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Axonal RNA localization is essential for
long-term memory
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Localization of mRNAs to neuronal terminals, coupled to local translation, has
emerged as a prevalent mechanism controlling the synaptic proteome. How-
ever, the physiological regulation and function of this process in the context
of mature in vivo memory circuits has remained unclear. Here, we combined
synaptosome RNA profiling with whole brain high-resolution imaging to
uncover mRNAs with different localization patterns in the axons ofDrosophila
Mushroom Body memory neurons, some exhibiting regionalized, input-
dependent, recruitment along axons. By integrating transcriptome-wide
binding approaches and functional assays, we show that the conserved Imp
RNA binding protein controls the transport of mRNAs to Mushroom Body
axons and characterize amutant inwhich this transport is selectively impaired.
Using this unique mutant, we demonstrate that axonal mRNA localization is
required for long-term, but not short-term, behavioral memory. This work
uncovers circuit-dependent mRNA targeting in vivo and demonstrates the
importance of local RNA regulation in memory consolidation.

Localization of neuronal mRNAs to dendritic or axonal terminals has
recently emerged as a prevalent mechanism implicated in synaptic
proteome maintenance and plasticity1–3. Rich repertoires of mRNAs
were found in both pre- and post-synaptic compartments of adult
mammalian brains4–6 and shown to undergo selective translation in
response to different cues, including LTP/LTD-inducing stimuli7–12.
While pre- and post-synaptic translation of localized mRNAs was
shown to contribute to long-term, protein synthesis-dependent, forms
of synaptic plasticity (e.g., long-term potentiation (LTP) or depression
(LTD))13–17, if, where and how synaptic mRNA localization is required

for memory establishment in vivo has remained largely unclear. Fur-
thermore, although a few studies have suggested that the populations
of localizedmRNAsmay varydependingon cell types18, developmental
stages19,20, or learning21, how the activity of specific neuronal circuits
impacts subcellular mRNA localization is unknown.

A well-established mechanism for the subcellular transport of
mRNAs involves the recognition of localization elements, most fre-
quently found in 3′ UTRs, by RNA binding proteins (RBPs)22–25. These
RBPs promote the assembly of transport-competent complexes, or
transport RNA granules, that recruit molecular motors for long-
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distance transport along microtubules26–29. The vertebrate ZBP1/
Vg1RBP/IGF2BP1protein, for example, recognizes a so-called “zipcode”
sequence located in the 3′UTRof the β-actinmRNA, thus promoting its
active transport to growing axon tips and dendrites of mature
neurons30–34. As shown by dynamic live-imaging, bidirectional trans-
port ofmRNAs alongneuritic branches (or scanning) canbe coupled to
a more regionalized recruitment of mRNAs to activated synapses
(capture) in cultured neurons. Such a local recruitment also depends
on 3′UTR sequences and trans-acting RBPs35,36, and was proposed to
underlie the tagging of activated synapses essential for memory
formation37,38. Whether local synaptic mRNA recruitment actually
occurs in the context of endogenous memory circuits and in response
to LTM-inducing stimuli has, however, remained largely unknown.

Combining transcriptomics, quantitative imaging, and func-
tional approaches, we here explored the regulation and function of
axonal mRNA localization in vivo in a set of Drosophila brain neurons
with central function in learning and memory, the Mushroom Body
γ neurons. Through systematic RNA profiling of synaptic fractions,
we first identified hundreds of mRNAs that are synaptically enriched.
smFISH experiments performed on whole-mount brains uncovered
various patterns of mRNA localization in the axonal terminals of
Mushroom Body (MB) γ neurons. In particular, they revealed that
some mRNAs accumulate selectively in a distal axonal sub-
compartment innervated by specific input modulatory neurons,
suggesting local accumulation in response to circuit activity. To
dissect the mechanistic bases of axonal mRNA localization, we
combined transcriptome-wide identification of binding sites with
functional approaches, thus uncovering that the conserved RNA
binding protein Imp is required for the selective transport of mRNAs
to Mushroom Body γ axons. Using a unique mutant in which Imp-
dependent axonal mRNA localization is specifically altered (imp-
ΔPLD), we last probed the requirement of axonal mRNA targeting in
courtship memory. imp-ΔPLD individuals failed to establish long-
term memory while exhibiting normal short-term memory, thus
providing in vivo evidence of the importance of local axonal RNA
regulation in the consolidation of long-term memories.

Results
Adiverse repertoire ofmRNAspecies localizes to synapses in the
Drosophila brain
Although Drosophila has long been a key model to study subcellular
mRNA targeting, the extent of mRNA localization in the adult brain, as
well as the identity of localizedmRNAs has remained largely unknown.
To identify the population of mRNAs that are targeted to synaptic
terminals in Drosophila brains, we first optimized a protocol based on
differential centrifugation and discontinuous sucrose gradient to iso-
late synaptosome fractions, starting from adult brain homogenates
(Fig. 1A)39. This protocol generated a fraction enriched both in soluble
presynaptic proteins such as the Cystein String Protein (CSP) chaper-
one and inmembrane-associated proteins such as the synaptic vesicle-
associated protein Synaptotagmin-1 (Syt-1) or the T-bar core compo-
nent Bruchpilot (Brp) (Fig. 1B). This fraction was depleted in nuclear
markers such as the Elav RBPs or the Lamin protein. Further validating
our purification scheme, analysis of the synaptosomal fraction at the
EM level revealed the presence of typical nerve ending structures,
characterized by the presence of mitochondria, as well as by an
enrichment in synaptic vesicles, some docked to pre-synaptic T-bars
(Fig. 1C). RNA sequencing of the recovered fraction revealed that
synaptosome RNA content is clearly distinct from that of the initial
head lysate (Fig. S1A, B), with hundreds of mRNA species exhibiting a
specific enrichment in the synaptosome fraction relative to the initial
lysate (879 RNAs enriched with a log2FC ≥0.85, Padj<0.05; Figs. 1D,
S1C and Supplementary Data 1). Synaptosome-enriched mRNAs code
for a variety of proteins, with GeneOntology (GO) analysis indicating a
significant overrepresentation of transcripts coding for mitochondrial

and ribosomal proteins (Figs. 1E and S1D), two categories known to be
reproducibly enriched in vertebrate neurites40. Transcripts coding for
secreted proteins, including components of the extra-cellular matrix
(ECM), were also significantly enriched (Supplementary Data 2).
Although RNAs encoding synaptic proteins were not overall over-
represented in the synaptosomal fractions, a number of mRNAs
encoding proteins related to synaptic function and plasticity were
found enriched, including regulators of neurotransmission (e.g., rph/
Rph3A, csas/CMAS), signalingmolecules (e.g., lk6/Mknk2) or regulators
of the actin cytoskeleton (e.g., act42A/Actg1, arp3/Arpc3B). Strikingly,
various mRNA species shown to reproducibly localize to neurite
terminals in Vertebrates were also found in Drosophila synaptosomes
(e.g., arc1/Arc; khc/Kif5c; robl and robl37BC/Dynlrb; rps21/Rps21;
levy/Cox6a; act42A/Actg1)4,11,40,41. Together, these results thus indicate
that a rich repertoire of mRNA species is selectively targeted to
synaptic terminals in the adult Drosophila brain. They also uncover
evolutionary conservation in the functional classes of localized neu-
ronal mRNAs, as well as in their identity.

mRNAs localize to the axonal terminals of Mushroom Body
neurons
To validate our RNA-sequencing experiment and visualize the dis-
tribution of synaptosome-enriched mRNAs in the context of Droso-
phila memory circuits, we then performed smFISH experiments on
adult whole-mount brains and imaged a population of neurons known
for their function in memory formation: Mushroom Body (MB) γ
neurons42–45. These neurons project their axons to the ventral side of
the Drosophila brain, forming a distal bundle termed medial lobe
(Fig. S2A).

