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Predicting orthognathic surgery results as
postoperative lateral cephalograms using
graph neural networks and diffusion models

In-Hwan Kim1, Jiheon Jeong1,2, Jun-Sik Kim1, Jisup Lim 3, Jin-Hyoung Cho4,
Mihee Hong5, Kyung-Hwa Kang6, Minji Kim7, Su-Jung Kim8, Yoon-Ji Kim9,
Sang-Jin Sung9, Young Ho Kim10, Sung-Hoon Lim11, Seung-Hak Baek12,
Jae-Woo Park 3 & Namkug Kim 3

Orthognathic surgery, or corrective jaw surgery, is performed to correct
severe dentofacial deformities and is increasingly sought for cosmetic pur-
poses. Accurate prediction of surgical outcomes is essential for selecting the
optimal treatment plan and ensuring patient satisfaction. Here, we present
GPOSC-Net, a generative prediction model for orthognathic surgery that
synthesizes post-operative lateral cephalograms from pre-operative data.
GPOSC-Net consists of two key components: a landmarkpredictionmodel that
estimates post-surgical cephalometric changes and a latent diffusion model
that generates realistic synthesizes post-operative lateral cephalograms ima-
ges based on predicted landmarks and segmented profile lines. We validated
ourmodel using diverse patient datasets, a visual Turing test, and a simulation
study. Our results demonstrate that GPOSC-Net can accurately predict
cephalometric landmarkpositions andgenerate high-fidelity synthesizedpost-
operative lateral cephalogram images, providing a valuable tool for surgical
planning. By enhancing predictive accuracy and visualization, our model has
the potential to improve clinical decision-making and patient communication.

Orthognathic surgery (OGS) is widely used to correct severe dentofa-
cial deformities. Establishing the surgical treatment objective and
predicting surgical results are necessary to obtain a balance among
esthetics, function, and stability and ensure patient satisfaction1.
Therefore, it is essential to compare various treatment options, such as
whether to extract teeth or perform single-jaw surgery or double-jaw

surgery, in terms of their expected results to select an optimal treat-
ment plan for the patient. Such pre-procedural planning is even more
important with the increased demand for appearance enhancements,
as orthognathic surgeries are increasinglybeingdone to improve facial
esthetics, even for those who do not have severe facial deformities.
Thus, the prediction of facial changes that would occur with
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orthognathic surgery serves as an important factor in deciding whe-
ther a patient should receive surgical treatment2,3. Traditionally, the
prediction of OGS has been carried out by tracing lateral cephalo-
metric radiographs. Changes in the facial appearance were predicted
based on the ratio of the movement of the soft-tissue landmark cor-
responding to the hard-tissue landmark using a pre-operational
cephalogram (pre-ceph)4,5. However, this ratio is affected by various
factors, such as the direction of bony movement, thickness or tension
of soft tissue, type of surgery, and type of malocclusion, and thus, the
accuracy is low, and the deviation is exceedingly large for clinical
usage. Commercial programs used for orthodontic diagnosis can
provide clinically practical guidelines by simulating post-operational
(post-op) changes basedon the bone–skin displacement ratio but have
limitations in describing actual changes. As a result, the post-op
changes provided by these commercial programs do not accurately
reflect real changes6–9. To overcome these problems, several
researchers had developed various algorithms for accurately predict-
ing soft-tissue changes. However, most of these algorithms have lim-
ited application, such as formandibular surgeryonly or formandibular
advance surgery only10–12. Although there had been a rare attempt to
develop a prediction algorithm for various surgical movements13, its
prediction error was exceedingly large that it could not be applied in
clinical situations. Recently, some investigators have been studied to
predict surgical results in three dimensions(3D)14–16. CBCT was intro-
duced into the field of dentistry from its early stages of development
due to its advantages of being accurately reproducing the craniofacial
structures in 3D without distortion, magnification, or overlap of ima-
ges with low radiation dose17.

Initially, CBCT was mainly used to evaluate the alveolar bone
region18, but as the field of view (FOV) gradually increased, its appli-
cation has expanded to include the evaluation of impacted teeth19,
assessment of diseases or trauma in the craniofacial region20, and
analysis for orthodontics and OGS21,22. Lee et al.14 attempted to predict
facial changes in 10 OGS patients using CBCT and facial scans. They
achieved satisfactory results within 2.0mm, but the sample size was
too small. Resnick et al.15 also evaluated and predicted soft tissue
changes in three dimensions after maxillary surgery, but obtained
results that were unsatisfactory for clinical application. Bengtsson
et al.16 compared soft tissuepredictions using 2Dcephalograms and 3D
CBCT and found no significant difference in accuracy. However, they
reported that 3D analysis is more advantageous in cases of facial
asymmetry. With the application of CBCT to OGS, the amount of
radiation exposed to patients has also increased as the FOV and image
resolution have increased23.

Previous studies on CBCT dosimetry have shown that the mean
organ dose (84–212 μSv) is significantly higher than that delivered for
the acquisition of lateral cephalograms and panoramic radiographs24.
Jha et al.25 investigated the cancer risk for various organs based on the
median and maximum CBCT imaging conditions commonly used in
Korea. The results showed that cancer riskwas higher inwomen than in
men, increasedwith younger age, and rosewith the number of imaging
sessions, as cancer risk is influenced by factors such as age, gender,
equipment parameters, and the number of imaging sessions. There-
fore, the ALARA (As Low As Reasonably Achievable) principle must be
strictly followed when performing CBCT in clinical practice, and rou-
tine CBCT imaging for orthodontic treatment cannot be justified. For
the analysis of OGS, CBCT can offer advantages in cases of severe
skeletal discrepancies, such as pronounced facial asymmetry with a
canted occlusal plane or developmental disorders26. While some stu-
dies advocate the use of CBCT for orthognathic or TMJ surgery, sys-
tematic reviews have failed to support their universal application27.

