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Brain imaging genomics has manifested considerable potential in illuminating
the genetic determinants of human brain structure and function. This has
propelled us to develop the GIANT (Genetically Informed brAiN aTlas) that
accounts for genetic and neuroanatomical variations simultaneously. Inte-
grating voxel-wise heritability and spatial proximity, GIANT clusters brain
voxels into genetically informed regions, while retaining fundamental anato-
mical knowledge. Compared to conventional (non-genetics) brain atlases,
GIANT exhibits smaller intra-region variations and larger inter-region varia-
tions in terms of voxel-wise heritability. As a result, GIANT yields increased
regional SNP heritability, enhanced polygenicity, and its polygenic risk score
explains more brain volumetric variation than traditional neuroanatomical
brain atlases. We provide extensive validation to GIANT and demonstrate its
neuroanatomical validity, confirming its generalizability across populations
with diverse genetic ancestries and various brain conditions. Furthermore, we
present a comprehensive genetic architecture of the GIANT regions, covering

their functional annotation at the molecular levels, their associations with
other complex traits/diseases, and the genetic and phenotypic correlations
among GIANT-defined imaging endophenotypes. In summary, GIANT con-
stitutes a brain atlas that captures the complexity of genetic and neuroana-
tomical heterogeneity, thereby enhancing the discovery power and
applicability of imaging genomics investigations in biomedical science.

The advance of large-scale, collaborative brain imaging genomics
consortia, such as ENIGMA? and UK Biobank>*, has ushered unpre-
cedented opportunities to gain insights into the human brain - the
most intricate organ in the human body. Seizing upon this trend of
open science, researchers have discovered many genetic variants
associated with brain function and structure’ % The identified genetic
variants have facilitated the understanding of disease etiology, biolo-
gical pathways, and gene-guided drug discovery/repurposing, possibly

paving the road towards personalized medicine” . An exemplary
illustration can be found in a recent genome-wide association study
(GWAS) by Zhao et al., where a multitude of single nucleotide poly-
morphisms (SNP) was found to be associated with imaging-derived
phenotypes (IDP) obtained from diffusion magnetic resonance ima-
ging (MRI)”. These IDPs exhibited a significant enrichment of herit-
ability in glial cells, but not in neurons. Nevertheless, conventional
neuroanatomically defined brain atlases such as Desikan atlas™, were
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employed in these studies to generate these IDPs. These brain atlases
solely account for neuroanatomical variations, but may not necessarily
be genetically relevant, thereby impeding the discovery power in
subsequent GWAS.

To address this limitation, an urgent need exists to develop a data-
driven brain parcellation approach that incorporates information on
both genetic and neuroanatomical variations. Pioneering works in this
area have already been initiated. For instance, Chen et al. developed a
genetically informed atlas that utilized MRI and genetic data from 406
twins, which partitioned the cortical surface area into genetic
subdivisions'. Additionally, a recent study utilized generative adver-
sarial networks to generate disease dimensions, also known as sub-
types, that were informative of both imaging and genetic variations®.
Within this research trajectory, we proposed GIANT (Genetically
Informed brAiN aTlas) to parcellate the human brain via a genetically
guided approach. Specifically, we developed a heritability-aware brain
parcellation model to cluster the spatially connected voxels of the
brain into regions with similar heritability.

Brain morphological development and changes are largely influ-
enced by genetic factors””. To advance the field of brain imaging
genomics and better understand the genetic underpinnings of brain
morphology, we hypothesize that the region-level grey- and white-
matter densities derived from GIANT, compared to those of
neuroanatomy-aware brain atlases such as a multi-atlas parcellation
method (MUSE)”, can provide higher discovery power and serve as
more robust instruments in imaging genomics analyses. In the present
study, GIANT divides the human brain into 50 regions of interest
(ROIs) that are in alignment with established brain anatomy but are
guided by voxel-wise SNP heritability. Our experiments demonstrated
that GIANT showed greater discovery power than non-genetic brain
atlases in identifying genetic variants associated with brain atrophy.
Moreover, we offered a comprehensive landscape of the genetic
architecture of GIANT, including its functional annotation, the
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associations between GIANT regions and other complex traits, and the
genetic/phenotypic correlations among GIANT-defined imaging
endophenotypes. Additionally, we map the genes associated with our
GIANT imaging-genomics GWAS hits through positional and expres-
sion quantitative trait loci (eQTL) mapping. Our results highlight the
capability of GIANT to understand the genetic underpinning of brain
structures, potentially facilitating gene-guided drug discovery/repur-
posing and personalized medicine in brain-related disorders.

Results

Atlas Delineation: A framework to define genetically informed
brain atlas

We introduced the GIANT atlas along with a framework to define it,
aimed at enhancing the discovery power for brain imaging-genomics
studies (Fig. 1). Briefly, we first designed a heritability-aware brain
parcellation model - a three-dimensional clustering method that
integrates heritability and spatial proximity (Method 1)*% Then, we
applied our heritability-aware brain parcellation model to the SNP
heritability derived from voxel-level gray matter and white matter
densities (Supplementary Methods 1-4). As a result, our framework
grouped the spatially connected brain voxels with similar heritability,
leading to the creation of 50 genetically informed brain ROIs. Spe-
cifically, to create and validate GIANT atlas, we downloaded raw T1-
weighted MRIs and imputed genotyping data from the UK Biobank
(UKBB) and the Alzheimer’s disease neuroimaging initiative (ADNI)
(Fig. 1A (1)). We extracted voxel-level brain gray matter and white
matter densities for each individual using regional analysis of
volumes examined in normalized space (RAVENS) (Fig. 1A (2)). After
performing initial quality control, we were left with 38,290 subjects
(35,181 white British ancestry and 3,109 other ancestries) for the
UKBB imaging-genomics cohort. For the ADNI imaging-genomics
cohort, we were left with 1,809 subjects. We harmonized the imputed
genotyping for UKBB and ADNI, which resulted in 6,965,659 SNP
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Fig. 1| A framework to define genetically informed brain atlas. A Atlas Deli-
neation: The framework for defining GIANT begins with preprocessing T1-weighted
structural MRI data. The preprocessed data is then used to calculate the voxel-level
gray matter and white matter densities. We then estimate the SNP heritability for
each brain voxel in gray matter and white matter, respectively. Next, a heritability-
aware brain parcellation model is applied to both gray matter and white matter to
cluster the brain voxels into regions according to their heritability information and

spatial proximity. The GIANT is defined by combining the gray matter and white
matter parcellations. B Atlas Validation/Evaluation: Subsequently, we performed a
series of validation and evaluation steps, including neuroanatomical validation and
brain imaging genomics evaluations, to demonstrate that GIANT functions as a
neuroanatomical brain atlas and enhances discovery power in brain imaging geno-
mics studies. C Genetic Architecture: Finally, we present the genetic architecture of
GIANT. GIANT genetically informed brain atlas, MRI magnetic resonance imaging.
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Fig. 2 | GIANT: Genetically informed brain atlas. GIANT integrates the SNP her-
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structure; f occipital structure; g temporal structure; and h others. We used the
MUSE? atlas to annotate the GIANT (Method 6). The region specification for GIANT
and MUSE can be found in Supplementary Data 1 and 2. GIANT genetically informed
brain atlas, SNP single nucleotide polymorphism.

variants (Method 2 - 4). To define GIANT, we estimated the SNP
heritability for both gray matter density (84,090 voxels) and white
matter density (67,795 voxels) using 5,000 randomly selected UKBB
white British imaging-genomics cohort (Fig. 1A (3)). The SNP herit-
ability was derived using the LD-adjusted kinships (LDAK)
software”?**, Finally, we applied our heritability-aware brain parcel-
lation model to the gray matter and white matter separately to seg-
ment the brain into genetically informed ROIs (Fig. 1A (4)), which
were then combined to define the GIANT atlas.