Candidate mRNAs were chosen such as to sample species
encoding different protein classes (components of the translational
machineries for rpl15, rpl23 and rpl24-like; extracellular protein for
cg2852; synaptic proteins for lk6/Mnk2 and rols/TANC1/2) and exhi-
biting different degrees of enrichment (Fig. S1C), as well as based on
technical parameters important for the optimal design and use of
smFISH probes (e.g., minimal transcript length). When available,
GFP protein-trap lines expressing gfp-tagged transcripts from the
endogenous locus were analyzed using anti-gfp labeled probes.
Using this latter approach, defined diffraction-limited smFISH spots
could be observed both in the cell bodies and in the axons of MB γ
neurons for lk6 (Fig. 2B), rols (Fig. 2C), and csas (Fig. S2E) tran-
scripts. Such spots were not observed when using gfp probes in
control gfp-negative flies (Fig. 2D), confirming signal specificity.
Axonal smFISH spots were also observed for non-gfp-tagged tran-
scripts such as rpl15 (Fig. 2A), rpl23 (Fig. S2E), rpl24-like (Fig. S2B), or
cg2852 (Fig. S2C) when using transcript-specific, indirectly labeled,
smiFISH probes (Supplementary Data 3)46. Notably, a quantitative
comparison of the number of detected axonal RNA spots indicated
that the extent of axonal targeting varied significantly from one
mRNA species to the other, with lk6 exhibiting about four to five
times more molecules in MB γ axons than csas, for example
(Fig. S2E). As shown in Fig. 2F, RNA abundance in axons did not
correlate with RNA abundance in soma, pointing to the existence of
transcript-specific mRNA localization mechanisms. To confirm this
hypothesis as well as signal specificity, we then analyzed the dis-
tribution of transcripts with relatively high expression levels but no
enrichment in synaptosome fractions: His3.3B, Serca, and camk2.
While a high number of smFISH spots were observed for these
mRNAs in MB cell bodies (Figs. 2F, S2D), no signal was seen in MB γ
lobe, further highlighting that axonal mRNA localization does not
result from non-specific passive diffusion.

Together, these results thus revealed that selected mRNA species
localize to the axon terminals of memory neurons in the adult Droso-
phila brain, raising the question of how such specific localization is
achieved.
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Identifying Imp-bound mRNAs that localize to MB axonal
terminals
We showed in a previous study that the RNA binding protein Imp, a
conserved component of RNA transport machineries34, is actively and

selectively targeted to the axons of MB γ neurons in the adult fly
brain47. This ismanifested by the localization of Imp along the axons of
MB γ neurons but not of other neurons (Fig. S3A and ref. 47). To more
specifically determine if Imp localizes to synaptic terminals, we here
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mitochondria (M), andT-bars (arrowhead) are observed.Onebiological samplewas
imaged. D MA-plot showing the relationship between abundance (reads per mil-
lion, x-axis) and synaptosome enrichment (y-axis, log2FC). Transcripts enriched
with a log2FC ≥0.85 and a Padj-value < 0.05 were considered as synaptically-
enriched (red data points). Transcripts with a log2FC ≤ −0.85 and a Padj-value <
0.05 were considered as synaptically-depleted (blue data points). E Main GO
component categories enriched in synaptosome fractions (see Supplementary
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respond to enrichment test Padj-values. Enrichment was calculated in Gorilla using
standardone-tailedhypergeometric tests anddefault parameters. FDRwasused for
multiple comparisons. Data are provided as a Source Data file.
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searched for the presence of Imp in adult brain synaptosome fraction
(Fig. S3B), which revealed a weak yet reproducible signal consistent
with population-specific synaptic recruitment. Together, these find-
ings suggested that Imp may promote the transport of target mRNAs
to MB γ presynaptic terminals. To identify these mRNAs, we then
aimed at uncovering Imp-bound RNAs enriched in synaptosomal
fractions and combined two complementary transcriptome-wide
approaches: RNA-immunoprecipitation (RIP) and cross-linking and
immunoprecipitation (iCLIP)48. RIP was performed from adult heads
expressing tagged Imp proteins in MB γ neurons (201Y-Gal4 >UAS-
Flag-Imp), where full-length co-precipitated RNAs were isolated, pro-
cessed for hybridization onGeneChips, and signals compared to those
obtained with 201Y-Gal4/+ control samples, thus identifying mRNAs
bound to Imp in the population of MB γ neurons. Improved iCLIP was
performed from whole adult heads expressing functional GFP-Imp
fusions from the endogenous locus (G080-GFP-Imp protein-trap
line)47, thus identifying the precise peaks of Imp crosslinking on
RNAs using the iCount peak-calling approach (https://icount.dev/).
Two hundred forty-two RNAs were identified as enriched in Imp-RIP
experiments (log2FC > 1; Supplementary Data 4) and 1577 in Imp iCLIP
experiments (RNAswith at least 1 peak supported by at least 5 uniquely
mapped cDNAs; SupplementaryData 5). These included the previously
characterized profilin (chickadee) mRNA47,49 as well as actin5C, the
Drosophila ortholog of β-actin mRNA, a well-characterized target of
the vertebrate ZBP1/Vg1RBP orthologous protein31,32,34,50.

By overlapping the mRNAs identified by RIP and iCLIP with those
enriched in the synaptosomeRNA-seq, we identified candidatemRNAs
whose localization toMB γ axonsmay depend on Imp (Fig. 3A). Among
those were profilin, actin5C and arc1, which encode actin cytoskeletal
regulators, eIF4A, eIF4E-1 and pabp, which encode conserved transla-
tional regulators, as well as other mRNAs encoding proteins with var-
ious functions (e.g., collagen α-chain (bnb), transcription factor (crc)).
The previously validated axonal mRNA lk6 was also identified as an
Imp-bound mRNA. smFISH experiments performed on adult brains
revealed that these transcripts are all targeted to MB γ axons
(Figs. 3B–D and S3C, Supplementary Data 3). Axonal targeting of pro-
filin, eIF4E-1, actin 5C, bnb, and crcmRNAswasweaker than that ofarc1,
eIF4A, cg15098, and pabp mRNAs (Fig. 3B), yet specific, as revealed by
MB-specific, RNAi-mediated, inactivation of profilin (Fig. S3D).

Together, these results thus uncovered a number of mRNAs that
are bound by Imp and are localized to the axon terminals of MB γ
neurons.

Imp-bound mRNAs are targeted to MB γ axons through
their 3′UTR
The iCLIP methodology enables the precise mapping of RBP binding
sites (identified as peaks). To get a transcriptome-wide view of Imp
binding preferences, we thus performed a metatranscript analysis,
plotting the Imp iCLIP sites along the 5′UTR, coding sequences, and 3′
UTR of a normalized reference transcript. This revealed a very strong
overall preference for Imp binding to 3′UTRs (Fig. 4A, B), consistent
with previous results obtained in other cell types or species49,51,52.
Analyzing the distribution of Imp iCLIP peaks along the gene regions of
profilin and other transcripts confirmed this view, highlighting the
near-exclusive binding of Imp to 3′UTR sequences (Figs. 4A and S4). In
the case of profilinmRNA, this also pointed to a preferential binding of
Imp to proximal and central 3′UTR regions than to most distal regions
(Fig. 4A), suggesting the existence of isoform selectivity.

