a and Supplementary Section 2)28,29. Due to the long-alkyl sub-
stituent, the N-hexadecyl-2,4,6-trimethylpyridinium (HeTMP) exhibit
representative self-assembly behavior in Langmuir-Blodgett (LB)
trough, similar to surfactants of sodium oleyl sulfate (SOS) (Supple-
mentary Fig. 2)30. To examine the interfacial synthetic feasibility, ATMP
monomers were spread onto the water surface and then 2,5-dihydrox-
yterephthalaldehyde (DhTPA) and trifluoroacetic acid were injected to
the water subphase to trigger the aldol-type interfacial polycondensa-
tion (Fig. 1b, c and Supplementary Fig. 3). Thin layer 2DCPs were then
obtained after keeping the reaction at 80 °C for 2 days (Supplementary

Figs. 4 and 5). Due to the inherent self-assembly capabilities, long-alkyl-
substituted ATMP monomers demonstrated enhanced chemical reac-
tivity (Fig. 1d, e), enabling the formation of homogeneous 2DCPs10,31.
Furthermore, the controlled synthesis of 2DCP in aqueous interfacial
systems was investigated (Supplementary Fig. 6), demonstrating that
the enhanced reactivity of HeTMP enables the formation of free-
standing films at ambient temperature (Supplementary Section 4.1).
Compared with short alkyl-substituted monomers, the 2DCP thin films
prepared via DTMP and HeTMP exhibit superior continuity and
homogeneity, revealing the critical role of long-alkyl substituents in
enhancing reactivity (Supplementary Section 4.2)32,33.

Reaction mechanism of the AP-ATIP strategy
To gain insight to the enhancement of chemical reactivity and reaction
mechanism (Fig. 2a), the interfacial self-assembly behaviors of ATMP
were characterized through dynamic interfacial tension (IFT), small
angle X-ray scattering (SAXS) and theoretical analysis. Representa-
tively, the lowest interfacial tension was observed at a HeTMP con-
centration of 1mM, arising from the formation of self-assembled
structure (Fig. 2b and Supplementary Fig. 15)34. Laboratory SAXS ana-
lysis provided information of HeTMP on inducing a self-assembled
structure, which in turn resulted in the formation of vesicle products
(Supplementary Figs. 16–18)35. Molecular dynamics (MD) simulation
was further utilized to provide an atom-level insight into the mono-
layer structure of ATMP monomers (Fig. 2c and Supplementary
Fig. 19). The snapshot and number density profile of the equilibrated
DTMP monolayer presented a preferential molecular orientation at
the water/o-DCB interface, in alignment with the experimental fin-
dings (Fig. 2d, e). Furthermore, the calculated adsorption energy
revealed the energetically favorable transport of 2,3,5,6-tetra-
fluoroterephthalaldehyde (TFT) and 4,4’,4”-(1,3,5-triazine-2,4,6-triyl)
tribenzaldehyde (TFPT) molecules towards the ATMP monolayer,
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which facilitated the aldol-type interfacial polycondensation (Fig. 2f
and Supplementary Figs. 20–23).

Accordingly, in-situ UV-vis absorption spectra revealed the rapid
and spatially uniform diffusion of HeTMP monomer, enabling the
continuous formation of 2DCPs in both time and space (Fig. 2g and
Supplementary Figs. 24 and 25)36. Compared with water/dichlor-
omethane (DCM) or water/chloroform (TCM) interfaces, the water/o-
DCB interface greatly reduces the variance between monomer diffu-
sion and interfacial reaction, as evidenced by the uniform change of
absorbancechange andmorphologyof resultantfilms (Supplementary
Fig. 26). Through experimental and theoretical studies, we demon-
strated that the feasibility of this protocol originates from the pro-
organization of ATMP with self-assembled monolayer37, which facil-
itates the accumulation of aldehyde monomers and accelerates the
aldol-type interfacial polycondensation under mild conditions38,39.

Synthesis of monolayer to multilayer 2DCPs
With a deep understanding of the interfacial growth mechanism, we
have further achieved the controlled synthesis of 2DCP films with an
optimized synthetic procedure at both air/water and water/o-DCB
interface. The monolayer DTMP-TFT was synthesized via DTMP and
2,3,5,6-tetrafluoroterephthalaldehyde (TFT) under ambient conditions
in the presence of 4-dimethylaminopyridine (DMAP) (Fig. 3a). The
morphology of monolayer DTMP-TFT was characterized by optical