To evaluate the GIANT atlas, we undertook analyses from three
distinct perspectives. First, from an imaging standpoint (Fig. 1B), we
conducted a systematic analysis to compare the similarity of the
architectonic boundaries of GIANT with those of traditional non-
genetic brain atlases. To affirm the neuroanatomical validity of the
GIANT atlas, we further validated its stability, test-retest reliability, and
gray/white matter homogeneity. Subsequently, from a genomics angle
(Fig. 1B), compared to MUSE and a genetically informed brain atlas
created using the Watershed algorithm (Watershed-based atlas)
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(Supplementary Methods 5), the GIANT atlas exhibited a larger ratio of
between-region to within-region SNP heritability dispersion, along
with enhanced regional-level SNP heritability and polygenicity. Lastly,
we provided the genetic architecture of GIANT-defined IDPs (Fig. 1C).

Atlas validation: neuroanatomical validity of GIANT

We introduced GIANT, a Genetically Informed brAiN aTlas (Fig. 2,
Supplementary Data 1), developed through a three-dimensional clus-
tering algorithm (Method 1) applied to the densities of gray and white
matter, resulting in tissue-specific brain parcellations. The best-tuned
parcellations for each tissue were selected and combined to formulate
GIANT (Method 5), and the brain regions were annotated based on
existing brain atlases (Method 6). GIANT was subdivided into 7 ana-
tomical sub-structures: cerebellum (Fig. 2a), deep gray matter and
white matter structure (Fig. 2 b), frontal structure (Fig. 2c, d), parietal
structure (Fig. 2e), occipital structure (Fig. 2f), temporal structure
(Fig. 2g), and others (Fig. 2h). In the present section, we conducted
extensive neuroanatomical assessments (Method 7) of GIANT to con-
firm its neuroanatomical validity.

Stability evaluation. To evaluate GIANT’s neuroanatomical validity
from a stability perspective, we compared it with an independently
generated genetically informed brain atlas derived from a separate
sample of 5,000 non-overlapping UKBB white British individuals. The
high concordance between the two atlases, indicated by an adjusted
Rand index of 0.91 and an adjusted mutual information score of 0.93,
demonstrates that GIANT maintains its structure across bootstrapped
UKBB data. This stability is significantly superior to the Watershed-
based atlas, which showed an adjusted Rand index of 0.17 and an
adjusted mutual information score of 0.55. These results further soli-
dify GIANT’s validity as a neuroanatomical brain atlas.

Test-retest reliability evaluation. The test-retest reliability of GIANT
was evaluated using intra-class correlation (ICC) coefficients derived
from longitudinal data in the UKBB and ADNI cohorts, involving a total
of 3273 subjects (1917 subjects in ADNI and 1356 subjects in UKBB). The
evaluations were based on the initial and final visits of the same indi-
viduals. For each brain region, six different ICC coefficients were
calculated®?, and the mean values across all regions were used to
assess overall reliability. GIANT exhibited excellent reliability”, with all
correlation coefficients exceeding 0.9 (Supplementary Data 3), out-
performing both MUSE and the Watershed-based atlas. These findings
reinforce GIANT's validity as a neuroanatomical atlas.

Homogeneity evaluation. We assessed the homogeneity of gray and
white matter densities within GIANT across three population cohorts:
the UKBB white British discovery cohort, the UKBB non-white-British
replication cohort, and the ADNI replication cohort. Using the
approach adapted from Schaefer et al.”®, we measured the homo-
geneity by calculating the weighted standard deviation of regional
densities, with lower standard deviations indicating greater homo-
geneity within each brain region. GIANT demonstrated consistently
lower weighted average standard deviations across all three cohorts -
93.92 in the UKBB white British discovery cohort, 96.72 in the UKBB
non-white-British replication cohort, and 95.47 in the ADNI replication
cohort - compared to MUSE (106.05, 108.34, and 106.71, respectively)
and the Watershed-based atlas (95.48, 98.21, and 97.37, respectively).
These results suggest that GIANT defines brain regions with greater
homogeneity across different populations, further validating GIANT as
a neuroanatomical brain atlas.

Architectonic comparisons. To assess GIANT’s ability to capture
known architectonic boundaries, we compared it with a range of
established brain atlases that delineate regions based on anatomical
landmarks and other neuroimaging modalities””. These atlases

included Automated Anatomical Labeling (AAL) atlas®, the atlas of
Intrinsic Connectivity of Homotopic Areas (AICHA)*, the whole-brain
fMRI atlas generated via spatially constrained spectral clustering
(CPAC200)”, and several others, such as the Desikan®,
Hammersmith**, MUSE”, Schaefer®®, Talairach*, and Yeo™ atlases.

The evaluation focused on both cortical (Fig. 3a) and gray matter
(Fig. 3b) regions. We used the adjusted mutual information (AMI) score
to quantify the alignment of GIANT’s architectonic boundaries with
those of the reference atlases. GIANT exhibited moderate agreement
with most of these atlases (AMI scores between 0.4 and 0.8), reflecting
its ability to capture key architectonic in both cortical regions and gray
matter tissue. As a sanity check, the AMI scores for regions within the
Schaefer and Yeo atlas sets were consistently greater than 0.8, which
was expected since these atlases were created using the same
methodologies.

The moderate agreement of the GIANT atlas with other brain
atlases is consistent with our expectations, given that GIANT incor-
porates SNP heritability information to enhance its discovery power in
brain imaging-genomics. These results align with our hypothesis that
the GIANT atlas would adjust the architectonic boundaries of estab-
lished neuroanatomical brain atlases to improve discovery power in
brain imaging-genomics while maintaining core anatomical
knowledge.

Atlas Evaluation: GIANT for enhancing the brain imaging
genomics

GIANT unveils enhanced SNP heritability contrast and increased
regional SNP heritability. GIANT reveals an enhanced contrast in SNP
heritability, exhibiting a larger ratio of between-region to within-region
SNP heritability dispersion. Specifically, we used our three-
dimensional clustering algorithm to segment the brain’s gray matter
and white matter and integrate the optimally tuned brain parcellations
for both tissues. We annotated the resulting regions using our brain
region annotation strategy (Method 6). We compared the within-
region voxel-level SNP heritability dispersion and the between-region
voxel-level SNP heritability dispersion of GIANT with two other brain
atlases - the MUSE atlas and the Watershed-based atlas. We assessed
the relationship between within-region heritability dispersion and
between-region heritability dispersion using the Calinski-Harabasz
(CH) score™®. GIANT consistently exhibits the highest CH score across
cohort comparisons, indicating its superiority in grouping voxels with
similar heritability estimates into regions while maximizing the herit-
ability differences between regions.

To access the regional SNP heritability for imaging-derived
endophenotypes induced by GIANT atlas in brain gray matter and
white matter densities, we compared the region-level SNP heritability
estimates among GIANT, MUSE, DKT, HarvardOxford, and the
Watershed-based atlas (Supplementary Data 4). We identified a sig-
nificant difference in the distribution of region-level heritability, with
the heritability estimates from GIANT demonstrating significantly
higher SNP heritability compared to those from the MUSE atlas (one-
sided Wilcoxon rank sum test p-value=3.35%107>), DKT atlas (one-
sided Wilcoxon rank sum test p-value=2.18 x10~”), HarvardOxford
atlas (one-sided Wilcoxon rank sum test p-value=6.62x1077), and the
Watershed-based atlas (one-sided Wilcoxon rank sum test
pvalue=1.16 x1073). Our results suggest that genetics may account
for a greater portion of the phenotypic variations in imaging-derived
endophenotypes for the GIANT atlas than the traditional neuroana-
tomically defined atlases or those formulated based solely on brain
neuroimaging modalities.