As the field of generative AI using deep-learning models drama-
tically improved, some researchers tried to apply synthetic images in
medical and dental imaging. Kim et al. attempted to generate lateral
cephalograms using deep learning28. They reported visual Turing test

results showing that the synthetic lateral cephalograms were indis-
tinguishable from real lateral cephalograms and that tracing on the
synthetic images was possible. The use of diffusionmodels29–34 has led
to advancements in multi-modal generation, such as text-to-image or
layout-to-image generation, and various applications were demon-
strated in the medical domain. For example, the method proposed by
ref. 35, overcame the limitations of existing diffusion-based methods
and improved 3Dmedical image reconstruction tasks such as MRI and
CT, by effectively solving 3D inverse problems. Furthermore, the dif-
fusion model can synthesize high-quality medical images, improving
medical image analysis performance when data is scarce36–39. Among
them, a latent diffusion model has been developed for a powerful and
flexible generation with conditioning inputs and high-resolution
synthesis with cross-attention layers into the model architecture16.
With these advances, it could bepossible to generate syntheticpost-op
lateral cephalograms (spost-cephs) for OGS to compare the outcomes
of various treatment options. Therefore, the purpose of this study is to
predict facial changes after OGS using a latent diffusion model. We
utilized deep learning to generate spost-cephs, enabling surgical out-
comes to be anticipated and images to be generated for various sur-
gical planning scenarios through condition adjustments.Our approach
relied on two methods. First, to enhance surgical planning accuracy,
we employed GCNN to predict appropriate surgical movements from
the pre-ceph. Second, we took the surgical movements predicted by
GCNN and other information frompre-ceph and its profile line tracing
as inputs to generate spost-cephs using a diffusion model. This gen-
erative prediction for orthognathic surgery using ceph network
(GPOSC-Net) leveraged pre-cephs to generate spost-cephs based on
the intended amount of surgical movement (IASM).

Afterward, we validated the spost-cephs through various meth-
ods. First, to assess the quality andmedical realism of the spost-cephs,
a visual Turing test (VTT) was performed with four doctors of dental
surgery (DDSs), namely, two orthodontists (ODs) and two oral and
maxillofacial surgeons (OMFSs), with an average of over 15 years of
experience, to differentiate real post-op lateral cephalograms (post-
ceph) from spost-cephs and achieved an average accuracy of 48%,
which indicated that the spost-cephs exhibited medically plausible
quality and features. Second, the spost-cephs were validated via a
landmark comparison between the post-cephs and corresponding
spost-cephs by two ODs. The distances of these 35 landmarks were
grouped into five and evaluated. In each group, the mean Euclidean
distance error of the landmarks was 1.5mm, and the successful pre-
diction rate40 (successful prediction rate, SPR; errors <2.0mm) for
each landmark averaged at ~90%. Third, by adjusting the weight of
classifier-free guidance (CFG)31 in GPOSC-Net, we generated spost-
cephs for various surgical planning scenarios. We requested an eva-
luation from the same two ODs and two OMFSs. After being shown
simulated surgery images generated at guidance IASM ranging from
under, exactly, and over setback amounts of 0.1 to 1.6 (where 0, pre-
ceph; 1, exact setback amount, i.e., similar to those of post-ceph; 1.6,
over setback amount, i.e., beyond the surgical movement of post-
ceph), they selected themost appropriate surgical outcome images for
those patients, resulting in an average selected IASM of 1.03 ±0.31.
Finally, a survey consisting of five questionswasperformed to evaluate
the clinical utility of the proposed model.

Results
Comparison of landmarks between post-ceph and spost-ceph
To evaluate the accuracy of the model, two ODs traced the landmarks
in both the post-cephs and spost-cephs (shown in Fig. 1a) from the test
set. Figure 1b–d show the distance errors for the Euclidean, x-axis, and
y-axis, respectively. We categorized all the landmarks into five anato-
mical groups: cranial base, dental, jaw, upper profile, and lower profile
(Table 1). The average errors of the landmarks for the internal and
external test sets werewithin 1.5mm. This was smaller or similar to the
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inter-observer differences shown in past studies investigating the
reproducibility of landmark selection in real cephalograms41,42. In the
internal test, errors ranged from 1.01 ± 0.64mm at the cranial base to
1.46 ±0.93mm at the lower profile, with an average error of
~1.27 ± 0.51mm. In the external test, errors ranged from
0.85 ± 0.58mm at the cranial base to 1.51 ± 1.01mm at the jaw, with an
average error of ~1.29 ±0.62mm (Fig. 1b). In the internal test, x-axis
errors ranged from 0.59± 0.53mm at the cranial base to

0.94 ± 0.81mm at the lower profile, with an average error of approxi-
mately 0.80±0.40mm. In the external test, x-axis errors ranged from
0.52± 0.45mm at the cranial base to 1.05 ± 0.96mm at the lower
profile, with an average error of approximately 0.80±0.51mm
(Fig. 1c). In the internal test, y-axis errors ranged from0.68 ±0.6mmat
the cranial base to 0.94 ±0.77mm at the lower profile, with an average
error of approximately 0.84 ± 0.43mm. In the external test, y-axis
errors ranged from 0.55 ± 0.48mm at the cranial base to

a b
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e

Fig. 1 | Comparison of post-ceph and spost-cephwith landmark analysis. a Four
typical cases of pre-ceph, post-ceph, and spost-ceph. Based on these pre-cephs,
their landmarks, profile lines, and predicted amounts of surgical movement,
GPOSC-Net generated corresponding spost-cephs. b Landmark distance errors
(LDE, unit: mm) of post-ceph and spost-cephmeasured by two orthodontists (ODs)
for internal and external test sets. c LDEs of X-coordinates (unit: mm) of post-ceph

and spost-ceph. d LDEs of Y-coordinates (unit: mm) of post-ceph and spost-ceph.
Box plots illustrate the median, interquartile range (box), and whiskers extending
to 1.5 times the range, with outliers represented as individual points. e Successful
prediction rates (SPR) for each landmark in terms of percentages as determined by
two ODs for internal and external test sets.
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0.93 ± 0.86mm at the lower profile, with an average error of
approximately 0.74 ±0.42mm (Fig. 1d). The results for each of the
landmarks can be found in Supplementary Table 2 of the supple-
mentary materials.

Comparison of accumulated SPRs
The distance errors between the gold standard landmarks and those
predicted by the models for the five groups, namely, the cranial base,
dental, jaw, upper profile, and lower profile, were evaluated. The SPRs
for each group were assessed according to errors <2.0mm as deter-
mined by an OD with more than 15 years of experience (Fig. 1e).