Localization elements, i.e., cis-regulatory regions promoting sub-
cellularmRNA targeting, have for the vastmajority of neurite-localized
mRNAs been identified in 3′UTR regions22–25. To determine the role of
3′UTRs in the localization of Imp-boundmRNA species toMB γ neuron
terminals, we thus analyzed the distribution of reporter RNAs in which
transcript-specific 3′UTR sequences were cloned downstream of the
GFP coding sequence. As shown through smFISH experiments

performed using anti-gfp probes, the 3′UTR sequences of lk6 (isoform
RA), pabp (isoform RB), profilin (isoform RB), and actin5C (isoform
RC), but not that of a SV40 negative control, were sufficient to target
gfp RNA to the axons of MB γ neurons upon expression via the Gal4/
UAS system (Figs. 4C, D and S5A).

These results thus suggest that axonally-localized Imp-bound
mRNAs are targeted to axonal terminals through specific elements
localized in their 3′UTR sequences.

Compartment-specific recruitment of Imp mRNA targets
Careful analysis of the distribution of Imp mRNA targets in MB γ lobe
revealed that a number of these mRNAs (act5C, arc1, pabp, eIF4A, prof,
cg15098) tend to exhibit a non-homogenous distribution along axons,
characterized by a higher density of transcripts in the most distal part
of the MB γ lobe termed γ5 compartment (Fig. 5A–C). Such a behavior
was not observed for the abundant, non Imp-bound mRNAs rpl24-like
and rpl23. To investigate whether mRNA enrichment in the γ5 com-
partment depends on 3′UTR sequences, we compared the density of
gfp smFISH spots in the γ5 compartments vs more proximal γ2-4
compartments for the gfp-3′UTR transgenes expressed inMB neurons.
As shown in Fig. S5B, gfp mRNAs showed distal enrichment, although
to a lower extent than endogenous mRNAs, suggesting that other
factors than 3′UTR sequences (e.g., 5′UTR sequences, RNA processing
…) might additionally contribute to compartment-specific
enrichment.

MB γ5 compartment is the most distal of the five anatomical and
functional regions (γ1 to γ5) that were defined along the MB γ lobe
based on their specific innervation patterns and their capacity to
establish and store distinct temporal memory traces53,54. It receives
input from a specific population of dopaminergic neurons, the PAM-
γ5-DANs, and establishes synapses with the glutamatergic MBON-
γ5β’2a output neuron (Fig. 5A)53,55,56. γ5 mRNA enrichment suggested
that selected mRNAs may be recruited to distinct axonal sub-
compartments in response to the activity of the local circuits they
are engaged in. To test this hypothesis further, we compared the dis-
tribution of arc1mRNA in control flies and flies in which the activity of
the innervating PAM-γ5-DANs was inhibited through the expression
of the inward-rectifying K+ channel Kir2.157. While the overall number
of arc1 mRNA smFISH spots found in MB γ axons did not significantly
change upon inactivation of PAM-γ5-DANs (Fig. S5C), the observed
enrichment in MB γ5 compartment was abolished (Fig. 5D), thus
demonstrating that the activation of compartment-specific circuits is
required to trigger the local accumulation of mRNAs.

The axonal localization of selected Imp-bound mRNAs is dis-
rupted in the imp-ΔPLD transport mutant
Having identified Imp-bound mRNAs that localize to MB γ axons
actively, and in a 3′UTR-dependent manner, we wondered if Imp was
essential for their axonal localization. In a previous study, we showed
that the dynamic transport of Imp RNP granules to MB γ axons is
impaired in flies lacking the prion-like domain (PLD) of Imp58. We also
described that in these homozygous viable flies, RNP granule assembly
is not altered, and the essential functions of Imp are preserved58. To
further confirm that the PLD of Imp does not affect RNA binding, we
here compared the RNA binding profiles of the wild-type and Imp-
ΔPLDproteins in iCLIP experiments performed fromGFP-ImpandGFP-
Imp-CRISPR-ΔPLD adult heads. This first revealed a very similar extent
of iCLIP cDNA counts for Imp and Imp-ΔPLD on 3′UTRs of the vast
majority of bound mRNAs (Fig. 6A and Supplementary Data 6), with a
few exceptions (Fig. S6A, C, D). Moreover, the profiles of iCLIP cross-
link signals of Imp and Imp-ΔPLDwere very similar on specificmRNAs,
as illustrated for profilin (Fig. 6B) and actin5C (Fig. S6B). To explore if
Imp PLD contributes to more subtle fine-tuning of RNA sequence
preferences, aspreviously found for thedisordered regionof TDP-4359,
we first identified the hexanucleotide (6-mer) motifs that are most
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enriched around Imp cross-linked sites and found thatmost of the top
6-mers contained the YAAY consensus (Fig. S7A). U-rich motifs that
generally contained only a single A were also observed (Fig. S7A). We

then compared occurrence of each group of similar 6-mers in wild-
type and Imp-ΔPLDdata centeredon the iCLIP cross-linked sites,which
identified similar motif enrichments in wild-type Imp and Imp-ΔPLD
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(Fig. S7B). These results thus indicate that the PLD of Imp is not
essential for theRNAbinding capacity and specificity of Imp. Together,
our past and recent findings thus demonstrate that the imp-ΔPLD
mutation disrupts the axonal transport function of Imp while impact-
ing only to a minor extent the RNA binding capacity of Imp.

To then monitor if the localization of Imp mRNA targets to MB γ
axons is altered in the imp-ΔPLD mutant context, we quantitatively
compared the number of axonally-localizedmRNAs detected by smFISH
experiments in control and imp-ΔPLD flies. While lk6, crc, bnb, eIF4E-1
and pabp mRNAs did not exhibit a reproducible decrease in mRNA
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localization in the imp-ΔPLD context, a significant decrease in axonal
localization was observed for eIF4A, cg15098, profilin and actin5C
mRNAs, and a near loss of axonal signal for arc1 mRNA (Fig. 6C–E and
Supplementary Data 3). Such a decrease was not accompanied by
changes in RNA levels (Fig. S8A, B), indicative of an alteration in RNA
localization rather than RNA stability. Decreased axonal mRNA locali-
zation was also not observed for the non-Imp-bound mRNAs rpl24-like
and rpl23 (Fig. S8C), suggesting that Imp-dependent mRNA transport is
selectively altered in the imp-ΔPLD mutant. To further confirm that the
imp-ΔPLDmutation impairs 3′UTR-dependentmechanisms, we analyzed
the axonal localization of profilin and actin5C gfp-3′UTR reporter RNAs.
As shown in Fig. S8D, a significant decrease in axonal targeting was
observed for both, indicating that the 3′UTR-dependent localization of
these mRNAs relies on Imp-mediated axonal transport.

Together, these experiments revealed that the axonal transport of
selected Imp mRNA targets is altered in imp-ΔPLD brains.

Long-term, but not short-term, courtship memory is altered in
imp-ΔPLD mutants
The fact that Imp RNA transport factor is very selectively recruited to
the axons of MB γ neurons and blocked in imp-ΔPLDmutants provides
a unique context in which to study in vivo, in the context of physio-
logicalmemory circuits, the functionof presynapticmRNA targeting in
the establishment of long-term memory.