GIANT yields enhanced polygenicity. To access the discovery power
of GIANT, we conducted region-level GWAS using GIANT, MUSE, and
the Watershed-based atlas. In our discovery cohort, we included all
individuals of white British ancestry from the UKBB imaging-genomics
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Fig. 3 | The architectonic similarity of the cortical and gray matter regions of
selected brain atlases. We evaluate the similarity between brain atlases using
adjusted mutual information (AMI) score. We plot the pairwise AMI scores for
GIANT atlas and some other selected brain atlas within a cortical regions and b gray
matter tissue. Darker color represents higher concordance between two atlases. We
marked the AMI > 0.8 with “x” representing the “perfect alignments”. The GIANT
atlas is highlighted using blue dashed lines. CPAC200: a whole brain fMRI atlas
generated via spatially constrained spectral clustering; Desikan: an automated
labeling system for subdividing the human cerebral cortex on MRI scans into gyral-

based regions of interest; Hammersmith: an automatic segmentation of young
children’s brains; MUSE: an ensemble multi-atlas parcellation; Schaefer: a local-
global parcellation of the human cerebral cortex from intrinsic functional con-
nectivity MRI; Talairach: automated Talairach atlas labels for functional brain
mapping; Yeo: the organization of the human cerebral cortex estimated by intrinsic
functional connectivity. AMI adjusted mutual information, AAL automated anato-
mical labeling, AICHA an atlas of intrinsic connectivity of homotopic areas, MRI
magnetic resonance imaging.

cohort, excluding the 5,000 subjects randomly selected for atlas
creation, totaling 30,181 individuals. For replication, we divided it into
two parts: a UKBB replication cohort comprising individuals from non-
white-British ancestries with 3,109 individuals, and the ADNI replica-
tion cohort with 1,809 subjects. This design aimed to assess the gen-
eralizability of our GIANT atlas: for the UKBB replication cohort, we
seek to evaluate its ability to maintain superior discovery power across
different ancestries; and for the ADNI replication cohort, we attempt to
evaluate its ability to maintain superior discovery power in cohort with
significant brain atrophy patterns.

For the GWAS, in our results, GIANT identified an average of
61.72 significant independent SNPs per ROI (genome-wide significance
threshold of 5x1078) in the UKBB white British discovery cohort. Of
these, an average of 4.98 were replicated in the UKBB non-white British
and the ADNI disease cohort. The significant threshold for the repli-
cation is set to be 0.05 due to the small replication sample size. In
contrast, using the MUSE atlas, we identified an average of 36.59 sig-
nificant independent SNPs per ROl (genome-wide significance
threshold of 5x1078) in the UKBB white British discovery cohort, of
which an average of 2.96 were replicated in the UKBB non-white-British
and the ADNI disease cohort. We performed the meta-analysis
(Method 8) to integrate the GWAS results derived from discovery
and replication cohorts and prioritized the lead SNPs (Fig. 4). More-
over, we identified an average of 27.01, 22.89, and 46.17 significant
independent SNPs per ROI for DKT, HarvardOxford, and the
Watershed-based atlas in the UKBB white British discovery cohort
where an average of 2.29, 1.93, and 3.93 significant independent SNPs
were replicated using UKBB non-white British and ADNI replication
cohorts.

Our results demonstrate that the GIANT has significantly more
independent GWAS signals than the MUSE brain atlas in the
UKBB discovery cohort (one-sided Wilcoxon rank sum test
p-value=6.03x107%), and exhibits a higher number of independent
GWAS signals that could be replicated by both the UKBB and

ADNI replication cohorts (one-sided Wilcoxon rank sum test
p-value=128x10"*). Moreover, GIANT yielded significantly more
independent GWAS signals across the discovery and replication
cohorts compared to the DKT brain atlas*’ (one-sided Wilcoxon rank
sum test p-value=9.18x1077 for the UKBB discovery cohort; and
one-sided Wilcoxon rank sum test p-value=1.09 x10~* for the sig-
nificant GWAS results replicated by both UKBB replication cohort
and ADNI replication cohort), HarvardOxford brain atlas® (one-sided
Wilcoxon rank sum test p-value=9.12x107 for the UKBB discovery
cohort; and one-sided Wilcoxon rank sum test p-value=2.03x107°
for the significant GWAS results replicated by both UKBB replication
cohort and ADNI replication cohort), and Watershed-based atlas
(one-sided Wilcoxon rank sum test p-value =4.22 x10~3 for the UKBB
discovery cohort; and one-sided Wilcoxon rank sum test
p-value=4.88x107> for the significant GWAS results replicated by
both UKBB replication cohort and ADNI replication cohort) (Sup-
plementary Fig. 1). These results highlight GIANT’s enhanced dis-
covery power in brain imaging genomics, affirming its
generalizability across diverse ancestries and in cohorts with severe
brain disorders and brain atrophy patterns.

To assess the robustness of our GWAS findings, we performed a
sensitivity analysis by comparing the [ coefficients of significant
GWAS signals across the discovery cohort and two replication
cohorts (Method 8). The results showed strong robustness, with a
weighted mean Pearson correlation of 0.82 for the (3 coefficients
across 50 GIANT brain regions between the white British discovery
cohort and the non-white British replication cohort. Similarly, a
weighted mean Pearson correlation of 0.77 was observed between
the white British discovery cohort and the ADNI replication cohort.
Additionally, 93% of the B coefficient signs were in agreement
between the UKBB white-British discovery cohort and the non-white-
British replication cohort, weighted by the number of significant
GWAS signals. A similar agreement of 90% was found between the
UKBB white-British discovery cohort and the ADNI replication
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Fig. 4 | Comparison of ROI-level significant lead SNPs between MUSE and
GIANT. GIANT identified more significant lead SNPs than MUSE. The number of
significant lead SNPs for ROIs of MUSE is plotted in the outer circle, whereas the
inner circle illustrates the same for ROIs of GIANT. UKBB UK biobank, GIANT
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genetically informed brain atlas, GWAS genome-wide association study, GM gray
matter, WM white matter, SNP single nucleotide polymorphism, DEEP. WM_GM
deep structure of white matter and gray matter, NONE others.

cohort. These findings highlight a high degree of concordance across
the three sets of 3 values, supporting the robustness of our GWAS

results.

Dissect the enhanced polygenicity for GIANT. To the source of
increased polygenicity detected in the GIANT atlas, we aligned
regions delineated by the GIANT atlas with those defined by the
MUSE atlas, based on the most overlap voxels between regions
specified by the two atlases. We conducted GWAS for both sets of
regions using three cohorts: the UKBB white British discovery
cohort, the UKBB replication cohort, and the ADNI replication
cohort. Then, we integrated the GWAS summary statistics from
these cohorts through meta-analysis. As a result, we observed
enhanced discovery power for GIANT in most paired regions. We

now consider the left central operculum region as an example
(Fig. 5). In contrast to MUSE, the GIANT atlas integrated some
voxels from the left anterior and posterior insula into the creation
of this brain region, leveraging both heritability information and
spatial proximity. This redefinition by GIANT led to several GWAS
loci, which had not achieved genome-wide significance threshold in
GWAS using the MUSE atlas, reaching significance (highlighted by
dashed red circles). Moreover, loci identified as significant by MUSE
exhibited even more significant p-values after reclassification by
GIANT. Thus, by consolidating spatially proximate brain voxels
with similar heritability, GIANT not only achieved more significant
p-values than MUSE but also enhances polygenicity. This demon-
strates GIANT’s capacity to significantly enhance discovery power
for brain imaging genomics.
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Fig. 5 | Dissect the enhanced polygenicity for GIANT. GIANT defined brain
regions yield enhanced discovery power compared to MUSE. In this example, we
present the GWAS results for left central operculum (MUSE 113) and left composite
of central operculum, anterior insula, and posterior insula regions (GIANT 16). We
observed that some GWAS loci were detected to be significant in GIANT 16 that did

MUSE 113: Left central operculum
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not reach the significant threshold in MUSE 113 (circled by dashed red rectangles)
and some of the GWAS loci yield more significant p values in GIANT 16 than in MUSE
113 (circled by dashed green rectangles). GIANT Genetically informed brain atlas,
MUSE ensemble multi-atlas, GWAS genome-wide association study.