microscopic (OM) and atomic forcemicroscopy (AFM). A uniform and
continuous monolayer DTMP-TFT was obtained at air/water interface
(Fig. 3b), whereas the monolayer DTMP-TFT formed at water/o-DCB
interface exhibited wrinkling after transferred (Fig. 3g inset and Sup-
plementary Fig. 27). AFM image reveals a smooth surface and thickness
of ~1.0 nm, near the expected thickness of amonolayer (Fig. 3c–f). The
defined thickness of DTMP-TFT can be achieved from 7.4 nm to
21.2 nm by extending the synthesis time from 5 to 60min at water/o-
DCB interface (Fig. 3g and Supplementary Fig. 28). The lateral size of
film could be scaled up to wafer size (~20 cm2) at air/water interface
(Fig. 3h). After transferred onto a copper grid, a 3.4 nm thick film was
freely suspended over the mesh with a considerable length to aspect
ratio of 103, suggesting its high mechanical stiffness (Fig. 3i and Sup-
plementary Fig. 29). The transmission electron microscopy (TEM)
images further demonstrated a uniformand stacked area ofDTMP-TFT
(Fig. 3j and Supplementary Fig. 30).

Structural characterizations of 2DCPs
To evaluate the chemical and crystal structure, various multilayer
2DCP films were prepared at water/o-DCB interface using DTMP in
combination with TFT, DhTPA, TFPT and 3,3’-dihydroxy-[1,1’-biphenyl]
−4,4’-dicarbaldehyde (DhBDA), named as DTMP-TFT, DTMP-DhTPA,
DTMP-TFPT andDTMP-DhBDA, respectively (Fig. 4a). Themorphology
characterization of these films was detailed in Supplementary
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Section 7.1. Fourier transform infrared spectroscopy (FTIR) revealed
that the peak at 970 cm−1 assigned to the trans-C =C stretch vibration
had newly appeared, indicating the successful formation of olefin
linkage (Fig. 4b and Supplementary Fig. 43)40. Furthermore, 2DCP thin
films were soaked in 6MHCl and 6MNaOH solutions for 48 h and the
FT-IR spectra indicated good chemical stability under harsh conditions
(Supplementary Fig. 44). Solid-state nuclear magnetic resonance
(NMR) spectroscopy revealed that the peak signals located at 127, 135
and 145 ppm originated from the carbon atoms of olefin linkages and
benzene rings, and the signal appearing between 52 and 14 ppmcan be
attributed to the alkyl chain (Fig. 4c, d and Supplementary Fig. 45). In
X-ray photoelectron spectroscopy (XPS) spectra, the O 1 s peak at
~530.5 eV can be assigned to the C-O bond from DhTPA and the F 1 s
peak at ~687.8 eV can be attributed to the C-F bond from TFT (Sup-
plementary Fig. 46). The deconvoluted N 1 s XPS spectra further
showed two types of nitrogen of pyridinium N (~401.6 eV) from DTMP
and triazine N (~398.9 eV) from TFPT40.

The grazing incidence wide-angle X-ray scattering (GIWAXS) data
of DTMP-DhBDA showed that the diffraction signal at Qxy = 0.35 Å−1

correspond to the [100] reflection plane with a 2θ value of 3.8°
(Fig. 4e, f), which was well consistent with the simulated AA stacking
mode with a hexagonal lattice with a = 29.84 Å, b = 31.14 Å and γ = 120°
(Supplementary Fig. 47). In addition, the diffraction projections of
DTMP-TFT at 4.7° indicated the extended crystalline structure, which
was agreement with the eclipsed AA stacking mode with a hexagonal
lattice with a = 23.59 Å, b = 23.25 Å and γ = 122.4° (Fig. 4g and Supple-
mentary Figs. 48 and 49). Laboratory SAXS analysis shows that the
DTMP-TFT films catalyzed by acid or base exhibit a similar degree of
crystallinity (Supplementary Fig. 50)41,42. The weakened crystallinity of
2DCP thin film and powder probably originates from the fact that the
long alkyl chain affects the stacking and crystallizing process (Sup-
plementary Fig. 51). When the alkyl chain and resulted chemical reac-
tivity increase, the 2DCPs will generate structural transformation to
balance the in-plane and out-plane structures, as confirmed by the

structural characterization of HeTMP-based 2DCP thin films and
powders (Supplementary Figs. 52–55).