To analyze the memory performance of imp-ΔPLD mutants, we
performed courtship conditioning, in which the function of MB γ
neurons was shown to be required for both short-termmemory (STM)
and protein synthesis-dependent long-term memory (LTM)44,45. In this
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paradigm, individual naïve males learn to suppress their courtship
after being rejected by recently mated, and therefore unreceptive,
females. Theymaintain lowcourtship levels towardsmated females for
hours (STM) or days (LTM) upon short and long training sessions,
respectively60,61. These experiments revealed that LTM, but not STM,
was strongly impaired in imp-ΔPLD flies when compared to controls
(Fig. 7A, B). As memory acquisition and memory consolidation were
previously shown to rely on the activation of the same neuronal
pathway45, this result suggests a specific role for Imp-dependentmRNA
localization in memory consolidation rather than an effect on the cir-
cuit itself. Consistent with this idea, no significant differences were
observed when comparing the overall density and intensity of
Bruchpilot-labeled presynaptic active zones in controls vs imp-ΔPLD
flies (Fig. S9A, B). Next, because imp-ΔPLD flies express mutant pro-
teins in all imp-expressing cell types, we performed rescue experi-
ments in which we re-expressed a wild-type copy of Imp in MB γ
neurons using the 201Y-Gal4 driver. Defective LTM could be sig-
nificantly rescued in this condition, consistent with a requirement of
Imp transport function in MB γ neurons (Fig. 7C). Last, to exclude a
developmental requirement of imp function, we inactivated Imp spe-
cifically in adult MB neurons using the Gal80ts/Gal4 inducible system
to degrade endogenous GFP-Imp proteins62,63. While males raised at
restrictive temperature (20 °C; no Gal4 activity) showed normal LTM,
males shifted to permissive temperature (30 °C; Gal4 active, inducing
GFP-Imp degradation) upon eclosion exhibited impaired LTM, but
normal STM (Fig. S9C, D), indicating that Imp function is required
specifically in adult circuits.

Together, these results thus demonstrate that the transport of
Imp-dependent mRNAs toMB γ axons is required for establishment of
courtship LTM. They provide evidence that axonal targeting ofmRNAs
is required in vivo, in the context of memory circuits, for memory
consolidation.

Discussion
Targeting of neuronal mRNAs to axonal and dendritic terminals, cou-
pled with regulated onsite translation, has emerged as an important
mechanism underlying local proteome remodeling and establishment
of different forms of neuronal plasticity2,3. Although transcriptomics
studies have revealed that a rich repertoire of mRNAs is localized to
pre- and post-synaptic compartments in the mature mammalian
brain4–6, important questions remain to be addressed related to the
specificity, regulation, and function of this process in the context of
physiological memory circuits. To explore these questions in the
genetically tractable Drosophila model, we first characterized the
extent of mRNA localization in the adult Drosophila brain and profiled
the RNA content of synaptosome preparations. This revealed the
presence of hundreds of mRNA species encoding a variety of proteins,

but also a striking degree of conservation in the functional classes as
well as in the identity of enriched mRNAs from vertebrates to
invertebrates40. The rich dataset we have generated constitutes a
valuable resource to further explore how thesemRNAs are targeted to
synapses and if their targeting is population-specific. Analysis of
transgenic reporter constructs in which the coding sequence of GFP
was fused to the 3′UTR of localized mRNAs bound by the conserved
RBP Imp/ZBP1 has indicated that axonal targeting is mediated through
3′UTR-located localization elements. This is consistent both with pre-
vious knowledge on the localization function of 3′UTR sequences22–25,64

andwith the results of our iCLIP analysis pointing to a strong specificity
of Imp binding to CAA-rich 3′UTR motifs. Imp binds to multiple loca-
tions along 3′UTRs in most mRNAs, therefore, further studies will be
needed to assess whether a combinatorial recognition is at play or if
short zipcode sequences act in isolation to determine mRNA locali-
zation. Consistent with a multifactorial model, recent massively par-
allel assays aimed at systematically identifying neuronal localization
elements have suggested that the localization potential of mostmRNA
species is broadly encoded along 3′UTR length22. This is also in line
with our discovery that a number of Imp-bound, axonally-localized
mRNAs still localize in the imp-ΔPLD context. Those mRNAs might be
less sensitive to the changes in RNP granule dynamics induced by the
absence of Imp PLD58. Alternatively, they may be recognized by addi-
tional RBPs that function in a complementary manner to Imp to pro-
mote axonal targeting.

Whether local translation of mRNAs targeted to synapses is
required to establish long-term, protein synthesis-dependentmemories
has remained a long-standing question. Here, the strong and specific
memory deficit we have observed in imp-ΔPLD transport mutants
demonstrated the importance of localizing specific sets of mRNAs to
the presynaptic terminals ofMB γneurons for the consolidation of long-
term memories. Interestingly, MB γ neurons were previously shown to
be required for protein synthesis-dependent formation of long-term
memory in the context of courtship conditioning, through sleep-
dependent reactivation of a recurrent circuit involving the PAM γ5
DANs dopaminergic input neurons and MBON-γ5β’2a output
neurons45,65,66. This, together with our discovery that a number of Imp-
bound mRNAs accumulate within the MB γ5 compartment, raises the
very interesting possibility that the activation of compartment-specific
circuits promotes the local recruitment of mRNAs, thus generating
compartmentalized reservoirs for local translation and both selective
and long-term tagging of synapses. In this model, targeting of specific
mRNA subsets to selected MB compartments may contribute to the
definition of distinct functional units along axons and to the induction
of local synaptic plasticity upon integration of sensory and modulatory
signals54,67–69. Consistent with such amodel, we here uncovered that the
local accumulation ofmRNAs in the γ5 compartment is triggered by the

Fig. 5 | Imp mRNA targets exhibit compartment-specific localization in MB
γ axons. A Schematic representation of MB axonal compartments. MB γ neurons
project their axons in the medial lobe, which has been divided into 5 anatomical
compartments, from proximal γ1 to distal γ5. The most distal γ5 compartment
receives input from dopaminergic PAM- γ5-DAN neurons and establishes synapses
with the glutamatergic outputMBON- γ5β’2a neuron.BConfocal images of smFISH
signals (magenta) obtainedwith anti-arc1 probe sets. The population ofMB γ axons
(ax) is labeled using the 201Y-Gal4 driver and UAS-cGFP (green in B’). The limits of
the γ5 axonal compartment are marked with a dotted white line. The asterisk
indicates signals corresponding to the soma of neighboring neuronal populations.
Scale bar: 10μm.CmRNAenrichment in the γ5 axonal compartment for Imp-bound
transcripts. Two non Imp-bound transcripts are shown as controls (rpl23 and rpl24-
like; right). smFISH experiments were performed in 201Y-Gal4>cGFP males. Bars
with a gray border line correspond to mRNAs whose γ5 enrichment is not sig-
nificantly different from that of rpl24-like mRNA. Bars with a black border line
correspond to mRNAs whose γ5 enrichment is significantly different from that of
rpl24-like (*, P <0.5; ***, P <0.001; Kruskall–Wallis with Dunn’s post-tests). Exact P

values: 0.0001 (act5C), <0.0001 (arc1), <0.0001 (pabp-gfp), <0.0001 (eIF4A), 0.0163
(prof), 0.0454 (cg15018), 0.3117 (lk6-gfp), >0.9999 (eIF4E-1), >0.9999 (bnb), 0.2166
(crc), 0.5030 (rpl23). Numbers of brains analyzed: 14 (act5C), 24 (arc1), 21 (pabp-
gfp), 21 (eIF4A), 19 (prof), 21 (cg15018), 15 (lk6-gfp), 20 (eIF4E-1), 9 (bnb), 12 (crc), 13
(rpl23), 19 (rpl24-like). D arc1 mRNA enrichment in the γ5 axonal compartment.
Precise genotypes: UAS-Kir2.1-GFP/+; MB247-dsRed/+ (control) and UAS-Kir2.1-
GFP/+; MB247-dsRed/MB315C-Gal5 (MB315C>Kir2.1). ***, P <0.001 (Two-tailed
Mann-Whitney test). Exact P value: <0.0001. In C, D mRNA enrichment in the γ5
compartment was quantified as the ratio of smFISH spot density (number of spots
per μm3) in the distal γ5 compartment vs the proximal γ2-4 compartments. Three
biological replicates were performed, and data points were color-coded based on
the replicate they belonged to. Bar graphs and error bars represent, respectively,
for each mRNA, the average and SEM of all combined data points. In C one and
three, outliers data points were respectively omitted from the arc1 and act5C
graphs (but considered to calculate the mean). Numbers of brains analyzed: 16
(ctrl), 15 (MB315>Kir2.1). Source data are provided as a Source Data file.
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activity of upstream PAM-γ5-DANs. How specific mRNA subsets are
recruited to distinct axonal sub-compartments remains to be investi-
gated, but one could speculate that scanning mRNA molecules get
locally anchored upon synaptic stimulation. Such a dockingmechanism
has been observed in cultured neurons where rgs4 mRNA and β-actin
mRNA were shown to be selectively captured by stimulated dendritic
spines upon spatially resolved glutamate uncaging11,35,36. Synaptic

capture of β-actin required an intact actin cytoskeleton as well as the
function of the ZBP1 RBP35, suggesting that mRNA molecules are
retained at activated synapses through trans-acting factors thatmediate
anchoring to the synaptic cytoskeletal network, amechanism that could
be at play at MB synapses.