GIANT atlas polygenic risk score explains more brain volumetric
variation than traditional neuroanatomical brain atlases. We con-
ducted a systematic evaluation of the region-level polygenic risk
score (PRS) on the UKBB and ADNI imaging-genomics cohorts. Our
analyses of region-level PRS were based on the GWAS summary
statistics estimated using the UKBB white British discovery cohort.
We estimated the PRS for regional gray matter and white matter
densities across the GIANT atlas, MUSE atlas, and the Watershed-
based atlas (Supplementary Data 5). Consequently, for the UKBB
non-white-British imaging genetics cohort, the average coefficient
of determination (R?) for PRS derived from the GIANT atlas defined
regional brain gray matter and white matter densities was 3.74%,
compared to 2.64% for MUSE and 3.13% for the Watershed-based
atlas. Our PRS results suggest that a significantly larger proportion
of brain volumetric variation is explained by the regional PRS for the
GIANT atlas than by the MUSE-defined ROIs (one-sided Wilcoxon
rank sum test p-value=15x10"*). Similarly, a significantly larger
proportion of brain volumetric variation is accounted for by the
regional PRS for the GIANT atlas than for the Watershed-defined
ROIs (one-sided Wilcoxon rank sum test p-value=0.028). This pat-
tern was also observed in the ADNI cohort, where the average R? for
PRS derived from GIANT atlas was 4.01%, compared to 2.73% for
MUSE, and 3.30% for Watershed. In ADNI, our PRS results indicate
that a significantly larger proportion of brain volumetric variation is
explained by the regional PRS for the GIANT atlas than for the MUSE-
defined ROIs (one-sided Wilcoxon rank sum test p-value=1.7 x 107%)
and the Watershed-defined ROIs (one-sided Wilcoxon rank sum test
p-value=2.6x1073). Additionally, we compared the R?> derived by
GIANT in UKBB non-white-British cohort with the one for regional
brain volume imaging derived endophenotypes derived by Yang et
al.*, which indicated an average R* of 1.13%. Our GIANT-derived
regional brain volume imaging-derived endophenotypes presented
a much higher R?, with a one-sided Wilcoxon rank sum test
p-value<2.2x107', In summary, our results suggest that the PRS for
GIANT atlas captures a larger proportion of the variance in brain
volumetric measures than the traditional neuroanatomical ROIs
such as MUSE.

Genetic architecture of GIANT

We conducted a comprehensive assessment of the genetic archi-
tecture of GIANT through a multi-faceted approach: (1) investigating
the genetic underpinnings of each GIANT region, (2) annotating the
function of significant SNP variants, (3) examining the associations
between GIANT regions and other phenotypic traits, (4) comparing
pairwise regional genetic and phenotypic correlations, and (5) inter-
preting genetic determinants of GIANT regions.

Genetic underpinnings of GIANT. We first presented a thorough
genetic analysis of GIANT using the UKBB white British discovery
cohort, the UKBB non-white-British replication cohort, and the ADNI
replication cohort. We applied the random effect model of METAL
(version released on 2020-05-05) software*® to the GWAS summary
statistics we derived using the above three cohorts. We identified
773 significant region-lead-SNP associations (p-value<5 x 1078) (Fig. 6).
Specifically, we found 472 unique lead SNPs located within 386 gen-
ome loci significantly associated with 50 GIANT regions. From the
imaging perspective, the cerebellum structure has the most lead SNP
association signal density (31.20 associations per region) whereas the
occipital structure has the least lead SNP association signal density
(6.00 associations per region). The GIANT region 9 (a composite of
cerebellum exterior and cerebellar vermal lobules) has the most sig-
nificant association signals and the GIANT region 32 (a composite of
right middle frontal gyrus and right superior frontal gyrus) shows no
significant associations. From the genomics perspective, most of our
lead SNPs are located in the noncoding regions mapped by the FUMA
GWAS. In detail, among the 472 lead SNPs, 235 SNPs are located in the
intronic regions, and 134 SNPs are located in intergenic regions. The
lead SNP rs1935952:G > C (chr6:108998905:G > C in hgl9) has the most
associations (with 17 different GIANT regions). We further plot the
functional annotation distribution of significant brain-region-lead-SNP
associations (Fig. 7 b). The intronic and intergenic regions of the
genome are associated with the most GIANT regions (N=48 for
intronic regions and N =45 for intergenic regions). The exonic non-
coding RNA (NV=3) and splicing (N=1) have the least significantly
associated GIANT regions. Our findings deepen the understanding of
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architecture of GIANT and may shed light on the potential mechanisms underlying
GIANT. GIANT genetically informed brain atlas, DEEP_WM_GM deep structure of
white matter and gray matter, NONE others.

the genetic architecture of GIANT and highlight the importance of non-
coding SNP variants in brain structure and function. The imaging-
genomics GWAS for both neuroanatomical brain atlas MUSE and
genetically informed brain atlas GIANT indicated that chromosome 17
had the largest chromosome length-weighted independent SNP
associations.

Functional assessment of genetic variants in GIANT. To better
understand the genetic underpinnings of GIANT, we assessed the
functions of significant GWAS lead SNPs. By integrating 63 functional
annotations**, we identified 56 lead SNPs with combined annotation-
dependent depletion scores (CADD)* >12.37, which suggests they are
likely deleterious. Notably, the GIANT regions 18 (composite of left
amygdala, left hippocampus, and left parahippocampal gyrus), region
2 (left caudate), and region 9 (cerebellar vermal lobules) had the most
deleterious lead SNPs, with a total of 6 deleterious lead SNP GWAS
signals. Using RegulomeDB**, we assessed the regulatory functions of
the lead SNPs by integrating eQTLs and chromatin marks*>*>. Our
analysis identified 384 lead SNPs with regulatory annotations. Among
these, SNP rs12928404:T>C and rs11022131:C>G had the most

regulatory annotations. Our findings suggest that both variants have
significant associations with gene expression levels, chromatin acces-
sibility, and direct effects on transcription factor (TF) binding. More-
over, we found direct evidence of binding of the variant through ChIP-
seq and DNase with either a matched positional weight matrix
(PWM)**! or a DNase footprint®>*, The variant rs12928404:T > C and
rs11022131:C > G was associated with right caudate, calcarine cortex,
cuneus, and precuneus, in brain subcortical, occipital, and parietal
regions. Overall, our functional assessment of genetic variants sheds
light on the potential mechanisms underlying GIANT and may help
identify new therapeutic targets for neurological disorders.

Associations of GIANT regions with other phenotypic traits. To
explore the relationships between GIANT regions and other pheno-
typic traits, we conducted enrichment analyses using the NHGRI-EBI
GWAS Catalog database v1.0.3.1°* through FUMA (Fig. 7a). Specifically,
we assessed the traits in the NHGRI-EBI GWAS Catalog with significant
GWAS signals overlapped with our imaging-genomics findings
(Method 9). Through our analyses, we found that brain measurement,
handedness, BMI-adjusted waist-hip ratio, total cortical area
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Fig. 7 | Genetic architecture of GIANT. We conducted a comprehensive assess-

ment of the genetic architecture of GIANT through a multifaceted approach. a We
investigated the relationships between GIANT regions and other phenotypic traits.
We reported only those traits in the NHGRI-EBI GWAS Catalog that have significant
overlapping GWAS signals. The GIANT regions are color-coded based on their sub-
structures, and each region and trait are labeled by the proportion of their shared
significant GWAS hits out of the total number of significant GWAS signals. b We

annotated the functional significance of SNP variants. We counted the number of
regions with significant GWAS signals that were functionally annotated in various

genome regions. The GIANT regions were color-coded based on their sub-struc-
tures. ¢ We conducted a comparison of pairwise regional genetic and phenotypic
correlations, with the genetic correlations presented in the lower-left triangular
regions and the phenotypic correlations located in the upper-right regions. The
GIANT regions were grouped and color-coded based on their sub-structures.
GIANT genetically informed brain atlas, DEEP.WM_GM deep structure of white
matter and gray matter, NONE others, GWAS genome-wide association study, UTRS
5 untranslated region, UTR3 3’ untranslated region, upstream upstream regulatory
region, downstream downstream regulatory region, ncRNA non-coding RNA.

measurement, androgenetic alopecia, diet measurement, and brain
volume measurement had the highest proportion (=5%) of over-
lapping significant GWAS signals with our imaging-genomics associa-
tions across the entire brain. In addition, we observed a moderate
amount (>3%) of associated SNPs for neuroimaging measurement,
cognitive behavioral therapy, cortical surface area measurement, and
autism spectrum disorder. These findings suggested potential links
between GIANT regions and various phenotypic traits.