Osmotic energy conversion
Owing to the charged robust skeleton and ultrathin thickness, the
homogeneous 2DCP films fabricated via DTMP were applied in an
osmotic power generator to achieve high performance energy conver-
sion, including DTMP-DhTPA and DTMP-TFPT thin films (Fig. 5a). A
multilayer DTMP-DhTPA film with thickness of 22 nm was transferred
onto a silicon wafer with an open hole of about 6.25 µm2. The trans-
membrane ionic transport property was evaluated in potassium chlor-
ide (KCl) solution with standard saturated Ag/AgCl salt bridge
electrodes. The transmembrane conductivities showed saturation at
low salt concentrations at pH= 3.5, which suggests a charge-governed
ion transport of DTMP-DhTPA film (Fig. 5b, Inset). The permselectivity
of DTMP-DhTPA film was investigated in KCl concentration gradient
system. Due to ion-selective accumulation, the osmotic potential (Vos)
exhibited an increasing and then a decreasing trend versus the con-
centration gradient (CH/CL), while the positive osmotic current (Ios)
increased from 22 to 47 nA, demonstrating a cation selectivity at pH=
3.5 (Fig. 5c)43. In contrast, the DTMP-TFPT film with thickness of 12 nm
exhibits anion selectivity due to the protonation of pyridine nitrogen
(Supplementary Fig. 56). Furthermore, the ion selectivity coefficient (S)
of DTMP-DhTPA film was calculated as 0.68 under 50-fold KCl con-
centration gradient (Supplementary Fig. 57), outperforming the pre-
viously reported ultrathin organic and inorganic materials such as
single-layer MoS2 and holey-graphene-like membranes (0.4)44,45. The
osmotic power-generation performance was further evaluated under
various ionic concentrations and pH conditions and the harvested
osmotic power, calculated as Pmax= I2R, was observed to be pH depen-
dent. Under 50-fold NaCl salinity gradient, the output power density of
DTMP-TFPT film reached 16.9Wm−2 at pH= 3.5 with long term stability
(Supplementary Figs. 58 and 59). In contrast, the output power density
of DTMP-DhTPA film achieved a maximum value of 51.4Wm−2 at pH=
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3.5 (Fig. 5d and Supplementary Figs. 60 and 61). As such, the DTMP-
DhTPA film demonstrated an output power of 51.4Wm−2 with high
stability under harsh conditions (Fig. 5e), which outperforms the most
reported membranes (Fig. 5f and Supplementary Table 2).

Discussion
In summary, we report the synthesis of crystalline olefin-linked 2DCP
films via amphiphilic-pyridinium-assisted aldol-type interfacial poly-
condensation. The resultant 2DCPs demonstrate long-rangemolecular
ordering, wafer-scale homogeneity (~20 cm2) and well controllable
thickness from monolayer to multilayer (~1.0–21.2 nm). Due to the
inherent charged skeletons and enhanced chemical stability, in an
osmotic power generator, the 2DCP film shows high-performance
osmotic energy generation of 51.4Wm−2 under harsh working condi-
tions at pH= 3.5. Our approach provides the possibility for the large-
scale fabrication of thickness-controlled 2DCP thin films with full
conjugated linkage that exhibit great potential from membrane tech-
nology to future thin-film organic electronics.

Methods
Chemicals and materials
Mesitylene (97%), orthodichlorobenzene (99%), 2,4,6-trimethylpyr-
idine (99%), ethyl bromide (99%), hexyl bromide (99%), decyl bromide

(98%), hexadecyl bromide (97%), trifluoroacetic acid (99.0%) and
dimethylaminopyridine (99%) were purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd. Dichloromethane (99.5%), chloro-
form (99%), piperidine (99%) were purchased from Sinopharm
Chemical Reagent Co., Ltd. 3,3’-dihydroxy-[1,1’-biphenyl]−4,4’-dicar-
baldehyde (97%), 4,4’,4”-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde
(97%), 2,3,5,6-tetrafluoroterephthalaldehyde (98%), 2,5-dihydroxyter-
ephthalaldehyde (95%) were purchased from Bide Pharmatech Co.,
Ltd. Solvents were obtained from commercial sources and used with-
out further purification.