For both the internal and external test sets, landmarks at the
cranial base that were not affected by OGS exhibited very high SPRs,
whereas landmarks at the remaining parts whose positions changed as
a result of OGS exhibited lower SPRs. The SPRs for soft-tissue land-
marks appeared lower than those for hard-tissue landmarks, because
the errors for the soft-tissue landmarks were generally larger than
those for the hard-tissue landmarks40,41,43,44. In the internal test, the
SPRs were 94% for the cranial base, 79.1% for dental, 78.1% for the jaw,
91.2% for the upper profile, and 76.5% for the lower profile. In the
external test, the SPRs were 96.5% for the cranial base, 80% for dental,
81.2% for the jaw, 89.3% for the upper profile, and 74.9% for the lower
profile (Table 1). The results for each of the landmarks can be found in
Supplementary Table 2 of the supplementary materials.

Visual Turing test
AVTTwas conductedwith twoODs and twoOMFSs,with an average of
over 15 years of experience, to evaluate the quality of the spost-cephs.
In general, a VTT for a generative model is considered ideal when the
resulting accuracy is ~50%.Wepresented 57 pairs of randomly selected
images consisting of both real and generated images (1:1 ratio).
Although specificity was high for one examiner, the average accuracy
of all examiners was 49.55%. The accuracies of the two ODs and two
OMFSs were 45.6, 38.6, 64.9, and 49.1%, respectively. Meanwhile, the
sensitivity values for OD1, OD2, OMFS1, and OMFS2 were 51.7, 41.4,
35.5, and 48.3%, respectively, whereas their specificity values were
39.3, 35.7, 96.4, and 50.0%, respectively. These results demonstrated
that the quality of the spost-cephs was reasonably good because even
expert DDSs were unable to differentiate between real and generated
cephs in a blind condition.

Digital twin
After the serial generation of spost-cephs based on IASM, as shown in
Fig. 2a, two ODs and two OMFSs were requested to choose the most
proper images among the spost-cephs as a treatment goal. The spost-
cephs were generated based on IASM 1.0, which denotes an amount of
movement similar to that of actual surgical bony movement. On the
other hand, the spost-cephs with IASMs corresponding to under or
excessive movement were continuously generated as follows: an
image generated based on IASM 0.8, for example, denotes setting the
surgical movement to be 20% smaller than the actual setback amount,
whereas an image generated based on IASM 1.2 denotes setting the
surgical movement to be 20% larger than the actual amount. For IASM
0.1 to 1.6, five images, including for IASM 1.0, were thus randomly
generated. The two ODs and twoOMFSs were requested to select only
one image as an appropriate treatment goal based on the pre-ceph. If a
spost-ceph generated based on IASM 0.8 to 1.2 was selected, it was
considered to be a correct answer, i.e., an appropriate treatment goal.
If the selected spost-cephwasan imagegeneratedbasedonmovement
similar to actual surgical movement, then it may be used as a digital
twin for predicting the simulated surgical result. The two ODs and two
OMFSs independently selected a total of 35 cases each and demon-
strated an average accuracy of 90.0%, as shown in Fig. 2b.

The practicality of the clinical application of spost-ceph was
evaluated using thequestionnaire shown inFig. 2c,whichattempted toTa
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Fig. 2 | Overview of usage as a digital twin. a Results of generating images based
on the intended amount of surgical movement (IASM). As the IASM increased, the
imagesmoved away from the reddotted line, indicating a presumed increase in the
magnitudes of movement. b Evaluation of usability as a digital twin by two

orthodontists (ODs) and two oral & maxillofacial surgeons (OMFSs).
c Questionnaire for digital-twin evaluation. d Responses to a questionnaire by the
two ODs and two OMFSs.
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assess if spost-ceph would be useful in predicting surgical results and
in patient consultation. As shown in Fig. 2d, the four DDSs indicated
the positive utility of our generative model for most of the questions.
However, with regard to question 4, this model has a limitation in its
usefulness to assist surgical planning in clinical practice, because
simply presenting post-op images would not be of much help in
establishing a surgical plan.

Ablation study
We conducted various experiments comparing different conditions
and networks. Initially, we compared the performance of generative
models between generative adversarial networks (GAN)45–47 and dif-
fusion models29–32. Subsequently, we enhanced the model by adding
various conditions. The first condition used the pre-ceph coordinates
of landmarks, whereas the second used surgical movement vectors,
which significantly enhanced performance. During the experiments,
we identified a problemwith the incorrect generation of themandible.
To resolve this, we added the profile line of the pre-ceph as the final
condition. This addition significantly enhanced the performance of the
model, particularly improving the depiction of the mandibular of the
patient. The results of these experiments are presented in Table 2. The
hyperparameters of the model were set to default.

We used the same dataset for training both the GAN and diffusion
model. The primary backbone model employed for training was
StyleGAN46,47, and we utilized a pSp48 encoder for projection. Fur-
thermore, to facilitatemanipulation, we trained an additional encoder,
specifically a graph network49,50, to learn surgical movement vectors40.
However, during the trainingwithGANs,we frequently observedmode
collapse. Furthermore, no noticeable changes were observed as a
result of surgical movements.

Discussion
In this paper, we propose the GPOSC-Net model, which is based on a
GCNN and a diffusion model, which generates spost-cephs to predict
facial changes after OGS. First, the GPOSC-Net model employs two
modules, i.e., an image embedding module (IEM) and a landmark
topology embedding module (LTEM), to accurately obtain the
amounts of surgical movement that the cephalometric landmarks
would undergo as a result of surgery. Afterward, the model uses the
predicted post-op landmarks and profile lines segmented on the pre-
ceph, among other necessary conditions, to generate accurate spost-
cephs. In this study, we independently trained two models, which we
then concatenated during the inference process.

We conducted training and evaluation using a dataset of high-
quality patient data consisting of 707 pairs of pre-cephs and post-
cephs dated from 2007 to 2019 provided by nine university hospitals
and one dental hospital. To train and test themodel, data from four of
the institutions were used for internal validation to evaluate the
accuracy of the model. Subsequently, to demonstrate the robustness

of the model, data from the six other institutions were used for
external validation.