Pairwise genetic and phenotypic correlations among GIANT
Regions. We analyzed the pairwise genetic correlations and pairwise
phenotypic correlations among the GIANT regions (Fig. 7c). Using the
meta-analysis GWAS summary statistics derived from UKBB white
British discovery cohort, UKBB nonwhite British cohort, and ADNI
cohort, we estimated the genetic correlations using LDAK> (Method 10
and Supplementary Data 6). We plot the genetic correlation in the
lower triangular area of Fig. 7c. For comparison purpose, we estimated

the phenotypic correlations using Pearson correlations and plotted
them in the upper triangular region of Fig. 7c. Our results show that
the genetic correlations among GIANT regions are significantly lower
than their phenotypic correlations (Wilcoxon rank sum test
p-value=2.05x10""), indicating that GIANT-defined brain regions are
genetically distinct from each other. This result matches our expec-
tations of GIANT.

Mapping SNPs to genes in GIANT regions. To identify potential tar-
get genes for the significant SNPs in GIANT regions, we employed three
mapping approaches: positional mapping, eQTL mapping, and chro-
matin interaction mapping using FUMA GWAS***,

Using positional mapping, we linked SNPs to genes within a 10-
kilobase distance. The GIANT region 38 (composite of brain stem and
cerebellum white matter) had the most associations with a total of 258
mapped genes. Gene ARL17B, KANSL1-AS1, LRRC37A, MAPT, NSF, RNU7,
RP11, RPS7PI11, and STH had the highest number of associations. The
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GIANT region 24, the composite region of left middle, superior, and
occipital gyri, at the occipital structure, has the most averaged number
of SNPs mapped genes (166.2 SNPs per gene). We also assessed the
intolerance of the mapped genes to loss-of-function mutations using
the probability of loss-of-function intolerance (pLI) score from EXAC
(Exome Aggregation Consortium)*® and gnomAD (Genome Aggrega-
tion Database)*’. GIANT region 23, the composite region of the right
middle and superior occipital gyrus at the occipital structure, was most
resistant to such mutations, while the GIANT region 39 (right cere-
bellum white matter) has the most loss-of-function mutation
intolerant gene.

For eQTL mapping, we mapped those significant SNPs to genes
using eQTL summary statistics from 13 brain tissues extracted from
GTEx project v8%, cis- and trans-eQTLs from the CommonMind
Consortium®, 11 brain tissues from Braineac of the UK Brain Expres-
sion Consortium®®, and eQTL data from PsychENCODE®". The GIANT
region 38 (a composite of brain stem and cerebellum white matter) has
the highest number of significant eQTL-mapped genes across all
aforementioned tissue types. On the other hand, gene CRHRI-ITI has
the highest number of significant SNP-eQTL associations - it is sig-
nificantly associated with multiple SNPs that are discovered to be the
GWAS hits of 35 different GIANT regions.

Using chromatin interaction mapping, we identified genes using
Hi-C data of the dorsolateral prefrontal cortex and hippocampus tis-
sues in the GSE87112 dataset®® of the Gene Expression Omnibus
database®. We further annotated the enhancer and promoter regions
using 12 brain tissues using Roadmap 111 epigenomes®*. There are 152
genes mapped by significant GWAS signals using 3D chromatin inter-
actions. GIANT region 44, comprising the right white matter temporal
and occipital lobe, had the most genes mapped through 3D chromatin
interactions.

Discussion

In this study, we introduced an biologically interpretable three-
dimensional clustering model tailored for brain parcellation, named
the heritability-aware brain parcellation model. This framework
simultaneously integrates SNP heritability information with spatial
information from brain voxels. It can process the brain voxel-level data
efficiently without necessitating extensive denoising imaging pre-
processing steps, as a smoothing process is achieved by the incor-
poration of Ising prior. Our method achieves fast convergence
(Supplementary Fig. 3). Furthermore, although originally developed to
create a genetically informed brain atlas based on SNP heritability of
brain volume, this framework can be applied to other applications
involving clustering of three-dimensional objects while considering
specific voxel attributes. For example, it is applicable to cluster the cell
types using three-dimensional spatial transcriptomics data, where the
transcript reads are the attribute of interest®. Moreover, our frame-
work is designed to accommodate various distance metrics for
incorporating spatial information. An alternative to Euclidean dis-
tance, for example, could be the use of voxel-level brain functional
connectomes® as similarity matrices in constructing the genetically
informed brain atlas. The creation of such a multi-modal, genetically
informed brain atlas can significantly boost the discovery power in
brain imaging genomics studies.

In our study, we introduced GIANT, a genetically informed brain
atlas for brain imaging-genomics studies. GIANT is generated by
integrating the SNP heritability of brain volumetric endophenotype
and spatial proximity, making it suitable for brain imaging-genomics
studies. We established GIANT using a subset of randomly selected
5,000 subjects from the UKBB white British imaging genomics
cohort, totaling 35,181 individuals; and we validated the atlas through
a comprehensive multi-perspective approach. We assessed GIANT’s
neuroanatomical validity in three distinct ways. Specifically, we
examined the concordance between GIANT and a genetically

informed brain atlas generated from a separate, non-overlapping
subset of 5,000 UKBB white British individuals. Such neuroanato-
mical validation experiment suggests that GIANT, though defined by
a subset of the population, is representative and can be generalized
across the entire white British imaging genomics cohort. Further-
more, we evaluated the stability of imaging-derived endophenotypes
within GIANT, particularly focusing on regional brain gray and white
matter densities. The high test-retest reliability and greater homo-
geneity affirm GIANT's stability as a neuroanatomical brain atlas,
demonstrating GIANT’s generalizability to various cohorts with dif-
ferent brain conditions.

We assessed the capability of GIANT to capture known architec-
tonic boundaries. We compared the alignment of architectonic
boundaries of GIANT and other widely used brain atlases, including
AAL*°, AICHA", CPAC200%, Desikan'®, Schaefer’®, HammerSmith*,
Talairach*, and Yeo® atlases. GIANT atlas exhibited moderate align-
ment with the AAL, Desikan, HammerSmith, and Talairach atlases.
These atlases, which are delineated based on major sulci and gyri
across diverse age groups®, are pivotal for understanding brain neu-
roanatomical structures. The observed moderate alignment with these
atlases demonstrates GIANT’s capability in capturing the architectonic
boundaries that define brain neuroanatomical structures. In addition,
GIANT showed moderate alignment with the AICHA, CPAC200, and
Schaefer atlases, which are outlined based on brain resting-state
networks”, suggesting GIANT’s capacity to reflect the architectonic
boundaries of brain functional structures to a considerable extent. In
contrast, GIANT demonstrated lower concordance with the Yeo
atlases, indicating limitations in capturing networks of functionally
coupled regions across the cerebral cortex®. Nevertheless, GIANT’s
moderate alignment with many neuroanatomical brain atlases, with-
out achieving very high concordance, illustrates it can retain funda-
mental anatomical and functional brain knowledge, even as it aims to
advance brain imaging genomics studies.

Pioneering work in the development of a genetically informed brain
atlas was initiated by Dr. Chi-hua Chen and their colleagues®. In their
study, they delineated the human brain’s cortical area into 12 regions of
interest using a hierarchical clustering strategy based on genetic cor-
relations, derived from 406 twins. This genetically informed brain cor-
tical atlas is able to identify more significant genetic loci”. To serve as a
complement to the atlas created by Chen et al., our GIANT offers distinct
perspectives: it is based on gray matter and white matter densities,
rather than cortical surface area. Additionally, to capture the genetic
heterogeneity at the finest resolution, GIANT is defined at the brain
voxel level, incorporating SNP heritability information. This is com-
plementary to the atlas generated by Chen et al. where pre-defined
anatomical brain regions were grouped based on genetic correlations.
Moreover, our GIANT is derived from a cohort of 5,000 White British
individuals in comparison of 406 twins in Chen et al. Through extensive
validation, GIANT has been assessed as neuroanatomically valid and
demonstrates broad generalizability across populations with diverse
genetic ancestries and various brain conditions.