Synthesis of 2DCPs at air/water interface
A static air/water interface was formed in a beaker (80mL, dia-
meter = 6 cm) by injecting 40mL ofMilli-Qwater. Then, 10 µL of ATMP
monomer (1mgmL−1 in chloroform) was spread onto the surface and
allowed to evaporate for 30min. Afterwards, 1.6 µmol of DhTPA
monomer in 0.12M HCl aqueous solution was gently added to the
subphase using a syringe. After 30min, 5 µl of trifluoroacetic acid was
injected into the subphase. The reaction mixture was kept undis-
tracted at 80 °C for 2 days. After a vertical transfer of the resulting
2DCP films onto 300 nm SiO2/Si wafer, optical microscopy (OM) and
atomic force microscopy (AFM) were performed to study the mor-
phology of the film.
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Synthesis of 2DCPs at liquid/water interface
The aldehyde monomer was dissolved in 5mL bottom solution (e.g.,
orthodichlorobenzene/dichloromethane/chloroform) and then added
into a vial (20mL volume, 2 cm diameter). Then, 5mL ATMP aqueous
solution (1mM) was added slowly to the bottom solution along the
glass bottle wall to leave a clear and stable interface. The interfacial
system was placed in a vibration-free environment under ambient
conditions for 30min. After the formation of pre-assembled ATMP
monolayer at the interface, 5 µL of a catalyst (e.g., piperidine, tri-
fluoroacetic acid) was slowly added to the aqueous layer along thewall
of vial using a syringe. Then, the vial was capped and placed in vibra-
tion free environment at room temperature or 80 °C. After the reac-
tion was completed, the film was transferred to target substrates and
further washed with acetone, tetrahydrofuran, and Milli-Q water.

Isotherm of HeTMP monomer
A Langmuir-Blodgett trough (Minitrough, KSV NIMA, Finland) equip-
pedwith a platinumWilhelmy plate, a taflon dipper and a pair of delrin
barriers, was used to measure the surface pressure-mean molecular
area (π-A) isotherm of HeTMP. Chloroform solution of the HeTMP
(1mgmL−1) wasfirstly spread on the water surfacewith amicrosyringe.
After 30minutes, when the solvent was evaporated, the π-A isotherm
was recorded at a continuous pressing speed for the barrier of
1mmmin−1 at room temperature.

Reaction kinetics analysis
To gain insight to the kinetics of the interfacial polymerization, the
absorption percentage of monomer in aqueous phase was monitored
by in-situ UV-vis spectra to simulate the HeTMP monomer transfer
process during the experiment. Typically, orthodichlorobenzene (o-
DCB) solution of TFPT monomer was place on the bottom of the
cuvette and then a certain amount of water solution of HeTMP
monomer was place on the upper layer of o-DCB solvent to simulate

the actual reaction conditions. Then, the absorbance change of the
aqueous solution was recorded to analyse the HeTMP monomer mass
transfer process under room temperature and atmospheric pressure.
To determine the role of interfacial mass transfer, we compared the
interfacial reaction kinetics of HeTMP monomer in different solvent
systems (e.g., water/mesitylene (TMB); water/dichloromethane
(DCM); water/chloroform (TCM)).

Osmotic energy harvest
The current–voltage (I–V) measurements and energy conversion tests
were performed with an Keithley 2646B source meter (Keithley
Instruments). The as-prepared 2DCP filmwas transferred onto a silicon
wafer containing an open hole of about 6.25μm2 and was further
mounted between a two-compartment conductivity cell. Standard
electrodes (saturated Ag/AgCl salt bridge electrodes) were used to
measure the resulting current. The 2DCP film was clamped in the
electrochemical cell and stayed in the testing solutions all the time,
and the testing solutions were replenished before each measurement.
The KCl was selected as the standard electrolyte because of the close
diffusion coefficients of K+ and Cl− ions, while the NaCl electrolyte was
selected to imitate the river water and seawater.

The ion selectivity coefficient (S) is defined as (t+-t–), where the t+
and t– are the ion transference number of cation and anion, respec-
tively. Under a concentration gradient, the recorded osmotic potential
(Vos) can be described as:

Vos = S
RT
F

ln
cH
cL

� �

where R, T and F are the universal gas constant, absolute temperature
and Faraday constant, respectively. c is the concentration of electro-
lyte solution in the high-concentration (H) and low-concentration
(L) sides.

10−5 10−6 10−7 10−8 10−9
0

15

30

45

60

Po
w

er
 d

en
si

ty
 (W

/m
2 )

Thickness (m)

0

1

2

3
 Current density

m/Ak( ytisned tnerru
C

2 ) 

105 106 107 108
0

15

30

45

60
 Power density

Resistance (Ω)

Po
w

er
 d

en
si

ty
 (W

/m
2 )

-100 -75 -50 -25 0

0

10

20

30

)An( tnerru
C

Voltage (mV)

Vos

Ios

101 102 103 104
-140

-120

-100

-80

-60

-40

-20

Concentration gradient ratio, CH/CL

)V
m( egatlo v cito

ms
O 20

25

30

35

40

45

50

 O
sm

ot
ic

 c
ur

re
nt

 (n
A)

-100 -50 0 50 100

-20

-10

0

10

20

)An( tnerru
C

Voltage (mV)