Together, our study uncovered highly specific targeting pro-
cesses that mediate neuronal mRNA localization to the presynapse of
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memory neurons and demonstrated their functional requirement
in vivo. It also paved the way for the exploration of how circuit activity
regulates mRNA recruitment and downstream translation in the
functional context of memory consolidation.

Methods
Drosophila melanogaster stocks and genetics
Flies were raised on standard media at 25 °C and dissected 4–8 days
post-eclosion. While males and females were used for experiments
shown in Figs. 2, 4, 7, S2 and S3, males were exclusively used for
experiments shown in Figs. 3, 5, 6, and S6C. The following fly stocks
were used for smFISH experiments: Imp-ΔPLD (in which the GFP cas-
sette from the original G080 line has been excised through P-element
mobilization)58; VT44966-Gal4 (VDRC stock center), 201Y-Gal4; 201Y-
Gal4,UAS-cGFP; 201Y-Gal4,UAS-CD8-RFP; UAS-gfp-profilin-3′UTR and
UAS-gfp-SV40 3′UTR70; UAS-CD8-GFP;;OK107-Gal4; UAS-profilin-RNAi
(BDSC#34523); lk6-gfp (BDSC#59795), csas-gfp (BDSC#67737), rols-gfp
(BDSC#64471) and pabp-gfp71 protein-trap or knock-in lines. elav-Gal4,
UAS-Syt-1-eGFP (BDSC#6923) flies were used for the western blot

shown in Fig. 1B. The MB315C-Gal4 (BDSC#68316), UAS-Kir2.1-GFP
(BDSC#6596), and MB247-dsRed (gift from T. Riemensperger) were
used for respectively silencing PAM-γ5 DAN neurons and visualizing
MB neurons. The following stocks were used for courtship experi-
ments: Canton S (gift from Krystyna Keleman), cantonized imp-ΔPLD
flies; UAS-gfp-imp47; 201Y-Gal4.

Generation of gfp-3′UTR reporter lines
The UASp-EGFP-3′UTR constructs were generated by LR recombina-
tion using pENTR:D/TOPO donor plasmids containing 3′UTR sequen-
ces and a UASp-EGFP-W destination vector70. The 3′UTR sequences
were PCR-amplified using the following primers: pabp_fwd (5′- CACC
GCTCGAACAGC TCAAGCGTATG -3′) and pabp_rev (5′- ATAGATATT
AAACATAAAAATCCATCC -3′); lk6_fwd (5′-CACCGCGGGTCCACTGTGG
ACAGATAAC -3′) and lk6_rev (5′- CATGTATTTAGTGTTTTT ATTGA
G-3′); act5C_fwd (5′- CACCGAAGGATCGCTTGTCTGG -3′) and act5C_rev
(5′-TGTTGTTGTTTCATTTCATCAG-3′); arc1_fwd (5′ – CACCGCGACA
AAAAGAACATCAAATACC – 3′) and arc1_rev (5′- CCGTTTCTGAGTTT
AATG GTTG - 3′).

Fig. 6 | mRNA localization to MB γ axons, but not RNA binding, is altered in
imp-Δ PLDmutants. A Correlation plot showing the normalized counts of 3′UTR-
mapped reads obtained for individual RNAs in wild-type (x-axis) and Imp-ΔPLD (y-
axis) iCLIP experiments. B Profiles of the Imp wild-type and Imp-ΔPLD iCLIP signals
(top, two replicates for each condition) and corresponding input RNA-seq signals
(middle, three replicates for each condition) along the profilin gene region. Profiles
were generated using the clipplotr tool76 and its smoothening function. Intronic and
exonic sequences are represented at the bottom by single lines and boxes,
respectively (large boxes for coding exons and smaller boxes for UTRs).
C, D Confocal images of arc1 smFISH signals (magenta) obtained in control (left)
and imp-ΔPLD (right) contexts. The population of MB γ axons (ax) is labeled in
green in C’ and D’ using the 201Y-Gal4 driver and UAS-cGFP. Scale bar: 10μm.
E Normalized numbers of smFISH spots detected in MB γ axons of wild-type and

imp-ΔPLDmutants. Two to fourbiological replicateswereperformed, and themean
value of each is indicated as a triangle. Data points were color-coded based on the
replicate they belonged to. 15098 stands for cg15098. **, P <0.01; ***, P <0.001
(Two-tailed Mann–Whitney tests). n.s. stands for not significant. Two outlier data
points (one for arc1 and one for pabp) were omitted from the graph (but con-
sidered to calculate the mean and to perform the statistical tests). Exact P values:
<0.0001 (arc1), 0.0058 (eIF4A), 0.0008 (cg15098), <0.0001 (prof), 0.0035 (act5C),
0.0719 (lk6), 0.0902 (crc), 0.9330 (bnb), 0.4527 (eIF4-E1), 0.1925 (pabp). Numbers
of brains analyzed for control and imp-ΔPLD conditions respectively: 24 and 25
(arc1), 21 and 19 (eIF4A), 21 and 20 (cg15098), 19 and 20 (prof), 20 and 25 (act5C), 24
and 22 (lk6), 18 and 19 (crc), 22 and 19 (bnb), 22 and 22 (eIF4-E1), 22 and 17 (pabp).
Source data are provided as a Source Data file.
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Fig. 7 | imp-ΔPLD males exhibit defective long-term courtship suppression.
Courtship suppression indices reflecting the Long-Term Memory (LTM, A) and
Short-TermMemory (STM,B) performances of controls (black) and imp-ΔPLD (red)
mutants. Number of trained males tested for each genotype: Canton S (controls):
n = 32 (LTM) and 22 (STM); imp-ΔPLD: n = 36 (LTM) and 24 (STM). **, P <0.01 (Two-
tailed unpaired t-tests). n.s. stands for not significant. Exact P values: 0.0024 (LTM),
0.4713 (STM). C Long-term courtship suppression indices of imp-ΔPLD mutants
(red) and mutants in which a wild-type copy of imp has been re-expressed in MB γ