When compared to the MUSE atlas, the regional brain volumetric
measures defined by GIANT exhibit significantly enhanced voxel-level
SNP heritability contrasts, increased estimates of regional SNP herit-
ability, improved polygenicity, and a larger variation of phenotype
explained by PRS. Specifically, to avoid the potential circularity con-
cerns in our genetics analysis, we excluded the 5000 individuals from
the UKBB white-British cohort who were randomly selected for the
generation of the atlas. To evaluate the generalizability of the GIANT
atlas, we conducted two independent replication studies using the
UKBB non-white-British cohort and the ADNI replication cohort. The
genetics analysis results from these cohorts confirmed the GIANT
atlas’s enhanced discovery power in brain imaging genomics studies,
demonstrating its generalizability across diverse population ancestries
and various brain conditions. In summary, GIANT increases the power
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to dissect the genetic underpinnings of brain neuroimaging studies in
cohorts with different genetic ancestries and brain conditions.

We present an in-depth evaluation of the genetic architecture of
GIANT through a comprehensive, multi-angle approach. Our study
identified 773 significant region-genome-locus associations that shed
light on the genetic underpinnings of GIANT. We dissect the genetic
determinants of GIANT regions, functionally annotating their under-
lying genetic variants from multiple resources. We fully explore the
genetic relationships between GIANT regions and various phenotypic
traits, revealing that our GIANT regions share a multitude of genetic
determinants with several brain-related traits and disorders. This
suggests potential genetic associations between GIANT regions and a
range of phenotypic traits. Through the comparison of pairwise
genetic and phenotypic correlations, GIANT reveals significantly lower
genetic correlations than phenotypic correlations, indicating the
ability of our algorithm to group the genetically homogeneous brain
voxels into regions. These findings not only support the anatomical
validity of GIANT but also align the intuitions behind the formation of
GIANT. Additionally, we identify potential target genes for the sig-
nificant SNPs in the GWAS of GIANT regions by employing positional,
eQTL, and chromatin interaction mapping approaches, followed by
their regulatory annotations. Our findings deepen the understanding
of the genetic architecture of GIANT and may shed light on the
potential mechanisms underlying GIANT, providing new candidate
therapeutic targets for brain disorders.

Our investigation acknowledges several limitations. First, the
performance of GIANT might be undermined by potential imaging
artifacts, as changes in MRI hardware and software can introduce
unwanted variability into the downstream genetic analyses, particu-
larly when integrating data from multiple sites and phases of neuroi-
maging studies. Second, errors in imaging segmentation may lead to
imprecise voxel-level heritability estimations, especially at the
boundary of gray matter and white matter and within the cortical areas
of the brain. Third, in addition to the gray matter and white matter
densities, there are different types of IDPs worthy of investigation,
such as brain cortical surface area and cortical thickness, where pre-
vious studies have shown their distinct genetic influences®. Last, as in
many other genetic studies, GIANT’s development relies on data pre-
dominantly from individuals of European ancestry. As more genetically
diverse datasets become available in the future, there exists the
opportunity to retrain our model. This advancement will allow GIANT
to encompass populations with genetic ancestries that are presently
underrepresented, thereby enhancing its applicability.

Methods

Method 1: Genetically informed brain parcellation via three-
dimensional Gaussian mixture model

A Bayesian model for heritability-aware brain parcellation. We
developed a flexible Bayesian model for learning the heritability-aware
brain parcellation which models the voxel-level heritability using a
Gaussian mixture model with Ising prior to incorporate the spatial
information. Similar modeling approaches have been widely applied to
different research areas, including microarray image analyses, imaging
processing, and spatial transcriptomics®® 7. In our heritability-aware
brain parcellation framework, we extend the two-dimensional model
to three dimensions and apply the framework to coordinate-based
brain neuroimaging data. Our Bayesian model encourages grouping
spatially connected brain voxels into regions to achieve enhanced
discovery power for brain imaging genomics studies.

Our data consists of a three-dimensional matrix that describes
the estimated heritability for volumetric changes of brain voxels
and a binary brain mask that indicates brain structures. We model
the voxel-level volumetric heritability as a three-dimensional matrix

Y= { . } where N,, N,, N, represent the number
y”f’[ 1<i<N;,1<j<N);, 1IN, e L p

of voxels in each dimension. To focus only on the voxels of interest,
our model applies the mask and considers only the voxels in a certain
user-defined region of interest. For example, these regions can be a
certain type of tissue such as gray matter or white matter. Or it can be
certain brain structures such as brain cortical or subcortical regions.
Since our model only considers part of the 3D matrix by masking,
from now on, we will use a linear index i with i € {1, ..., N} to replace
the coordinate-based index system, where N denotes the total
number of voxels within the masked regions. Each voxel-level herit-
ability y; € [0,1] in the region of interests is modeled by the Gaussian
distribution

Yilz;=k ~ Ny, 0%) @

where z; € {1, ..., q} denotes the latent region to which the voxel i
belongs; 1, € R denotes the mean SNP heritability for the region k; and
02eR is the within-region heritability variance. Given that previous
studies showed that the variable variance needs strong priors for
parameter estimation’®, we assume a fixed variance across all regions.
The number of regions, g, is determined by heritability information.

We assign priors to the mean and variance parameters, 1, and 02,
as follows:

e ~ N (1o, 03) &)
02 ~ InvGamma(a., B) 3

where 11, and o3 are hyperparameters that control the mean and
variance of p,. In practice, we set i, as the mean of all voxel-level
heritability. For the choice of 62, we first initialize 1, to be the within-
region mean heritability according to the input parcellation initializa-
tion (i.e., the masked anatomically defined atlas). Then, we set the
variance of |, to be 3. Moreover, a and B are two hyperparameters
for the variance parameter o2. By default, we set a=1and p=0.01 to
provide a weak prior for o2.

To incorporate the spatial information, we assign the Ising prior to
the latent region parameter z;:

x2) " 1(z=2) “

p(z;) = exp | 7=
@Al

Here, (i,j) denotes all voxels j that are neighbors of voxel i. In our
framework, the neighborhood information is modeled either by
coordinate-based Euclidean distance or by coordinate-based step
distance. Specifically, by specifying a hyperparameter r, the
coordinate-based Euclidean distance definition will treat all voxels j
within the 3D sphere centered at the voxel i with radius r as the
neighbors of voxel i; the coordinate-based step definition will treat all
voxelsj that can be reached by “walking” r steps from the center voxel i
as the neighbors of voxel i. The /(-) represents the indicator function.
Intuitively, the Ising prior assigns a higher probability for a voxel i
belonging to a specific region k if more of its neighbors j belong to the
region k. The smoothing hyperparameter y controls the weight of
spatial information. Larger y means a higher probability that the center
voxel v; ; ; will belong to the regions that most of its neighbors belong
to. Inappropriate large y will encourage all voxels to belong to the
same region; inappropriate small y will encourage more densely
distributed region assignments. In practice, the y parameter needs to
be tuned. An existing anatomical brain atlas is not required for
initialization, but it is recommended to improve the convergence of
the MCMC algorithm.

We generate posterior samples for our Bayesian model
using an efficient MCMC algorithm, Gibbs sampling. We tune the
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hyperparameters using the CH score® to quantify the within-region
and between-region heritability variation difference. The detailed
derivation and hyperparameter tuning strategy of our Gibbs sampling
algorithm are provided in the Supplementary Methods 2 and 3.

Evaluation of the heritability-aware brain parcellation model
through simulations. We conducted two simulations to evaluate the
performance of the heritability-aware brain parcellation model. Our
simulations were designed to randomly generate heritability for each
voxel based on the existing brain atlas. We then applied our
heritability-aware brain parcellation algorithm to the generated herit-
ability brain maps and attempted to recover the original atlases. To
compare the effectiveness of our approach, we also applied the
Watershed algorithm” to the same data (Supplementary Methods 5). A
detailed description of our simulations is provided in Supplementary
Methods 4.