0.001M KCl
0.01M KCl
0.1M KCl
0.5M KCl
1M KClChigh Clow

2DCP thin films

Cation Anion

a

d e f

b c

10-3 10-2 10-1 100
0

150

300

450)Sn( ecnatcu dno
C

Concentration (M)

KCl NaCl
0

20

40

60m/
W( ytisne

D re
woP

2 )

51.4
46.2

Composite membrane

C2DP

PAN

Polymer 
membrane

This work
2DPI

� ⁓106 W/m2 Single MoS2 nanopore
� ⁓103 W/m2 Single BN nanotube
� ⁓135 W/m2 Monolayer COF

Fig. 5 | Osmotic energy conversion. a Schematic of the selective ion transport
through 2DCPs. b The I–V curves of the DTMP-DhTPA film in KCl solution at pH=
3.5. Inset: conductance measurement of film under different KCl concentrations.
cOsmotic current andosmotic voltage in various KCl salinity gradients. The sample
size (n) of the experimental is n = 1, and the error bars are standard deviations with
three independent experiments. d I–V curves of the DTMP-DhTPA film recorded
under0.5/0.01MNaCl of pH= 3.5. Inset: comparison of the output powerdensity in
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f Comparison of the osmotic energy generation performance of the DTMP-DhTPA
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nanotube, and monolayer COF. Corresponding membranes were shown in Sup-
plementary Table 2.
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Computational simulations
The Gaussian 16 software program was used to obtain the Hessian
matrix of ATMP and o-DCB at B3LYP(D3) method46 with 6-311
(d,p) basis set47. And all atoms performed Restrained Electrostatic
Potential (RESP)48 atomic charge. All MD simulations were per-
formed using GROMACS software49 to provide an atom-level
insight of self-assembly structures of ATMP at the interface. Four
MD systems were constructed with different self-assembly AMTP
monolayers at the water/o-DCB interface. The systems were
comprised of the same numbers of H2O (5000), ATMP monomers
(18) and o-DCB (400) in a rectangular box (50 × 50 × 140 Å3).
Initial structures for molecular dynamic simulation were con-
structed by the Packmol software package50. Parameters of the
atomistic models based on the GAFF force field. Three-
dimensional periodic boundary conditions (PBC) were used to
avoid the influence of the box boundary during simulation. The
cut-off distance of non-bonded interactions is 10 Å, and the long-
range electrostatic interactions were calculated by the particle-
mesh Ewald (PME) method. Before the dynamics simulation, the
steepest descent algorithm was used to pre-equalize the system
for eliminating the excessive stress in initial structures. After pre-
equilibrium, a 20-ns production simulation under NPT ensemble
with a time-step of 2 fs was carried out for data collection. Tem-
perature and pressure coupling was performed using v-rescale
thermostat51 and Berendsen barostat52 at 298 K and 1 atm. The
trajectories were used for post-analysis and visualized by
visual molecular dynamics (VMD) 1.9.353. The relative concentra-
tions of water, o-DCB and ATMP along the Z distance were
obtained by MD simulation. After MD relaxation, we obtained an
equilibrated ATMP monomers distribution at water/o-DCB
interface.

To further explore the interaction between ATMPmonolayer and
aldehyde monomers, we calculated the adsorption energy (Eadsorption)
of an TFPT or TFT molecular at different positions in the water/o-DCB
system: o-DCB bulk solution and water/o-DCB interface.

Eadsorption = Esystem � EATMP � ECHO

where Esystem is the total energy of the system including the alde-
hyde monomer and ATMP monolayer, ECHO is the energy of system
with one TFPT or TFT molecular, and EATMP is the energy of the
system with ATMP monolayer, respectively. The negative binding
energy usually indicates an energetically favorable adsorption
between the adsorbate and the target surface. The presence of
ATMP monolayer facilitate the transport of TFPT/TFT molecule
from the o-DCB phase to the interface, thus elevated the TFPT/TFT
concentration at the water/o-DCB interface and enhanced the
interfacial polymerization.

Since the structure of the 2DCPs is rather large, we applied
SCC-DFTB approach to find the most suitable atomistic monolayer
and multilayer models. For this purpose, a DFTB+ software54 was
used with 3ob-3-1 parameter set55. The experimental guess for the
3D models was fully optimized (cell and lattice vectors) at SCC-
DFTB level. After detailed comparison with the experimental
GIWAXS patterns and simulated XRD patterns of all models, the
most appropriate multilayered model was selected for further
analysis.

Data availability
All data supporting the findings of this study are available within the
article and the Supplementary Information file. Source data are pro-
vided with this paper. Additional data are available from the corre-
sponding authors upon request. Source data are provided with
this paper.
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