The cephalometric landmarks of post-ceph and spost-ceph were
then compared. In the internal validation, no statistically significant
differenceswere observed formost of the landmarks (33 of the total 35
landmarks), whereas in the external validation, no statistically sig-
nificant differences were observed for 23 of the 35 landmarks. Land-
marks on the cranial base, which were not changed by surgery, had
average errors of 0.85 ± 0.62mm and 1.07 ±0.79mm for the internal
and external test sets, respectively. These values were comparable to
or smaller than the intra-observer errors observed in reproducibility
studies with real cephalograms41,42. Thus, it could be said that the
landmarks in spost-ceph were not significantly different from those of
the real post-ceph.

Researches that predict the outcomes of OGS by training artificial
intelligence on cephalometric radiographs are still relatively few, and
some of them compared the accuracy of predictions using metrics
such as F1 score or AUC for cephalometric measurements51. However,
such evaluation methods may not always be appropriate for clinical
application. Donatelli and Lee argued that in orthodontic research,
when assessing the reliability of 2D data, it is more appropriate to
represent errors based on horizontal and vertical axes and to evaluate
them using Euclidean distance rather than simply relying on mea-
surements of distance or angles52.

Previous studies that predicted the outcomes of OGS typically
focused on the changes in soft tissue. Suh et al. investigated that the
partial least squares (PLS) method was more accurate than the tradi-
tional ordinary least squares method in predicting the outcomes of
mandibular surgery10. According to the study by Park et al., when
predictionsweremade using the PLS algorithm, the Euclidean distance
from the actual results ranged from 1.4 to 3.0mm, whereas the AI
(TabNet DNN algorithm) prediction error ranged from 1.9 to 3.8mm53.
In this study, the PLS algorithmpredicted the soft tissue changesmore
accurately in the upper part of the upper lip, while the AI (TabNet DNN
algorithm) provided more accurate predictions in the lower man-
dibular border and neck area. The prediction errors for soft tissue
changes in our study were 0.8 to 1.22mm in the upper profile and 1.32
to 1.75mm in the lower profile, resulting in better outcomes compared
to previous studies. Kim et al. predicted the positions of hard-tissue
landmarks after surgery using linear regression, random forest
regression, the LTEM, and the IEM They found that combining LTEM
and IEM allowed for more accurate predictions, with errors ranging
from 1.3 to 1.8mm40.

Our study also achieved similar results, with prediction errors
ranging from 1.3 to 1.6mm. For the internal and external test sets, the
average errors of cephalometric landmarks in the dental area were
1.34 ±0.83mmand 1.60 ± 1.08mm, respectively, whereas the errors of
landmarks in the jaw were 1.33 ± 0.86mm and 1.57 ± 0.94mm,
respectively. Although the errors were larger than those of landmarks
on the cranial base, they were comparable to the inter-observer errors
demonstrated in a past study involving real cephalograms41,42, and
thus, it could be inferred that the actual surgical results were accu-
rately predicted. In particular, the dental area, which is difficult to
accurately create in a generativemodel, was generated as accurately as
the jaws. For the internal test set, there were no statistically significant
differences among all 16 landmarks. However, for the external test set,
there were significant differences in 6 of the landmarks, four of which
were positioned at the jaws. It seemed that the prediction of these
landmarks (A point, anterior nasal spine or ANS, protuberance menti,
and pogonion) was made difficult by remodeling procedures after
surgery, such as ANS trimming and genioplasty. The landmarks in the
upper profile had relatively smaller errors than those of the landmarks
in the lower profile, but there were more landmarks showing statisti-
cally significant differences in the upper profile than in the lower
profile. This was probably due to the small standard deviation of the

Table 2 | Comparative ablation studies on the impact of var-
ious conditions on generative models

Model Landmarks Surgical
movement
vectors

Profile
line

Distance error
(mean ± SD)

StyleGAN x o x 3.12 ± 2.55

diffusion x x x 2.86 ± 2.34*

o x x 2.57 ± 2.13*

o x 1.77 ± 1.59**

o 1.36 ± 1.07*

This table provides a statistical comparison of distance error metrics under different experi-
mental configurations. Each model configuration in the table was statistically compared to the
configuration in the preceding row using a paired t-test.
*p value <0.05; **p value <0.005.
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landmark errors in the upper profile. The upper profile undergoes
relatively little or no change due to surgery, and thus, the measure-
ment errorswere small. By contrast, in the lower profile, it seemed that
the prediction errors were relatively larger because of various changes
in the chin position that could occur depending on whether genio-
plasty was done. However, nonetheless, the landmark errors in the
lower profile were comparable to the inter-observer errors demon-
strated in another study41,42.

VTT results revealed that the four examiners had ~50% accuracy,
suggesting that the spost-cephs were perceived as realistic and could
not be differentiated even by expert ODs and OMFSs with an average
of over 15 years of experience.

Serial spost-cephs adjusted with different values for IASM were
generated and evaluated in a test on selecting appropriate surgical
results based on pre-cephs. Most of the answers chosen by the four
examiners in a blind condition were within the criteria for preferred
predictions (0.8≤ IASM ≤1.2), which meant that if an appropriate sur-
gical movement could be presented, our generative model would be
able to synthesize images that could be used as a simulated surgical
goal. Therefore, with our proposed model, the surgical results could
be reliably predicted and used in actual clinical practice. In the same
test, most of the ODs and OMFSs responded positively to the useful-
ness of spost-cephs. In particular, spost-cephs would be of great help
in explaining various kinds of surgical plans to patients and predicting
their surgical results. However, the experts did not have a high
expectation regarding the usefulness of spost-cephs in establishing an
actual surgical plan. Thismight be because the actual amounts of bony
movement could not be determined simply from spost-cephs. A more
positive answer could have been obtained if the amounts of bony
movement had been presented with a comparison of pre-ceph and
spost-ceph.

This study had several limitations. First, our model depends on
two-dimensional cephalometric images, which could not represent
actual 3D movement and changes due to OGS. In the near future, this
study could be extended to use 3D cone beam computed tomography
(CBCT) of OGS. Second, this study was performed in a single nation
and on an Asian population only. We need to extend our model to be
applicable to various races from other nations. Lastly, in this study,
there was a possibility of simulation-based digital twins for our model.
For better clinical significance, we need more clinical evaluations on
real-world clinical validation involvingmore examiners and performed
in a prospective manner.