To generate voxel-level heritability, we used the AAL atlas with 116
ROIs and MUSE atlas with 145 ROIs (gray matter, white matter, and
ventricular regions) in our two simulation studies. We evaluated the
performance of the best-tuned results by comparing the resulting
parcellation with the ground truth parcellation using several metrics,
including the adjusted Rand index (ARI)">7*, adjusted mutual infor-
mation based score (AMI)”>, homogeneity score, completeness score,
V-measure score (V-M), and Fowlkes Mallows score (FM) (Supple-
mentary Methods 6).

To determine the optimal smoothing parameter y for our
heritability-aware brain parcellation algorithm, we conducted a
hyperparameter tunning with y € {0.5,1,15, ...,39,39.5,40} using
the CH score as our evaluation metric. Our simulation results
demonstrate that our heritability-aware brain parcellation algorithm
achieves the best recovery of the original ground truth atlas (Supple-
mentary Fig. 2) and outperforms the Watershed algorithm” in terms of
ARI, AMI, V-M, and FM scores (Supplementary Data 7).

Method 2: Study Populations

The GIANT study explores individual-level genotyping and TI-
weighted MRI data obtained from the UK Biobank’®. The UK Biobank
is a population-based registry that recruited 500,000 UK adults with
ethical approval from the National Research Ethics Service Committee
North West-Haydock (reference 11/NW/0382). All participants pro-
vided informed consent and were aged approximately between 40 and
69 years old at enrollment. Participants completed questionnaires,
physical assessments, and provided socio-demographic, cognitive,
and medical data. In 2014, a subset of the sample underwent MRI and
the data used in our study were acquired between 2014 and 2019. The
Tl-weighted MRI images were acquired using a 3T Siemens Skyra
machine (MPRAGE) with an image resolution of 1x1x1 mm and a time
to echo (TE) of 2000 ms”’. Further information about the image pro-
tocols can be found at http://biobank.ctsu.ox.ac.uk/crystal/crystal/
docs/brain_mri.pdf.

We constructed an imaging-genetics cohort from UKBB by
including all subjects with both T1-weighted MRI data and imputed
genotyping data. The UKBB imaging-genetics cohort comprises
38,290 subjects (20,199 females and 18,091 males), including 35,181
white British individuals (18,503 females and 16,678 males) and 3,109
nonwhite British subjects (1,696 females and 1,413 males).

We validate GIANT using the ADNI data. The individual-level
genotyping and T1-weighted MRI data used in the preparation of
this article were obtained from the ADNI database (http://adni.
loni.usc.edu)’®®2, The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial MRI, positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive

impairment (MCI) and early AD. Up-to-date information about the
ADNI is available at www.adni-info.org.

We created an imaging-genetics cohort from ADNI by preserving
all subjects with both T1-weighted MRI data and imputed genotyping
data. The ADNI imaging-genetics cohort comprises 1809 subjects (989
females and 820 males) including 678 cases (mild cognitive impair-
ment patients or Alzheimer’s disease patients) and 1131 controls.

In our study, we constructed the genetically informed brain atlas
using randomly selected 5000 white British UKBB individuals. We used
30,181 white British UKBB individuals as the discovery cohort for the
subsequent neuroanatomical validations and imaging genomics stu-
dies. The subjects in the discovery cohort have no overlap with the
cohort we used for atlas generation. We used two independent repli-
cation cohorts for the validations. (1) We used 3,109 non-white-British
UKBB subjects as the first replication cohort to assess the general-
izability and robustness of GIANT in populations with different genetic
ancestries; (2) We used 1,809 ADNI subjects as the second replication
cohort to assess the generalizability and robustness of GIANT in
populations with different age range and brain conditions.

Method 3: Neuroimage data preprocessing

Tl-weighted MRI is downloaded from the UKBB study”® and ADNI
study’® %2, Raw 3D T1-weighted MRIs were first quality checked (QC) for
motion, image artifacts, or restricted field-of-view. Another QC was
performed as follows: First, the images were examined by manually
evaluating for pipeline failures (e.g., poor brain extraction, tissue
segmentation, and registration errors). Furthermore, a second-step
automated procedure automatically flagged images based on outlying
values of quantified metrics (i.e., ROl values), and those flagged images
were re-evaluated. The quality-controlled images are first corrected for
magnetic field intensity inhomogeneity’®. Voxel-wise regional volu-
metric maps, RAVENS, for each tissue volume® are generated by spa-
tially aligning the skull-stripped images to a template residing in the
MNI-space®’. For the conventional atlas, a multi-atlas parcellation
method (MUSE)* was then used to extract 139 ROIs from gray matter
and white matter tissue maps. Finally, we downsampled the image
from 1x1x1 mm to 2x2x2 mm resolution for the consideration of
computational expense.

Method 4: Genotyping data preprocessing
We download the raw imputed genotyping data from UKBB’® (UKBB
Category 263) and ADNI study’®®2,

In UKBB, raw genetic data (Version 3) was downloaded from the
UKBB website (https://www.ukbiobank.ac.uk/enable-your-research/
about-our-data/genetic-data) in July 2021. The imputation was per-
formed by the original UKBB genetics study*. In our QC steps, we
filtered out the (1) multiallelic variants, (2) variants with missing call
rates greater than 0.03, (3) variants with minor allele frequencies
smaller than 0.01, 4) variants with Hardy-Weinberg equilibrium exact
test p-value below the 1e-10 threshold. Next, we filtered out the sub-
jects (1) with missing call rate exceeding 0.03, (2) with heterozygosity
rate outside 5 standard deviations of the population heterozygosity
rate. Finally, we match the QCed imputed genotyping cohort with the
QCed imaging cohort. All the QC steps are done using the PLINKv2.0%
and R. After the harmonization of the QCed imputed genotyping data
from both UKBB and ADNI, the imputed genetic data comprises
6,965,659 SNPs and 38,290 subjects, which were used in our GWAS
analysis. We further derived the first 10 genetic principle components
(PCs) using the SmartPCA from the EIGENSOFT®¢®’,

In ADNI, we downloaded genotyping data from ADNI 1, GO, 2, and
3 studies. We aligned and integrated the downloaded data using the
Homo sapiens (human) genome assembly NCBI37 (hgl9) genome
builder. We performed the strand alignment according to 1000 Gen-
ome phase 3°° using McCarthy Group Tools (https://www.well.ox.ac.
uk/-wrayner/tools/). We imputed the genotyping data using the
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Michigan Imputation Server” with 1000 Genome phase 3 reference
panel of European ancestry. We annotated our imputed genotyping
data using ANNOVAR?., After alignment and imputation, we performed
the quality control (QC) using the following criteria: 1) genotyping call
rate greater than 98%, 2) minor allele frequency greater than 0.1%, 3)
Hardy-Weinberg Equilibrium greater than le-6, 4) missingness per
individual less than 5%. All the QC and recoding were performed using
PLINK1.9%, After data preprocessing, we matched the common sub-
jects in genotyping, neuroimaging, and demographic data. After the
harmonization of the QCed imputed genotyping data from both UKBB
and ADNI, our QCed ADNI imputed genetic data comprises 6,965,659
SNPs and 1809 subjects.

Method 5: Heritability-aware brain atlas framework

We separately apply the heritability-aware brain parcellation algorithm
(Method 1) to gray matter and white matter using 5000 randomly
selected individuals from the UKBB imaging-genomics cohort, with the
MUSE atlas for initialization (Supplementary Methods 1). We tune the
region-smoothing hyperparameter y on each tissue type, ranging from
0.5 to 40 in increments of 0.5. The best-tuned hyperparameters are
selected based on the highest CH score®, which are found to be y=6
for gray matter parcellation andy=14 for white matter parcellation.
We combine the best-tuned gray matter and white matter parcellations
to create the GIANT atlas.

Method 6: A brain atlas annotation strategy

We annotate the GIANT using the existing anatomically defined brain
atlas as a reference atlas. To do this, we count the number of voxels
belonging to different ROIs in the reference atlas for each ROI in the
GIANT. We then name each ROl in the GIANT based on the proportion
of voxels that belong to different ROIs in the reference atlas. To be
specific, we calculate the percentage of voxels belonging to each ROl in
the reference atlas over the total number of voxels in the ROI being
annotated and use this value to name the ROIs in the GIANT.