neurons (gray). Canton S (controls): n = 132; imp-ΔPLD; 201Y-Gal4/+: n = 52; imp-
ΔPLD; UAS-gfp-imp/+: n = 108; imp-ΔPLD; 201Y-Gal4/UAS-gfp-imp (rescue): n = 67.
*P<0.05 (One-way ANOVA test followed by Dunnett’s multiple comparison tests).
n.s. stands for not significant. Exact P values: 0.7706 (controls), 0.0389 (imp-ΔPLD;
201Y-Gal4/+), 0.1547 (imp-ΔPLD; UAS-gfp-imp/+). Data points represent individual
males, bar graph mean values, and error bars SEM. Source data are provided as a
Source Data file.
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Synaptosome preparation
Synaptosome fractionation was adapted from ref. 39. Four hundred
miligram of frozen Drosophila adult heads were homogenized in 7
volumes (2.8mL) of homogenization buffer 0.32M sucrose, 20mM
HEPES–KOH pH 7.4 supplemented with protease and phosphatase
inhibitor cocktail (complete EDTA-free) and vanadyl-ribonucleoside
complex 1X (VRC) in a pre-chilled 15mL dounce type glass homo-
genizer, through around 40 manual gentle strokes, avoiding air bub-
bles. The resulting head homogenate (H) was then transferred into
2mL tubes and centrifuged twice at 1000 × g at 4 °C for 10min to
remove nuclei and debris that pellet in the P1 fraction. S1 supernatants
were then centrifuged again 20min at 16,000 × g at 4 °C to separate
the cytoplasmic material (supernatant S2) from synaptosomes and
mitochondria (pellet P2). P2 pellets were resuspended together in
1.5mL of homogenization buffer with an eroded pasteur pipette and
loaded on top of a 10mL discontinuous sucrose gradient composed of
5mL of a 0.8M sucrose phase (0.8M sucrose, 20mM HEPES–KOH
pH7.4, VRC 1X) layered on top of 5mL of a 1.2M sucrose phase (1.2M
sucrose, 20mMHEPES–KOHpH7.4, VRC 1X). The sucrose gradientwas
centrifuged at 54,000× g for 1 h 30min at 4 °C in a SW-41-Ti swinging-
bucket rotor. The synaptosome fraction was collected with an eroded
pasteur pipette at the interface between the 0.8M sucrose and 1.2M
sucrose phases, washed with 9mL of homogenization buffer without
VRC, and centrifuged at 20,000× g for 30min at 4 °C. The final pellet
(Synapt) was resuspended in 100 µL of homogenization buffer without
VRC and then processed for RNA extraction. One hundred microliters
of the H fraction were used in parallel for RNA extraction.

Electron microscopy on synaptosome fraction
The synaptosome fraction was pelleted and fixed for 1 h in 2.5% glu-
taraldehyde in homogenization buffer. The fixation solution was then
removed and replaced by0.5%glutaraldehyde inHepes buffer, and the
sample was stored at 4 °C. The synaptosome fraction was then rinsed
in PHEM buffer and post-fixed in a 0.5% osmic acid +0.8% potassium
Hexacyanoferrate trihydrate for 2 h in the dark at room temperature.
After two washes in PHEM buffer, the synaptosome fraction was
dehydrated in a graded series of ethanol solutions (30–100%) and
embedded in EmBed 812 using an Automated Microwave Tissue Pro-
cessor for Electronic Microscopy (Leica EM AMW). Thin sections
(70 nm; Leica-Reichert Ultracut E) were collected, and the sections
were counterstained with uranyl acetate 1.5% in 70% Ethanol and lead
citrate and imaged using a Tecnai F20 transmission electron micro-
scope at 120 KV.

Synaptosome RNA-seq and analysis
Synaptosomes were prepared in triplicates from GFP-Imp#G080 flies,
and RNA was extracted from both head homogenates (H, input) and
synaptosome fractions. The quality of total RNA was checked on a
picoRNA chip with a bioanalyzer, and rRNA was depleted using the
QIAseq FastSelect –rRNA Fly Kit (ID# 333262), followed by library
preparation using the NEBNext RNAUltra II Library Prep Kit. Profiles of
the corresponding libraries were checked on a HS DNA screen tape
with a Tapestation 4150, multiplexed and 2*50 bp paired-end
sequenced on an Illumina NextSeq device. Between 65.7 and 120.1
million reads were obtained.

Reads were processed using custom bash scripts. First, we used
BBsplit fromBBTools (39.01) (http://sourceforge.net/projects/bbmap/)
to eliminate reads with ambiguous mapping. Next, we trimmed reads
to remove adapters and low-quality base calls with FASTP (0.22.0)72,
thus keeping from 11.2 to 43.3 million reads of 30–31 bp per sample.
These reads were aligned to the Drosophila melanogaster genome
(dm6) with STAR (2.7.10a)73 in paired-end mode, using BDGP6.32.107
assembly as gene annotation from ENSEMBL. More than 84.2 % of
reads were thus successfully mapped in the different replicates
(uniquely mapped +mapped to many loci), imported to R (4.2.0), and

counted using featureCounts from the Rsubread package (2.12.0). For
DGE analysis, FBti** and RR** sequences were excluded because of
mapping ambiguities. Genes that had no count in all samples or did not
have a CPM>0.5 in at least 3 samples were also removed. Input and
synaptosome samples coming from the same initial lysate were paired
to perform DGE using DESeq2 (1.38.0)74 with alpha =0.05 and pAd-
justMethod= “BH” and the synaptosome samples as the reference
levels. Only genes with an adjusted P value <0.05 were considered for
further analysis.

Gene Ontology was performed with Gorilla (http://cbl-gorilla.
cs.technion.ac.il) on the synaptically-enriched genes (log2FC ≥
0.85), using the remaining significant genes of our dataset
(log2FC ≤ 0.85) as background. The GO terms returned by Gorilla
may sometimes exhibit redundancy. To overcome this, we calcu-
lated a jacquard index to cluster GO terms based on the proportion
of shared genes (Fig. S1C). This similarity index was calculated as the
ratio between the intersection and union of two GO classes (termed
A and B):

d A,Bð Þ= 1� jA \ Bj
jA∪Bj

Western blot
10–20 μg of the head lysate (H), P1, and Synaptosome soluble and
insoluble protein fractions were used forWestern-Blotting. The latter
fractions were obtained after lysis of the synaptosome fraction in 2 %
Triton, 10mM Tris-HCl and complete EDTA-free 1X (Roche, #
11873580001), incubation for 5min on ice and centrifugation for
10min at 16,000 × g at 4 °C. Soluble synaptic proteins were recov-
ered from the supernatant while insoluble proteins were recovered
after resuspension of the pellet with homogenization buffer. Protein
concentrations were determined for each fraction using the Bradford
method, and samples were loaded on NuPAGE 4–12 % Bis-Tris pre-
casted gels for migration and then transferred to nitrocellulose
membranes. After blocking, membranes were incubated with dif-
ferent primary antibodies (mouse anti-Bruchpilot (NC82 (DSHB);
1:1000)), mouse anti-Lamin (Dm0 67.10 and 84.12 (DSHB); 1:2000
each), mouse anti-Cystein String Protein (Ab49 (DSHB); 1:200),
mouse anti-Elav (7E8A10 (DSHB); 1:500 or rabbit anti-GFP) (#TP401
(Torey Pines); 1:000) overnight at 4 °C with agitation. Membranes
were then washed with PBS Tween 0.1% and incubated with fluor-
escent secondary antibodies (goat anti-rabbit AF680 (Invitrogen,
#A21076, 1:10,000)), goat anti-mouse IRDye 800 (Invitrogen, #SA-
10156, 1:10,000) for 2 h at room temperature. After threewashes with
PBS Tween 0.1%, the fluorescence was detected using an Odyssey Li-
CoR system. Blot uncropped scans are provided in the Source
Data file.

Single molecule fluorescent in situ hybridization (smFISH)
Brains from 5 to 7-day-old Drosophila were dissected in cold RNase-
free HL3 buffer. Dissected brains were then fixed in 4% formaldehyde
in HL3 buffer for 1 h at 4 °C, rinsed twice with PBS, and stored over-
night at 4 °C in 70% Ethanol in PBS. On the next day, brains were
treatedwith ProteinaseK (#AM2546; 2μg/mL) in 2x SSC for 5minat RT
and then washed twice with PBS, followed by wash buffer (10% for-
mamide in 2x SSC) for 5min.