This study fundamentally aims to assist physicians in making
better decisions in ambiguous cases, enhance communication
between patients and doctors, and ultimately foster better rapport.
However, there is concern that the outcomes of this study could
potentially lead to misconceptions among patients, resulting in an
increase in unnecessary surgeries or treatments. It is crucial for phy-
sicians to be aware of these risks, and there is a need for regulatory
agencies to develop regulations that prevent unnecessary treatments.
Our group is committed to actively addressing these concerns. Despite
these concerns, our study demonstrates that AI-based prediction
models, such as GPOSC-Net, can provide valuable insights for surgical
planning and clinical decision-making.

In this paper, we proposeGPOSC-Net, an automated andpowerful
OGS predictionmodel that uses lateral cephalometric X-ray images. In
this study, these images were obtained from nine university hospitals
and one dental hospital in South Korea. Our model predicted the
movement of landmarks as a result of OGS between pre-cephs, post-
cephs, and generated spost-cephs using pre-ceph and IASM (virtual
setback ratio only). Based on a comparison with post-ceph, the spost-
ceph not only accurately predicted the positions of the cephalometric
landmarks but also generated accurate spost-cephs. Although 2D
images have their limitations in formulating accurate surgical plans,
our model has the potential to significantly contribute to simulations

for surgical planning and communications with other dentists and
patients.

Methods
Ethical approval
This retrospective study was conducted according to the principles of
the Declaration of Helsinki. This nationwide study was reviewed and
approved by the Institutional Review Board Committee of ten insti-
tutions: (A) Seoul National University Dental Hospital (SNUDH)
(ERI20022), (B) Kyung Hee University Dental Hospital (KHUDH) (19-
007-003), (C) Kooalldam Dental Hospital (KOO) (P01-202105-21-019),
(D) KyungpookNational UniversityDentalHospital (KNUDH) (KNUDH-
2019-03-02-00), (E) Wonkwang University Dental Hospital (WUDH)
(WKDIRB201903-01), (F) Korea University Anam Hospital (KUDH)
(2019AN0166), (G) Ewha Woman’s University Dental Hospital (EUMC)
(EUMC 2019-04-017-003), (H) Chonnam National University Dental
Hospital (CNUDH) (2019-004), (I) Ajou University Dental Hospital
(AUDH) (AJIRB-MED-MDB-19-039), and (J) Asan Medical Center (AMC)
(2019-0927). The requirement for patient consent was waived by each
center’s Institutional Review Board Committee.

Overall procedure
Based on the IASM and pre-ceph, the spost-ceph is generated by
GPOSC-Net. In this study, two ODs traced the spost-cephs and com-
pared them with post-cephs to evaluate the accuracy of the landmark
positions and the soft- and hard-tissue profile lines. 45 landmarks were
digitized by experienced orthodontists using the V-ceph software
(Version 8.0, Osstem, Seoul, Korea). Additionally, a VTT was con-
ducted with two ODs and two OMFSs to validate the quality of the
spost-cephs. During the spost-ceph generation process, additional
images reflecting various amounts of surgical movement were gener-
ated and reviewed to establish an appropriate surgical plan (Fig. 3a, b).
The proposed GPOSC-Net model is visualized in Fig. 3c.

Data acquisition
A total of 707patientswithmalocclusionwhounderwent orthognathic
surgery (OGS) between 2007 and 2019 at one of nine university hos-
pitals and/or one dental hospital and had lateral cephalograms taken
before and after surgery (Fig. 4a) were included in this study (Fig. 4b).
The age of the patients ranged from 16 to 50 years. All lateral cepha-
logram pairs were anonymized and stored in Digital Imaging and
Communications in Medicine (DICOM) format as 12-bit grayscale
images. The gender distribution of the patients was nearly equal
(Fig. 4e). In this study, sex or gender was not considered as a factor in
the experiments. The average duration of pre-surgical orthodontic
treatmentwas 14months, although somepatients required 2 to 3 years
to complete the pre-surgical phase (Fig. 4f).

We initially selected hospitals A, B, and C, which had the richest
datasets, as our primary sources for the internal dataset. However, the
majority of the patients from institutions A and B underwent two-jaw
surgery (Fig. 4d). Consequently, to prevent a bias in the deep learning
model toward patients that underwent one-jaw surgeries, we incor-
porated data from institution D, which had a higher proportion of
patients who underwent one-jaw surgery, into our internal dataset.
Through this process, a dataset comprising a total of 707 pairs was
constructed, of which 550 were utilized as the training dataset, 50 as
the validation dataset, and 50 as the internal test set. Additionally, we
employed 57 pairs of pre-cephs and post-cephs from university hos-
pitals E, F, G, H, I, and J as the external test set, because the different
institutions had different cephalogram machines. In addition, there
were variations in the imaging protocols and in the quality of the
cephalograms.

With regard to the direction of surgicalmovement, themajority of
anterior nasal spine (ANS), posterior nasal spine (PNS), and upper-lip
landmarksmoved anteriorly and superiorly, whereas themajority of B-
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Fig. 3 | Overall procedure. a Comparison of surgical outcome between real post-
cephs and spost-cephs. b Evaluation of spost-cephs and assessment of their clinical
utility. c Generative prediction for orthognathic surgery using ceph network
(GPOSC-Net) model architecture, which utilizes a convolutional neural network
(CNN)-based image embedding module (IEM) and a GCNN-based landmark topol-
ogy embedding module (LTEM) to vectorize lateral cephalograms and landmark

data, respectively. These vectors are concatenated and fed into a multi-layer per-
ceptron (MLP) to predict the landmarkmovements caused by surgery. To generate
spost-cephs, a latent diffusion model is employed with a few conditions, such as
surgical movement value predicted by IEM and LTEM, pre-cephs, pre-operational
landmarks, profile lines, and intended amount of surgicalmovement (IASM), which
can control the virtual setback amounts of spost-cephs.
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point, Md 1 crown, lower lip, soft-tissue pogonion, and soft-tissue
menton landmarks moved posteriorly and superiorly (Fig. 4c). The
reason for these surgicalmovements was thatmost of the patients had
skeletal Class III malocclusions, which needed anterior movement of
the maxilla and posterior movement of the mandible. For most of the
OGSs, the maxilla moved within 10mm, whereas the mandible moved
within 15mm. Detailed information regarding the composition,
demographic characteristics, and cephalography machines, among
others, is provided in Supplementary Table 1 of the supplementary
materials.