Method 7: Neuroanatomical Validation

Test-retest reliability evaluation. We conducted the test-retest relia-
bility assessment using ICC on the longitudinal cohorts of both UKBB
and ADNI, comprising 1356 and 1917 subjects respectively. For each
individual, regional-level gray matter and white matter densities were
derived from both the initial and final visits. We calculated six different
ICC coefficients as defined by Shrout and Fleiss (1979)* for each brain
region. All calculations were performed using the “psych” package
in R™.

Homogeneity evaluation. We evaluated the homogeneity of gray and
white matter densities within GIANT across three population cohorts:
the UKBB White-British discovery cohort, the UKBB non-White-British
replication cohort, and the ADNI replication cohort. Following the
methodology of Schaefer et al.”®, we measured homogeneity by cal-
culating the weighted standard deviation of regional densities using
the formula:

Sk -15d|k|
Yi-lk]

where sd; is the standard deviation of gray matter or white matter
densities for the region k, and |k| is the number of voxels in the region
k. Lower standard deviations indicate greater homogeneity within
each brain region.

4

Architectonic evaluation. To quantify the alignment of GIANT’s
architectonic boundaries with those of reference atlases, we employed
the AMI score. AMI measures the similarity between two labeled sets,
indicating how well a specific voxel can be identified as belonging to a

particular region based on another region. AMI is not dependent on a
region’s label, and is computed as follows:

K
H(A)= — > P,(k)-log[P,(k)] (6)
k=1
P, z(a,b)
MI(A, B)= Py gab)-1 L)
W= 2 faoed °g<PA(a>PB<b) @
AMIA. B)= MI(A, B) — EIMI(A, B)] ®

max(H(A), H(B)) — EIMI(A, B)]

where H(A) represents the entropy for the partitioning A; P, (i) denotes
the probability that a voxel randomly selected from the set A will
belong to the brain region k; P, g(a, b) is the probability that a point
belongs to both brain region aeA and beB; and E[-] means the expec-
tation operator. Higher AMI scores indicate greater similarity between
the two brain atlases.

Method 8: Genome-wide association analysis

Genome-wide association analysis with individual-level data. We
conducted GWAS on 50 ROIs defined by GIANT, 139 ROIs defined by
the MUSE atlas, and 100 ROIs defined by Watershed-based atlas. Each
ROI represents a brain region-level quantitative trait measuring brain
gray/white matter densities. The GWAS analyses were performed using
imputed genotyping data from the UKBB white-British imaging-geno-
mics discovery cohort (30,181 subjects), the UKBB non-white-British
replication cohort (3109 subjects), and the ADNI imaging-genomics
cohort (1809 subjects). We fit a linear mixed effect regression model
for each ROI-SNP pair by treating imaging volumetric quantitative trait
as the response variable and common-variant autosomal individual
SNP as the independent variable. Our model was adjusted for age, sex,
first 10 principal components, and AD-by-proxy/AD as covariates. The
genome-wide significant threshold was set as 5x1075. All the GWAS
were performed using Scalable and Accurate Implementation of Gen-
eralized mixed model (SAIGE)**. We performed post-GWAS analysis
using functional mapping and annotation*>**. AD-by-proxy was based
on parental diagnosis and exhibited a strong genetic correlation
with AD”,

To evaluate the robustness of our GWAS results, we conducted
sensitivity analyses on the B coefficients of significant GWAS signals
derived from the white British discovery cohort. These analyses
included: (1) comparing the Pearson correlation of B coefficients
between the discovery cohort and replication cohorts, and (2) asses-
sing the concordance of 3 coefficient signs between the discovery and
replication cohorts. The concordance was measured as the proportion
of matching signs relative to the total number of significant GWAS
signals for each phenotype. We then reported the weighted average
Pearson correlations and the proportion of matching signs across all
GIANT ROIs, weighted by the number of significant GWAS signals
identified in each ROL

Genome-wide association meta-analysis with GWAS summary
statistics. We conducted a GWAS respectively in the UKBB white-
British imaging genomics discovery cohort, the UKBB non-white-
British replication cohort, and the ADNI replication cohort. We use
METAL (version released on 2020-05-05) software*® to combine
p-values across the three GWAS summary statistics taking into
account the sample size and effect directions of each study. To track
the effect allele frequency across different studies, we reported the
mean, minimum, and maximum effect allele frequency to monitor
the inconsistent naming of reference alleles across different studies.
Our meta-analysis was performed using the random effect model. We
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left all the other parameters we did not mention above as default
parameters.

Post-GWAS study with Functional Mapping and Annotation of
GWAS (FUMA). For each ROI volumetric imaging QT, we performed
the post-GWAS analysis using FUMA*>*>, FUMA is a web-based platform
using information from multiple biological resources to facilitate
functional annotation of GWAS results. We used the FUMA analysis
protocol from Wen et al.”. We constructed LD blocks by tagging all
variants with minor allele frequency greater than or equal to 0.0005
and with at least one of the independent significant variants. Of note,
the LD blocks are constructed from the 1000 Genomes as reference
panels, which may not be overlapped with the variants in the current
study. Finally, FUMA merges the LD blocks of independent significant
variants into a single genomic locus if they are within 250 kilobases
from the closest boundary variants of LD blocks. We used the default
parameters settings on FUMA online platform for the other unmen-
tioned parameters.

Method 9: Associations of GIANT regions with other
phenotypic traits

We evaluated the associations of GIANT regions significantly enriched
for other phenotypic traits using the NHGRI-EBI GWAS Catalog data-
base v1.0.3.1°* through FUMA. We identified phenotypic associations
by examining traits from the NHGRI-EBI GWAS Catalog that share
significant genetic signals with our imaging-genomics findings. Our
analysis began with a GENE2FUNC analysis in FUMA, where we input
the significant genes identified through FUMA’s SNP2GENE analysis of
GWAS summary statistics. This analysis highlighted phenotypes sig-
nificantly enriched by brain volumetric traits defined by the GIANT
atlas. To ensure robustness, we filtered out phenotypes with fewer
than 15 overlapping genetic signals between the GWAS Catalog and the
GIANT data. Next, we categorized the phenotypic traits by phenotype
categories and calculated the number of significantly enriched traits
within each category for each GIANT region, applying a false discovery
rate (FDR) correction for multiple comparisons. For each region, we
selected the top three phenotype categories with the highest number
of significantly enriched traits. Finally, we visualized the associations
between GIANT regions and phenotype categories using a Sankey
diagram.

Method 10: Genetic correlation analysis

We estimate the pairwise genetic correlations for region-level brain
variations defined by both GIANT and the MUSE atlas in both the
UKBB and ADNI imaging-genomics cohorts. To estimate the genetic
correlations, we use the GWAS summary statistics obtained from our
previous GWAS analyses. We perform the analysis using LDAK®,
which extends the LD score regression model’®™® by assuming the
LDAK model and accounting for confounding inflation that is
multiplicative®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The individual level data from UK Biobank (UKBB) and Alzheimer’s
Disease Neuroimaging Initiative (ADNI) are available under restricted
access. ADNI data are available at https://adni.loni.usc.edu/data-
samples/access-data/ pending application approval and compliance
with the data usage agreement. Researchers can apply to use the UK
Biobank resource for health-related research that is in the public
interest (https://www.ukbiobank.ac.uk/register-apply/). The GWAS
summary statistics generated in this study have been deposited in the
Zenodo database under accession code https://doi.org/10.5281/

zenodo.14549178. The summary-level data generated in this study
are provided in the Supplementary Information/Source Data file and
Zenodo database. Source data are provided with this paper.

Code availability

The source code for atlas generation, the template atlas in NIFTI for-
mat, the atlas annotation, the GWAS summary statistics, and the post-
GWAS FUMA analysis results are all available through GitHub (https://
github.com/JingxuanBao/GIANT).
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