For smFISH experiments performed with stellaris probe sets,
brains were then incubated overnight, at 45 °C, and under agitation,
with Quasar®570/670- labeled Stellaris® Probes in 100 μL hybridiza-
tion buffer (100mg/mL dextran sulfate, 10% formamide in 2x SSC).
egfp and camk2 probes were used at a final concentration
of 0.125μM and profilin at a concentration of 0.25 μM. profilin
and gfp probes used were identical to those used in refs. 70,71,
respectively, and can be found in Supplementary Data 7. Sequences
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of the camk2 and actin5C probes can be found in Supplemen-
tary Data 7.

For smFISH experiments performed using the smiFISH
approach46, brains were then incubated overnight at 37 °C, under
agitation with 1.25 μL of a probe duplex stock solution for each
50 μL of hybridization buffer (Stellaris RNA hybridization, 10% for-
mamide). Probe duplex stock solutions were pre-prepared by mix-
ing individual primary probes (sequences in Supplementary Data 7)
with complementary Cy3-FLAPx-Cy3 or Atto647-FLAPx-Atto647
(Eurofins genomics) in TE-NaCl 100mM buffer to reach a final con-
centration of 0.05 μM/primary probe and 5 μM, respectively.
Probe duplex stock solutions were then heated to 95 °C for 5min,
cooled down until 35–37 °C, and incubated in ice for
30min. Sequences of the smiFISH probes can be found in Supple-
mentary Data 7.

After hybridization, brains were washed twice for 30min in pre-
warmed wash buffer under agitation at 37 or 45 °C and mounted in
Vectashield (Vector Laboratories) medium.

Image acquisition
Brain samples were imaged using an LSM880 confocal equipped
with an Airyscan module and a 63 × 1.4 NA oil objective. Images
were taken with a 0.07 μm xy pixel size and a 0.25 μm z step size
and processed with the automatic Airyscan processing mod-
ule of Zen.

smFISH signal quantification
smFISH signals in cell bodies. ROIs (300 × 300 pixels) were cropped
from single z slice,s and image intensities rescaled to enhance contrast
andkeep0.01%pixels saturated. smFISH spotsweredetectedusing the
Small Particle Detection (SPaDe) algorithm (https://raweb.inria.fr/
rapportsactivite/RA2016/morpheme/uid13.html)75. The cutoff size for
smFISH spots was set to 4 pixels, and the threshold used for the
detection of smFISH spots was 0.62, except for rpl24-like (0.42), eIF4A
(0.32), and bnb (0.82).

smFISH signals in axons. Z-stack images containing 25 slices covering
a ~6μm thick section of MB axonal lobes labeled with GFP or RFP were
cropped to standardize images and include exclusively compartments
γ2-5. A pipeline was developed on the Imaris software ensuing the
following steps: (1) selection of the ROI (γ2-5 compartments) based on
lobe absolute fluorescent intensity, using surface function with auto-
matic thresholding and surface detail of 0.146μm; (2) detection of
smFISH spots using the spot tool, with estimated XY diameter of
0.4μm and PSF-elongation along Z-axis of 0.8μm; (3) overlapping of
the two signals, using the “spots close to surface” filter to include only
spots inside the γ lobe (shortest distance to surface <0), with a further
selection of spots comprised within the distal 2/3 of the lobe (position
measured along the medial lobe axis) (Fig. S10). For proximal:distal
ratio, MB γ lobe volume was divided into two parts: the γ5 compart-
ment and the remaining 2/3 of the lobe, and the number of spots in
each region was divided by the corresponding volume. Samples where
the number of axonal smFISH spots was lower than 10 were excluded
from the analysis.

Immunostaining on whole-mount adult brains
Brains were dissected in cold HL3 buffer for 1 h and fixed in 4% for-
maldehyde, HL3 buffer for 1 h. After threewashes in 0.1% PBS/ Triton-X
(PBT), brains were blocked overnight in PBT supplemented with 1%
BSA. The next day, brains were incubated with mouse α-NC82 primary
antibody (DSHB, 1:100) for 24 h. Brains were thenwashed thrice in PBT
0.1% and incubated with α-mouse secondary antibodies conjugated
with Alexa Fluor 568 (Thermo Fisher, 1:500) overnight at 4 °C. Brains
were washed thrice in PBT 0.1% and mounted in Vectashield (Vector
Laboratories) medium.

Imp iCLIP and analysis
Samples were prepared in replicates from GFP-Imp#G080 flies and
GFP-Imp-ΔPLD adult heads. Frozen fly heads were kept on dry ice,
and porcelain pestles and mortars were pre-cooled on dry ice. Fly
heads were ground until a fine powder was generated. Powder
was transferred to a 6-well tissue culture (TC) plate that was pre-
cooled on dry ice. Samples were irradiated 4x with 150mJ/cm2 in a
Stratalinker 2400 at 254 nm while still on dry ice. In between
x-linking, the powder is mixed to guarantee homogenous cross-
linking. Tissue powder was lysed in the TC dish after moving it onto
normal ice in RIPA buffer (with Protease inhibitor). 0.2 Units of
RNaseI and 4 Units Turbo DNase were added per 1 mL of cell lysate
at 1mg/mL protein concentration for RNA fragmentation. GFP-
Trap® MA beads (ABIN1889489, ChromoTek) were prepared
according to the supplier’s instructions and used to isolate Protein-
RNA complexes. RNA was ligated to a pre-adenylated infrared
labeled IRL3 adaptor with the following sequence:/5rApp/AG ATC
GGA AGA GCG GTT CAG AAA AAA AAA AAA /iAzideN/AA AAA AAA AAA
A/3Bio/. The complexes were then size-separated by SDS-PAGE,
blotted onto nitrocellulose, and visualized by Odyssey scanning.
RNA was released from the membrane by proteinase K digestion
and recovered by pre cipitation. cDNA was synthesized with
Superscript IV Reverse Transcriptase (Life Technologies) and
AMPure XP beads purification (Beckman-Coulter, USA), then circu-
larized using Circligase II (Epicenter) followed by AMPure XP beads
purification. After PCR amplification, libraries were size-selected
with Ampure beads and gel-purification and quality controlled for
sequencing. Libraries were sequenced as single-end 100 bp reads on
Illumina HiSeq 4000, producing more than 9.5 million reads per
replicate.

Data analysis. iCLIP reads were demultiplexed on iMAPS (https://
imaps.goodwright.com/) using iCount demultiplex (https://github.
com/tomazc/iCount), which also moved UMIs to read headers and
trimmed the Illumina 3′ sequencing adapter. First, we used BBduk
fromBBTools to select reads with aminimum 15 bp, remove adapters
from both read ends (allowing 1 mismatch), and further trim
low-quality base calls in the 3′ end. Next, we aligned the remaining
sequences to the Drosophila melanogaster genome (dm6)
with STAR (2.7.10a) in single-end mode and using BDGP6.32.107
assembly as gene annotation from ENSEMBL with settings --out-
SAMtype BAM SortedByCoordinate --quantMode GeneCounts --out-
FilterScoreMinOverLread 0.80. 56% (wild-type Imp, replicate 1) and
67% (wild-type Imp, replicate 2) reads were uniquely mapped. The
resulting BAM files were subsequently processed to deduplication
using umi_tools dedup from UMI tools with settings --edit-distance-
threshold = 1, thus reducing the total number of reads from 3,257,211
to 634,505 reads for replicate 1 and from 4,912,260 to 960,067 reads
for replicate 2. Counting cross-link events and peak calling were
performed with iCount (https://icount.readthedocs.io/en/latest/
tutorial.html” \l “quantifying-cross-linked-sites). Specifically, iCount
xlsites was first run on each replicate with settings --group_by start
--quant cDNA, which gave us identified and quantified crosslinked
sites. After the counting, we pooled crosslinked sites from
both replicates using iCount group. Last, we used iCount peaks
to generate a subset of significantly cross-linked sites with the fol-
lowing parameters: iCount peaks regions.gtf cDNA_unique.bed sam-
ple_regions_peaks_unique.bed --scores sample_regions_scores_unique.
tsv. regions.gtf is a specific annotation file returned by iCount seg-
ment with the following settings: iCount segment Drosophila_mela-
nogaster.BDGP6.32.107.gtf Drosophila_melanogaster.BDGP6.32.dna.
toplevel.fa.fai.