Model description
Overview of GPOSC-Net. Herein, we propose generative prediction
for orthognathic surgery using ceph network (GPOSC-Net)40, which
comprises twomodels: a two-module combination of our CNN-based
image embedding module (IEM) and a GCNN-based landmark
topology embedding module (LTEM), which predict the movement
of landmarks that would occur as a result of OGS; and a latent dif-
fusion model30, which is used to generate spost-cephs (Fig. 3c). The
IEM utilizes a high-resolution network to maintain detailed repre-
sentations of lateral cephalometric images. Before proceeding to the
next step, the output of the IEM is subjected to channel coupling by
the channel relation score module (CRSM), which calculates the
relation score between channels of a featuremap. On the other hand,
the LTEM employs a GCNN to train the topological structures and
spatial relationships of 45 hard- and soft-tissue landmarks. Finally,
the movement of these landmarks is predicted by a multi-layer

perceptron (MLP) module, which uses the combined outputs of IEM
and LTEM.

To generate spost-cephs, the model uses a set of conditions that
includes themovement of landmarks obtained through IEMand LTEM,
along with segmented profile lines of pre-ceph. This approach aims to
ensure a minimal generation ability for our system. To reinforce this
capability, we trained an autoencoder on a dual dataset, including one
with labeled pre-ceph and post-ceph images, and The other is an
extensive unlabeled set of 30,000 lateral cephalograms, randomly
collected between 2007 and 2020, which are unrelated to any pre- or
post-surgical conditions or orthodontic treatment, and are sourced
from an internal institution (Hospital J). The learning methods and
model structure and description are explained in detail further in
this paper.

Finally, we employed the IASM during the testing phase to gen-
erate serial spost-ceph images corresponding to various amounts of
virtual surgical movement. IASM made it possible to calibrate the
expected surgical movement ratio precisely across a continuous
spectrum from 0 to 1.6, where a value of 0 represents no surgical
movement (similar to pre-ceph, 0%), a valueof 1 corresponds to the full
predicted movement (similar to post-ceph, 100%), and a value of 1.6
equates to an enhanced projection with a 160% setback. This enabled
the serial generation of spost-ceph images with nuanced variations in
surgical movement. For IASM ranging from 0.1 to 1.6, five spost-ceph
images, including for IASM 1, were randomly generated, and an
appropriate treatment goal based on the pre-cephwas selected by two
ODs and two OMFSs in a blind condition.
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six university hospitals (E, F, G, H, I, and J) were used for external tests. e Gender
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Surgicalmovement vector predictionmodules. As indicated earlier,
our model consists of IEM and LTEM40, which are trained using
images and landmarks, respectively (Fig. 3c). The IEM adopted HR-
NET54 as its backbone and was trained to represent a ceph as a low-
dimensional feature map. To correspond to each landmark, the fea-
turemap outputs 45 channels, where each channel has dimensions of
45 × 45. CRSM is used to measure a relationship score matrix
between distinct channels; similarly, the matrix has dimensions of
45 × 45. Finally, an image feature vector is evaluated using a weighted
combination of the flattened feature map and relationship score
matrix.

On the other hand, the LTEM was designed based on the GCNN49

to learn the topological structures of landmarks. The training process
of the LTEM is as follows: GCNNðfki Þ = fk+ 1i = ReLUðfki W1 +

P
jeijf

j
iðW2Þ,

where W1 and W2 are weight matrices learned from the training, f
denotes node features, and e is the edge of the graph. Meanwhile,
ReLU(·) =max(0, ·)55 is the nonlinear activation function, is the learn-
able connectivity at the ith node from A, denotes the data we want to
train, and is expressed as input data. In our experiment, D = 92 and
N = 45, where D is the input dimension of the graph, the position of the
i-node, and thedistance features from theneighborhoodofnode i; and
N is the number of nodes, which is the same as the number of land-
marks (Fig. 3c).

The encoder of the LTEM comprises two layers of the GCNN,
which is the graph embedding, and the learned weight matrices in
these layers. Herein, A is the connectivity of all nodes shared by both
layers. The output dimensions of the first and second layers are set to
64 and 32, respectively. Our model utilizes IEM and LTEM to obtain
embeddings of images and landmarks, and then concatenates these
embedding vectors to ultimately predict the surgical movement vec-
tors. We trained the model using the L1 loss between the predicted
surgical movement vectors and the gold standard.

We also used the Adam optimizer56, which combined the
momentum and exponentially weighted moving average gradients
methods, to update the weights of our networks. The learning rate
was initially set to 0.001, and then decreased by a factor of 10 when
the accuracy of the networks on the validation dataset stopped
improving. In total, the learning rate was decreased three times to
end the training. The networks were constructed under the open-
source machine learning framework of PyTorch 1.857 and Python 3.6,
with training performed on an NVIDIA RTX A6000 GPU. For the
model training, we adopted a data augmentation strategy to enhance
its robustness and generalization ability. This data augmentation
strategy could prevent overfitting and lead to robust model perfor-
mance, particularly when a limited training dataset is used. Data
augmentation was performed on the image and graph inputs to
increase the training dataset. When the spatial information of an
image was transformed, such as by random rotation and random
shift, the same augmentation was applied to the input of the graph.
For the gamma, sharpness, blurriness, and random noise, the spatial
information of the image was not transformed; thus, these were
applied only to the image and not to the graph input.

Generationmodule. Image compression (Fig. 3c). Theobjective of our
generationmodule is to generate spost-cephs using pre-ceph as input.
To achieve this, we employed a latent diffusion model30 consisting of
an autoencoder58 for encoder E and decoder D and a diffusion model
for generating the encoding latent (Fig. 3c). To train the autoencoder,
we used not only pre-ceph and post-ceph data but also an unlabeled
set of 30,000 lateral cephalograms sourced from an internal institu-
tion (Hospital J). This was important to ensure that the latent space of
the autoencoder was well-formed, guaranteeing minimal generation
capability30. Additionally, we employed vector quantization59,60, which
uses a discrete codebook Z�R16 × 128× 128, and adversarial learning

techniques to enhancemodel stability and achieve high-quality results.
The loss function is as follows.