Motifs enriched around significant peaks were identified with
PEKA76 using iCount xlsites and iCount peaks outputs and the Droso-
phila_melanogaster.BDGP6.32.dna.toplevel.fa.fai. Motif enrichment
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profiles in 3′UTRs were plotted using cv_coverage.py (https://github.
com/ulelab/cv_coverage/blob/main/cv_coverage.py).

Differential gene expression for iCLIP data. To compare the cross-
linking profiles of wild-type Imp and Imp-ΔPLD, we only counted reads
mapping to the 3′UTR, using featureCounts from the Rsubread pack-
age (2.12.0). Read counts of each group (WT and ΔPLD) were sepa-
ratelyfiltered as described for synaptosomeRNA-seq, then normalized
using DESeq2 after merging all groups. The mean of replicates was
plotted for each condition.

Metatranscript analysis. To construct a standardized mRNA refer-
ence library from the genes recovered in the iCLIP datasets, we used
the UCSC database to retrieve a ncbiRefSeq table from Drosophila
melanogaster dm6 genome release (BDGP Release 6 + ISO1 MT/
dm6). All transcripts that were not assigned to the X, Y, MT, 2L, 2R,
3L, or 3R chromosomes were first removed. Then, we kept only the
longest transcript of each gene and removed all transcripts with
ambiguous annotation (incomplete, unknown) and non-coding
RNA. To calculate mRNA length, we summed exon lengths and
converted genomic CDS start/end positions into corresponding
transcript positions. 5′UTRwas defined as the region betweenmRNA
start and CDS start and 3′UTRs as the regions between CDS end and
mRNA end.

For transcriptswith ≥20 significant peaks, peakgenomic positions
were converted into corresponding transcript positions and labeled
based on the transcript region intowhich they fall. For each gene, peak
transcript positions within 5′UTR, CDS, and 3′UTR were respectively
rescaled from 0 to 19, 20 to 69, and 70 to 100. The density of these
rescaled positions was then computed using kernel density estimation
(KDE), reflecting for each position along the transcript the overall
likelihood of finding an IMP crosslinked site.

RIP-chip and analysis
Immunoprecipitation and RNA extraction. 201Y-Gal4/+, UAS-Flag-
Imp/+, and control 201Y-Gal4/+ flies wereobtained by crosses raised at
25 °C. 3–5-day-old flies were collected and snap frozen. Heads (1.8mL
per condition) were collected at 4 °C using two prechilled sieves of
different mesh sizes (630 µm on top and 400 µm at the bottom) and
homogenized in a prechilled 15mL glass Dounce Tissue Grinder with
5mL lysis buffer (20mMTris-HCl-pH 8, 150mMNaCl, 10mMEDTA-pH
8, 0.02mg/mL heparin, 0.2% NP40, 1.5mM dithoithreitol (DTT),
complete EDTA-free 1X (Roche, # 11873580001)) supplemented with
DNAseI (20μ/mL) and RNAse inhibitors (100μ/mL SUPERase.In
(ThermoFisher, #AM2694)). The homogenates were cleared by two
consecutive centrifugations, a first at 1150× g for 10min at 4 °C and a
second at 9400× g for 10min at 4 °C, and pre-adsorbed against
protein-agarose beads (250μL per condition) for 30min at 4 °C. In
parallel, mouse anti-Flag antibodies (M2 clone, Sigma; 35μg/condi-
tion) were coupled to protein G-agarose beads (500μL per condition)
for 30min at room-temperature, washed three times in lysis buffer,
added to the pre-adsorbed lysates and incubated with the lysates on a
rotator for 1.5 h at 4 °C. Beads were then pelleted by mild centrifuga-
tion (8 × g for 2min at 4 °C), washed three times 15minwith lysis buffer
and incubated for 30minwithproteinaseK (ThermoFisher, #AM2546),
first at 30 °C and then at 50 °C (10min). Eluates were then collected
and RNA recovered through Trizol extraction. Two biological repli-
cates were performed.

RNAs were reverse-transcribed using oligodT primers, amplified,
fragmented, and biotinylated following the Affymetrix GeneChip
Expression Analysis Technical Manual. Labeled cDNAs were then
hybridized on GeneChip Drosophila Genome 2.0 arrays (Affymetrix
Inc., Santa Clara, CA, USA), which include 18,952 probes targeting
13,227 different genes.

Data analysis. Raw data were uploaded onto the Genespring software
and filtered so as to eliminate gene IDs exhibiting a very low signal
(<20%) in at least one condition. Normalization was performed by
Robust Multi-array Analysis (RMA), without baseline transformation.
Normalized signals in the bound fraction of each 201Y-Gal4/+, UAS-
Flag-Imp/+ sample was compared to signals in the bound fraction of
each 201Y-Gal4/+ controls and transcripts exhibiting a log2FC > 1 for
each comparison were selected to produce a robust list of Imp-
associated mRNAs.

Courtship conditioning
All experiments were performed with Imp-ΔPLD flies cantonized for 5
generations and raised at 25 °C with a 12 h/12 h light/dark cycle.
Trainings and tests were performed in a dedicated room where tem-
perature was kept at 23–25 °C and humidity at 60–80%. Virgin males
were collected between 0 and 4 h after eclosion and transferred to
individual glass food vials, where they were aged for 5 days before
space training with pre-mated females. Canton S virgin females were
collected in parallel and kept in normal food vials in groups of 10.
Sixteen hours before the start of training, femaleswerepre-matedwith
>5-day-old Canton S males previously housed in groups of 15. For
training, individual males were placed in individual small
(16 × 100mm) glass food vials and consecutively exposed to three
different mated females for 2 h each, with a resting interval of 30min.
Naïve males were prepared in parallel but not exposed to any female.
Females were removed from the glass vials after the last round of
training, and males were kept in isolation before the test. STM was
assessed 30min after training and LTM 24h after training.

Courtship behaviors were recorded for 12.5min in 25mm dia-
meter chambers, and courtship indices (percentage of time spent by
males on courting) were automatically extracted from t = 2.5min
onwards, using a custom-built Fiji algorithm77. Memory Indices (or
courtship suppression indices) were calculated for each testedmale as
follows: 1 –(CI Trained / CI Naive), where CI Trained represents the
courtship index of the trained fly, and CI Naive represents the mean
courtship index of the naive flies, respectively.

For the degradFP experiments described in Fig. S7, flies were
raised at 20 °C. Half of the progenywas shifted to 30 °C upon eclosion,
trained, and tested at this temperature. The other half was maintained
at 20 °C until testing. In this experiment, males underwent a single
round of training (1 h for STM and 6 h for LTM65) and were tested in
10mm diameter chambers.

Data availability
Materials generated for the study are available fromthe corresponding
author on request. Source data are provided with this paper. The
synaptosome RNA-seq data generated in this study have been depos-
ited in the NCBI GEO database under accession code PRJNA1064379.
The Imp iCLIP data generated in this study have been deposited in the
NCBI GEO database under accession code PRJNA1063549. Source data
are provided with this paper.

Code availability
All original code has been deposited at GitHub and is publicly available
under the following links: https://github.com/HibaLaghrissi/
Synaptosome-and-IMP_iCLIP-analysis.git or https://doi.org/10.5281/
zenodo.14921462.
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