LVQ E,D,Zð Þ= jjx� x̂jj2 + jjsg E xð Þ½ � � zqjj22 + jjsg zq
h i

�E xð Þjj
2

2
+ λLGAN E,D,Zf g, Dð Þ

ð1Þ

where D is the patch-based discriminator, x̂ =D E xð Þð Þ,
and LGAN E,D,Zf g, Dð Þ= logD xð Þ+ log 1� D x̂

� �� �� �
Diffusionmodel. The encoded data distribution q z0

� �
is gradually

converted into a well-behaved distribution π yð Þ by repeated applica-
tion of a Markov diffusion kernel Tπ yjy;βð Þ for π(y)32. Then,

q zt jz
� �

=Tπ zt jzt�1;βt

� �
=N zt ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

q
zt�1,βt I

� �
ð2Þ

Meanwhile, the forward trajectory, starting at the data distribu-
tion and performing T = 1000 steps of diffusion process, is as follows:

q z0:T
� �

=q z0
� �QT

t = 1q zt jzt�1

� �
, where z1, z2, . . . zT are latents of the

same dimension as the data z0. The forward process is that which
admits sampling zt at an arbitary timestep t in closed form. Using the

notation αt = 1� βt and �αt =
Pt

s = 1αs, then, we obtain the analytical
form of q zt jz0

� �
as follows.

q zt jz0
� �

=N zt ;
ffiffiffiffiffi
�αt

p
z0, 1� �αt

� �
I

	 

ð3Þ

We can easily obtain a sample in the immediate distribution of the
diffusion process.

zt =
ffiffiffiffiffi
�αt

p
z0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p
ϵ ð4Þ

Diffusion models are latent variable models of the parameterized
distribution pθ z0

� �
=
R
pθ z0:T
� �

dz1:T . The reverse trajectory, starting at
the prior distribution, is as follows.

pθ z0:T
� �

=p zT
� �YT

t = 1

pθ zt�1jzt
� � ð5Þ

where pðzT Þ=π zT
� �

and pθ zt�1jzt
� �

=N zt�1;μθ zt , t
� �

,Σθ zt , t
� �� �

, and
μθ zt , t
� �

and Σθ zt , t
� �

are training targets defining the mean and cov-
ariance, respectively, of the reverse Markov transitions for a Gaussian
distribution. To approximate between the parameterized distribution
pθ x0
� �

and data distribution q z0
� �

, training is performed by optimiz-
ing the variational lower bound on negative log likelihood.

Ez�q zð Þ � logpθðzÞ
� �

≤Ez�q zð Þ � logp zT
� ��X

t ≥ 1

pθ zt�1jzt
� �

q zt jzt�1

� �
" #

=Lvlb

ð6Þ
For efficient training, further improvement is made by re-

expressing Lvlb as follows.

Lvlb =Ez�q zð Þ DKL q zT jz0
� �jjp zT

� �� �
+DKL q zt�1jzt , z0

� �jjpθ zt�1jzt
� �� �� logpθ z0jz1

� �� �
ð7Þ

The equation uses Kullback–Leibler divergence to directly com-
pare pθ zt�1jzt

� �
against forward process posteriors. The posterior

distributions are tractable when conditioned on z0.

q zt jzt�1

� �
=q zt�1jzt , z0
� � q zt jz0

� �
q zt�1jz0
� � =N zt�1; eμt zt , z0

� �
, eβt I

	 

, ð8Þ

where eμt zt , z0
� �

=
ffiffiffiffiffiffiffi
�αt�1

p
βt

1��αt
z0 +

ffiffiffiffi
αt

p
1��αt�1ð Þ
1��αt

zt and eβt =
1��αt
1��αt�1

βt , and the
values of β0 and βT were 0.0015 and 0.0195, respectively. Then, the
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loss function can be defined as follows.

Lsimple =EE xð Þ, q jjϵ� ϵθ zt , t
� �jj2h i

ð9Þ

After training, samples can be generated by starting from
zT�N 0, Ið Þ and following the parameterized reverse Markov chain.

zt�1 =
1ffiffiffiffiffi
αt

p zt �
1� αtffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p ϵθ zt , t
� � !

+σtz ð10Þ

Furthermore, we aimed to generate spost-cephs using multiple con-
ditions in thediffusionmodel.Weuseda total of four conditions, including
pre-cephs and their profile lines, which were concatenated, whereas
the pre-ceph landmarks and the movement vectors predicted through
IEM and LTEM were latentized using a graph network and subsequently
embedded into the diffusion model via a cross-attention module. Then,
we can train the conditional diffusion model using conditions c via

Lcondition =EE xð Þ jjϵ� ϵθ zt , c, t
� �jj2h i

ð11Þ

where, c= m, xpre, lpre, ppre
� �

andm 2 R45× 45 is the surgicalmovement
vector predicted through the graph network, and xpre 2 R1 × 1024× 1024,
lpre 2 R45 ×45 and ppre 2 R1 × 1024× 1024 represent the pre-ceph, the
landmarks of pre-ceph, and the profile line of the pre-ceph.
Additionally, we used the LTEM40 model to embed m and lpre into
the diffusion model. We used an untrained model, which is trained
together as the diffusion model is trained. After training, sampling is
performed using the trained diffusion model. To reduce the genera-
tion time and maintain consistency, a DDIM29 was used. The formula
for DDIM is as follows:

zτt�1
=

ffiffiffiffiffiffiffiffiffiffi
ατt�1

p zτt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ατt

q
ϵ tð Þ
θ zτt

	 

ffiffiffiffiffiffiffi
ατt

p
0
@

1
A+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ατt�1

q
� ϵ tð Þ

θ zτt

	 

ð12Þ

where τ is a sub-sequence of timesteps of length T .
To train the generationmodule, we utilized the Adamoptimizer56,

which combines momentum and exponentially weighted moving
average gradient methods. The initial learning rate was set to 2e − 6,
and we trained the model for a total of 1000 epochs. The networks
were implemented using open-source machine learning frameworks
such as PyTorch 1.857 and Python 3.6, with training performed on an
NVIDIA RTX A6000 48GB GPU. However, we did not employ data
augmentation in our training process.

Classifier-free guidance for digital twin. To conduct experiments for
generating various surgical movements, we used classifier-free gui-
dance (CFG)31. Unlike classifier guidance33,34, CFG is distinct in that the
classifier model is not separate from the diffusionmodel but is trained
together. CFG achieves an effect similar to modifying epsilon ϵ for
classifier guidance sampling, but without the separated classifier. The
diffusion model can be trained by setting a condition c or a null token
+ into the model for some probability. Then, we defined the esti-
mated score61–63 using model θ for the input condition c as ϵθðzt , t, cÞ,
and the estimated score for the null token as ϵθ zt , t, +

� �
= ϵθðzt , tÞ.

After training, wemodified the score using a linear combination of the
unconditional score and conditional score by the IASM. The CFG
sampling method is known to be robust against gradient-based
adversarial attacks, whereas classifier guidance sampling by a poorly
trained classifier may lead to problems in consistency and fidelity. The
score estimated by the CFG sampling is shown as follows:

eϵθ zt , t, c
� �

= 1 + sð Þ � ϵθ zt , t, c
� �� s � ϵθ zt , t

� � ð13Þ

Preprocessing of dataset
Before training, all lateral cephalograms were standardized with a
pixel spacing of 0.1mm. Subsequently, the post-ceph was con-
ventionally aligned with the pre-ceph based on the Sella–Nasion (SN)
line. To include all landmarks in both pre-ceph and post-ceph, a
rectangle encompassing the regions defined by the Basion, Soft-
tissue menton, Pronasale, and Glabella points in both pre-ceph and
post-ceph was cropped. Additionally, zero padding was applied
horizontally and vertically to create a square image with a resolution
of 1024 × 1024.

The cropped image was divided by the maximum pixel value of
the image. Pixel normalizationwas performed such that the pixel value
was within 0–1. In addition, the coordinates of each landmark and the
distances among landmarks were expressed as vectors to train the
model. Before input to the model, the x- and y-axis distances were
divided by the width and height of the cropped picture, and normal-
ization was performed such that the feature value was within the
range of 0–1.

Statistical analysis
All statistical analysis was performed using IBM SPSS Statistics (IBM
Corporation, Armonk, NY, USA) version 25.

Landmark distance comparison for post-ceph and spost-ceph. Two
ODs traced post-cephs and spost-cephs in the internal (n = 50) and
external (n = 57) test sets. The SN − 7° line was set as the horizontal
reference line, and the line passing through the S point and perpen-
dicular to the SN − 7° line was set as the vertical reference line. The
horizontal and vertical distances from each landmark were used as
coordinate values. The coordinate values of the same landmark in
post-ceph and spost-ceph were compared, and the distance between
landmarkswas calculated. Apaired equivalence testwasperformed for
each landmark. In this case, the margin of error applied was 1.5 mm41,
42. The SPRs for each point were assessed according to errors
<2.0mm. Furthermore, we measured the distance between the profile
lines of post-ceph and spost-ceph. Taking anatomical structures into
account, we divided them into four lines, and the distances between
the lines were measured using the Hausdorff distance. Details on the
errors in the profile lines and the definition of the four profile lines can
be found in the Supplementary Table 3 and Supplementary Fig. 1 of the
supplementary materials.

Visual Turing test. For the VTT, 57 external test images (29 post-
cephs and 28 spost-cephs) were used, as OMFSs and ODs had already
observed the generated internal dataset during the digital twin
experiment. VTT was conducted with two ODs and two OMFSs by
displaying images one by one through a dedicated web-based inter-
face. Each examiner had more than 15 years of clinical experience. To
reduce environmental variability, the images were displayed in the
same order, and revisiting previous answers was prohibited. The
examiners were informed that there were 29 real and 28 synthesized
images. In addition, none had prior experience with synthesized ima-
ges before the test. All examiners successfully completed the test.
Sensitivity, specificity, and accuracy were derived, with real images
defined as positive and synthetic images as negative.

Digital twin. We investigated the clinical applicability of the spost-
cephs as digital twins for simulated surgical planning. Two ODs and
OMFSs were simultaneously shown pre-ceph and five spost-cephs
randomly generated at different degrees of surgical movement. To
focus on cases with significant surgical changes, patients with surgical
movement of ≤5mm were excluded, resulting in the selection of 35
cases from the initial internal test set of 50. Subsequently, the exam-
iners were asked to select an appropriate surgical movement amount
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considering the pre-ceph. The percentage of spost-cephs reflecting
real surgical movements was then calculated.

Ablation study. The ablation study was conducted using an internal
dataset of 50 samples. A single OD manually measured landmarks for
each experimental condition. Given the intensive nature of manual
landmark annotation, only the internal dataset was used to ensure
feasibilitywhilemaintaining evaluation consistency. Paired t-testswere
performed at each of the five experimental stages to compare results
with those from the preceding stage, assessing the impact of land-
marks distance error. Statistical significance was set at p <0.05, with
p <0.005 considered highly significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
provided within the article and its Supplementary Information. The
dataset utilized for model training and evaluation consists of lateral
cephalometric radiographs from 707 patients who underwent
orthognathic surgery. This dataset is divided into 600 samples for
training, 50 samples for internal validation, and 57 samples for external
validation. Additionally, 30,000 unlabeled lateral cephalometric
radiographs from internal institutions were used for pre-training the
generative model. These datasets are available upon request because
certain restrictions on public availability apply, owing to national
regulations and patient privacy laws in South Korea. Researchers
interested in accessing these datasets should submit a formal request,
which will be reviewed by the corresponding author, Namkug Kim
(namkugkim@gmail.com), and the Institutional Review Board (IRB).
The approval process typically requires one to twomonths, depending
on the IRBmeeting schedule. Researchers approved fordata access are
required to cite thismanuscriptwhenutilizing thedataset. SourceData
containing the raw numerical values underlying all experimental
results presented in this manuscript are provided with this
paper. Source data are provided with this paper.

Code availability
The code and pretrainedweight used in this research is available in the
GitHub repository (https://github.com/Kim-Junsik/GPOSC-Net), which
is publicly accessible to anyone. Information regarding usage, mod-
ification, and distribution of the code is specified in the LICENSE file
within the repository. The code is intended for research purposes only
andmay be restricted to commercial use. Additionally, users must cite
the relatedmanuscript and code repositorywhen utilizing this work in
their research.
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